Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 1

Local diffeomorphisms and smooth embeddings to gravitational field II: spherical symmetry and their breaking in the space-time

Bulnes F,1 Fominko S2

1Research Department of Mathematics and Engineering, TESCHA, Mexico
2Mathematics Department, Lomonosov Moscow State University, Russia

Correspondence: Francisco Bulnes, Technological Institute of Higher Studies Chalco, Mexico-Cuautla Federal Highway s/n Tlapala "La Candelaria", Chalco, State of Mexico, C.P. 56641, TES9812031H9, Mexico

Received: December 04, 2017 | Published: January 17, 2018

Citation: Bulnes F, Fominko. Local diffeomorphisms and smooth embeddings to gravitational field II: spherical symmetry and their breaking in the space-time.Phys Astron Int J. 2018;2(1):30-37. DOI: 10.15406/paij.2018.02.00045

Download PDF

Abstract

Consequences of the diffeomorphisms induced by K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant connections of the space of 1-forms of certain endomorphisms defined over a Lie algebra that is isomorphic to the tangent space seated in the identity element, of homogeneous spaces G/KG/H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadUeacqGHckcZcaWGhbGaaG4laiaadIeaaaa@3F3B@ , are analized. The images of these diffeomorphisms in G/H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadIeaaaa@3AEA@ , are 2-form of curvatures that can be induced to each class of the G/K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadUeaaaa@3AED@ . Then using the K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant connection of this homogeneous space, the curvature can be determined as a regular representation that admits a finite discomposing of irreducible sub-representations of finite type, accord with the generalizing in dimensions of the Gauss-Bonnet theorem and the generalized Radon transform to obtain curvature through of co-cycles of the image of the corresponding space. Such irreducible sub-representations will be isotopic components of the certain smoothly embedded image in a manifold modelled this last, by a generalized function space. Likewise, through these realizations we have the curvature integrals as dual case of their field equations. Finally, using the complex Riemannian structure of our model of the space-time, and the K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure of the orbits used to obtain curvature, are obtained as consequences of the diffeomorphisms the field equations to the energy-matter tensor density in each case of the gravitational field. Of this manner, is determined their energy-mass tensor density as an integral which represents the energy spectra of the curvature when this is obtained in duality to the homogeneous field equations to the Riemann tensor R μν 1 2 g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaKqbag qabaqcLbsacqaH8oqBcqaH9oGBaaGaeyOeI0IcdaWcaaqcfayaaKqz GeGaaGymaaqcfayaaKqzGeGaaGOmaaaacaWGNbqcfa4aaWbaaKqbGe qajqwba+FaaKqzadGaeqiVd0MaeqyVd4gaaaaa@49C5@ R.

Keywords: action integrals to gravity, curvature on homogeneous spaces, hessian curvatures, integral curvature, integration on orbits, integration invariants, local diffeomorphisms, regular representation, symmetric hermitian spaces, smooth embedding

Introduction

Through consider the unification the curvature from a point of view of two-study frame,1 and after with the generalizing of curvature as an integration invariant is suggested the curvature as regular representation that admits a finite decomposing of irreducible sub-representations of finite type.1,2

This representation, from several points of view of the field theory are considered in this paper to obtain applications of the “integral curvature” in cosmic curvature that includes the curvatures of the solution of the Einstein equations and the curvatures of the quantum model of the Universe (model of superstrings, particle physics and gravitational waves).

Likewise, diffeomorphisms of the form Diff( G 0 /K) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaamyAaiaadAgacaWGMbGaaGikaiaadEeakmaaCaaajuaGbeqcfasa aKqzadGaaGimaaaajugibiaai+cacaWGlbGaaGykaaaa@433E@ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHfj cqaaa@39CB@  exp( m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NjW3wcfa4a aSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaaa@484C@ ), are developed around of establish the field equations to start of action integrals model to particles and microscopic structure of the flag manifolds, the modelling of the gravitational field in the complex Riemannian model used to relativity description and other theories that complement the Einstein theory.

The connections used involve ant K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure of the manifold. Likewise, if M, is a reductive homogeneous space G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeajuaGdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaa aa@3DD4@ , then the G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaSbaaKqaGeaajugWaiaadEeaaKqaGeqaaKqzGeGaaGikaiaa d2eacaaIPaaaaa@3F33@ , admits an K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@  invariant ˜ K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuGHhi s0gaacaOWaaSbaaKqbGeaajugWaiaadUeaaKqbagqaaaaa@3D12@ :-conection. This connection K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant in S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaSbaaSqaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGnbGa aGykaaaa@3EF5@ , defined by the equation ˜ K (χ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuGHhi s0gaacaOWaaSbaaKqaGeaajugWaiaadUeaaSqabaqcLbsacaaIOaGa eq4XdmMaaGykaiaai2dacaaIWaaaaa@41B7@ , is the canonical connection of S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GcdaWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGnbGa aGykaaaa@3E90@ , respect to the decomposing t=hm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xlWtNae8xp a0Jae8xiWJMaeyyLIuSae8NjW3gaaa@4C7C@ . Of this way, we have that all K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant connection of the reductive space G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaaa@3D96@ , is equal to the canonical connection of the space S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GcdaWgaaWcbaqcLbmacaWGhbaaleqaaKqzGeGaaGikaiaad2eacaaI Paaaaa@3E71@ , respect to the decomposing m j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHvk sXtuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8Nj W3wcfa4aaSbaaKqaGeaajugWaiaadQgaaKqaGeqaaaaa@4A89@ . This establish the fact of that both connections have equal geodesics set. Thus the integrations that are realized on the orbits of the spaces G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeakmaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3D31@ , and S G (M) K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaSbaaKqaGeaajugWaiaadEeaaKqaGeqaaKqzGeGaaGikaiaa d2eacaaIPaGcdaWgaaqcbasaaKqzadGaam4saaWcbeaaaaa@4191@ , meet, additionally the fact of the preservation of the inner product’, in M, under the actions of the semi-simple group subjacent to the isometric complete differentiable manifold M.

Diffeomorphisms to curvature spectra in complex riemannian manifolds

We are interested in the cosmological study, and in particular, in the determination of their curvature from the microscopic aspects considering the particles as little deformations of the microscopic structure of the space-time.

Let M, be a Riemannian manifold at least complex of dimension 2n1. Then given that an at least differentiable structure is an at least complex holomorphic structure and this is an at least Hermitian structure then their connection is constructed through their at least Hermitian structure of their corresponding at least complex Riemannian bundle.

Let π:J(M)M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHap aCcaaI6aGaamOsaiaaiIcacaWGnbGaaGykaiabgkziUkaad2eaaaa@40DE@ , the bundle of at least Hermitian structure of M. Thus a fiber in χM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WycqGHiiIZcaWGnbaaaa@3CA5@ , is the space

J χ (M)={jEnd( T χ (M))| j 2 =1,conj,symmetric} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GcdaWgaaqcbasaaKqzadGaeq4XdmgaleqaaKqzGeGaaGikaiaad2ea caaIPaGaaGypaiaaiUhacaWGQbGaeyicI4Saamyraiaad6gacaWGKb GaaGikaiaadsfajuaGdaWgaaqcbasaaKqzadGaeq4Xdmgajeaibeaa jugibiaaiIcacaWGnbGaaGykaiaaiMcacaGG8bGaamOAaKqbaoaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiaai2dacqGHsislcaaIXaGa aGilaiaaysW7caaMe8Uaam4yaiaad+gacaWGUbGaaGjbVlaaysW7ca WGQbGaaGilaiaaysW7caWGZbGaamyEaiaad2gacaWGTbGaamyzaiaa dshacaWGYbGaamyAaiaadogacaaI9baaaa@6D70@   (1)

Then the bundle is associated to the orthonormal frame bundle of M, with typical fiber J( 2n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xhHivcfa4aaWbaaeqabaqcLbmacaaIYaGaamOBaaaajugibiaaiM caaaa@49A0@ =O (2n)/U(n), which is a symmetric Hermitian space2 These typical fibres have an invariant complex O(2n)-structure.3 Then the following diagram of the at least complex Riemannian bundle J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ , establishes the bijective correspondence with J( 2n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xhHiLcdaahaaWcbeqcbasaaKqzadGaaGOmaiaad6gaaaqcLbsaca aIPaaaaa@4951@ , and their horizontal and vertical spaces of the corresponding induced distributions for the Levi-Civita connection, having the diagram:

J( 2n )=O(M, 2n )/O(2n)O(M, 2n )O(M, 2n )/ O ˜ (2n)=O(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xhHivcfa4aaWbaaKqaGeqabaqcLbmacaaIYaGaamOBaaaajugibi aaiMcacaaI9aGaam4taiaaiIcacaWGnbGaaGilaiab=1risLqbaoaa CaaajeaibeqaaKqzadGaaGOmaiaad6gaaaqcLbsacaaIPaGaaG4lai aad+eacaaIOaGaaGOmaiaad6gacaaIPaGaeyiKHWQaam4taiaaiIca caWGnbGaaGilaiab=1risLqbaoaaCaaajeaibeqaaKqzadGaaGOmai aad6gaaaqcLbsacaaIPaGaeyOKH4Qaam4taiaaiIcacaWGnbGaaGil aiab=1risLqbaoaaCaaajeaibeqaaKqzadGaaGOmaiaad6gaaaqcLb sacaaIPaGaaG4laiqad+eagaacaiaaiIcacaaIYaGaamOBaiaaiMca caaI9aGaam4taiaaiIcacaWGnbGaaGykaaaa@76DE@

O(2n)π'O(2n)×O(2n)πO(2n)π'' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4tai aaiIcacaaIYaGaamOBaiaaiMcacqGHtgYRcqaHapaCcaWGNaGaaGzb VlaaywW7caaMf8Uaam4taiaaiIcacaaIYaGaamOBaiaaiMcacqGHxd aTcaWGpbGaaGikaiaaikdacaWGUbGaaGykaiabgoziVkabec8aWjaa ywW7caaMf8UaaGzbVlaad+eacaaIOaGaaGOmaiaad6gacaaIPaGaey 4KH8QaeqiWdaNaam4jaiaadEcaaaa@60AA@   (2)

MMM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GaaGzbVlaaywW7caaMf8UaaGzbVlabgsziRkaaywW7caaMf8UaaGzb VlaaywW7caWGnbGaaGzbVlaaywW7cqGHugYQcaaMf8UaaGzbVlaad2 eaaaa@518E@

With orbits or horo-spheres in the irreducible symmetric compact Hermitian space S O(2n)/U(n).4

Then the tangent bundle of the fibres in J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ , satisfies the equation (sum of diffeomorphisms as mapping of the tangent spaces):

TJ(M)= E V E H , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaamOsaiaaiIcacaWGnbGaaGykaiaai2dacaWGfbqcfa4aaSbaaKqa GeaajugWaiaadAfaaKqaGeqaaKqzGeGaeyyLIuSaamyraKqbaoaaBa aajeaibaqcLbmacaWGibaajeaibeaajugibiaaiYcaaaa@48B8@   (3)

With the vertical distribution given for

E V =Kerdπ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GcdaWgaaqcbasaaKqzadGaamOvaaWcbeaajugibiaai2dacaWGlbGa amyzaiaadkhacaWGKbGaeqiWdaNaaGilaaaa@432E@   (4)

And E H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaadIeaaKqaGeqaaaaa@3C60@ , the corresponding horizontal distribution identified isomorphically by the space ( π 1 T(M)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeqiWdaxcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaKqz GeGaamivaiaaiIcacaWGnbGaaGykaiaaiMcaaaa@4309@ .

Of this way, we can characterize an at least complex tautological holomorphic structure J H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GcdaahaaWcbeqcbasaaKqzadGaamisaaaaaaa@3BC3@ , on E H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaadIeaaKqaGeqaaaaa@3C60@ , given For the endomorphisms J j H =jEnd( T χ ( π 1 T(M))). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aa0baaKqaGeaajugWaiaadQgaaKqaGeaajugWaiaadIeaaaqc LbsacaaI9aGaamOAaiabgIGiolaadweacaWGUbGaamizaiaaiIcaca WGubGcdaWgaaqcbasaaKqzadGaeq4XdmgaleqaaKqzGeGaaGikaiab ec8aWLqbaoaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaajugibi aadsfacaaIOaGaamytaiaaiMcacaaIPaGaaGykaiaai6caaaa@562D@  

Adding this to J V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaWbaaKqaGeqabaqcLbmacaWGwbaaaaaa@3C4A@ , is established an at least complex structure I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijbaa@4321@ , given for TJ(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaamOsaiaaiIcacaWGnbGaaGykaaaa@3C77@ , as in the equation (3). This help us to induce the at least complex structure on holomorphic submanifolds of the manifold JM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb Gaamytaaaa@3A39@  and thus of the manifold M.

Due to that we want calculate geometrical properties of the space through the submanifolds such as their curvature, torsion, etc., is wanted to have an integrability criteria on JM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb Gaamytaaaa@3A39@ , through their differentiable projections (that are fibres of sections of the bundle5 TJ(M)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaamOsaiaaiIcacaWGnbGaaGykaiaaiMcacaaIUaaaaa@3DE2@  This criteria based in their differentiable projections takes said condition resolving the homogeneous equation to the integrability condition, given this by the corresponding integral equation, staying the field differential equation to the space given in (3). This will be applied in the next section to the corresponding study on gravitational field theory to quantum level and which has macroscopic effects in the behaviour of the matter-energy tensor, as is mentioned in the Einstein field equations.

The O(2n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGpb GaaGikaiaaikdacaWGUbGaaGykaaaa@3C80@ - structure permits the validation of the invariance of the equations, but also the appearing of the conformal transformation as an exact symmetry property of the space-time to the symmetry of the Riemann tensor to the spherical case.

An adequate criteria is given by the integrability obstruction of the distribution of the spaces E H (J(M)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GcdaWgaaWcbaqcLbmacaWGibaaleqaaKqzGeGaaGikaiaadQeacaaI OaGaamytaiaaiMcacaaIPaGaaGOlaaaa@4150@  But this is obtained, if the corresponding curvature tensor to the structure I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijbaa@4321@ , is annulled.36

Thus I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijbaa@4321@ , is integrable if R( T + , T + ) T + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGikaiaadsfajuaGdaahaaqcbasabeaajugWaiabgUcaRaaajugi biaaiYcacaWGubqcfa4aaWbaaKqaGeqabaqcLbmacqGHRaWkaaqcLb sacaaIPaGaamivaKqbaoaaCaaajeaibeqaaKqzadGaey4kaScaaaaa @47F1@ , is satisfied to all isotropic maximal subspaces T + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaahaaWcbeqcbasaaKqzadGaey4kaScaaaaa@3BE2@ , of TM. This is equivalent to consider that to the mass-energy tensor the energy integral takes the form:

W( T + )= (dx)(d x ){ T μν (χ) D + (χ χ ) T μν 1 2 T(χ) D + (χ χ )T( χ )}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GaaGikaiaadsfajuaGdaahaaqcbasabeaajugWaiabgUcaRaaajugi biaaiMcacaaI9aGaey4jIKTcdaWdbaqabSqabeqajugibiabgUIiYd GaaGikaiaadsgacaWG4bGaaGykaiaaiIcacaWGKbGabmiEayaafaGa aGykaiaaiUhacaWGubqcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcq aH9oGBaaqcLbsacaaIOaGaeq4XdmMaaGykaiaadseajuaGdaWgaaqc basaaKqzadGaey4kaScajeaibeaajugibiaaiIcacqaHhpWycqGHsi slcuaHhpWygaqbaiaaiMcacaWGubqcfa4aaSbaaKqaGeaajugWaiab eY7aTjabe27aUbqcbasabaqcLbsacqGHsislkmaalaaabaqcLbsaca aIXaaakeaajugibiaaikdaaaGaamivaiaaiIcacqaHhpWycaaIPaGa amiraKqbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaKqzGeGaaG ikaiabeE8aJjabgkHiTiqbeE8aJzaafaGaaGykaiaadsfacaaIOaGa fq4XdmMbauaacaaIPaGaaGyFaiaaiYcaaaa@7E97@   (5)

This re-fall as a condition to the curvature tensor R in their O(2n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGpb GaaGikaiaaikdacaWGUbGaaGykaaaa@3C80@ - invariant anti-symmetric part, that is to say, in their Weyl tensor.7

Then I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijbaa@4321@ , is integrable if and only if the Weyl tensor W μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaaaaa@3F13@ , of R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaaaa@3E6B@ , is such that

W μν =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsa caaI9aGaaGimaaaa@4123@   (6)

That is to say, that M is local and conformally flat.

Likewise, considering an K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariant connection of the reductive homogeneous space G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeajuaGdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaa aa@3DD4@ , corresponding to a Stein manifold M D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GcdaWgaaqcbasaaKqzadGaamiraaWcbeaaaaa@3BC1@ ,8 subjacent to the complex Riemmanian manifold M (that is to say, we consider a closed and compact orbit of M), then G 0 =K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaaGypaiaa dUeaaaa@3E75@ .

Indeed, we consider the De Rham cohomology of the exterior algebras (V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=jqidjabgEIi zlaaiIcacaWGwbGaaGykaaaa@4714@ , and (V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=jqidjabgEIi zNqbaoaaCaaajeaibeqaaKqzadGaey4fIOcaaKqzGeGaaGikaiaadA facaaIPaaaaa@4A9A@ , of the vector bundle EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaeyOKH4Qaamytaaaa@3C21@ , and we construct the K- invariant connection on the vector bundle PM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaeyOKH4Qaamytaaaa@3C2C@ , (the vector G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@  bundle) that is an affine connection in M9. By orbitalizing10

G/DG/PG/ G 0 , G 0 =K, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadseatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=PBitlaadEeacaaIVaGaamiuaiab=PBitlaadEeacaaIVa Gaam4raOWaaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaaISaGa am4raKqbaoaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaai2 dacaWGlbGaaGilaaaa@57A1@   (7)

We have that can be constructed a smooth embedding in J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ , of flag submanifolds F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=vi8gbaa@447B@ , such that the images of said embedding on F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=vi8gbaa@447B@ , are G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeyOeI0ca aa@3DCB@ orbits(that is to say, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ orbtis) in J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ .

But this always is possible for the reduction of the holonomy group of M, and that M, is a complex locally symmetric and connect inner Riemannian manifold, that is to say, that the Nijenhuis tensor satisfies on the corresponding sub-bundle J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ , of M, that

R I M (j)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aa0baaKqaGeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaKqzadGae8heHKeajeaibaqcLbmacaWGnbaaaKqzGeGaaG ikaiaadQgacaaIPaGaaGypaiaaicdacaaISaaaaa@4D44@   (8)

Thus our sub-bundle has integrable structure and as the considered space is an at least complex manifold, one can find complex submanifolds of J(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikaiaad2eacaaIPaaaaa@3B9E@ , to which the K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ orbits are flag manifolds of the G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure of M. This brings in our study of integral curvature (study of curvature through the integral geometry) on K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ orbits of a Riemannian manifold, the curvature on symmetric spaces (null Weyl tensor and non-null Ricci tensor), since the unique complex integrable submanifolds that can be realized as K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ orbits in a simply connect, inner, symmetric and of compact type manifold M, are the flag G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ manifolds.

Theorem

The K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariance given by the G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GcdaWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGnbGa aGykaaaa@3E90@ , of M, complex and holomorphic, is induced to each closed submanifold given for the flag manifolds of the corresponding vector holomorphic G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ bundle. Furthermore, the integral cohomology given of such complex submanifolds is equivalent to the integral cohomology on submanifolds of a maximum complex torus.

In the superstring theory the space-time has 10 dimensions separated in two parts, 4 dimensions of the ordinary Minkowski space-time and 6 extra dimensions to microscopic level. This conform the microscopic space G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeakmaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3D31@ , with G 0 =K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaaGypaiaa dUeaaaa@3E75@ . The form of the extra six dimensions must correspond to a solution to the Einstein equations in the vacuum of the gravity. If the 6-dimensional manifold is extended in real variable, the unique solution is a flat space-time. However, if is considered the 6-dimensional manifold as a complex manifold of three dimensions, exist solutions of the field theory to the vacuum called Calabi-Yau manifolds.5

This result is fundamental to the consistency of the theory that we propose since will establish the geometrical elements necessary to create a Cosmos theory unifying the quantum mechanics with special and general relativity, using a method in6 which we have baptized with the name “orbitalization”. Then we can to pass of the integral calculation on geodesics of the space-time to Feynman integrals or string integrals considering the orbit of the corresponding filtration to the reductive homogeneous space of M.

The reduction process of the holonomy group of the structure S G (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GcdaWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGnbGa aGykaaaa@3E90@ , help us to obtain reductive homogeneous spaces of G/H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadIeaaaa@3AEA@ , whose orbits inherit of the G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@  structure of the widest space, for example the model of the space-time M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=Xi8nbaa@4489@ , (Figures 1 (A & B)). Finally we can tell the curvature spectra as the energy of the energy-matter tensor, which can be determined by the action integrals to a particle level. This we will do in the following section.

Figure 1 A) 2-dimensional superstring model of the microscopic space-time. The spaces are tacking themselves, from the fundamental strings in each point of the complex Riemannian model of the space-time M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=Xi8nbaa@4489@ B) Small manifold, which represents a superposing of maximum complex torus.

1An at least complex structure of a differentiable manifold M, is a complex structure whose Hermitian form is defined on the tangent space of M.3

2Of fact, are two disjoint components of the compact subgroup S O(2n)/U(n), of J( 2n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb GaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGa e8xhHivcfa4aaWbaaKqaGeqabaqcLbmacaaIYaGaamOBaaaajugibi aaiMcaaaa@49CA@ .

3 M, has as structural group the Lie group O(2n).

4Of fact, the orbits that will be used to the generalization of the curvature of the space-time will be the submanifolds belonging to said irreducible Hermitian symmetric space S O(2n)/U(n), to the case n=4.

5 Theorem. Let jJ(M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb GaeyicI4SaamOsaiaaiIcacaWGnbGaaGykaaaa@3E11@ , with i-eigen-space T + T χ M. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaWbaaKqaGeqabaqcLbmacqGHRaWkaaqcLbsacqGHckcZcaWG ubGcdaWgaaqcbasaaKqzadGaeq4XdmgaleqaaKqzGeGaamytaiaai6 caaaa@451D@  Let R 2 T(M) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaeyicI4Saey4jIKTcdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biaadsfacaaIOaGaamytaiaaiMcacqGHxkcXjuaGdaWgaaqcbasaam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcLbmacqWF DeIuaKqaGeqaaKqzGeGaamyraaaa@52D6@  (with E, a complex vector space belonging to a holomorphic bundle). Then the Nijenhuis tensor R I M =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aa0baaKqaGeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaKqzadGae8heHKeajeaibaqcLbmacaWGnbaaaKqzGeGaaG ypaiaaicdaaaa@4A3A@ , if and only if R( T + , T + ) T + T + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGikaiaadsfajuaGdaahaaqcbasabeaajugWaiabgUcaRaaajugi biaaiYcacaWGubqcfa4aaWbaaKqaGeqabaqcLbmacqGHRaWkaaqcLb sacaaIPaGaamivaKqbaoaaCaaajeaibeqaaKqzadGaey4kaScaaKqz GeGaeyOGIWSaamivaKqbaoaaCaaajeaibeqaaKqzadGaey4kaScaaa aa@4E3F@ .

6Riemann Tensor = Ricci Tensor + Weyl Tensor. The Weyl tensor represents the anti-symmetrical part of the curvature tensor.

7Defination: A Stein manifold is an open orbit of a semi-simple Lie group in a generalized flag manifold.

8Procedure to generate orbits in reductive Lie groups.

9Flag G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ manifolds of M. G, acts transitively on such complex submanifolds.

10Ricci Curvature Tensor.

Diffeomorphisms of action integrals in gravitational field theory

We consider the density of matter given for the scalar , which appears when is varied the integral of the energy-matter of the tensor ,

W(T)= k 2 T μν (χ)dχ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GaaGikaiaadsfacaaIPaGaaGypaOWaaSaaaeaajugibiaadUgaaOqa aKqzGeGaaGOmaaaakmaapeaabeWcbeqabKqzGeGaey4kIipacaWGub qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaI OaGaeq4XdmMaaGykaiaadsgacqaHhpWycaaISaaaaa@4F3F@   (9)

From a point of view of field theory in the microscopic field theory, results more natural understand the affecting of the space-time due to the matter-energy, which does arise the gravitational field whose action is measurable through their curvature tensor. Then the integral (9) consider the density h, to start from R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaaaaa@3EE5@ , or S μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaaaaa@3EE6@ 11.

Using the massless particles frame of helicity ±2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHXc qScaaIYaaaaa@3B42@ , we consider the energy integral of the energy-mass tensor to these particles as:

W( T + )= k 2 (dχ)(d χ ' ){ T μν (χ) D + (χ χ ' ) T μν 1 2 T(χ) D + (χ χ ' )T( χ ' )}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GaaGikaiaadsfajuaGdaahaaqcbasabeaajugWaiabgUcaRaaajugi biaaiMcacaaI9aGcdaWcaaqaaKqzGeGaam4AaaGcbaqcLbsacaaIYa aaaOWaa8qaaeqaleqabeqcLbsacqGHRiI8aiaaiIcacaWGKbGaeq4X dmMaaGykaiaaiIcacaWGKbGaeq4XdmMcdaahaaWcbeqaaKqzGeGaam 4jaaaacaaIPaGaaG4EaiaadsfajuaGdaahaaqcbasabeaajugWaiab eY7aTjabe27aUbaajugibiaaiIcacqaHhpWycaaIPaGaamiraKqbao aaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaKqzGeGaaGikaiabeE8a JjabgkHiTiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGaaGykai aadsfajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaa jugibiabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaa aacaWGubGaaGikaiabeE8aJjaaiMcacaWGebqcfa4aaSbaaKqaGeaa jugWaiabgUcaRaqcbasabaqcLbsacaaIOaGaeq4XdmMaeyOeI0Iaeq 4XdmMcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIPaGaamivaiaaiIca cqaHhpWykmaaCaaaleqabaqcLbsacaWGNaaaaiaaiMcacaaI9bGaaG ilaaaa@86E3@   (10)

With the condition

μ T μν (χ)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITkmaaBaaajeaibaqcLbmacqaH8oqBaSqabaqcLbsacaWGubqcfa4a aWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaIOaGaeq 4XdmMaaGykaiaai2dacaaIWaGaaGilaaaa@4A02@   (11)

Then the symmetric tensor field h μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsa caaIOaGaeq4XdmMaaGykaaaa@42CF@ , is defined for the variation to said integral (10) as:

δW(T)= (dχ)δ T μν (χ) h μν , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGxbGaaGikaiaadsfacaaIPaGaaGypaOWaa8qaaeqaleqabeqc LbsacqGHRiI8aiaaiIcacaWGKbGaeq4XdmMaaGykaiabes7aKjaads fajuaGdaahaaqcbasabeaajugWaiabeY7aTjabe27aUbaajugibiaa iIcacqaHhpWycaaIPaGaamiAaOWaaSbaaKqaGeaajugWaiabeY7aTj abe27aUbWcbeaajugibiaaiYcaaaa@5778@   (12)

Subject to the condition:

μ δ T μν (χ)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaajugibiabes7a KjaadsfajuaGdaahaaqcbasabeaajugWaiabeY7aTjabe27aUbaaju gibiaaiIcacqaHhpWycaaIPaGaaGypaiaaicdacaaISaaaaa@4C4A@   (13)

Which is had that

h μν (χ)=k (d χ ' ) D + (χ χ ' )[ T μν ( χ ' ) 1 2 g μν T( χ ' )]+ μ ξ ν (χ)+ ν ξ μ (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGik aiabeE8aJjaaiMcacaaI9aGaam4AaOWaa8qaaeqaleqabeqcLbsacq GHRiI8aiaaiIcacaWGKbGaeq4XdmMcdaahaaWcbeqaaKqzGeGaam4j aaaacaaIPaGaamiraKqbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGe qaaKqzGeGaaGikaiabeE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaa jugibiaadEcaaaGaaGykaiaaiUfacaWGubqcfa4aaSbaaKqaGeaaju gWaiabeY7aTjabe27aUbqcbasabaqcLbsacaaIOaGaeq4XdmMcdaah aaWcbeqaaKqzGeGaam4jaaaacaaIPaGaeyOeI0IcdaWcaaqaaKqzGe GaaGymaaGcbaqcLbsacaaIYaaaaiaadEgajuaGdaWgaaqcbasaaKqz adGaeqiVd0MaeqyVd4gajeaibeaajugibiaadsfacaaIOaGaeq4Xdm McdaahaaWcbeqaaKqzGeGaam4jaaaacaaIPaGaaGyxaiabgUcaRiab gkGi2QWaaSbaaKqaGeaajugWaiabeY7aTbWcbeaajugibiabe67a4L qbaoaaBaaajeaibaqcLbmacqaH9oGBaKqaGeqaaKqzGeGaaGikaiab eE8aJjaaiMcacqGHRaWkcqGHciITjuaGdaWgaaqcbasaaKqzadGaeq yVd4gajeaibeaajugibiabe67a4LqbaoaaBaaajeaibaqcLbmacqaH 8oqBaKqaGeqaaKqzGeGaaGikaiabeE8aJjaaiMcacaaISaaaaa@9544@   (14)

But the indices contraction of the tensor, deduces that

h(χ)= g μν h μν (χ)=k (d χ ' ) D + (χ χ ' )T( χ ' )+2 μ ξ μ (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GaaGikaiabeE8aJjaaiMcacaaI9aGaam4zaOWaaSbaaKqaGeaajugW aiabeY7aTjabe27aUbWcbeaajugibiaadIgajuaGdaahaaqcbasabe aajugWaiabeY7aTjabe27aUbaajugibiaaiIcacqaHhpWycaaIPaGa aGypaiabgkHiTiaadUgakmaapeaabeWcbeqabKqzGeGaey4kIipaca aIOaGaamizaiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGaaGyk aiaadseajuaGdaWgaaqcbasaaKqzadGaey4kaScajeaibeaajugibi aaiIcacqaHhpWycqGHsislcqaHhpWykmaaCaaaleqabaqcLbsacaWG NaaaaiaaiMcacaWGubGaaGikaiabeE8aJPWaaWbaaSqabeaajugibi aadEcaaaGaaGykaiabgUcaRiaaikdacqGHciITkmaaBaaajeaibaqc LbmacqaH8oqBaSqabaqcLbsacqaH+oaEjuaGdaahaaqcbasabeaaju gWaiabeY7aTbaajugibiaaiIcacqaHhpWycaaIPaGaaGilaaaa@7A4D@   (15)

This is the density of the displacement field, determined to each particle that is displaced from χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp Wyaaa@3A4F@ , to χ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WykmaaCaaaleqabaqcLbsacaWGNaaaaaaa@3BC1@ . In this point, the density h(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GaaGikaiabeE8aJjaaiMcaaaa@3CA1@ , arises of a variation of the energy-mass tensor density, which gives legitimacy to the field tensor which can characterize the curvature tensor through of the spectra.

Then the difference of densities, to know, produce:

h μν (χ) 1 2 g μν h(χ)=k (d χ ' ) D + (χ χ ' ) T μν (χ)+ μ ξ ν (χ)+ ν ξ μ (χ) g μν λ ξ λ (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsa caaIOaGaeq4XdmMaaGykaiabgkHiTOWaaSaaaeaajugibiaaigdaaO qaaKqzGeGaaGOmaaaacaWGNbqcfa4aaSbaaKqaGeaajugWaiabeY7a Tjabe27aUbqcbasabaqcLbsacaWGObGaaGikaiabeE8aJjaaiMcaca aI9aGaam4AaOWaa8qaaeqaleqabeqcLbsacqGHRiI8aiaaiIcacaWG KbGaeq4XdmMcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIPaGaamiraK qbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaKqzGeGaaGikaiab eE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGaaG ykaiaadsfajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeai beaajugibiaaiIcacqaHhpWycaaIPaGaey4kaSIaeyOaIyBcfa4aaS baaKqaGeaajugWaiabeY7aTbqcbasabaqcLbsacqaH+oaEjuaGdaWg aaqcbasaaKqzadGaeqyVd4gajeaibeaajugibiaaiIcacqaHhpWyca aIPaGaey4kaSIaeyOaIyBcfa4aaSbaaKqaGeaajugWaiabe27aUbqc basabaqcLbsacqaH+oaEjuaGdaWgaaqcbasaaKqzadGaeqiVd0gaje aibeaajugibiaaiIcacqaHhpWycaaIPaGaeyOeI0Iaam4zaKqbaoaa BaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGeGaeyOaIy Bcfa4aaSbaaKqaGeaajugWaiabeU7aSbqcbasabaqcLbsacqaH+oaE juaGdaahaaqcbasabeaajugWaiabeU7aSbaajugibiaaiIcacqaHhp WycaaIPaGaaGilaaaa@A8F9@   (16)

But the appearing of the “source” condition through of the divergence of the equation (16) in their left side, establishes:

μ ( h μν (χ)(1/2) g μν h(χ))= 2 ξ ν (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaajugibiaaiIca caWGObqcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLb sacaaIOaGaeq4XdmMaaGykaiabgkHiTiaaiIcacaaIXaGaaG4laiaa ikdacaaIPaGaam4zaKqbaoaaCaaajeaibeqaaKqzadGaeqiVd0Maeq yVd4gaaKqzGeGaamiAaiaaiIcacqaHhpWycaaIPaGaaGykaiaai2da cqGHciITjuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaH+o aEjuaGdaahaaqcbasabeaajugWaiabe27aUbaajugibiaaiIcacqaH hpWycaaIPaGaaGilaaaa@68C7@   (17)

But by the expression (14) is deduced of (17) that:

2 h μν (χ)+ μ λ h λλ + ν λ h μλ μ ν h(χ)=k( T μν (χ)(1/2) g μν T(χ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcqGHciITjuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWG Obqcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLb sacaaIOaGaeq4XdmMaaGykaiabgUcaRiabgkGi2MqbaoaaBaaajeai baqcLbmacqaH8oqBaKqaGeqaaKqzGeGaeyOaIyBcfa4aaWbaaKqaGe qabaqcLbmacqaH7oaBaaqcLbsacaWGObqcfa4aaSbaaKqaGeaajugW aiabeU7aSjabeU7aSbqcbasabaqcLbsacqGHRaWkcqGHciITjuaGda WgaaqcbasaaKqzadGaeqyVd4gajeaibeaajugibiabgkGi2Mqbaoaa CaaajeaibeqaaKqzadGaeq4UdWgaaKqzGeGaamiAaOWaaSbaaKqaGe aajugWaiabeY7aTjabeU7aSbWcbeaajugibiabgkHiTiabgkGi2Mqb aoaaBaaajeaibaqcLbmacqaH8oqBaKqaGeqaaKqzGeGaeyOaIyBcfa 4aaSbaaKqaGeaajugWaiabe27aUbqcbasabaqcLbsacaWGObGaaGik aiabeE8aJjaaiMcacaaI9aGaam4AaiaaiIcacaWGubGcdaWgaaqcba saaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGikaiabeE8aJjaa iMcacqGHsislcaaIOaGaaGymaiaai+cacaaIYaGaaGykaiaadEgaju aGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaajugibiaa dsfacaaIOaGaeq4XdmMaaGykaiaaiMcacaaISaaaaa@9C71@   (18)

Contracting the indices in (18) or becoming the integral (15) to a differential equation we have:

2 h(χ)+ μ ν h μν (χ)= 1 2 kT(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcqGHciITjuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWG ObGaaGikaiabeE8aJjaaiMcacqGHRaWkcqGHciITjuaGdaWgaaqcba saaKqzadGaeqiVd0gajeaibeaajugibiabgkGi2MqbaoaaBaaajeai baqcLbmacqaH9oGBaKqaGeqaaKqzGeGaamiAaKqbaoaaCaaajeaibe qaaKqzadGaeqiVd0MaeqyVd4gaaKqzGeGaaGikaiabeE8aJjaaiMca caaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadU gacaWGubGaaGikaiabeE8aJjaaiMcacaaISaaaaa@620C@   (19)

Here we establish a diffeomorphism such that we can to obtain from (19) other version of the differential equation given in (18), to know:

2 h μν (χ)+ μ λ h λλ (χ)+ ν λ h μλ (χ) μ ν h(χ) g μν ( 2 h(χ)+ n λ h nλ (χ))=k T μν (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcqGHciITkmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamiA aKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGe GaaGikaiabeE8aJjaaiMcacqGHRaWkcqGHciITjuaGdaWgaaqcbasa aKqzadGaeqiVd0gajeaibeaajugibiabgkGi2MqbaoaaCaaajeaibe qaaKqzadGaeq4UdWgaaKqzGeGaamiAaKqbaoaaBaaajeaibaqcLbma cqaH7oaBcqaH7oaBaKqaGeqaaKqzGeGaaGikaiabeE8aJjaaiMcacq GHRaWkcqGHciITjuaGdaWgaaqcbasaaKqzadGaeqyVd4gajeaibeaa jugibiabgkGi2MqbaoaaCaaajeaibeqaaKqzadGaeq4UdWgaaKqzGe GaamiAaKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH7oaBaKqaGeqa aKqzGeGaaGikaiabeE8aJjaaiMcacqGHsislcqGHciITkmaaBaaaje aibaqcLbmacqaH8oqBaSqabaqcLbsacqGHciITjuaGdaWgaaqcbasa aKqzadGaeqyVd4gajeaibeaajugibiaadIgacaaIOaGaeq4XdmMaaG ykaiabgkHiTiaadEgajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyV d4gajeaibeaajugibiaaiIcacqGHsislcqGHciITjuaGdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaWGObGaaGikaiabeE8aJjaaiMca cqGHRaWkcqGHciITjuaGdaWgaaqcbasaaKqzadGaamOBaaqcbasaba qcLbsacqGHciITjuaGdaWgaaqcbasaaKqzadGaeq4UdWgajeaibeaa jugibiaadIgajuaGdaahaaqcbasabeaajugWaiaad6gacqaH7oaBaa qcLbsacaaIOaGaeq4XdmMaaGykaiaaiMcacaaI9aGaam4Aaiaadsfa kmaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaSqabaqcLbsacaaIOa Gaeq4XdmMaaGykaiaaiYcaaaa@B971@   (20)

As we know, the left side of (20) is such that their divergence is null. The null divergence of the source tensor now appears as an algebraic consequence of the field equations. Then for the arbitrary of ξ ν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEkmaaBaaajeaibaqcLbmacqaH9oGBaSqabaqcLbsacaaIOaGaeq4X dmMaaGykaaaa@414C@ , the field equations are not affected and the no affectation is due to the re-definition of h μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGik aiabeE8aJjaaiMcaaaa@422C@ , which is maintained. Likewise, we have to points of the plane in local theory that:

h μν (χ) h μν (χ)+ μ ξ ν (χ)+ ν ξ μ (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGik aiabeE8aJjaaiMcacqWIMgsycaWGObqcfa4aaSbaaKqaGeaajugWai abeY7aTjabe27aUbqcbasabaqcLbsacaaIOaGaeq4XdmMaaGykaiab gUcaRiabgkGi2QWaaSbaaKqaGeaajugWaiabeY7aTbWcbeaajugibi abe67a4LqbaoaaBaaajeaibaqcLbmacqaH9oGBaKqaGeqaaKqzGeGa aGikaiabeE8aJjaaiMcacqGHRaWkcqGHciITjuaGdaWgaaqcbasaaK qzadGaeqyVd4gajeaibeaajugibiabe67a4PWaaSbaaKqaGeaajugW aiabeY7aTbWcbeaajugibiaaiIcacqaHhpWycaaIPaGaaGilaaaa@6DB6@   (21)

Which is a gauge gravitational transformation. Then the massive particle (that we call “graviton” or particle of spin 2) is described for

W(T)= 1 2 (dχ)(d χ ' ){ T μν (χ) Δ + (χ χ ' ) T μν ( χ ' )+ 2 m 2 ν T μν (χ) Δ + (χ χ ' ) λ T μλ ( χ ' )}+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GaaGikaiaadsfacaaIPaGaaGypaOWaaSaaaSqaaKqzGeGaaGymaaWc baqcLbsacaaIYaaaaOWaa8qaaSqabeqabeqcLbsacqGHRiI8aiaaiI cacaWGKbGaeq4XdmMaaGykaiaaiIcacaWGKbGaeq4XdmMcdaahaaWc beqaaKqzGeGaam4jaaaacaaIPaGaaG4EaiaadsfakmaaCaaaleqaje aibaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaIOaGaeq4XdmMaaGyk aiabfs5aePWaaSbaaSqaaKqzGeGaey4kaScaleqaaKqzGeGaaGikai abeE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGa aGykaiaadsfajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gaje aibeaajugibiaaiIcacqaHhpWykmaaCaaaleqabaqcLbsacaWGNaaa aiaaiMcacqGHRaWkkmaalaaabaqcLbsacaaIYaaakeaajugibiaad2 gakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiabgkGi2Mqb aoaaBaaajeaibaqcLbmacqaH9oGBaKqaGeqaaKqzGeGaamivaKqbao aaCaaajeaibeqaaKqzadGaeqiVd0MaeqyVd4gaaKqzGeGaaGikaiab eE8aJjaaiMcacqqHuoarjuaGdaWgaaqcbasaaKqzadGaey4kaScaje aibeaajugibiaaiIcacqaHhpWycqGHsislcqaHhpWykmaaCaaaleqa baqcLbsacaWGNaaaaiaaiMcacqGHciITjuaGdaahaaqcbasabeaaju gWaiabeU7aSbaajugibiaadsfajuaGdaWgaaqcbasaaKqzadGaeqiV d0Maeq4UdWgajeaibeaajugibiaaiIcacqaHhpWykmaaCaaaleqaba qcLbsacaWGNaaaaiaaiMcacaaI9bGaey4kaScaaa@A21F@

( 1 m 4 ) μ ν T μν (χ) Δ + (χ χ ' ) n ' λ ' T nλ (χ) 1 3 (T(χ) m 2 μ ν T μν (χ)) Δ + (χ χ ' )(T(χ) m 2 n ' λ ' T nλ ( χ ' )), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaSqaaO WaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaWGTbqcfa4aaWbaaKqa GeqabaqcLbmacaaI0aaaaaaaaOGaayjkaiaawMcaaKqzGeGaeyOaIy RcdaWgaaqcbasaaKqzadGaeqiVd0galeqaaKqzGeGaeyOaIyBcfa4a aSbaaKqaGeaajugWaiabe27aUbqcbasabaqcLbsacaWGubqcfa4aaW baaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaIOaGaeq4X dmMaaGykaiabfs5aePWaaSbaaKqaGeaajugWaiabgUcaRaWcbeaaju gibiaaiIcacqaHhpWycqGHsislcqaHhpWykmaaCaaaleqabaqcLbsa caWGNaaaaiaaiMcacqGHciITjuaGdaqhaaqcbasaaKqzadGaamOBaa qcbasaaKqzadGaam4jaaaajugibiabgkGi2QWaa0baaKqaGeaajugW aiabeU7aSbWcbaqcLbsacaWGNaaaaiaadsfakmaaCaaaleqajeaiba qcLbmacaWGUbGaeq4UdWgaaKqzGeGaaGikaiabeE8aJjaaiMcacqGH sislkmaalaaabaqcLbsacaaIXaaakeaajugibiaaiodaaaGaaGikai aadsfacaaIOaGaeq4XdmMaaGykaiabgkHiTiaad2gajuaGdaahaaqc basabeaajugWaiabgkHiTiaaikdaaaqcLbsacqGHciITjuaGdaWgaa qcbasaaKqzadGaeqiVd0gajeaibeaajugibiabgkGi2QWaaSbaaKqa GeaajugWaiabe27aUbWcbeaajugibiaadsfajuaGdaahaaqcbasabe aajugWaiabeY7aTjabe27aUbaajugibiaaiIcacqaHhpWycaaIPaGa aGykaiabfs5aeLqbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaK qzGeGaaGikaiabeE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaajugi biaadEcaaaGaaGykaiaaiIcacaWGubGaaGikaiabeE8aJjaaiMcacq GHsislcaWGTbqcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aKqzGeGaeyOaIyBcfa4aa0baaKqaGeaajugWaiaad6gaaKqaGeaaju gWaiaadEcaaaqcLbsacqGHciITkmaaDaaajeaibaqcLbmacqaH7oaB aSqaaKqzGeGaam4jaaaacaWGubqcfa4aaWbaaKqaGeqabaqcLbmaca WGUbGaeq4UdWgaaKqzGeGaaGikaiabeE8aJPWaaWbaaSqabeaajugi biaadEcaaaGaaGykaiaaiMcacaaISaaaaa@CA48@   (22)

In which,

T(χ)= g μν T μν (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaaGikaiabeE8aJjaaiMcacaaI9aGaam4zaOWaaSbaaKqaGeaajugW aiabeY7aTjabe27aUbWcbeaajugibiaadsfajuaGdaahaaqcbasabe aajugWaiabeY7aTjabe27aUbaajugibiaaiIcacqaHhpWycaaIPaGa aGilaaaa@4E7B@   (23)

However, the symmetric tensor field that is introduced through:

δW(T)= (dχ)δ T μν (χ) ϕ μν , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGxbGaaGikaiaadsfacaaIPaGaaGypaOWaa8qaaeqaleqabeqc LbsacqGHRiI8aiaaiIcacaWGKbGaeq4XdmMaaGykaiabes7aKjaads fakmaaCaaaleqajeaibaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaI OaGaeq4XdmMaaGykaiabew9aMPWaaSbaaKqaGeaajugWaiabeY7aTj abe27aUbWcbeaajugibiaaiYcaaaa@57DA@   (24)

Which is obtained as:

ϕ μν (χ)= (d χ ' ) Δ + (χ χ ' ) T μν ( χ ' )( 1 m 2 ) μ (d χ ' ) Δ + (χ χ ' ) λ' T λν ( χ ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzkmaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaSqabaqcLbsacaaI OaGaeq4XdmMaaGykaiaai2dakmaapeaabeWcbeqabKqzGeGaey4kIi pacaaIOaGaamizaiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGa aGykaiabfs5aeLqbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaK qzGeGaaGikaiabeE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaajugi biaadEcaaaGaaGykaiaadsfajuaGdaWgaaqcbasaaKqzadGaeqiVd0 MaeqyVd4gajeaibeaajugibiaaiIcacqaHhpWykmaaCaaaleqabaqc LbsacaWGNaaaaiaaiMcacqGHsislkmaabmaabaWaaSaaaeaajugibi aaigdaaOqaaKqzGeGaamyBaKqbaoaaCaaajeaibeqaaKqzadGaaGOm aaaaaaaakiaawIcacaGLPaaajugibiabgkGi2MqbaoaaBaaajeaiba qcLbmacqaH8oqBaKqaGeqaaOWaa8qaaeqaleqabeqcLbsacqGHRiI8 aiaaiIcacaWGKbGaeq4XdmMcdaahaaWcbeqaaKqzGeGaam4jaaaaca aIPaGaeuiLdqucfa4aaSbaaKqaGeaajugWaiabgUcaRaqcbasabaqc LbsacaaIOaGaeq4XdmMaeyOeI0Iaeq4XdmMcdaahaaWcbeqaaKqzGe Gaam4jaaaacaaIPaGaeyOaIyBcfa4aaWbaaKqaGeqabaqcLbmacqaH 7oaBcaWGNaaaaKqzGeGaamivaOWaaSbaaKqaGeaajugWaiabeU7aSj abe27aUbWcbeaajugibiaaiIcacqaHhpWykmaaCaaaleqabaqcLbsa caWGNaaaaiaaiMcaaaa@9731@

( 1 m 2 ) ν (d χ ' ) Δ + (χ χ ' ) λ' T μλ ( χ ' )+( 1 m 4 ) μ ν (d χ ' ) Δ + (χ χ ' ) n ' λ ' T nλ ( χ ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slkmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamyBaKqb aoaaCaaajeaibeqaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaaju gibiabgkGi2QWaaSbaaKqaGeaajugWaiabe27aUbWcbeaakmaapeaa beWcbeqabKqzGeGaey4kIipacaaIOaGaamizaiabeE8aJPWaaWbaaS qabeaajugibiaadEcaaaGaaGykaiabfs5aePWaaSbaaKqaGeaajugW aiabgUcaRaWcbeaajugibiaaiIcacqaHhpWycqGHsislcqaHhpWykm aaCaaaleqabaqcLbsacaWGNaaaaiaaiMcacqGHciITjuaGdaahaaqc basabeaajugWaiabeU7aSjaadEcaaaqcLbsacaWGubGcdaWgaaqcba saaKqzadGaeqiVd0Maeq4UdWgaleqaaKqzGeGaaGikaiabeE8aJPWa aWbaaSqabeaajugibiaadEcaaaGaaGykaiabgUcaROWaaeWaaeaada WcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGTbGcdaahaaWcbeqcbasa aKqzadGaaGinaaaaaaaakiaawIcacaGLPaaajugibiabgkGi2Mqbao aaBaaajeaibaqcLbmacqaH8oqBaKqaGeqaaKqzGeGaeyOaIyBcfa4a aSbaaKqaGeaajugWaiabe27aUbqcbasabaGcdaWdbaqabSqabeqaju gibiabgUIiYdGaaGikaiaadsgacqaHhpWykmaaCaaaleqabaqcLbsa caWGNaaaaiaaiMcacqqHuoarjuaGdaWgaaqcbasaaKqzadGaey4kaS cajeaibeaajugibiaaiIcacqaHhpWycqGHsislcqaHhpWykmaaCaaa leqabaqcLbsacaWGNaaaaiaaiMcacqGHciITjuaGdaqhaaqcbasaaK qzadGaamOBaaqcbasaaKqzadGaam4jaaaajugibiabgkGi2Mqbaoaa DaaajeaibaqcLbmacqaH7oaBaKqaGeaajugWaiaadEcaaaqcLbsaca WGubqcfa4aaWbaaKqaGeqabaqcLbmacaWGUbGaeq4UdWgaaKqzGeGa aGikaiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGaaGykaaaa@ABD9@

1 3 ( g μν ( 1 m 2 ) μ ν ) (d χ ' ) Δ + (χ χ ' )(T(χ)( 1 m 2 ) n ' λ ' T nλ ( χ ' )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slkmaalaaabaqcLbsacaaIXaaakeaajugibiaaiodaaaGaaGikaiaa dEgajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaaju gibiabgkHiTOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsa caWGTbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaaOGaayjkai aawMcaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiabeY7aTbqc basabaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqzadGaeqyVd4gaje aibeaajugibiaaiMcakmaapeaabeWcbeqabKqzGeGaey4kIipacaaI OaGaamizaiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGaaGykai abfs5aeLqbaoaaBaaajeaibaqcLbmacqGHRaWkaKqaGeqaaKqzGeGa aGikaiabeE8aJjabgkHiTiabeE8aJPWaaWbaaSqabeaajugibiaadE caaaGaaGykaiaaiIcacaWGubGaaGikaiabeE8aJjaaiMcacqGHsisl kmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamyBaKqbao aaCaaajeaibeqaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaajugi biabgkGi2QWaa0baaKqaGeaajugWaiaad6gaaSqaaKqzGeGaam4jaa aacqGHciITjuaGdaqhaaqcbasaaKqzadGaeq4UdWgajeaibaqcLbma caWGNaaaaKqzGeGaamivaKqbaoaaCaaajeaibeqaaKqzadGaamOBai abeU7aSbaajugibiaaiIcacqaHhpWykmaaCaaaleqabaqcLbsacaWG NaaaaiaaiMcacaaIPaaaaa@930C@   (25)

Has as divergence the vector

μ ϕ μν (χ)=( 1 m 2 )μ T μν (χ) ' ( 1 3 m 2 ) ν (T(χ)+( 2 m 4 ) n λ Tnλ(χ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaahaaqcbasabeaajugWaiabeY7aTbaajugibiabew9aMPWa aSbaaKqaGeaajugWaiabeY7aTjabe27aUbWcbeaajugibiaaiIcacq aHhpWycaaIPaGaaGypaOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGc baqcLbsacaWGTbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaaO GaayjkaiaawMcaaKqzGeGaeyOaIyRaeqiVd0MaamivaOWaaSbaaKqa GeaajugWaiabeY7aTjabe27aUbWcbeaajugibiaaiIcacqaHhpWyca aIPaGcdaahaaWcbeqaaKqzGeGaam4jaaaacqGHsislkmaabmaabaWa aSaaaeaajugibiaaigdaaOqaaKqzGeGaaG4maiaad2gajuaGdaahaa qcbasabeaajugWaiaaikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqGH ciITjuaGdaWgaaqcbasaaKqzadGaeqyVd4gajeaibeaajugibiaaiI cacaWGubGaaGikaiabeE8aJjaaiMcacqGHRaWkkmaabmaabaWaaSaa aeaajugibiaaikdaaOqaaKqzGeGaamyBaOWaaWbaaSqabKqaGeaaju gWaiaaisdaaaaaaaGccaGLOaGaayzkaaqcLbsacqGHciITkmaaBaaa jeaibaqcLbmacaWGUbaaleqaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGe aajugWaiabeU7aSbqcbasabaqcLbsacaWGubGaamOBaiabeU7aSjaa iIcacqaHhpWycaaIPaGaaGykaiaaiYcaaaa@8DFE@   (26)

Which is annulled in free regions of sources. Then the equations described of the before integral expression (25) are:

( 2 + m 2 ) ϕ μν (χ)= T μν (χ)( 1 m 2 )( μ λ T λν + ν λ T μλ (χ))+ g μν ( 1 m 2 ) n λ , T nλ (χ) ( 1 3 )( g μν ( 1 m 2 ) μ ν )(T(χ)+( 2 m 2 ) n λ T nλ (χ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aaiIcacqGHsislcqGHciITkmaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaey4kaSIaamyBaOWaaWbaaSqabKqaGeaajugWaiaaikdaaa qcLbsacaaIPaGaeqy1dyMcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyV d4galeqaaKqzGeGaaGikaiabeE8aJjaaiMcacaaI9aGaamivaKqbao aaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGeGaaGik aiabeE8aJjaaiMcacqGHsislkmaabmaabaWaaSaaaeaajugibiaaig daaOqaaKqzGeGaamyBaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaa aaaakiaawIcacaGLPaaajugibiaaiIcacqGHciITkmaaBaaajeaiba qcLbmacqaH8oqBaSqabaqcLbsacqGHciITkmaaCaaaleqajeaibaqc LbmacqaH7oaBaaqcLbsacaWGubqcfa4aaSbaaKqaGeaajugWaiabeU 7aSjabe27aUbqcbasabaqcLbsacqGHRaWkcqGHciITkmaaBaaajeai baqcLbmacqaH9oGBaSqabaqcLbsacqGHciITkmaaCaaaleqajeaiba qcLbmacqaH7oaBaaqcLbsacaWGubqcfa4aaSbaaKqaGeaajugWaiab eY7aTjabeU7aSbqcbasabaqcLbsacaaIOaGaeq4XdmMaaGykaiaaiM cacqGHRaWkcaWGNbGcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4ga leqaaOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGTb qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaaOGaayjkaiaawMca aKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiaad6gaaKqaGeqaaK qzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiabeU7aSbqcbasabaqc LbsacaaISaGaamivaKqbaoaaCaaajeaibeqaaKqzadGaamOBaiabeU 7aSbaajugibiaaiIcacqaHhpWycaaIPaGaeyOeI0cakeaadaqadaqa amaalaaabaqcLbsacaaIXaaakeaajugibiaaiodaaaaakiaawIcaca GLPaaajugibiaaiIcacaWGNbqcfa4aaSbaaKqaGeaajugWaiabeY7a Tjabe27aUbqcbasabaqcLbsacqGHsislkmaabmaabaWaaSaaaeaaju gibiaaigdaaOqaaKqzGeGaamyBaOWaaWbaaSqabKqaGeaajugWaiaa ikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqGHciITkmaaBaaajeaiba qcLbmacqaH8oqBaSqabaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqz adGaeqyVd4gajeaibeaajugibiaaiMcacaaIOaGaamivaiaaiIcacq aHhpWycaaIPaGaey4kaSIcdaqadaqaamaalaaabaqcLbsacaaIYaaa keaajugibiaad2gakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaO GaayjkaiaawMcaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiaa d6gaaKqaGeqaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiabeU 7aSbqcbasabaqcLbsacaWGubqcfa4aaWbaaKqaGeqabaqcLbmacaWG UbGaeq4UdWgaaKqzGeGaaGikaiabeE8aJjaaiMcacaaIPaGaaGilaa aaaa@F1E1@   (27)

The combining of scalar and vector sources are re-placed by an equivalent field. Then the differential equations (27) taken the form:

( 2 + m 2 ) ϕ μν (χ)+ μ λ ϕ λν (χ)+ ν λ ϕ μλ (χ) μ ν ϕ(χ) g μν [( 2 + m 2 )ϕ(χ)+ n λ ϕ nλ (χ)]= T μλ (χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeyOeI0IaeyOaIyBcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaey4kaSIaamyBaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaaiMcacqaHvpGzkmaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGB aSqabaqcLbsacaaIOaGaeq4XdmMaaGykaiabgUcaRiabgkGi2QWaaS baaKqaGeaajugWaiabeY7aTbWcbeaajugibiabgkGi2MqbaoaaCaaa jeaibeqaaKqzadGaeq4UdWgaaKqzGeGaeqy1dyMcdaWgaaqcbasaaK qzadGaeq4UdWMaeqyVd4galeqaaKqzGeGaaGikaiabeE8aJjaaiMca cqGHRaWkcqGHciITjuaGdaWgaaqcbasaaKqzadGaeqyVd4gajeaibe aajugibiabgkGi2MqbaoaaCaaajeaibeqaaKqzadGaeq4UdWgaaKqz GeGaeqy1dyMcdaWgaaqcbasaaKqzadGaeqiVd0Maeq4UdWgaleqaaK qzGeGaaGikaiabeE8aJjaaiMcacqGHsislcqGHciITkmaaBaaajeai baqcLbmacqaH8oqBaSqabaqcLbsacqGHciITjuaGdaWgaaqcbasaaK qzadGaeqyVd4gajeaibeaajugibiabew9aMjaaiIcacqaHhpWycaaI PaGaeyOeI0Iaam4zaKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9o GBaKqaGeqaaKqzGeGaaG4waiaaiIcacqGHsislcqGHciITjuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGTbqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGykaiabew9aMjaaiIca cqaHhpWycaaIPaGaey4kaSIaeyOaIyBcfa4aaSbaaKqaGeaajugWai aad6gaaKqaGeqaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiab eU7aSbqcbasabaqcLbsacqaHvpGzjuaGdaahaaqcbasabeaajugWai aad6gacqaH7oaBaaqcLbsacaaIOaGaeq4XdmMaaGykaiaai2facaaI 9aGaamivaKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH7oaBaKqaGe qaaKqzGeGaaGikaiabeE8aJjaaiMcacaaISaaaaa@C9B2@   (28)

Where using the trace information we have:

( 2 + m 2 )ϕ(χ)+ n λ ϕ nλ (χ)= 1 2 (T(χ)+ m 2 ϕ(χ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeyOeI0IaeyOaIyBcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaey4kaSIaamyBaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaqcLb sacaaIPaGaeqy1dyMaaGikaiabeE8aJjaaiMcacqGHRaWkcqGHciIT kmaaBaaajeaibaqcLbmacaWGUbaaleqaaKqzGeGaeyOaIyBcfa4aaS baaKqaGeaajugWaiabeU7aSbqcbasabaqcLbsacqaHvpGzjuaGdaah aaqcbasabeaajugWaiaad6gacqaH7oaBaaqcLbsacaaIOaGaeq4Xdm MaaGykaiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikda aaGaaGikaiaadsfacaaIOaGaeq4XdmMaaGykaiabgUcaRiaad2gaju aGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHvpGzcaaIOaGa eq4XdmMaaGykaiaaiMcacaaISaaaaa@7224@   (29)

Which can be presented as:

λ G μνλ (χ) ν G μλ λ (χ)+ m 2 ( ϕ μν (χ)+ 1 2 g μν ϕ(χ))= T μν 1 2 g μν T(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaahaaqcbasabeaajugWaiabeU7aSbaajugibiaadEeajuaG daWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4Maeq4UdWgajeaibeaaju gibiaaiIcacqaHhpWycaaIPaGaeyOeI0IaeyOaIyRcdaWgaaqcbasa aKqzadGaeqyVd4galeqaaKqzGeGaam4raKqbaoaaDaaajeaibaqcLb macqaH8oqBcqaH7oaBaKqaGeaajugWaiabeU7aSbaajugibiaaiIca cqaHhpWycaaIPaGaey4kaSIaamyBaKqbaoaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaaiIcacqaHvpGzjuaGdaWgaaqcbasaaKqzadGa eqiVd0MaeqyVd4gajeaibeaajugibiaaiIcacqaHhpWycaaIPaGaey 4kaSIcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadEga juaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaajugibi abew9aMjaaiIcacqaHhpWycaaIPaGaaGykaiaai2dacaWGubqcfa4a aSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsacqGHsi slkmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaam4zaKqb aoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGeGaam ivaiaaiIcacqaHhpWycaaIPaGaaGilaaaa@95A0@   (30)

Here appears the expression of the energy-matter tensor difference to the field equation R μν 1 2 g μν R(χ)=χ T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaahaaWcbeqcbasaaKqzadGaeqiVd0MaeqyVd4gaaKqzGeGaeyOe I0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadEgaju aGdaahaaqcbasabeaajugWaiabeY7aTjabe27aUbaajugibiaadkfa caaIOaGaeq4XdmMaaGykaiaai2dacqGHsislcqaHhpWycaWGubqcfa 4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaaaaa@573F@ .

Of (20), and using a functional distribution that permits smoothly to embed a space region with tensor T μν 1 2 g μν T(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsa cqGHsislkmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaam 4zaKqbaoaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqz GeGaamivaiaaiIcacqaHhpWycaaIPaaaaa@4E54@ , in a space of the integral (15) (that is to say, belonging to a spectral distribution D ' ( n )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFDeIukmaaCaaaleqajeaiba qcLbmacaWGUbaaaKqzGeGaaGykaiaaiMcaaaa@4AB4@ , we have that, if the matter distribution produced by the tensor field T μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsa caaIOaGaeq4XdmMaaGykaaaa@42BB@ , has a spherical symmetry then the field equations have the diffeomorphism of the curvature tensor of the spherical mapping. Then in a local region of the space affected by this tensor, σ(T T ' ) D ' ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcaaIOaGaamivaiabgkHiTiaadsfakmaaCaaaleqabaqcLbsacaWG NaaaaiaaiMcacqGHckcZcaWGebGcdaahaaWcbeqaaKqzGeGaam4jaa aacaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIujuaGdaahaaqcbasabeaajugWaiaad6gaaaqcLbsacaaIPa aaaa@53AF@ ,12 we have:

dimE E O(N+1), T χ (M) ((T T ' ), D ' ( n ))=dim S n dimσ(T T ' )=κn(n1), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamyAaiaad2gacaWGfbGaamyraOWaaSbaaKqaGeaajugWaiaad+ea caaIOaGaamOtaiabgUcaRiaaigdacaaIPaGaaGilaiaadsfajuaGda WgaaqcbasaaKqzadGaeq4XdmgajeaibeaajugWaiaaiIcacaWGnbGa aGykaaWcbeaajugibiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbacfaGae8hhHiLaaGikaiaadsfacqGHsislcaWGubGc daahaaWcbeqaaKqzGeGaam4jaaaacaaIPaGaaGilaiaadseakmaaCa aaleqabaqcLbsacaWGNaaaaiaaiIcatuuDJXwAK1uy0HMmaeXbfv3y SLgzG0uy0HgiuD3BaGGbaiab+1risLqbaoaaCaaajeaibeqaaKqzad GaamOBaaaajugibiaaiMcacaaIPaGaaGypaiaadsgacaWGPbGaamyB aiaadofajuaGdaahaaqcbasabeaajugWaiaad6gaaaqcLbsacaWGKb GaamyAaiaad2gacqaHdpWCcaaIOaGaamivaiabgkHiTiaadsfakmaa CaaaleqabaqcLbsacaWGNaaaaiaaiMcacaaI9aGaeqOUdSMaamOBai aaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaISaaaaa@8BF6@   (31)

The space region is diffeomorfically embedded in D ' ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFDeIujuaGdaahaaqcbasabe aajugWaiaad6gaaaqcLbsacaaIPaaaaa@4A7A@ . In particular to our Ricci tensor R R αβ αβ = g αβ R αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaeyyyIORaamOuaKqbaoaaDaaajeaibaqcLbmacqaHXoqycqaHYoGy aKqaGeaajugWaiabeg7aHjabek7aIbaajugibiaai2dacaWGNbqcfa 4aaWbaaKqaGeqabaqcLbmacqaHXoqycqaHYoGyaaqcLbsacaWGsbGc daWgaaqcbasaaKqzadGaeqySdeMaeqOSdigaleqaaaaa@53AD@ , in a 2-dimensional region we have that (31) takes the value 2(2-1)P,P=1.

Likewise, a functional L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=jrimbaa@4326@ , in the distribution space D ' (H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaamisaiaaiMcaaaa@3D05@ , with H, energy states space

H={ϕ(χ)|H(ϕ(χ))=(1/2m)||ϕ || 2 + V (ϕ(χ))} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib GaaGypaiaaiUhacqaHvpGzcaaIOaGaeq4XdmMaaGykaiaaiYhacaWG ibGaaGikaiabew9aMjaaiIcacqaHhpWycaaIPaGaaGykaiaai2daca aIOaGaaGymaiaai+cacaaIYaGaamyBaiaaiMcacaaI8bGaaGiFaiab ew9aMjaaiYhacaaI8bqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaey4kaSsbaeqabiqaaaGcbaqcLbsacqGHIaYTaOqaaKqzGeGa amOvaaaacaaIOaGaeqy1dyMaaGikaiabeE8aJjaaiMcacaaIPaGaaG yFaaaa@6283@   (32)

Is the Lagrangian to gravitational field:

L(ϕ,g)= (g) 1/2 1 2 [ μ ϕ g μν ν ϕ+( m 2 +(1/6)R) ϕ 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=jrimjaaiIca cqaHvpGzcaaISaGaam4zaiaaiMcacaaI9aGaeyOeI0IaaGikaiaadE gacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaaIXaGaaG4laiaaikda aaGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaaiUfacq GHciITjuaGdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaajugibiab ew9aMjaadEgajuaGdaahaaqcbasabeaajugWaiabeY7aTjabe27aUb aajugibiabgkGi2MqbaoaaBaaajeaibaqcLbmacqaH9oGBaKqaGeqa aKqzGeGaeqy1dyMaey4kaSIaaGikaiaad2gajuaGdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacqGHRaWkcaaIOaGaaGymaiaai+cacaaI 2aGaaGykaiaadkfacaaIPaGaeqy1dywcfa4aaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaaGyxaiaaiYcaaaa@7CA1@   (33)

Likewise, this described energy system to curvature tensor from their corresponding matter-energy tensor (in their duality) has a spherical symmetry (Figures 2 (A & B)). Then with m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaaGypaiaaicdaaaa@3B0B@  this system is conformal and invariant, thus one can see that:

ϕ(χ) (λ(χ)) 1/2 ϕ(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcaaIOaGaeq4XdmMaaGykaiablAAiHjaaiIcacqaH7oaBcaaIOaGa eq4XdmMaaGykaiaaiMcajuaGdaahaaqcbasabeaajugWaiabgkHiTi aaigdacaaIVaGaaGOmaaaajugibiabew9aMjaaiIcacqaHhpWycaaI PaGaaGilaaaa@50B8@   (34)

Figure 2 A) 3-dimensional region with Ricci curvature and conformal transformation with plane action in XY-plane. Their curvature obeys the dimension 2(2-1)P,P=1. B) Spherical symmetry of the quasi-static gravitational field, that is to say, with curvature R μν =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGyp aiaaicdaaaa@407B@ .

ϕ(χ)H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHai IicqaHvpGzcaaIOaGaeq4XdmMaaGykaiabgIGiolaadIeaaaa@409D@ , and (λ(χ)) 1/2 ϕ(χ) D ' (H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa Gaeq4UdWMaaGikaiabeE8aJjaaiMcacaaIPaqcfa4aaWbaaKqaGeqa baqcLbmacqGHsislcaaIXaGaaG4laiaaikdaaaqcLbsacqaHvpGzca aIOaGaeq4XdmMaaGykaiabgIGiolaadseakmaaCaaaleqabaqcLbsa caWGNaaaaiaaiIcacaWGibGaaGykaaaa@4F56@ . If λ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaIOaGaeq4XdmMaaGykaaaa@3D68@ , is constant this space has a curvature with a static field with spherical symmetry on XY-plane (Figure 2B).

Then we can extended this conformally to other scalar fields that response to conformal transformations,7 for example, let ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEaaa@3A66@ , be a new scalar field or energy state such that:

ψ(χ) (λ(χ)) 1/2 ψ(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEcaaIOaGaeq4XdmMaaGykaiablAAiHjaaiIcacqaH7oaBcaaIOaGa eq4XdmMaaGykaiaaiMcajuaGdaahaaqcbasabeaajugWaiaaigdaca aIVaGaaGOmaaaajugibiabeI8a5jaaiIcacqaHhpWycaaIPaGaaGil aaaa@4FD7@   (35)

We consider additionally that the conformal response of the gravitational Lagrange function given in 2κL(g(χ),Γ(χ))=(g(χ )) 1/2 g μν (χ) R μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaeqOUdS2efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFsectcaaIOaGaam4zaiaaiIcacqaHhpWycaaIPaGaaGilaiabfo 5ahjaaiIcacqaHhpWycaaIPaGaaGykaiaai2dacaaIOaGaeyOeI0Ia am4zaiaaiIcacqaHhpWycaaIPaGaaGykaKqbaoaaCaaajeaibeqaaK qzadGaaGymaiaai+cacaaIYaaaaKqzGeGaam4zaKqbaoaaCaaajeai beqaaKqzadGaeqiVd0MaeqyVd4gaaKqzGeGaaGikaiabeE8aJjaaiM cacaWGsbqcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasa baqcLbsacaaIOaGaeq4XdmMaaGykaaaa@7051@ ,8 could be compensated by the multiplication with ψ (χ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEcaaIOaGaeq4XdmMaaGykaKqbaoaaCaaajeaibeqaaKqzadGaaGOm aaaaaaa@4046@ , at least for constant λ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaIOaGaeq4XdmMaaGykaaaa@3D68@ , which leaves R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaaaa@3E6B@ , unchanged. Then part of the Lagrangian that is symmetric of the conformal part is (g) 1/2 R ψ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeyOeI0Iaam4zaiaaiMcajuaGdaahaaqcbasabeaajugWaiaaigda caaIVaGaaGOmaaaajugibiaadkfacqaHipqEjuaGdaahaaqcbasabe aajugWaiaaikdaaaaaaa@4606@ , (case when m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaaGypaiaaicdaaaa@3B0B@ , and ϕψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcqWIMgsycqaHipqEaaa@3DE7@ ) thus the generalization to an arbitrary λ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaIOaGaeq4XdmMaaGykaaaa@3D68@  is obtained immediately, leading to the complete conformal invariant

L(g,ψ,ϕ)= (g) 1/2 1 2κ [R ψ 2 +6 μ ψ g μν ν ψ] (g) 1/2 1 2 [ μ ϕ g μν ν ϕ+( m 2 ψ 2 +(1/6)R) ϕ 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=jrimjaaiIca caWGNbGaaGilaiabeI8a5jaaiYcacqaHvpGzcaaIPaGaaGypaiabgk HiTiaaiIcacaWGNbGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaaGym aiaai+cacaaIYaaaaOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaG OmaiabeQ7aRbaacaaIBbGaamOuaiabeI8a5LqbaoaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiabgUcaRiaaiAdacqGHciITkmaaBaaaje aibaqcLbmacqaH8oqBaSqabaqcLbsacqaHipqEcaWGNbGcdaahaaWc beqcbasaaKqzadGaeqiVd0MaeqyVd4gaaKqzGeGaeyOaIyBcfa4aaS baaKqaGeaajugWaiabe27aUbqcbasabaqcLbsacqaHipqEcaaIDbGa eyOeI0IaaGikaiabgkHiTiaadEgacaaIPaqcfa4aaWbaaKqaGeqaba qcLbmacaaIXaGaaG4laiaaikdaaaGcdaWcaaqaaKqzGeGaaGymaaGc baqcLbsacaaIYaaaaiaaiUfacqGHciITjuaGdaWgaaqcbasaaKqzad GaeqiVd0gajeaibeaajugibiabew9aMjaadEgajuaGdaahaaqcbasa beaajugWaiabeY7aTjabe27aUbaajugibiabgkGi2QWaaSbaaKqaGe aajugWaiabe27aUbWcbeaajugibiabew9aMjabgUcaRiaaiIcacaWG Tbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqiYdKxcfa 4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGikaiaa igdacaaIVaGaaGOnaiaaiMcacaWGsbGaaGykaiabew9aMLqbaoaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiaai2facaaISaaaaa@AF02@   (36)

With associated field equation

R= g μν R μν =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGypaiaadEgajuaGdaahaaqcbasabeaajugWaiabeY7aTjabe27a UbaajugibiaadkfajuaGdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4 gajeaibeaajugibiaai2dacaaIWaGaaGilaaaa@4A63@   (37)

Which can be a spherical symmetry in a general sense. Likewise, considering these symmetric parts of the conformal component of the space-time, we can establish spectral models on sources which in the beginning can be considered along the space-time as spherical.

Likewise, is known that in high energy particle physics not happens always that the harmonious and symmetrical possibility is present in the deep space-time. Perhaps, the formal invariance under conformal transformation is broken when a massless field or zero spin particles does exist or appears. However, this symmetry can be broken from measure frame used to explore this conformal action using a gauge field of electromagnetic type (Figure 3).

Figure 3 2-dimensional flat model of a space-time region where is broken the formal invariance (and symmetry) due to the no existence of a source. The zero spin particle appears on the Y, axis. The increase waves due the inflation factor and the annihilation of the combination R+κτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaey4kaSIaeqOUdSMaeqiXdqhaaa@3DC8@ , due the deviation of λ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaIOaGaeq4XdmMaaGykaaaa@3D68@ , which provokes the annulation of the stress tensor component t μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GcdaahaaWcbeqcbasaaKqzadGaeqiVd0MaeqyVd4gaaaaa@3E8E@ . The two components represented are due to spin ±1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHXc qScaaIXaGaaG4laiaaikdaaaa@3CB6@ , (fermions), which interact with the gravitational background broken the invariance of the field ψ(χ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEcaaIOaGaeq4XdmMaaGykaiaai6caaaa@3E3A@

For example, the fermions act with the gravitational background producing two components of interacting that go increasing by the expansion of the Universe. This could shape the inflation factor, yet when the level matter of the Universe is insufficient. However, for the field ψ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEcaaIOaGaeq4XdmMaaGykaaaa@3D82@ , would still have source, which could be necessary to annihilate the combination R+κt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaey4kaSIaeqOUdSMaamiDaaaa@3CFC@ 13, with t14, the corresponding stress tensor due the matter presence, which is affected

Likewise, the annihilation of the combination R+κt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaey4kaSIaeqOUdSMaamiDaaaa@3CFC@ , can be done arbitrary, although in theoretical physics are presented two possibilities on the removing the factor σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCjuaGdaahaaqcbasabeaajugWaiaaikdaaaaaaa@3D1F@ , that multiplies m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaa@3C4E@ , or that multiples R, in the Lagrangian term of (36). The first procedure gives the B-D theory15. The goals of this research are not study the consequences of these procedures. But, one conclusion of this respect is the appearing of spectra of curvature that can be constructed via the gravitational waves determined to start the stress tensor of matter presence and the gauge fields that can be designed to conserve the conformal properties to a first curvature. The second curvature also could be obtained but under considerations on the studies in B-D theory.9

11The process more simple is introduce a tensor density g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaaaaa@3EFA@ , covariant of weight establishing h,= g μν R μν (= g μν S μν ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GaaGilaiaai2dacaWGNbqcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqB cqaH9oGBaaqcLbsacaWGsbGcdaWgaaqcbasaaKqzadGaeqiVd0Maeq yVd4galeqaaKqzGeGaaGikaiaai2dacaWGNbqcfa4aaWbaaKqaGeqa baqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaWGtbqcfa4aaSbaaKqaGe aajugWaiabeY7aTjabe27aUbqcbasabaqcLbsacaaIPaGaaGilaaaa @592E@
The law of transforming to g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaaaaa@3EFA@ , must be: g μν = χ μ χ μ χ ν χ ν g μν | χ n χ μ |, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcfa4aaWba aKqaGeqabaqcLbmacqGHxiIkaaqcLbsacaaI9aGcdaWcaaqaaKqzGe GaeyOaIyRaeq4Xdmwcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBjuaG daahaaqcbasabeaajugWaiabgEHiQaaaaaaakeaajugibiabgkGi2k abeE8aJPWaaWbaaSqabKqaGeaajugWaiabeY7aTbaaaaGcdaWcaaqa aKqzGeGaeyOaIyRaeq4Xdmwcfa4aaWbaaKqaGeqabaqcLbmacqaH9o GBjuaGdaahaaqcbasabeaajugWaiabgEHiQaaaaaaakeaajugibiab gkGi2kabeE8aJPWaaWbaaSqabKqaGeaajugWaiabe27aUbaaaaqcLb sacaWGNbqcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqc LbsacaaI8bGcdaWcaaqaaKqzGeGaeyOaIyRaeq4XdmMcdaahaaWcbe qcbasaaKqzadGaamOBaaaaaOqaaKqzGeGaeyOaIyRaeq4XdmMcdaah aaWcbeqcbasaaKqzadGaeqiVd0gaaaaajugibiaaiYhacaaISaaaaa@7E4B@
where the indices are referred to different coordinates systems, yet when have been used these same letters, are considered as independent ones of others. Then we have: h dτ= χ i χ i χ k χ k g ik | χ i χ i | χ S χ S S st | χ S χ S |dτ= hdτ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeqale qabeqcLbsacqGHRiI8aiaadIgajuaGdaahaaqcbasabeaajugWaiab gEHiQaaajugibiaadsgacqaHepaDcaaI9aGcdaWdbaqabSqabeqaju gibiabgUIiYdGcdaWcaaqaaKqzGeGaeyOaIyRaeq4Xdmwcfa4aaWba aKqaGeqabaqcLbmacaWGPbqcfa4aaWbaaKqaGeqabaqcLbmacqGHxi IkaaaaaaGcbaqcLbsacqGHciITcqaHhpWyjuaGdaahaaqcbasabeaa jugWaiaadMgaaaaaaOWaaSaaaeaajugibiabgkGi2kabeE8aJPWaaW baaSqabKqaGeaajugWaiaadUgajuaGdaahaaqcbasabeaajugWaiab gEHiQaaaaaaakeaajugibiabgkGi2kabeE8aJLqbaoaaCaaajeaibe qaaKqzadGaam4AaaaaaaqcLbsacaWGNbqcfa4aaWbaaKqaGeqabaqc LbmacaWGPbGaam4AaaaajugibiaaiYhakmaalaaabaqcLbsacqGHci ITcqaHhpWyjuaGdaahaaqcbasabeaajugWaiaadMgaaaaakeaajugi biabgkGi2kabeE8aJLqbaoaaCaaajeaibeqaaKqzadGaamyAaKqbao aaCaaajeaibeqaaKqzadGaey4fIOcaaaaaaaqcLbsacaaI8bGaeyOi GCRcdaWcaaqaaKqzGeGaeyOaIyRaeq4Xdmwcfa4aaWbaaKqaGeqaba qcLbmacaWGtbaaaaGcbaqcLbsacqGHciITcqaHhpWyjuaGdaahaaqc basabeaajugWaiaadofajuaGdaahaaqcbasabeaajugWaiabgEHiQa aaaaaaaKqzGeGaam4uaKqbaoaaBaaajeaibaqcLbmacaWGZbGaamiD aaqcbasabaqcLbsacaaI8bGcdaWcaaqaaKqzGeGaeyOaIyRaeq4Xdm wcfa4aaWbaaKqaGeqabaqcLbmacaWGtbaaaaGcbaqcLbsacqGHciIT cqaHhpWyjuaGdaahaaqcbasabeaajugWaiaadofajuaGdaahaaqcba sabeaajugWaiabgEHiQaaaaaaaaKqzGeGaaGiFaiaadsgacqaHepaD caaI9aGcdaWdbaqabSqabeqajugibiabgUIiYdGaamiAaiaadsgacq aHepaDcaaISaaaaa@B316@
which is an integral of an invariant transformation.

12Here σ is a smooth embedding, which smoothly embeds the submanifold created by the affected region by the energy-mass tensor.

13 R , μν (χ)=κ( t μν (χ)(1/2) g μν (χ)t(χ)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGilaOWaaSbaaKqaGeaajugWaiabeY7aTjabe27aUbWcbeaajugi biaaiIcacqaHhpWycaaIPaGaaGypaiabeQ7aRjaaiIcacaWG0bqcfa 4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsacaaI OaGaeq4XdmMaaGykaiabgkHiTiaaiIcacaaIXaGaaG4laiaaikdaca aIPaGaam4zaOWaaSbaaKqaGeaajugWaiabeY7aTjabe27aUbWcbeaa jugibiaaiIcacqaHhpWycaaIPaGaamiDaiaaiIcacqaHhpWycaaIPa GaaGykaaaa@6317@ , which is equivalent to the Einstein gravitational field equation G μν (χ)=κ t μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGik aiabeE8aJjaaiMcacaaI9aGaeqOUdSMaamiDaOWaaSbaaKqaGeaaju gWaiabeY7aTjabe27aUbWcbeaajugibiaaiIcacqaHhpWycaaIPaaa aa@4E24@ .

14 t(χ)= g μν (χ) t μν (χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGikaiabeE8aJjaaiMcacaaI9aGaam4zaKqbaoaaBaaajeaibaqc LbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGeGaaGikaiabeE8aJjaaiM cacaWG0bGcdaahaaWcbeqcbasaaKqzadGaeqiVd0MaeqyVd4gaaKqz GeGaaGikaiabeE8aJjaaiMcaaaa@514B@ .

15Inside the theoretical physics, the B-D theory is the Brans–Dicke theory of gravitation, which consists a theoretical framework to explain gravitation phenomena. This is an alternative theory to the general relativity theory due Einstein in which the gravitational interacting is mediated by a scalar field as ϕ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiabeE8aJjaaiMcaaaa@3CED@ , as well as the tensor field in general relativity given by R μ ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aULqbaoaaCaaajeai beqaaKqzadGaeyOiGClaaaqcbasabaaaaa@429B@ . The gravitational constant G is not considered to be constant but their reciprocal 1/G is replaced by a scalar field ϕ(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcaaIOaGaeq4XdmMaaGykaaaa@3D7C@ , which can vary from place to place and with time.

Conformally in the spectrum of curvature on the space H

Which is the aspect of curvature of the quantum perturbing space on the space

H={ϕ(χ)|H(ϕ(χ))=(1/2m)||ϕ || 2 + V (ϕ(χ))} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib GaaGypaiaaiUhacqaHvpGzcaaIOaGaeq4XdmMaaGykaiaaiYhacaWG ibGaaGikaiabew9aMjaaiIcacqaHhpWycaaIPaGaaGykaiaai2daca aIOaGaaGymaiaai+cacaaIYaGaamyBaiaaiMcacaaI8bGaaGiFaiab ew9aMjaaiYhacaaI8bqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaey4kaSsbaeqabiqaaaGcbaqcLbsacqGHIaYTaOqaaKqzGeGa amOvaaaacaaIOaGaeqy1dyMaaGikaiabeE8aJjaaiMcacaaIPaGaaG yFaaaa@6283@

Here is the space of the energy states that determine the Hamiltonian densities of the energy spectra due curvature. Likewise, these densities can be superposed to integrate a curvature spectrum as has been established in Figure 4.10,11

Figure 4 Superposing of the Hamiltonian state densities measuring curvature.11

Newly, using the formal invariance under conformal transformation, the H-states can determine not only first curvature, also second curvature, since these energy states arise in natural way of the study of fermion states interacting of the gravitational background designing a gauge field as “dilaton” of magnetic nature, which could to evade the strong radiation that arises of this interacting. The study of strong gravitational sources realized from a point of view of the kinematic tensor , to stress-matter tensor is a method to determine the existence of space-time singularities (Figures 5 (A & B)).

Figure 5 A) Gravitational field of perturbed spherical symmetry. B) Cylindrical gravitational waves determining a gravitational source in the space-time.

But far of these considerations arise the question on how can be recognized the spin 2 particles or gravitons, which can determine the gravitational energy scenario useful in field theory to generate a curvature spectra of spectral curvature directly of the actions of the gravitational field on space. The generalized stress tensor conservation law given by the equation

μ t μν (χ)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0kmaaBaaajeaibaqcLbmacqaH8oqBaSqabaqcLbsacaWG0bqcfa4a aWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaIOaGaeq 4XdmMaaGykaiaai2dacaaIWaGaaGilaaaa@4A42@   (38)

Will fail inside particle sources (such and as was showed in the Figure 3) unless one recognizes the pre-existence of the energy and momentum that is transferred to the emitted particle. However, there is not an electromagnetic analogue to the graviton source problem. The photons are electrical neutral, whereas gravitons carry energy-momentum, which also must be transferred rather than created within the source.

Then is introduced to provide the correct gauge transformation behaviour of charged particle sources. But these source problems can be viewed as the search the explicit g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaeyOe I0caaa@3FFC@ dependence that will give the various sources the correct response to general coordinate transformations. Then considering all before, the simplest example is a scalar source Ω(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcaaIOaGaeq4XdmMaaGykaaaa@3D42@ , appearing in the action integral though the term:

(dχ)(g(χ )) 1/2 Ω(χ)ϕ(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeqale qabeqcLbsacqGHRiI8aiaaiIcacaWGKbGaeq4XdmMaaGykaiaaiIca cqGHsislcaWGNbGaaGikaiabeE8aJjaaiMcacaaIPaqcfa4aaWbaaK qaGeqabaqcLbmacaaIXaGaaG4laiaaikdaaaqcLbsacqqHPoWvcaaI OaGaeq4XdmMaaGykaiabew9aMjaaiIcacqaHhpWycaaIPaGaaGilaa aa@53F1@   (39)

But these terms are useful to establish the graviton emission through certain special function such as impulse functions, whereas have us that the terms as (39) take the form in the frame of the stress tensors t μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaaaa@3E8D@ , to high radiation emission:

(dχ)(1+h)ϕ(Ω(χ)+ χ μ (h) μ Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeqale qabeqcLbsacqGHRiI8aiaaiIcacaWGKbGaeq4XdmMaaGykaiaaiIca caaIXaGaey4kaSIaamiAaiaaiMcacqaHvpGzcaaIOaGaeuyQdCLaaG ikaiabeE8aJjaaiMcacqGHRaWkcqaHhpWyjuaGdaahaaqcbasabeaa jugWaiabeY7aTbaajugibiaaiIcacaWGObGaaGykaiabgkGi2QWaaS baaKqaGeaajugWaiabeY7aTbWcbeaajugibiabfM6axjaaiMcacaaI Saaaaa@5B07@   (40)

Where are the densities defined in (15). Then assuming that the graviton detection sources do not overlap the Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3A26@ support region, one can use the source-free weak gravitational field equations deriving to:

λ χ λ = (d χ ' )(d χ '' ) f μ (χ χ ' ) f ν (χ χ '' ), μ '' ν '' h( χ '' ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITkmaaBaaajeaibaqcLbmacqaH7oaBaSqabaqcLbsacqaHhpWyjuaG daahaaqcbasabeaajugWaiabeU7aSbaajugibiaai2dakmaapeaabe WcbeqabKqzGeGaey4kIipacaaIOaGaamizaiabeE8aJPWaaWbaaSqa beaajugibiaadEcaaaGaaGykaiaaiIcacaWGKbGaeq4XdmMcdaahaa WcbeqaaKqzGeGaam4jaiaadEcaaaGaaGykaiaadAgajuaGdaahaaqc basabeaajugWaiabeY7aTbaajugibiaaiIcacqaHhpWycqGHsislcq aHhpWykmaaCaaaleqabaqcLbsacaWGNaaaaiaaiMcacaWGMbqcfa4a aWbaaKqaGeqabaqcLbmacqaH9oGBaaqcLbsacaaIOaGaeq4XdmMaey OeI0Iaeq4XdmMcdaahaaWcbeqaaKqzGeGaam4jaiaadEcaaaGaaGyk aiaaiYcacqGHciITkmaaDaaajeaibaqcLbmacqaH8oqBaSqaaKqzGe Gaam4jaiaadEcaaaGaeyOaIyRcdaqhaaqcbasaaKqzadGaeqyVd4ga leaajugibiaadEcacaWGNaaaaiaadIgacaaIOaGaeq4XdmMcdaahaa WcbeqaaKqzGeGaam4jaiaadEcaaaGaaGykaiaaiYcaaaa@80F5@   (41)

Where f μ (χ χ ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBaaqcLbsacaaIOaGaeq4X dmMaeyOeI0Iaeq4XdmMcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIPa aaaa@4502@ , is one of familiar class of functions such that

μ f μ (χ χ ' )=δ(χ χ ' ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaajugibiaadAga juaGdaahaaqcbasabeaajugWaiabeY7aTbaajugibiaaiIcacqaHhp WycqGHsislcqaHhpWykmaaCaaaleqabaqcLbsacaWGNaaaaiaaiMca caaI9aGaeqiTdqMaaGikaiabeE8aJjabgkHiTiabeE8aJPWaaWbaaS qabeaajugibiaadEcaaaGaaGykaiaaiYcaaaa@5532@   (42)

Mentioned before.

An additional work in the term inside the integral (40) ϕ(Ω(χ)+ χ μ (h) μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcaaIOaGaeuyQdCLaaGikaiabeE8aJjaaiMcacqGHRaWkcqaHhpWy juaGdaahaaqcbasabeaajugWaiabeY7aTbaajugibiaaiIcacaWGOb GaaGykaiabgkGi2MqbaoaaBaaajeaibaqcLbmacqaH8oqBaKqaGeqa aaaa@4E41@  produced of the local diffeomerphism that create the field equations in this context, can be transformed in a Hill equation of the form, which can under certain conditions to come of the equation (29):

2 ϕ+Φϕ=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0juaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHvpGzcqGH RaWkcqqHMoGrcqaHvpGzcaaI9aGaaGimaiaaiYcaaaa@4594@   (43)

Which under the integral geometry study and the G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaeyOeI0caaa@3A51@ structure of the complex Riemannian manifold, furthermore of the K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb GaeyOeI0caaa@3A55@ invariance of their submanifolds or cycles under integral transforms takes the form of the Bulnes s equation16:1,12

R σ ( R σ Ad)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaWgaaqcbasaaKqzadGaeq4WdmhaleqaaKqzGeGaaGikaiaadkfa juaGdaWgaaqcbasaaKqzadGaeq4WdmhajeaibeaajugibiabgEPiel aadgeacaWGKbGaaGykaiaai2dacaaIWaGaaGilaaaa@49FD@   (44)

Both equations are generalizations of the Ricatti equation whose solutions can to represent generalized harmonic oscillators. Then their solutions to curvature will be a spectrum of curvature, whose oscillations will be produced when energy-matter affects the space-time. In the case of the equation (44) results the incorporation of the intrinsic image of curvature of a submanifold, which is embedded smoothly in the space D ' (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaamytaiaaiMcaaaa@3D0A@ .

For example, the intrinsic image of curvature of a curved surface as submanifold, which is embedded smoothly in the distribution space, D ' (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaahaaWcbeqaaKqzGeGaam4jaaaacaaIOaGaamytaiaaiMcaaaa@3D0A@ is their curvature energy.

16This equation arises of the property of the generalized X-Ray transform which says that R γ (Ad( G 0 ) D ' (M))= R γ ( C (Σ)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSbaaKqaGeaajugWaiabeo7aNbqcbasabaqcLbsacaaIOaGa amyqaiaadsgacaaIOaGaam4raKqbaoaaCaaajeaibeqaaKqzadGaaG imaaaajugibiaaiMcacqGHxkcXcaWGebGcdaahaaWcbeqaaKqzGeGa am4jaaaacaaIOaGaamytaiaaiMcacaaIPaGaaGypaiaadkfakmaaBa aajeaibaqcLbmacqaHZoWzaSqabaqcLbsacaaIOaGaam4qaKqbaoaa CaaajeaibeqaaKqzadGaeyOhIukaaKqzGeGaaGikaiabfo6atjaaiM cacaaIPaaaaa@5B67@ , is solution of the endomorphic equation: R γ 2 R γ (Ad( G 0 ) D ' (M))=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aa0baaKqaGeaajugWaiabeo7aNbqcbasaaKqzadGaaGOmaaaa jugibiabgkHiTiaadkfakmaaBaaajeaibaqcLbmacqaHZoWzaSqaba qcLbsacaaIOaGaamyqaiaadsgacaaIOaGaam4raKqbaoaaCaaajeai beqaaKqzadGaaGimaaaajugibiaaiMcacqGHxkcXcaWGebGcdaahaa WcbeqaaKqzGeGaam4jaaaacaaIOaGaamytaiaaiMcacaaIPaGaaGyp aiaaicdacaaIUaaaaa@5693@  

Main results

Theorem

The Hill equation is equivalent to Bulnes equation considering the cohomology class of 1-forms spaces of lines of the lines bundles O(2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGpb GaaGikaiaaikdacaaIPaaaaa@3B8D@ , on 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=LriqPWaaWba aSqabKqaGeaajugWaiaaiodaaaaaaa@4596@ .

Proof. To prove this is necessary use the relation between Radon transform with the Laplacian on curved spaces (because the Hill equation has a curved differential operator) and their relation with the Penrose transform. Likewise, if we consider the Einstein bundle EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaeyOKH4Qaamytaaaa@3C21@ 17, then the Penrose transform is: 

P:Γ( 3 (),E){ϕofconformalweight1onMsatisfaying (A ( A ' B) B ) ' ϕ+ Φ AB A ' B ' ϕ=0}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=9q8qjaaiQda cqqHtoWrcaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFzecukmaaCaaaleqajeaibaqcLbmacaaIZaaaaKqzGeGa aGikaiab+jqidjaaiMcacaaISaGaamyraiaaiMcacqGHfjcqcaaI7b Gaeqy1dyMaaGjbVlaaysW7caWGVbGaamOzaiaaysW7caaMe8Uaam4y aiaad+gacaWGUbGaamOzaiaad+gacaWGYbGaamyBaiaadggacaWGSb GaaGjbVlaaysW7caWG3bGaamyzaiaadMgacaWGNbGaamiAaiaadsha caaMe8UaaGjbVlaaigdacaaMe8UaaGjbVlaad+gacaWGUbGaaGjbVl aaysW7caWGnbGaaGjbVlaaysW7caWGZbGaamyyaiaadshacaWGPbGa am4CaiaadAgacaWGHbGaamyEaiaadMgacaWGUbGaam4zaiaaysW7ca aMe8Uaey4bIeDcfa4aa0baaKqaGeaajugWaiaaiIcacaWGbbaajeai baqcLbmacaaIOaGaamyqaKqbaoaaCaaajeaibeqaaKqzadGaam4jaa aaaaGaey4bIeDcfa4aa0baaKqaGeaajugWaiaadkeacaaIPaaajeai baqcLbmacaWGcbGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaam4jaa aaaaqcLbsacqaHvpGzcqGHRaWkcqqHMoGrjuaGdaqhaaqcbasaaKqz adGaamyqaiaadkeaaKqaGeaajugWaiaadgeajuaGdaahaaqcbasabe aajugWaiaadEcaaaGaamOqaKqbaoaaCaaajeaibeqaaKqzadGaam4j aaaaaaqcLbsacqaHvpGzcaaI9aGaaGimaiaai2hacaaISaaaaa@BEB7@   (45)

And are satisfied the Einstein equation to tensor T ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaKqaGeaajugWaiaadggacaWGIbaajeaibeaajugibiaa i2dacaaIWaaaaa@3F7F@ . Also using the fact that PΔ | O(k) =Δ | O(k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=9q8qjabfs5a ejaaiYhajuaGdaWgaaqcbasaaKqzadGaam4taiaaiIcacaWGRbGaaG ykaaqcbasabaqcLbsacaaI9aGaeuiLdqKaaGiFaKqbaoaaBaaajeai baqcLbmacaWGpbGaaGikaiaadUgacaaIPaaajeaibeaaaaa@54D9@ ,13 and the conformally given for (34) in the space-time M. 

Theorem (F Bulnes, S Fominko)

The action integral (39) generate spatial diffeomorphisms along orbits defined by Ω(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcaaIOaGaeq4XdmMaaGykaaaa@3D42@ .

The result establish that the orbits of the group SO (4, R), are spaces isomorphic to spheres.

Proof. We consider the action integral (39). Then their orbits Ω(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcaaIOaGaeq4XdmMaaGykaaaa@3D42@ can have measure as spatial regions whose curvature is a Ricci curvature.

Lemma (F Bulnes, S Fominko)

A diffeomorphism of gravitational field is:

R μν (χ)=κ( t μν (χ)(1/2) g μν (χ)t(χ)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGaaGik aiabeE8aJjaaiMcacaaI9aGaeqOUdSMaaGikaiaadshajuaGdaWgaa qcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaajugibiaaiIcacqaH hpWycaaIPaGaeyOeI0IaaGikaiaaigdacaaIVaGaaGOmaiaaiMcaca WGNbGcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaKqzGeGa aGikaiabeE8aJjaaiMcacaWG0bGaaGikaiabeE8aJjaaiMcacaaIPa GaaGilaaaa@6317@   (46)

Then for the formula (31), the gravitational field can be given as (Figure 6):

G μν = ακ n(n1)κ t μν , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaWbaaKqaGeqabaqcLbmacqaH8oqBcqaH9oGBaaqcLbsacaaI 9aGcdaWcaaqaaKqzGeGaeqySdeMaeqOUdSgakeaajugibiaad6gaca aIOaGaamOBaiabgkHiTiaaigdacaaIPaGaeqOUdSgaaiaadshajuaG daahaaqcbasabeaajugWaiabeY7aTjabe27aUbaajugibiaaiYcaaa a@531C@   (47)

Figure 6 The gravitational field to n=2, in the equation.47

Remark: The corresponding equation (47) comes from an analysis using generalized curvature on the distribution spaces in integral geometry. The theorem can be found in.1

The considerations realized in this paper have as objective establishes the spectrum of curvature when there is symmetry or when can to have breaking of this. This last result or lemma, as the result obtained of incorporate the general relativity to the quantum field theory to obtain spectra of the curvature tensor R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaaaaa@3F0E@ , through of other tensors (that directly or indirectly are related with this curvature tensor, and which are product of diffeomorphism applied to the microscopic structure of the homogeneous space of form G/ G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaG4laiaadEeakmaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3D31@ ) considers the possibility of discrete the energy spectra of the gravitational field to computational applications10 where κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3A4A@ , can be a constant sectional curvature. Of fact, this is the re-interpretation that gives us.

Also, the conformally in the Spectrum of Curvature on the space was established as a condition to measure in duality the curvature, which appear as a pseudo-symmetry condition that generalize the spherical mapping given to Gaussian curvature, but to this case in the energy Hamiltonian space to the gravitational field source (Figure 7).

Figure 7 Appearing of Gravitational field source reproducing more nodes of gravitational waves due the orbital actions when the dilaton is interacting with the background. These are model of the spectrum of the Hill equations.

Also were obtained images of curvature energy of the Hamiltonian manifold in the complex Riemannian manifold obtaining a formula of gravitational field depending of the dimension of the space on which acts the tensor . The interesting is that is used the empirical constant α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qycaaI+aGaaGimaaaa@3BB9@ .

17Homogeneous vector bundle with constant Ricci curvature.

Observational and experimental facts

Some astrophysics and astronomy observational facts are:

A). Gravitational waves arise as deformation of the space-time when dilaton acts on the background. For example, perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity, can produce stability, ring-down, and gravitational-wave emission that are propagated as part of the space-time (Figure 8).14

Figure 8 First measurement of greater than 10dB squeezing across the audio gravitational-wave detection band, with 11.6dB from 200Hz and above. The degradation of squeezing level below 100Hz is due to remaining residual classical noise entering the squeezing detector. Adapted from,16 and includes resolution bandwidth and window information.15

B). At least must to have a conformal constant action along the gravity action or sufficiently large. This can to be broken if the dilaton action is prolonged beyond of this conformal constant action. This could to be seemed to the Brans-Dicke argumentation,18 from a point of view of the variation of the gravitational constant, which varies from the place in time. But assuming the gravitational field with invariant due the gravitational diffeomorphism (30) whose action is constant then the gravitational waves are evidenced from the remote source (Figure 9). But if is affected by the dilaton action, the corresponding scalar field action due the electromagnetic action of the dilaton could “dilute the gravity” action trying vacumm in the space-time. Likewise, if we consider one of the Brans-Dicke equations, for example,

ϕ= 8π 3+2ω T, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcLbsacqWFHwYvcqaHvpGzcaaI9aGcdaWcaaqaaKqz GeGaaGioaiabec8aWbGcbaqcLbsacaaIZaGaey4kaSIaaGOmaiabeM 8a3baacaWGubGaaGilaaaa@4ADD@   (48)

Figure 9 Variation of the gravitational constant.

The equation says that the trace of the stress-energy acts as the source for the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp Gzaaa@3A60@ . But electromagnetic fields contribute only a traceless term to the stress-energy tensor, which implies that in a region of space-time containing only electromagnetic field the right side of (48) vanishes and the curved space-time obeys the wave equation. But, this electromagnetic wave is propagated infinitely (Figure 10). In such case, we can say that the field is a long-range field.15,16

Figure 10 2-Dimensional model of electromagnetic wave solutions on space-time without matter-energy (long-range field).16

In other case, when the conformal action is constant then the gravitational fields are created with spherical symmetry. Then the tensor of gravity G μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaaaaa@3F03@ , is proportional to the production of energy-matter determined in the matter-energy tensor T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4galeqaaaaa@3E6D@ , which can to create a source of matter-energy accord to the diffeomorphism

λ G μνλ (χ) ν G μλ λ (χ)+ m 2 ( ϕ μν (χ)+ 1 2 g μν ϕ(χ))= T μν 1 2 g μν T(χ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITkmaaCaaaleqajeaibaqcLbmacqaH7oaBaaqcLbsacaWGhbGcdaWg aaqcbasaaKqzadGaeqiVd0MaeqyVd4Maeq4UdWgaleqaaKqzGeGaaG ikaiabeE8aJjaaiMcacqGHsislcqGHciITjuaGdaWgaaqcbasaaKqz adGaeqyVd4gajeaibeaajugibiaadEeajuaGdaqhaaqcbasaaKqzad GaeqiVd0Maeq4UdWgajeaibaqcLbmacqaH7oaBaaqcLbsacaaIOaGa eq4XdmMaaGykaiabgUcaRiaad2gajuaGdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaaIOaGaeqy1dywcfa4aaSbaaKqaGeaajugWaiab eY7aTjabe27aUbqcbasabaqcLbsacaaIOaGaeq4XdmMaaGykaiabgU caROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaWGNbqc fa4aaSbaaKqaGeaajugWaiabeY7aTjabe27aUbqcbasabaqcLbsacq aHvpGzcaaIOaGaeq4XdmMaaGykaiaaiMcacaaI9aGaamivaKqbaoaa BaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqaGeqaaKqzGeGaeyOeI0 IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadEgajuaG daWgaaqcbasaaKqzadGaeqiVd0MaeqyVd4gajeaibeaajugibiaads facaaIOaGaeq4XdmMaaGykaiaaiYcaaaa@9527@

Established before, which is related with the diffeomorphic formula (31).

18As mentioned before, the Brans Dicke theory of gravitation is a theoretical framework to explain gravitation from a point of view of electromagnetic wave to explain the variation of the gravitational constant that is assumed in this theory as function of a time, possibly is an inverse time. The gravitational interaction is mediated by a scalar field and also the corresponding tensor field of general relativity. Then the scalar field can vary from place to place and in time.

Acknowledgments

None.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Bulnes F. Research on Curvature of Homogeneous Spaces. 1st ed. TESCHA: State of Mexico, Mexico, 2010. p. 44–66.
  2. Bulnes F. Curvature Spectrum to 2-Dimensional Flat and Hyperbolic Spaces through Integral Transforms. Journal of Mathematics. 2015;1(1):1–8.
  3. Kobayashi K, Nomizu K. Foundations of Differential Geometry. Wiley and Sons, New York, USA. 1969.
  4. Burstall FE. Riemannian Twistor Spaces and Holonomy Groups. In: Bailey TN, Baston RT, editors. Twistor in Mathematics and Physics, Cambridge Press, UK; 1990. p. 1–15.
  5. Hitchin N. Generalized Calabi–Yau manifolds. The Quarterly Journal of Mathematics. 2003;54(3):281–308.
  6. Bulnes F. Orbital Integrals on Reductive Lie Groups and Their Algebras, Orbital Integrals on Reductive Lie Groups and Their Algebras. In: Bulnes F, editor, InTech, Croatia, 2013. p. 1–194.
  7. Kozameh CN, Newman ET, Tod KP. Conformal Einstein Spaces. General Relativity and Gravitation. 1985;17(4):343–352.
  8. Schwinger J. Particles, Sources and Fields. Advanced Book Program, Perseus Books, New York, USA. 1998.
  9. Brans CH, Dicke RH . Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review. 1961;124(3):925–935.
  10. Bulnes F. Quantum Gravity Sensor by Curvature Energy: their Encoding and Computational Models. Proceedings of the IEEE, London, UK, 2014. p. 855–861.
  11. Bulnes F. Integral Methods in the Geometrical Langlands Program. SCIRP, USA. 2016.
  12. Bulnes F. Electromagnetic Gauges and Maxwell Lagrangians Applied to the Determination of Curvature in the Space-Time and their Applications. Journal of Electromagnetic Analysis and Applications. 2012;4(6):252–266.
  13. Eastwood M, Wolf J, Zirau R. The Penrose Transform and Analytic Cohomology. AMS-IMS-SIAM Summer Research Conference, USA. 1992.
  14. Blázquez-Salcedo JL, Macedo CFB, Cardoso V, et al. Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: Stability, ringdown, and gravitational-wave emission. Physical Review D. 2016;94:1–15.
  15. Stefszky MS, Mow-Lowry CM, Chua SSY, et al. Balanced Homodyne Detection of Optical Quantum States at Audio-Band Frequencies and Below. Classical and Quantum Gravity. 2012;29(14).
  16. Bulnes F. Electromagnetic waves in conformal actions of the group SU (2,2), on a dimensional flat model of the space-time. Sicth International Conference “Geometry, Dynamics, Integrable Systems”-GDIS, Izhevsk, Russia. 2016.
Creative Commons Attribution License

©2018 Bulnes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.