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Abstract

Consequences of the diffeomorphisms induced by K — invariant connections of the space
of 1-forms of certain endomorphisms defined over a Lie algebra that is isomorphic to the
tangent space seated in the identity element, of homogeneous spaces G/ K < G/ H , are
analized. The images of these diffeomorphisms in G/ K , are 2-form of curvatures that
can be induced to each class of the G/ K . Then using the U — invariant connection of
this homogeneous space, the curvature can be determined as a regular representation that
admits a finite discomposing of irreducible sub-representations of finite type, accord with
the generalizing in dimensions of the Gauss-Bonnet theorem and the generalized Radon
transform to obtain curvature through of co-cycles of the image of the corresponding
space. Such irreducible sub-representations will be isotopic components of the certain
smoothly embedded image in a manifold modelled this last, by a generalized function
space. Likewise, through these realizations we have the curvature integrals as dual case
of their field equations. Finally, using the complex Riemannian structure of our model of
the space-time, and the U — invariant G — structure of the orbits used to obtain curvature,
are obtained as consequences of the diffeomorphisms the field equations to the energy-
matter tensor density in each case of the gravitational field. Of this manner, is determined
their energy-mass tensor density as an integral which represents the energy spectra of
the curvature when this is obtained in duality to the homogeneous field equations to the
Riemann tensor R #v_Lew R.
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Introduction

Through consider the unification the curvature from a point of
view of two-study frame,' and after with the generalizing of curvature
as an integration invariant is suggested the curvature as regular
representation that admits a finite decomposing of irreducible sub-
representations of finite type.'?

This representation, from several points of view of the field theory
are considered in this paper to obtain applications of the “integral
curvature” in cosmic curvature that includes the curvatures of the
solution of the Einstein equations and the curvatures of the quantum
model of the Universe (model of superstrings, particle physics and
gravitational waves).

Likewise, diffeomorphisms of the form Diff (G°/K) ,= exp(m,
), are developed around of establish the field equations to start of
action integrals model to particles and microscopic structure of the
flag manifolds, the modelling of the gravitational field in the complex
Riemannian model used to relativity description and other theories
that complement the Einstein theory.

The connections used involve ant K — invariant G — structure of
the manifold. Likewise, if M , is a reductive homogeneous space
G/G,, then the G —structure S;(M), admits an K - invariant
Vg :-conection. This connection K —invariant in¢, ;) -0, defined
by the equation Vg (x) =0, is the canonical connection of S; (M)

, respect to the decomposing t =h@ m . Of this way, we have that
all K — invariant connection of the reductive space G/ G, , is equal
to the canonical connection of the space S;(M), respect to the
decomposing @m ; . This establish the fact of that both connections
have equal geodesics set. Thus the integrations that are realized on
the orbits of the spaces G/ G, and S;(M)g , meet, additionally
the fact of the preservation of the inner product’, in M , under the
actions of the semi-simple group subjacent to the isometric complete
differentiable manifold M .

Diffeomorphisms to curvature spectra in
complex riemannian manifolds

We are interested in the cosmological study, and in particular, in
the determination of their curvature from the microscopic aspects
considering the particles as little deformations of the microscopic
structure of the space-time.

Let M , be a Riemannian manifold at least complex of dimension
2n'. Then given that an at least differentiable structure is an at least
complex holomorphic structure and this is an at least Hermitian
structure then their connection is constructed through their at
least Hermitian structure of their corresponding at least complex
Riemannian bundle.

'An at least complex structure of a differentiable manifold M, is a complex
structure whose Hermitian form is defined on the tangent space of M.3
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Letz:J(M)— M , the bundle of at least Hermitian structure of
M . Thus a fiber in y € M , is the space

J,(M)={j € End(T,(M))| j2=-1, con j, symmetric} (1)

Then the bundle is associated to the orthonormal frame bundle of
M , with typical fiber J (Rz”) =0 (2n)/U(n), which is a symmetric
Hermitian space? These typical fibres have an invariant complex
O(2n)-structure.® Then the following diagram of the at least complex
Riemannian bundle j(R>"), establishes the bijective correspondence
with J(R*), and their horizontal and vertical spaces of the
corresponding induced distributions for the Levi-Civita connection,
having the diagram:

JR*™)=0(M,R*)/ 0@2n) < O(M,R*") = O(M ,R*")/ O(2n) = O(M)

o@n)r' 0@2n)x02n\x o@ndz" @)

M > M > M

With orbits or horo-spheres in the irreducible symmetric compact
Hermitian space S O(2n)/U(n).*

Then the tangent bundle of the fibres in ,satisfies the equation
(sum of diffeomorphisms as mapping of the tangent spaces):

TJ(M)=E, ®E,, 3)

With the vertical distribution given for
E, = Kerdr, 4)

And E,;, the corresponding horizontal distribution identified
isomorphically by the space (7 'T(M)).

Of this way, we can characterize an at least complex tautological
holomorphic structure J n ,on E,; , given For the endomorphisms

JI' = j e End(T,(x”'T(M))).

Adding this to Z , is established an at least complex structure Z ,
given for TJ (M), as in the equation (3). This help us to induce the at
least complex structure on holomorphic submanifolds of the manifold
M and thus of the manifold M .

Due to that we want calculate geometrical properties of the
space through the submanifolds such as their curvature, torsion,
etc., is wanted to have an integrability criteria on JM , through their
differentiable projections (that are fibres of sections of the bundle¥
TJ(M)). This criteria based in their differentiable projections takes
said condition resolving the homogeneous equation to the integrability
condition, given this by the corresponding integral equation, staying
the field differential equation to the space given in (3). This will be
applied in the next section to the corresponding study on gravitational
field theory to quantum level and which has macroscopic effects in the
behaviour of the matter-energy tensor, as is mentioned in the Einstein
field equations.

The O(2n) - structure permits the validation of the invariance of
the equations, but also the appearing of the conformal transformation
as an exact symmetry property of the space-time to the symmetry of
the Riemann tensor to the spherical case.

201 fact, are two disjoint components of the compact subgroup S O(2n)/U(n),
of J(R™).

M , has as structural group the Lie group O(2n).

‘of fact, the orbits that will be used to the generalization of the curvature of the
space-time will be the submanifolds belonging to said irreducible Hermitian
symmetric space S O(2n)/U(n), to the case n=4.
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An adequate criteria is given by the integrability obstruction of
the distribution of the spaces E; (J(M)). But this is obtained, if the
corresponding curvature tensor to the structure 7 , is annulled.’

Thus, ,,, is integrable if R(T EVADTA , 1s satisfied to all isotropic
maximal subspaces 7", of TM . This is equivalent to consider that to
the mass-energy tensor the energy integral takes the form:

W(T*) = Af(dx)dxV T (D, (x = )T, —%T(Z)DJZ =0T (5)

This re-fall as a condition to the curvature tensor R in their O(2n)
- invariant anti-symmetric part, that is to say, in their Weyl tensor.°®

Then 7 , is integrable if and only if the Weyl tensor R,,,, , of R,,,
, 1s such that

w, =0 (6)

That is to say, that M is local and conformally flat.

Likewise, considering an ¢/ G invariant connection of the reductive
homogeneous space G / G, corresponding to a Stein manifold M, 7
subjacent to the complex Riemmanian manifold M (that is to say, we
consider a closed and compact orbit of M ), then G, = K .

Indeed, we consider the De Rham cohomology of the exterior
algebrasCA (V) , and £ — M , of the vector bundle £ — M , and
we construct the K - invariant connection on the vector bundle

P —> M , (the vector G — bundle) that is an affine connection in M
. By orbitalizing®

G/IDOG/POG/G,,Gy =K, )

We have that can be constructed a smooth embedding in J(M) , of
flag submanifolds [, such that the images of said embedding on F ,
are g _ orbits(that is to say, K — orbtis) in J(M) .

But this always is possible for the reduction of the holonomy group
of M ,and that M ,is a complex locally symmetric and connect inner
Riemannian manifold, that is to say, that the Nijenhuis tensor satisfies

on the corresponding sub-bundle J(M), of M , that

M~ _
RI (] ) - 09 (8)
Thus our sub-bundle has integrable structure and as the considered
space is an at least complex manifold, one can find complex
submanifolds of J(M) , to which the G — orbits are flag manifolds of
the G — structure of M ° This brings in our study of integral curvature
(study of curvature through the integral geometry) on K — orbits of a
Riemannian manifold, the curvature on symmetric spaces'’(null Weyl
tensor and non-null Ricci tensor), since the unique complex integrable
submanifolds that can be realized as orbits in a simply connect,

>Theorem. Letj€J(M), with i-eigen-space TFcT M. Let

ReA’T(M) ®r E (withE, a complex vector space belonging to a
holomorphic bundle). Then the Nijenhuis tensor R{,” =0, if and only if

R(T*",TT" T"-
®Riemann Tensor = Ricci Tensor + Weyl Tensor. The Weyl tensor represents
the anti-symmetrical part of the curvature tensor.

"Defination: A Stein manifold is an open orbit of a semi-simple Lie group in a
generalized flag manifold.

89Procedure to generate orbits in reductive Lie groups.

9Flag G_manifolds of G. G , acts transitively on such complex
submanifolds.

19Ricei Curvature Tensor.
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inner, symmetric and of compact type manifold M , are the flag G —
manifolds.

Theorem

The G —invariance given by the G — structure S;(M), of M
, complex and holomorphic, is induced to each closed submanifold
given for the flag manifolds of the corresponding vector holomorphic
6,-x bundle. Furthermore, the integral cohomology given of such
complex submanifolds is equivalent to the integral cohomology on
submanifolds of a maximum complex torus.

In the superstring theory the space-time has 10 dimensions
separated in two parts, 4 dimensions of the ordinary Minkowski
space-time and 6 extra dimensions to microscopic level. This conform
the microscopic space G, = k , with G, = K . The form of the extra six
dimensions must correspond to a solution to the Einstein equations in
the vacuum of the gravity. If the 6-dimensional manifold is extended
in real variable, the unique solution is a flat space-time. However, if
is considered the 6-dimensional manifold as a complex manifold of
three dimensions, exist solutions of the field theory to the vacuum
called Calabi-Yau manifolds.®

This result is fundamental to the consistency of the theory that
we propose since will establish the geometrical elements necessary to
create a Cosmos theory unifying the quantum mechanics with special
and general relativity, using a method in6 which we have baptized
with the name “orbitalization”. Then we can to pass of the integral
calculation on geodesics of the space-time to Feynman integrals
or string integrals considering the orbit of the corresponding Af
filtration to the reductive homogeneous space of M .

The reduction process of the holonomy group of the structure
S;(M) , help us to obtain reductive homogeneous spaces of
, whose orbits inherit of the G — structure of the widest space, for
example the model of the space-time M , (Figures 1 (A & B)). Finally
we can tell the curvature spectra as the energy of the energy-matter
tensor, which can be determined by the action integrals to a particle
level. This we will do in the following section.

() (r)

zbsce
=186 pavsuzion

Figure | A) 2-dimensional superstring model of the microscopic space-time.
The spaces are tacking themselves, from the fundamental strings in each point
of the complex Riemannian model of the space-time M B) Small manifold,

which represents a superposing of maximum complex torus.

Diffeomorphisms of action
gravitational field theory

integrals in

We consider the density of matter given for the scalar 4 , which
appears when is varied the integral of the energy-matter of the tensor

™"
W) =2 G,

)

From a point of view of field theory in the microscopic field
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theory, results more natural understand the affecting of the space-
time due to the matter-energy, which does arise the gravitational field
whose action is measurable through their curvature tensor. Then the

integral (9) consider the density /4 , to start from R*", or S#" 1,

Using the massless particles frame of helicity 2, we consider the
energy integral of the energy-mass tensor to these particles as:

k ' ' ' ’
W) =0T )DL (x = 2 )T, —%T(z)DAz -20T())  (10)

With the condition

apTﬂv(z):Ob (11)

Then the symmetric tensor field /2, () , is defined for the variation

to said integral (10) as:
OW(T) = [(dx)ST*" (x)h

uv>

1%

(12)
Subject to the condition:
0,0T" (x)=0, (13)

Which is had that

by () = kI(d;r’)DJZ—z,)[TW(;(’)—%g;,VT(Z')]+6#§V(z)+¢3v§y(z), (14)

But the indices contraction of the tensor, deduces that

h(0) = g™ (2) = ~k[(dZ D, (x - 2T )+ 20,6 (), (19
This is the density of the displacement field, determined to each
particle that is displaced from ¥ ,to y . In this point, the density 4(y)
, arises of a variation of the energy-mass tensor density, which gives
legitimacy to the field tensor which can characterize the curvature
tensor through of the spectra.

Then the difference of densities, to know, produce:

I (D=3 8 hC) = K2 D (2 = 2 VT () + 0,6, (40,6, - 8,0, (0. (16)
But the appearing of the “source” condition through of the
divergence of the equation (16) in their left side, establishes:

(17)

0y () +0,0 ;40,6 ~8,0,h(2) = k(T ()~ (1 g, T(2)).

But by the expression (14) is deduced of (17) that:

~0h, (1) +0,0"hy, +0,0%h,, = 0,0,h(z) = k(T ()~ (1/ 2)g,, T(z), (18)

Contracting the indices in (18) or becoming the integral (15) to a
differential equation we have:

(1) + 0,0, ()= TAT(2), (19)

Here we establish a diffeomorphism such that we can to obtain
from (19) other version of the differential equation given in (18), to
know:

11

The process more simple is introduce a tensor
density g*”, covariant of weight establishing
— SV _ _pv
ha_ g Ruv(_ g Syv)a
The law of transforming to gt must be:

we 00" 2w 22

ox" oy o
wheretheindicesarereferredtodifferentcoordinatessystems, yetwhenhavebeen
usedthesesameletters,areconsideredasindependentonesofothers. Thenwehave:
oyt

5*

5

i K" i s
de = (L O g X o
or' oy d or®

SSI |

|dt = [hdz,

which is an integral of an invariant transformation.
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—0%h (1) + 0,0y, (1) + 0,0, (1) = 0,0, h(1) = 8,0, (-0°h(x) + 0,0, K" (1) = kT, (), (20)

As we know, the left side of (20) is such that their divergence
is null. The null divergence of the source tensor now appears as an
algebraic consequence of the field equations. Then for the arbitrary of
&,(x) , the field equations are not affected and the no affectation is
due to the re-definition of 4, () , which is maintained. Likewise, we
have to points of the plane in local theory that:

() hy () +0,8, (1) +0,8,(X)s 1)

Which is a gauge gravitational transformation. Then the massive
particle (that we call “graviton” or particle of spin 2) is described for

WT) =27 T (AL (1 - z’)Tw<z')+%avrﬂv OB, (2= 2T, (0} +
(L)oot (.- 210,81 0 = LT =m70,0,T G- £ NI =80T ) (22)
In which,
T(0)= g, 7" (1),
However, the symmetric tensor field that is introduced through:

SW(T) = [(d)ST*" ()P, » (24)
Which is obtained as:

(23)

G0 (D) =[2Gt~ 2T (1) - [#jm(dz')w - T, ()

1 , . , | ' o '
,(?Javl(dz )AL (= 1) T (% )+( AJG;IGVJ(M AL (- 28,8, T (%)

m

—é(gw—[%jﬁ,ﬁv)ﬂdﬂc’)&(l—)/)(T(l)—( ! )a'na;r"*(z'» (25)

m*
Has as divergence the vector
1 ' 1 2
b (1) = (W)a/ﬂ,w 0 - (Wjﬁv(T(l) + (?janaﬂﬂ»(l», (26)

Which is annulled in free regions of sources. Then the equations
described of the before integral expression (25) are:

(0" +m*)B, () =T (2) —[%)(6#0% +0,0"T,, (1) + &, [%]m,r"‘(z) -
(1)( —[ija 2,)(T( )+[ija 2,7 (7))
3 gyv m2 uv X m2 n“a X)), (27)

The combining of scalar and vector sources are re-placed by an
equivalent field. Then the differential equations (27) taken the form:

(074100, (1) 0,001, (1) +8,0°8,(1) = 0,2,0(20) [T +m)(0) +2,0,8" (=T, (28)

Where using the trace information we have:
. 1
(0% +m*)h(2)+0,0," () =T () + m*d(1),

Which can be presented as:

29

0G0~ 0,61 (04 1 B () + 3 80N =Ty =2 2T (30)

Here appears the expression of the energy-matter tensor difference
to the field equation gev _% S R(y) = 4T -

Of (20), and using a functional distribution that permits smoothly
to embed a space region with tensorrw_lgwr(l), in a space of
the integral (15) (that is to say, belonging to a spectral distribution
D’(R”)) , we have that, if the matter distribution produced by the
tensor field 7. (¥) | has a spherical symmetry then the field equations
have the diffeomorphism of the curvature tensor of the spherical
mapping. Then in a local region of the space affected by this tensor,

Copyright:
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o(T~T ) D (R") ™ we have:
dmEE oy, o (R(T = 7,0 (R")) = dimS"dimo(T ~T ) = kn(n—1), (31)

The space region is diffeomorfically embedded in D'(R") . In
particular to our Ricci tensor R=R% =g“R,; in a 2-dimensional
region we have that (31) takes the value 2(2-1)P,P=I.

r
Likewise, a functional £, in the distribution space D (H), with
H , energy states space

H={¢(0) | H$()=(1/2m) | ¢ +;(¢(Z))} (32)
Is the Lagrangian to gravitational field:
1 v
L(g,9)=~()" E[Gyvﬁg” 0,4+ (m* +(1/ 6)R)$*], (33)

Likewise, this described energy system to curvature tensor from
their corresponding matter-energy tensor (in their duality) has a
spherical symmetry (Figures 2 (A & B)). Then with m = 0 this system
is conformal and invariant, thus one can see that:

(a) (b)

Figure 2 A) 3-dimensional region with Ricci curvature and conformal
transformation with plane action in XY-plane. Their curvature obeys the
dimension 2(2-1)PP=1I.B) Spherical symmetry of the quasi-static gravitational
field, that is to say, with curvature R, =0.

P A d(x), G4

Vé(x)e H , and (A(x) *d(y) e D’(H) . IfA(y), is constant
this space has a curvature with a static field with spherical symmetry
on XY-plane (Figure 2B).

Then we can extended this conformally to other scalar fields that
response to conformal transformations,” for example, lety/ , be a new
scalar field or energy state such that:

() = (A0 v (). (3%)
We consider additionally that the conformal
response of the gravitational Lagrange function given in

26L(g(2) T (1) = (~g(2)"* " (R, () ¥ could be compensated
by the multiplication with y(y)*, at least for constant A(y) , which
leaves  _ . unchanged. Then part of the Lagrangian that is symmetric
of the conformal part is 2 = U | (case whenm =0, and g >y )
thus the generalization to an arbitrary A(y) is obtained immediately,

leading to the complete conformal invariant

Lg.w.8)= () > (R + 60,0 0,11~ (~2) > 110,080, 4+ (m*y* + (1 ORI, (36)
2K “ 2

2Here O is a smooth embedding, which smoothly embeds the submanifold
created by the affected region by the energy-mass tensor.
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With associated field equation

R=g"R,, =0, 37)

Which can be a spherical symmetry in a general sense. Likewise,
considering these symmetric parts of the conformal component of the
space-time, we can establish spectral models on sources which in the
beginning can be considered along the space-time as spherical.

Likewise, is known that in high energy particle physics not happens
always that the harmonious and symmetrical possibility is present in
the deep space-time. Perhaps, the formal invariance under conformal
transformation is broken when a massless field or zero spin particles
does exist or appears. However, this symmetry can be broken from
measure frame used to explore this conformal action using a gauge
field of electromagnetic type (Figure 3).

Figure 3 2-dimensional flat model of a space-time region where is broken
the formal invariance (and symmetry) due to the no existence of a source.
The zero spin particle appears on the Y, axis. The increase waves due the
inflation factor and the annihilation of the combination , due the deviation of
, which provokes the annulation of the stress tensor component .The two
components represented are due to spin , (fermions), which interact with the
gravitational background broken the invariance of the field

For example, the fermions act with the gravitational background
producing two components of interacting that go increasing by the
expansion of the Universe. This could shape the inflation factor, yet
when the level matter of the Universe is insufficient. However, for
the field g + 4 , would still have source, which could be necessary to
annihilate the combination R + k¢ '3, with t 4, the corresponding stress
tensor due the matter presence, which is affected

Likewise, the annihilation of the combination R + k¢ , can be done
arbitrary, although in theoretical physics are presented two possibilities
on the removing the factor m? , that multiplies m? , or that multiples R
, in the Lagrangian term of (36). The first procedure gives the B-D
theory'®. The goals of this research are not study the consequences of
these procedures. But, one conclusion of this respect is the appearing
of spectra of curvature that can be constructed via the gravitational
waves determined to start the stress tensor of matter presence and the
gauge fields that can be designed to conserve the conformal properties

3G, () =x1,,(X) whichis equivalent to the Einstein gravitational field
equation G,,,, (%) = &1, (%) .

141(x) = g, (D (1)

Bnside the theoretical physics, the B-D theory is the Bransa€“Dicke theory
of gravitation, which consists a theoretical framework to explain gravitation
phenomena. This is an alternative theory to the general relativity theory due
Einstein in which the gravitational interacting is mediated by a scalar field as
#(x), as well as the tensor field in general relativity given by R W The
gravitational constant - is not considered to be constant but their reciprocal
1/G is replaced by a scalar field #(¥) , which can vary from place to place
and with time.

Copyright:
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to a first curvature. The second curvature also could be obtained but
under considerations on the studies in B-D theory.’

Conformally in the spectrum of curvature on
the space"

Which is the aspect of curvature of the quantum perturbing space
on the space

H={$(0) | H(@(x) =1/ 2m) || 4 +;(¢(x))}

Here H is the space of the energy states that determine the
Hamiltonian densities of the energy spectra due curvature. Likewise,
these densities can be superposed to integrate a curvature spectrum as
has been established in Figure 4.!%!!

7

v

Figure 4 Superposing of the Hamiltonian state densities measuring
curvature. | |

Newly, using the formal invariance under conformal
transformation, the H-states can determine not only first curvature,
also second curvature, since these energy states arise in natural way of
the study of fermion states interacting of the gravitational background
designing a gauge field as “dilaton” of magnetic nature, which could
to evade the strong radiation that arises of this interacting. The study
of strong gravitational sources realized from a point of view of the
kinematic tensor 4,,, , to stress-matter tensor is a method to determine

uv >
the existence of space-time singularities (Figures 5 (A & B)).

(a)

Figure 5 A) Gravitational field of perturbed spherical symmetry.B) Cylindrical
gravitational waves determining a gravitational source in the space-time.

But far of these considerations arise the question on how can be
recognized the spin 2 particles or gravitons, which can determine
the gravitational energy scenario useful in field theory to generate a
curvature spectra of spectral curvature directly of the actions of the
gravitational field on space. The generalized stress tensor conservation

law given by the equation
V() =0, (38)

Will fail inside particle sources (such and as was showed in the
Figure 3) unless one recognizes the pre-existence of the energy and
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momentum that is transferred to the emitted particle. However, there
is not an electromagnetic analogue to the graviton source problem.
The photons are electrical neutral, whereas gravitons carry energy-
momentum, which also must be transferred rather than created within
the source.

Then is introduced to provide the correct gauge transformation
behaviour of charged particle sources. But these source problems
can be viewed as the search the explicit (( 5) dependence that will
give the various sources the correct response to general coordinate
transformations. Then considering all before, the simplest example
is a scalar source Q(y), appearing in the action integral though the

@dg) D),

But these terms are useful to establish the graviton emission
through certain special function such as impulse functions, whereas
have us that the terms as (39) take the form in the frame of the stress

tensors Z,, , to high radiation emission:

[(d )+ m$(Q(x) + 2*(1)0,£), ©0

(39

Where Qare the densities defined in (15). Then assuming that the
graviton detection sources do not overlap the Q support region, one
can use the source-free weak gravitational field equations deriving to:

0.2 =1 dZ V=) =2 ).0,0,h(2 ), (4D

Where f*(y — ;(') , is one of familiar class of functions such that
0.,/ (2 =2)=8(x=2) 42)
Mentioned before.

An additional work in the term inside the integral (40)
V2¢ +0¢=0, produced of the local diffeomerphism that create the
field equations in this context, can be transformed in a Hill equation of
the form, which can under certain conditions to come of the equation

(29) 2
Vg+Dgp=0
’ (43)

Which under the integral geometry study and the G — structure of
the complex Riemannian manifold, furthermore of the invariance
of their submanifolds or cycles under integral transforms takes the
form of the Bulnes’s equation'®:"-2

R.(R,® Ad)=0

Both equations are generalizations of the Ricatti equation whose
solutions can to represent generalized harmonic oscillators. Then
their solutions to curvature will be a spectrum of curvature, whose
oscillations will be produced when energy-matter affects the space-
time. In the case of the equation (44) results the incorporation of the
intrinsic image of curvature of a submanifold, which is embedded
smoothly in the space D (M) .

(44)

For example, the intrinsic image of curvature of a curved surface

o his equation ariaes of the proped'ty of the generalized X-Ray transform
which says that R), —R;/ (Ad(G )®D (M)) =0., is solution of the
endomorphic equation: Rf -R, (4d(G*)® D (M))=0.
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as submanifold, which is embedded smoothly in the distribution
space, D (M) is their curvature energy.

Main results
Theorem

The Hill equation is equivalent to Bulnes equation considering
the cohomology class of 1-forms spaces of lines of the lines bundles
O2),on,,,.

Proof. To prove this is necessary use the relation between Radon
transform with the Laplacian on curved spaces (because the Hill
equation has a curved differential operator) and their relation with
the Penrose transform. Likewise, if we consider the Einstein bundle
E — M ", then the Penrose transform is:

P:I(P(C),E)={¢ of conformal weight 1 on M satisfaying Vzﬁ'v§:’¢+®ﬁf’¢=0},(45)

And are satisfied the Einstein equation to tensor7, =0 . Also
using the fact that PA |, 13 and the conformally given for (34)
in the space-time M .

=A ‘O(k) >

Theorem (F Bulnes, S Fominko)

The action integral (39) generate spatial diffeomorphisms along
orbits defined by Q(y) .

The result establish that the orbits of the group SO (4, R), are
spaces isomorphic to spheres.

Proof. We consider the action integral (39). Then their orbits
Q(y) can have measure as spatial regions whose curvature is a Ricci
curvature.

Lemma (F Bulnes, S Fominko)
A diffeomorphism of gravitational field is:
R, () =K, ()-1/2)g,, (),

Then for the formula (31), the gravitational field can be given as
(Figure 6):

(46)

Figure 6 The gravitational field to n=2, in the equation.47

", (47)

w_  OK

B n(n—1)x

Remark: The corresponding equation (47) comes from an analysis
using generalized curvature on the distribution spaces in integral
geometry. The theorem can be found in.!

17Homogeneous vector bundle with constant Ricci curvature.
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The considerations realized in this paper have as objective
establishes the spectrum of curvature when there is symmetry or when
can to have breaking of this. This last result or lemma, as the result
obtained of incorporate the general relativity to the quantum field
theory to obtain spectra of the curvature tensor R, , through of other
tensors (that directly or indirectly are related with this curvature tensor,
and which are product of diffeomorphism applied to the microscopic
structure of the homogeneous space of form G/ G ) considers the
possibility of discrete the energy spectra of the gravitational field to
computational applications'® where~, can be a constant sectional
curvature. Of fact, this is the re-interpretation that gives us.

Also, the conformally in the Spectrum of Curvature on the space
was established as a condition to measure in duality the curvature,
which appear as a pseudo-symmetry condition that generalize the
spherical mapping given to Gaussian curvature, but to this case in the
energy Hamiltonian space to the gravitational field source (Figure 7).

7oA

Figure 7 Appearing of Gravitational field source reproducing more nodes
of gravitational waves due the orbital actions when the dilaton is interacting
with the background.These are model of the spectrum of the Hill equations.

Also were obtained images of curvature energy of the Hamiltonian
manifold in the complex Riemannian manifold obtaining a formula
of gravitational field depending of the dimension of the space on
which acts the tensor ## . The interesting is that is used the empirical
constanta >0 .

Observational and experimental facts
Some astrophysics and astronomy observational facts are:

A). Gravitational waves arise as deformation of the space-time
when dilaton acts on the background. For example, perturbed black
holes in Einstein-dilaton-Gauss-Bonnet gravity, can produce stability,
ring-down, and gravitational-wave emission that are propagated as
part of the space-time (Figure 8).!*

-
o

L5

Quantum Noise

L Ll g L |

Squeezed Noise

o

1
=
o

Noise Power rel to Quantum Noise [dBm/Hz]
|
o

-15
go—L LIIINI | F T
10' 10° o’ 10°

1
Frequency [Hz]

Figure 8 First measurement of greater than 10dB squeezing across the audio
gravitational-wave detection band, with |1.6dB from 200Hz and above. The
degradation of squeezing level below 100Hz is due to remaining residual
classical noise entering the squeezing detector. Adapted from, |6 and includes
resolution bandwidth and window information. 15
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B). At least must to have a conformal constant action along the
gravity action or sufficiently large. This can to be broken if the
dilaton action is prolonged beyond of this conformal constant action.
This could to be seemed to the Brans-Dicke argumentation,'® from
a point of view of the variation of the gravitational constant, which
varies from the place in time. But assuming the gravitational field
with invariant due the gravitational diffeomorphism (30) whose
action is constant then the gravitational waves are evidenced from the
remote source (Figure 9). But if is affected by the dilaton action, the
corresponding scalar field action due the electromagnetic action of the
dilaton could “dilute the gravity” action trying vacumm in the space-
time. Likewise, if we consider one of the Brans-Dicke equations, for
example,

Figure 9 Variation of the gravitational constant.

87
O =
¢ 3+2m

’ (48)

The equation says that the trace of the stress-energy acts as the
source for the scalar field ¢ . But electromagnetic fields contribute
only a traceless term to the stress-energy tensor, which implies that
in a region of space-time containing only electromagnetic field the
right side of (48) vanishes and the curved space-time obeys the wave
equation. But, this electromagnetic wave is propagated infinitely
(Figure 10). In such case, we can say that the field is a long-range

field. 151
© >0 fature pointing I

Propagated Infinitely

© <0 past pointing

Figure 10 2-Dimensional model of electromagnetic wave solutions on space-
time without matter-energy (long-range field).16

In other case, when the conformal action is constant then the

18As mentioned before, the Brans Dicke theory of gravitation is a theoretical

framework to explain gravitation from a point of view of electromagnetic
wave to explain the variation of the gravitational constant that is assumed in
this theory as function of a time, possibly is an inverse time. The gravitational
interaction is mediated by a scalar field and also the corresponding tensor field

of general relativity. Then the scalar field can vary from place to place and in
time.
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gravitational fields are created with spherical symmetry. Then the
tensor of gravity G, , is proportional to the production of energy-
which can to

matter determined in the matter-energy tensor7,, ,
create a source of matter-energy accord to the diffeomorphism

0G0y ()= 0,G () +m* (B, (1) + %gm(z)) =T, - %gﬂvr(z),

Established before, which is related with the diffeomorphic
formula (31).
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