Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 1

Computation of three-dimensional periodic orbits in the sun-earth system

Tiwary RK,1 Srivastava VK,1,2 Kushvah BS2

1Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines) Dhanbad, India
2Flight Dynamics Group, ISRO Telemetry Tracking and Command Network, India

Correspondence:

Received: November 20, 2017 | Published: February 9, 2018

Citation: Tiwary RD, Srivastava VK, Kushvah BS. Computation of three-dimensional periodic orbits in the sun-earth system. Phys Astron Int J. 2018;2(1):81-90. DOI: 10.15406/paij.2018.02.00052

Download PDF

Abstract

In this paper, a third-order analytic approximation is described for computing the three-dimensional periodic halo orbits near the collinear L1 and L2 Lagrangian points for the photo gravitational circular restricted three-body problem in the Sun-Earth system. The constructed third-order approximation is chosen as a starting initial guess for the numerical computation using the differential correction method. The effect of the solar radiation pressure on the location of two collinear Lagrangian points and on the shape of the halo orbits is discussed. It is found that the time period of the halo orbit increases whereas the Jacobi constant decreases around both the collinear points taking into account the solar radiation pressure of the Sun for the fixed out-of-plane amplitude.

Keywords: photogravitational CRTBP, halo orbits, lindstedt-poincare method, Newton’s method, radiation pressure

Introduction

From the last few decades, the space science community has shown considerable interest in missions which take place in the vicinity of the Lagrangian points in the restricted three-body problem (RTBP) of the Sun-Earth and the Earth-Moon systems.1 Designing trajectories for these missions is a challenging task due to inadequacy of the conic approximations. The RTBP deals the situation where one of the three bodies has a negligible mass, and moves under the gravitational influence of two other bodies.2–9 In the RTBP, the circular restricted three-body problem (CRTBP) is a special case where two massive bodies move in the circular motion around their common centre of mass.10–14 The collinear Lagrangian point orbits have paid a lot of attentions for the mission design and transfer of trajectories.15–22 When the frequencies of two oscillations are commensurable, the motion becomes periodic and such an orbit in the three-dimensional space is called halo.23 Lyapunov orbits are the two-dimensional planar periodic orbits. These planar periodic orbits are not suitable for space applications since they do not allow the out-of-plane motion, e.g., a spacecraft placed in the Sun-Earth L1 point must have an out-of-plane amplitude in order to avoid the solar exclusion zone (dangerous for the downlink); a space telescope around the Sun-Earth L2 point must avoid the eclipses and hence requires a three-dimensional periodic orbit. Since the RTBP does not have any analytic solution, the periodic orbits are difficult to obtain because the problem is highly nonlinear and small changes in the initial conditions break the periodicity.24 Farquhar23 was the first person who introduced analytic computation of the halo orbit in his PhD thesis. In 1980,25 introduced a third-order analytic approximation of the halo orbits near the collinear libration points in the classical CRTBP for the Sun-Earth system. Thurman & Worfolk1 and Koon et al.,26 found the halo orbits for the CRTBP with the Sun-Earth system in the absence of any perturbative force using Richardson method25 up to third-order. Breakwell & Brown27 and Howell28 numerically obtained the halo orbits in the classical CRTBP Earth-Moon system using the single step differential correction scheme. Numerous applications of the halo orbits in the scientific mission design can be seen such as investigations concerning solar exploration and helio-spheric effects on planetary environments using the spacecraft placed in these orbits at different phases. ISEE-3 was the first mission in a halo orbit of the Sun-Earth system around L1 to study the interaction between the Earth’s magnetic field and solar wind.29 Solar and Heliospheric Observatory (SOHO) mission was second libration point mission launched jointly by ESA and NASA in a halo orbit around the Sun-Earth L1 point, still operational till date, which was a virtual carbon copy of ISEE-3’s orbit.30

The classical model of the RTBP does not account perturbing forces such as oblateness, radiation pressure and variations of masses of the primaries. The photogravitational RTBP arises from the classical RTBP if at least one of the bodies is an intense emitter of radiation. Radzievskii31 derived the photogravitational RTBP and discussed it for three specific bodies: the Sun, a planet and a dust particle. Recently, Eapen & Sharma32 discussed the planar photogravitational CRTBP including solar radiation pressure in the Sun-Mars system around L1 point using the initial guess of the classical CRTBP.

Numerical computation of the periodic orbits requires an initial approximation to the orbit as an approximate analytic solution. However, the analytic solutions that are available do not generally include solar radiation pressure and other perturbing forces. Including these perturbed forces in the analytic approximation increases accuracy of the approximation and therefore, simplifies the numerical computations.33 In this paper, we discuss analytic as well as numerical computations of the halo orbits around the libration points L1 and L2 in the CRTBP including solar radiation pressure of the Sun. The paper is organized as follows: Section 2 deals with the governing equations of motion considering the Sun as a radiating source. Section 3 describes the construction of a third-order analytic approximate solution for the periodic orbit using the Lindstedt-Poincare method. Section 4 illustrates numerical computation of the halo orbit using Newton’s method of differential correction. Results and discussion are given in Section 5 while Section 6 concludes our study.

Mathematical model

We suppose that the CRTBP consists of the Sun, the Earth and the Moon, and an infinitesimal body such as a spacecraft having masses m1, m2 and m, respectively. Here the Earth and the Moon are clubbed as a single entity and we say this as the Earth. The spacecraft moves under the gravitational influence of the Sun and the Earth (Figure 1). The Sun is assumed as the radiating body contributing solar radiation pressure.

Figure 1 Geometry of the problem in the Sun-Earth system.

Let ( x,y,z ),( μ,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamiEaiaacYcacaWG5bGaaiilaiaadQhaaOGaayjkaiaa wMcaaKqbakaacYcadaqadaGcbaqcLbsacqGHsislcqaH8oqBcaGGSa GaaGimaiaacYcacaaIWaaakiaawIcacaGLPaaaaaa@45EB@ and ( 1μ,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaaGymaiabgkHiTiabeY7aTjaacYcacaaIWaGaaiilaiaa icdaaOGaayjkaiaawMcaaaaa@3EE2@ denote the coordinates of the spacecraft, the Sun, and the Earth, respectively, where μ is the mass ratio parameter of the Sun and the Earth. The equations of motion of the spacecraft in the rotating reference frame accounting solar radiation pressure of the Sun can be expressed as,32

x ¨ 2 y ˙ = U x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbamaacqGHsislcaaIYaGabmyEayaacaGaeyypa0tcfa4aaSaaaOqa aKqzGeGaeyOaIyRaamyvaaGcbaqcLbsacqGHciITcaWG4baaaiaacY caaaa@4265@   (1)

y ¨ +2 x ˙ = U y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b GbamaacqGHRaWkcaaIYaGabmiEayaacaGaeyypa0tcfa4aaSaaaOqa aKqzGeGaeyOaIyRaamyvaaGcbaqcLbsacqGHciITcaWG5baaaiaacY caaaa@425B@   (2)

z ¨ = U z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG6b GbamaacqGH9aqpjuaGdaWcaaGcbaqcLbsacqGHciITcaWGvbaakeaa jugibiabgkGi2kaadQhaaaGaaiilaaaa@3FB9@   (3)

Where U is the pseudo-potential of the system and it is expressed as

U= ( x 2 + y 2 ) 2 + ( 1μ )q r 1 + μ r 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadIhalmaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadMhalmaaCa aajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaqaaKqzGeGa aGOmaaaacqGHRaWkjuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaaG ymaiabgkHiTiabeY7aTbGccaGLOaGaayzkaaqcLbsacaWGXbaakeaa jugibiaadkhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaaqcLb sacqGHRaWkjuaGdaWcaaGcbaqcLbsacqaH8oqBaOqaaKqzGeGaamOC aSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaajugibiaac6caaa a@5C1D@   (4)

Where q is known as the mass reduction factor, r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39E5@  and r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39E5@  are the position vectors of the spacecraft from the Sun and the Earth, respectively, and these quantities are defined as,34

{ q:=1 F p F q , r 1 := ( x+μ ) 2 + y 2 + z 2 , r 2 := ( x+μ1 ) 2 + y 2 + z 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadghacaGG6aGaeyypa0JaaGymaiabgkHi TKqbaoaalaaakeaajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaam iCaaWcbeaaaOqaaKqzGeGaamOraSWaaSbaaKqaGeaajugWaiaadgha aKqaGeqaaaaajugibiaacYcaaOqaaKqzGeGaamOCaSWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaKqzGeGaaiOoaiabg2da9Kqbaoaakaaa keaajuaGdaqadaGcbaqcLbsacaWG4bGaey4kaSIaeqiVd0gakiaawI cacaGLPaaalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUca RiaadMhalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRi aadQhalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsacaGG SaaakeaajugibiaadkhalmaaBaaajeaibaqcLbmacaaIYaaajeaibe aajugibiaacQdacqGH9aqpjuaGdaGcaaGcbaqcfa4aaeWaaOqaaKqz GeGaamiEaiabgUcaRiabeY7aTjabgkHiTiaaigdaaOGaayjkaiaawM caaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamyE aSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOEaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaajugibiaacYcaaaGc caGL7baaaaa@7D91@   (5)

In Equation (5), F p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaaaaa@3A57@  and F q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaadghaaSqabaaaaa@3A58@  are solar radiation pressure and gravitational attraction forces, respectively. Note that when q=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb Gaeyypa0JaaGymaaaa@393C@ , the governing equations of motion (1)-(3) reduce to the classical CRTBP.

The Jacobi constant of the motion also exists and is given by

C=2U( x,y,z )( x ˙ 2 + y ˙ 2 + z ˙ 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaeyypa0JaaGOmaiaadwfajuaGdaqadaGcbaqcLbsacaWG4bGaaiil aiaadMhacaGGSaGaamOEaaGccaGLOaGaayzkaaqcLbsacqGHsislju aGdaqadaGcbaqcLbsaceWG4bGbaiaalmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabgUcaRiqadMhagaGaaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIabmOEayaacaWcdaahaaqcbasabeaa jugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaac6caaaa@532E@   (6)

When the kinetic energy is zero, Equation (6) reduces to

C=2U( x,y,z ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaeyypa0JaaGOmaiaadwfajuaGdaqadaGcbaqcLbsacaWG4bGaaiil aiaadMhacaGGSaGaamOEaaGccaGLOaGaayzkaaqcLbsacaGGSaaaaa@423C@   (7)

And defines the zero velocity surfaces in the configuration space. These surfaces projected in the rotating xy-plane generate some lines called zero velocity curves.

Analytic computation

We construct a third-order analytic approximation using the method of successive approximation (Lindstedt-Poincare method) to compute the halo orbit around the collinear Lagrangian points L1 and L2 in the photogravitational Sun-Earth system. The origin is translated at the libration points L1 and L2 , and the distance is normalized by taking distance between the Earth to the Lagrangian point as a unit,26 using the new coordinates

X= x( 1μγ ) γ , Y= y γ , Z= z γ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamiEaiabgkHiTKqbaoaabmaa keaajugibiaaigdacqGHsislcqaH8oqBcqWItisBcqaHZoWzaOGaay jkaiaawMcaaaqaaKqzGeGaeq4SdCgaaiaacYcacaqGGaGaamywaiab g2da9KqbaoaalaaakeaajugibiaadMhaaOqaaKqzGeGaeq4SdCgaai aacYcacaqGGaGaamOwaiabg2da9KqbaoaalaaakeaajugibiaadQha aOqaaKqzGeGaeq4SdCgaaiaacYcaaaa@56BB@   (8)

Where X, Y and Z are the new coordinates when origins are shifted at the Lagrangian points, and γ is the distance from the Lagrangian point to the Earth. In Equation (8), the upper (lower) sign corresponds to L1 (L2).

Now using the transformation (8), the equations of motion (1)-(3) are expressed as

γ( X ¨ 2 Y ˙ )= Ψ X , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzjuaGdaqadaGcbaqcLbsaceWGybGbamaacqGHsislcaaIYaGabmyw ayaacaaakiaawIcacaGLPaaajugibiabg2da9KqbaoaalaaakeGaba a3kKqzGeGaeyOaIyRaeuiQdKfakeaajugibiabgkGi2kaadIfaaaGa aiilaaaa@4893@   (9)

γ( Y ¨ +2 X ˙ )= Ψ Y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzjuaGdaqadaGcbaqcLbsaceWGzbGbamaacqGHRaWkcaaIYaGabmiw ayaacaaakiaawIcacaGLPaaajugibiabg2da9Kqbaoaalaaakeaaju gibiabgkGi2kabfI6azbGcbaqcLbsacqGHciITcaWGzbaaaiaacYca aaa@47A0@   (10)

γ Z ¨ = Ψ Z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzceWGAbGbamaacqGH9aqpjuaGdaWcaaGcbaqcLbsacqGHciITcqqH OoqwaOqaaKqzGeGaeyOaIyRaamOwaaaacaGGSaaaaa@41D5@   (11)

Where

Ψ= γ 2 ( X 2 + Y 2 ) 2 + ( 1μ )q R 1 + μ R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHOo qwcqGH9aqpcqaHZoWzlmaaCaaajeaibeqaaKqzadGaaGOmaaaajuaG daWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamiwaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamywaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaaGccaGLOaGaayzkaaaabaqcLbsacaaIYaaaai abgUcaRKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOe I0IaeqiVd0gakiaawIcacaGLPaaajugibiaadghaaOqaaKqzGeGaam OuaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaajugibiabgUca RKqbaoaalaaakeaajugibiabeY7aTbGcbaqcLbsacaWGsbWcdaWgaa qcbasaaKqzadGaaGOmaaqcbasabaaaaKqzGeGaaiOlaaaa@6064@   (12)

In Equation (12), R1 and R2 are given by

{ R 1 = ( γX+1±γ ) 2 + ( γY ) 2 + ( γZ ) 2 , R 2 = ( γX±γ ) 2 + ( γY ) 2 + ( γZ ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadkfalmaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiabg2da9KqbaoaakaaakeaajuaGdaqadaGcbaqcLb sacqaHZoWzcaWGybGaey4kaSIaaGymaiabgglaXkabeo7aNbGccaGL OaGaayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRa WkjuaGdaqadaGcbaqcLbsacqaHZoWzcaWGzbaakiaawIcacaGLPaaa lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabm aakeaajugibiabeo7aNjaadQfaaOGaayjkaiaawMcaaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaaWcbeaajugibiaacYcaaOqaaKqzGeGaam OuaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaeyypa0tc fa4aaOaaaOqaaKqbaoaabmaakeaajugibiabeo7aNjaadIfacqGHXc qScqaHZoWzaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaey4kaSscfa4aaeWaaOqaaKqzGeGaeq4SdCMaamywaa GccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa cqGHRaWkjuaGdaqadaGcbaqcLbsacqaHZoWzcaWGAbaakiaawIcaca GLPaaalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsacaGG UaaaaOGaay5Eaaaaaa@828C@   (13)

The location of the Lagrangian points L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@ and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@ from the Earth are computed from the root of the fifth degree polynomial:

γ 5 ±( μ3 ) γ 4 +( 32μ ) γ 3 [ ( 1q )( 1μ )±μ ] γ 2 ±2μγμ=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzlmaaCaaajeaibeqaaKqzadGaaGynaaaajugibiabgglaXMqbaoaa bmaakeaajugibiabeY7aTjabgkHiTiaaiodaaOGaayjkaiaawMcaaK qzGeGaeq4SdC2cdaahaaqcbasabeaajugWaiaaisdaaaqcLbsacqGH RaWkjuaGdaqadaGcbaqcLbsacaaIZaGaeyOeI0IaaGOmaiabeY7aTb GccaGLOaGaayzkaaqcLbsacqaHZoWzlmaaCaaajeaibeqaaKqzadGa aG4maaaajugibiabloHiTLqbaoaadmaakeaajuaGdaqadaGcbaqcLb sacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaqcfa4aaeWaaOqa aKqzGeGaaGymaiabgkHiTiabeY7aTbGccaGLOaGaayzkaaqcLbsacq GHXcqScqaH8oqBaOGaay5waiaaw2faaKqzGeGaeq4SdC2cdaahaaqc basabeaajugWaiaaikdaaaqcLbsacqGHXcqScaaIYaGaeqiVd0Maeq 4SdCMaeyOeI0IaeqiVd0Maeyypa0JaaGimaiaac6caaaa@785A@   (14)

In Equation (14) upper and lower signs correspond to L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@  points, respectively. We expand the nonlinear terms, ( 1μ )q R 1 + μ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaH8oqBaOGaayjk aiaawMcaaKqzGeGaamyCaaGcbaqcLbsacaWGsbqcfa4aaSbaaKqaGe aajugWaiaaigdaaSqabaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqz GeGaeqiVd0gakeaajugibiaadkfalmaaBaaajeaibaqcLbmacaaIYa aajeaibeaaaaaaaa@4AB0@  , in Equation (12) using the formula,26

1 ( xA ) 2 + ( yB ) 2 + ( zC ) 2 = 1 D m=0 ( ρ D ) m P m ( Ax+By+Cz Dρ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqbaoaabmaakeaajugi biaadIhacqGHsislcaWGbbaakiaawIcacaGLPaaajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaakeaajugi biaadMhacqGHsislcaWGcbaakiaawIcacaGLPaaajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaakeaajugi biaadQhacqGHsislcaWGdbaakiaawIcacaGLPaaalmaaCaaajeaibe qaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqa aKqzGeGaaGymaaGcbaqcLbsacaWGebaaaKqbaoaaqahakeaajuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqyWdihakeaajugibiaadsea aaaakiaawIcacaGLPaaaaKqaGeaajugWaiaad2gacqGH9aqpcaaIWa aajeaibaqcLbmacqGHEisPaKqzGeGaeyyeIuoalmaaCaaajeaibeqa aKqzadGaamyBaaaajugibiaadcfalmaaBaaajeaibaqcLbmacaWGTb aajeaibeaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamyqaiaa dIhacqGHRaWkcaWGcbGaamyEaiabgUcaRiaadoeacaWG6baakeaaju gibiaadseacqaHbpGCaaaakiaawIcacaGLPaaajugibiaacYcaaaa@7E8C@   (15)

Where D 2 = A 2 + B 2 + C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGH9aqpcaWGbbWc daahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGcbWcda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGdbWcdaah aaqcbasabeaajugWaiaaikdaaaaaaa@471E@ and ρ 2 = x 2 + y 2 + z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GClmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabg2da9iaadIha lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadMhalm aaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadQhalmaa CaaajeaibeqaaKqzadGaaGOmaaaaaaa@48BA@ , and P m ( x ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaamyBaaqcbasabaqcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiaadIhaaOqaaKqzGeGaeqyWdihaaaGccaGLOa Gaayzkaaaaaa@40B2@ is the m th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb WcdaahaaqcbasabeaajugWaiaadshacaWGObaaaaaa@3AE2@  degree Legendre polynomial of first kind with argument x ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiEaaGcbaqcLbsacqaHbpGCaaaaaa@3A83@ . After some algebraic manipulation, the equations of motion (9)-(11) can be written as:35,36

X ¨ 2 Y ¨ ( 1+2 c 2 )X= X m3 c m ρ m P m ( X ρ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbamaacqGHsislcaaIYaGabmywayaadaGaeyOeI0scfa4aaeWaaOqa aKqzGeGaaGymaiabgUcaRiaaikdacaWGJbqcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaaakiaawIcacaGLPaaajugibiaadIfacqGH9aqp juaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaamiwaa aajuaGdaaeWbGcbaqcLbsacaWGJbWcdaWgaaqcbasaaKqzadGaamyB aaqcbasabaqcLbsacqaHbpGClmaaCaaajeaibeqaaKqzadGaamyBaa aajugibiaadcfajuaGdaWgaaqcbasaaKqzadGaamyBaaWcbeaajuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamiwaaGcbaqcLbsacqaHbp GCaaaakiaawIcacaGLPaaaaKqaGeaajugWaiaad2gacqGHLjYScaaI ZaaajeaibaqcLbmacqGHEisPaKqzGeGaeyyeIuoacaGGSaaaaa@6B12@   (16)

Y ¨ +2 X ˙ +( c 2 1 )Y= Y m3 c m ρ m P m ( X ρ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbamaacqGHRaWkcaaIYaGabmiwayaacaGaey4kaSscfa4aaeWaaOqa aKqzGeGaam4yaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGe GaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGzbGaeyypa0tc fa4aaSaaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2kaadMfaaa qcfa4aaabCaOqaaKqzGeGaam4yaKqbaoaaBaaajeaibaqcLbmacaWG TbaaleqaaKqzGeGaeqyWdi3cdaahaaqcbasabeaajugWaiaad2gaaa qcLbsacaWGqbWcdaWgaaqcbasaaKqzadGaamyBaaqcbasabaqcfa4a aeWaaOqaaKqbaoaalaaakeaajugibiaadIfaaOqaaKqzGeGaeqyWdi haaaGccaGLOaGaayzkaaaajeaibaqcLbmacaWGTbGaeyyzImRaaG4m aaqcbasaaKqzadGaeyOhIukajugibiabggHiLdGaaiilaaaa@6ADB@   (17)

Z ¨ + c 2 Z= Z m3 c m ρ m P m ( X ρ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbamaacqGHRaWkcaWGJbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasa baqcLbsacaWGAbGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeyOaIylake aajugibiabgkGi2kaadQfaaaqcfa4aaabCaOqaaKqzGeGaam4yaSWa aSbaaKqaafaajug4aiaad2gaaKqaafqaaKqzGeGaeqyWdi3cdaahaa qcbasabeaajugWaiaad2gaaaqcLbsacaWGqbWcdaWgaaqcbasaaKqz adGaamyBaaqcbasabaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibi aadIfaaOqaaKqzGeGaeqyWdihaaaGccaGLOaGaayzkaaaajeaibaqc LbmacaWGTbGaeyyzImRaaG4maaqcbasaaKqzadGaeyOhIukajugibi abggHiLdGaaiilaaaa@6301@   (18)

Where the left hand side contains the linear terms and the right hand side contains the nonlinear terms. The coefficient c m ( μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamyBaaqcbasabaqcfa4aaeWaaOqaaKqz GeGaeqiVd0gakiaawIcacaGLPaaaaaa@3E7D@  is expressed as

c m ( μ )= 1 γ 3 { ( ±1 ) m μ+ ( 1 ) m q( 1μ ) γ m+1 ( 1γ ) m+1 },m=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamyBaaqcbasabaqcfa4aaeWaaOqaaKqz GeGaeqiVd0gakiaawIcacaGLPaaajugibiabg2da9Kqbaoaalaaake aajugibiaaigdaaOqaaKqzGeGaeq4SdCwcfa4aaWbaaSqabKqaGeaa jugWaiaaiodaaaaaaKqbaoaacmaakeaajuaGdaqadaGcbaqcLbsacq GHXcqScaaIXaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGa amyBaaaajugibiabeY7aTjabgUcaRKqbaoaabmaakeaajugibiabgk HiTiaaigdaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaWG TbaaaKqbaoaalaaakeaajugibiaadghajuaGdaqadaGcbaqcLbsaca aIXaGaeyOeI0IaeqiVd0gakiaawIcacaGLPaaajugibiabeo7aNTWa aWbaaKqaGeqabaqcLbmacaWGTbGaey4kaSIaaGymaaaaaOqaaKqbao aabmaakeaajugibiaaigdacqWItisBcqaHZoWzaOGaayjkaiaawMca aSWaaWbaaKqaGeqabaqcLbmacaWGTbGaey4kaSIaaGymaaaaaaaaki aawUhacaGL9baajugibiaacYcacaWGTbGaeyypa0JaaGimaiaacYca caaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@7E4B@   (19)

Where the upper sign is for L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@  and the lower one for L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@ .

A third-order approximation of Equations (16)-(18) is given by,25

X ¨ 2 Y ˙ ( 1+2 c 2 )X= 3 2 c 3 ( 2 X 2 Y 2 Z 2 )+2 c 4 X( 2 X 2 3 Y 2 3 Z 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbamaacqGHsislcaaIYaGabmywayaacaGaeyOeI0scfa4aaeWaaOqa aKqzGeGaaGymaiabgUcaRiaaikdacaWGJbqcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaaakiaawIcacaGLPaaajugibiaadIfacqGH9aqp juaGdaWcaaGcbaqcLbsacaaIZaaakeaajugibiaaikdaaaGaam4yaS WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqbaoaabmaakeaajugi biaaikdacaWGybWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacq GHsislcaWGzbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGH sislcaWGAbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIcaca GLPaaajugibiabgUcaRiaaikdacaWGJbqcfa4aaSbaaSqaaKqzGeGa aGinaaWcbeaajugibiaadIfajuaGdaqadaGcbaqcLbsacaaIYaGaam iwaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaG4m aiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTi aaiodacaWGAbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIca caGLPaaajugibiaacYcaaaa@75A2@   (20)

Y ¨ +2 X ˙ +( c 2 1 )Y=3 c 3 XY 3 2 c 4 Y( 4 X 2 Y 2 Z 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbamaacqGHRaWkcaaIYaGabmiwayaacaGaey4kaSscfa4aaeWaaOqa aKqzGeGaam4yaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGe GaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGzbGaeyypa0Ja eyOeI0IaaG4maiaadogalmaaBaaajeaibaqcLbmacaaIZaaajeaibe aajugibiaadIfacaWGzbGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaG4m aaGcbaqcLbsacaaIYaaaaiaadogalmaaBaaajeaibaqcLbmacaaI0a aajeaibeaajugibiaadMfajuaGdaqadaGcbaqcLbsacaaI0aGaamiw aSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamywaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamOwaKqb aoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLb sacaGGSaaaaa@6761@   (21)

Z ¨ + c 2 Z=3 c 3 XZ 3 2 c 4 Z( 4 X 2 Y 2 Z 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbamaacqGHRaWkcaWGJbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasa baqcLbsacaWGAbGaeyypa0JaeyOeI0IaaG4maiaadogalmaaBaaaje aibaqcLbmacaaIZaaajeaibeaajugibiaadIfacaWGAbGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaaG4maaGcbaqcLbsacaaIYaaaaiaadogalm aaBaaajeaibaqcLbmacaaI0aaajeaibeaajugibiaadQfajuaGdaqa daGcbaqcLbsacaaI0aGaamiwaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaeyOeI0IaamywaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeyOeI0IaamOwaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaa GccaGLOaGaayzkaaqcLbsacaGGUaaaaa@5F64@   (22)

A correction term Δ= λ 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqGH9aqpcqaH7oaBlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugi biabgkHiTiaadogalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaa a@41B4@ is required for computing the halo orbit which is introduced on the left-hand-side of Equation (22) to make the out-of-plane frequency equals to the in-plane frequency. The new third-order z-equation then becomes:

Z ¨ + λ 2 Z=3 c 3 XZ 3 2 c 4 Z( 4 X 2 Y 2 Z 2 )+ΔZ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbamaacqGHRaWkcqaH7oaBlmaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiaadQfacqGH9aqpcqGHsislcaaIZaGaam4yaSWaaSbaaKqaGe aajugWaiaaiodaaKqaGeqaaKqzGeGaamiwaiaadQfacqGHsisljuaG daWcaaGcbaqcLbsacaaIZaaakeaajugibiaaikdaaaGaam4yaSWaaS baaKqaGeaajugWaiaaisdaaKqaGeqaaKqzGeGaamOwaKqbaoaabmaa keaajugibiaaisdacaWGybWcdaahaaqcbasabeaajugWaiaaikdaaa qcLbsacqGHsislcaWGzbqcfa4aaWbaaSqabKqaGeaajugWaiaaikda aaqcLbsacqGHsislcaWGAbWcdaahaaqcbasabeaajugWaiaaikdaaa aakiaawIcacaGLPaaajugibiabgUcaRiabfs5aejaadQfacaGGUaaa aa@63BC@   (23)

While using the successive approximation procedure, some secular terms arise. To avoid the secular terms, one uses a new independent variable and introduces a frequency connection ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDaaa@3852@  through τ=ωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGH9aqpcqaHjpWDcaWG0baaaa@3C16@ . The equations of motion (20), (21) & (23) can be then rewritten in terms of new independent variable τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@ :

ω 2 X 2ω Y ( 1+2 c 2 )X= 3 2 c 3 ( 2 X 2 Y 2 Z 2 )+2 c 4 X( 2 X 2 3 Y 2 3 Z 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiqadIfagaGbaiab gkHiTiaaikdacqaHjpWDceWGzbGbauaacqGHsisljuaGdaqadaGcba qcLbsacaaIXaGaey4kaSIaaGOmaiaadogajuaGdaWgaaqcbasaaKqz adGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaamiwaiabg2da9K qbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGOmaaaacaWGJbWc daWgaaqcbasaaKqzadGaaG4maaqcbasabaqcfa4aaeWaaOqaaKqzGe GaaGOmaiaadIfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biabgkHiTiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abgkHiTiaadQfalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjk aiaawMcaaKqzGeGaey4kaSIaaGOmaiaadogalmaaBaaajeaibaqcLb macaaI0aaajeaibeaajugibiaadIfajuaGdaqadaGcbaqcLbsacaaI YaGaamiwaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0 IaaG4maiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab gkHiTiaaiodacaWGAbWcdaahaaqcbasabeaajugWaiaaikdaaaaaki aawIcacaGLPaaajugibiaacYcaaaa@7CFA@   (24)

ω 2 Y +2ω X +( c 2 1 )Y=3 c 3 XY 3 2 c 4 Y( 4 X 2 Y 2 Z 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiqadMfagaGbaiab gUcaRiaaikdacqaHjpWDceWGybGbauaacqGHRaWkjuaGdaqadaGcba qcLbsacaWGJbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsa cqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadMfacqGH9aqpcq GHsislcaaIZaGaam4yaKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqa aKqzGeGaamiwaiaadMfacqGHsisljuaGdaWcaaGcbaqcLbsacaaIZa aakeaajugibiaaikdaaaGaam4yaSWaaSbaaKqaGeaajugWaiaaisda aKqaGeqaaKqzGeGaamywaKqbaoaabmaakeaajugibiaaisdacaWGyb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaWGzbWc daahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaWGAbWcda ahaaqcbasabeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaa cYcaaaa@6DA7@   (25)

ω 2 Z + λ 2 Z=3 c 3 XZ 3 2 c 4 Z( 4 X 2 Y 2 Z 2 )+ΔZ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiqadQfagaGbaiab gUcaRiabeU7aSTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaam Owaiabg2da9iabgkHiTiaaiodacaWGJbqcfa4aaSbaaKqaGeaajugW aiaaiodaaSqabaqcLbsacaWGybGaamOwaiabgkHiTKqbaoaalaaake aajugibiaaiodaaOqaaKqzGeGaaGOmaaaacaWGJbqcfa4aaSbaaKqa GeaajugWaiaaisdaaSqabaqcLbsacaWGAbqcfa4aaeWaaOqaaKqzGe GaaGinaiaadIfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab gkHiTiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgk HiTiaadQfalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaa wMcaaKqzGeGaey4kaSIaeuiLdqKaamOwaiaacYcaaaa@6894@   (26)

Where X = dX dτ , X = d "2 X d τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbauaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGKbGaamiwaaGcbaqc LbsacaWGKbGaeqiXdqhaaiaacYcaceWGybGbayaacqGH9aqpjuaGda WcaaGcbaqcLbsacaWGKbqcfa4aaWbaaSqabeaajugibiaackcajugW aiaaikdaaaqcLbsacaWGybaakeaajugibiaadsgacqaHepaDlmaaCa aajeaibeqaaKqzadGaaGOmaaaaaaaaaa@4E46@  etc.

We assume the solutions of Equations (24)-(26), using the perturbation technique, of the form:

{ X( τ )=ε X 1 ( τ )+ ε 2 X 2 ( τ )+ ε 3 X 3 ( τ )+..., Y( τ )=ε Y 1 ( τ )+ ε 2 Y 2 ( τ )+ ε 3 Y 3 ( τ )+..., Z( τ )=ε Z 1 ( τ )+ ε 2 Z 2 ( τ )+ ε 3 Z 3 ( τ )+..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadIfajuaGdaqadaGcbaqcLbsacqaHepaD aOGaayjkaiaawMcaaKqzGeGaeyypa0JaeqyTduMaamiwaSWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaKqbaoaabmaakeaajugibiabes8a 0bGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaH1oqzlmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaadIfalmaaBaaajeaibaqcLbmacaaI YaaajeaibeaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawM caaKqzGeGaey4kaSIaeqyTdu2cdaahaaqcbasabeaajugWaiaaioda aaqcLbsacaWGybWcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcfa 4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiabgUca Riaac6cacaGGUaGaaiOlaiaacYcaaOqaaKqzGeGaamywaKqbaoaabm aakeaajugibiabes8a0bGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaH 1oqzcaWGzbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcfa4aae WaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiabgUcaRiab ew7aLTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamywaKqbao aaBaaajeaibaqcLbmacaaIYaaaleqaaKqbaoaabmaakeaajugibiab es8a0bGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaH1oqzlmaaCaaaje aibeqaaKqzadGaaG4maaaajugibiaadMfajuaGdaWgaaqcbasaaKqz adGaaG4maaWcbeaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkai aawMcaaKqzGeGaey4kaSIaaiOlaiaac6cacaGGUaGaaiilaaGcbaqc LbsacaWGAbqcfa4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPa aajugibiabg2da9iabew7aLjaadQfalmaaBaaajeaibaqcLbmacaaI XaaajeaibeaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawM caaKqzGeGaey4kaSIaeqyTdu2cdaahaaqcbasabeaajugWaiaaikda aaqcLbsacaWGAbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcfa 4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiabgUca Riabew7aLTWaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGaamOwaS WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqbaoaabmaakeaajugi biabes8a0bGccaGLOaGaayzkaaqcLbsacqGHRaWkcaGGUaGaaiOlai aac6cacaGGSaaaaOGaay5Eaaaaaa@CAB4@   (27)

And

ω=1+ε ω 1 ( τ )+ ε 2 ω 2 ( τ )+ ε 3 ω 3 ( τ )+...+ ε i ω i ( τ )+...,where  ω i <1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcqGH9aqpcaaIXaGaey4kaSIaeqyTduMaeqyYdCxcfa4aaSbaaKqa GeaajugWaiaaigdaaSqabaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhaki aawIcacaGLPaaajugibiabgUcaRiabew7aLTWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaaGOmaa qcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaa jugibiabgUcaRiabew7aLTWaaWbaaKqaGeqabaqcLbmacaaIZaaaaK qzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcfa4a aeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiabgUcaRi aac6cacaGGUaGaaiOlaiabgUcaRiabew7aLTWaaWbaaKqaGeqabaqc LbmacaWGPbaaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaa jugibiabgUcaRiaac6cacaGGUaGaaiOlaiaacYcacaWG3bGaamiAai aadwgacaWGYbGaamyzaiaabccacqaHjpWDjuaGdaWgaaqcbasaaKqz adGaamyAaaWcbeaajugibiabgYda8iaaigdacaGGUaaaaa@8648@   (28)

In Equation (28) ∈ is the perturbation parameter. Using Equations (27) & (28) into Equations (24)-(26) and equating the coefficient of the same order of ∈, ∈2, and ∈3 from both sides we get the first, second, and third-order equations, respectively.1

  1. First order equations

The first order linearized equations are given by

X ¨ 2 Y ¨ ( 1+2 c 2 )X=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbamaacqGHsislcaaIYaGabmywayaadaGaeyOeI0scfa4aaeWaaOqa aKqzGeGaaGymaiabgUcaRiaaikdacaWGJbWcdaWgaaqcbasaaKqzad GaaGOmaaqcbasabaaakiaawIcacaGLPaaajugibiaadIfacqGH9aqp caaIWaGaaiilaaaa@472B@   (29)

Y ¨ +2 X ˙ +( c 2 1 )Y=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbamaacqGHRaWkcaaIYaGabmiwayaacaGaey4kaSscfa4aaeWaaOqa aKqzGeGaam4yaSWaaSbaaKqaafaajug4aiaaikdaaKqaafqaaKqzGe GaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGzbGaeyypa0Ja aGimaiaacYcaaaa@4753@   (30)

Z ¨ + λ 2 Z=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbamaacqGHRaWkcqaH7oaBlmaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiaadQfacqGH9aqpcaaIWaGaaiilaaaa@4023@   (31)

Whose periodic solutions are given by:

{ X( t )= A X cos( λt+ϕ ), Y( t )=κ A X sin( λt+ϕ ), Z( t )= A Z sin( λt+ψ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadIfajuaGdaqadaGcbaqcLbsacaWG0baa kiaawIcacaGLPaaajugibiabg2da9iabgkHiTiaadgeajuaGdaWgaa qcbasaaKqzadGaamiwaaWcbeaajugibiGacogacaGGVbGaai4CaKqb aoaabmaakeaajugibiabeU7aSjaadshacqGHRaWkcqaHvpGzaOGaay jkaiaawMcaaKqzGeGaaiilaaGcbaqcLbsacaWGzbqcfa4aaeWaaOqa aKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaH6oWAca WGbbqcfa4aaSbaaKqaGeaajugWaiaadIfaaSqabaqcLbsaciGGZbGa aiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaH7oaBcaWG0bGaey4kaS Iaeqy1dygakiaawIcacaGLPaaajugibiaacYcaaOqaaKqzGeGaamOw aKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaey ypa0JaamyqaSWaaSbaaKqaGeaajugWaiaadQfaaKqaGeqaaKqzGeGa ci4CaiaacMgacaGGUbqcfa4aaeWaaOqaaKqzGeGaeq4UdWMaamiDai abgUcaRiabeI8a5bGccaGLOaGaayzkaaqcLbsacaGGUaaaaOGaay5E aaaaaa@8000@   (32)

  1. Second order equations

Collecting the coefficients of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZlmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3A4A@ , we get

X 2 2 Y 2 ( 1+2 c 2 ) X 2 =2 ω 1 ( X 1 Y 1 )+ 3 2 c 3 ( 2 X 1 2 Y 1 2 Z 1 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbayaalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHi TiaaikdaceWGzbGbauaajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbe aajugibiabgkHiTKqbaoaabmaakeaajugibiaaigdacqGHRaWkcaaI YaGaam4yaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaGccaGLOa GaayzkaaqcLbsacaWGybWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasa baqcLbsacqGH9aqpcqGHsislcaaIYaGaeqyYdC3cdaWgaaqcbasaaK qzadGaaGymaaqcbasabaqcfa4aaeWaaOqaaKqzGeGabmiwayaagaWc daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHsislceWGzb GbauaajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaOGaayjkaiaa wMcaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaaG4maaGcbaqcLb sacaaIYaaaaiaadogajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaa juaGdaqadaGcbaqcLbsacaaIYaGaamiwaSWaa0baaKqaGeaajugWai aaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaWGzbWcdaqh aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiabgk HiTiaadQfalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaI YaaaaaGccaGLOaGaayzkaaqcLbsacaGGSaaaaa@804C@   (33)

Y 2 +2 X 2 +( c 2 1 ) Y 2 =2 ω 1 ( Y 1 + X 1 )3 c 3 X 1 Y 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbayaajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabgUca RiaaikdaceWGybGbauaalmaaBaaajeaibaqcLbmacaaIYaaajeaibe aajugibiabgUcaRKqbaoaabmaakeaajugibiaadogalmaaBaaajeai baqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaaigdaaOGaayjkai aawMcaaKqzGeGaamywaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaeyypa0JaeyOeI0IaaGOmaiabeM8a3TWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqbaoaabmaakeaajugibiqadMfagaGbaSWa aSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIabmiway aafaWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakiaawIcacaGL PaaajugibiabgkHiTiaaiodacaWGJbqcfa4aaSbaaKqaGeaajugWai aaiodaaSqabaqcLbsacaWGybWcdaWgaaqcbasaaKqzadGaaGymaaqc basabaqcLbsacaWGzbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqaba qcLbsacaGGSaaaaa@6ECC@   (34)

Z 2 + λ 2 Z 2 =2 ω 1 Z 1 3 c 3 X 1 Z 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbayaajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabgUca RiabeU7aSTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOwaS WaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaeyypa0JaeyOe I0IaaGOmaiabeM8a3TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGabmOwayaagaqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacqGHsislcaaIZaGaam4yaSWaaSbaaKqaafaajug4aiaaiodaaK qaafqaaKqzGeGaamiwaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqa aKqzGeGaamOwaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGe GaaiOlaaaa@5E12@   (35)

Now using Equation (32) into (33)-(35), the following equations are obtained

X 2 2n Y 2 ( 1+2 c 2 ) X 2 =2 ω 1 λ A X ( κλ )cos τ 1 + α 1 + γ 1 cos2 τ 1 + γ 2 cos2 τ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbayaalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHi TiaaikdacaWGUbGabmywayaafaWcdaWgaaqcbasaaKqzadGaaGOmaa qcbasabaqcLbsacqGHsisljuaGdaqadaGcbaqcLbsacaaIXaGaey4k aSIaaGOmaiaadogalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaO GaayjkaiaawMcaaKqzGeGaamiwaKqbaoaaBaaajeaibaqcLbmacaaI YaaaleqaaKqzGeGaeyypa0JaaGOmaiabeM8a3TWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaeq4UdWMaamyqaSWaaSbaaKqaGeaa jugWaiaadIfaaKqaGeqaaKqbaoaabmaakeaajugibiabeQ7aRjabgk HiTiabeU7aSbGccaGLOaGaayzkaaqcLbsaciGGJbGaai4Baiaacoha cqaHepaDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabgU caRiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGa ey4kaSIaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb saciGGJbGaai4BaiaacohacaaIYaGaeqiXdq3cdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacqGHRaWkcqaHZoWzjuaGdaWgaaqcba saaKqzadGaaGOmaaWcbeaajugibiGacogacaGGVbGaai4Caiaaikda cqaHepaDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaacY caaaa@8BE3@   (36)

Y 2 +2 X 2 +( c 2 1 ) Y 2 =2 ω 1 A X λ( κλ1 )sin τ 1 + β 1 sin2 τ 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbayaalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgUca RiaaikdaceWGybGbauaajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbe aajugibiabgUcaRKqbaoaabmaakeaajugibiaadogajuaGdaWgaaqc basaaKqzadGaaGOmaaWcbeaajugibiabgkHiTiaaigdaaOGaayjkai aawMcaaKqzGeGaamywaKqbaoaaBaaajeaibaqcLbmacaaIYaaajeai beaajugibiabg2da9iaaikdacqaHjpWDjuaGdaWgaaqcbasaaKqzad GaaGymaaqcbasabaqcLbsacaWGbbqcfa4aaSbaaKqaGeaajugWaiaa dIfaaKqaGeqaaKqzGeGaeq4UdWwcfa4aaeWaaOqaaKqzGeGaeqOUdS Maeq4UdWMaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsaciGGZbGa aiyAaiaac6gacqaHepaDjuaGdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacqGHRaWkcqaHYoGyjuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajugibiGacohacaGGPbGaaiOBaiaaikdacqaHepaDjuaGda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaGGSaaaaa@7BB2@   (37)

Z 2 + λ 2 Z 2 =2 ω 1 A Z λ 2 sin τ 2 + δ 1 sin( τ 1 + τ 2 )+ δ 2 sin( τ 2 τ 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbayaajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabgUca RiabeU7aSTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOwaS WaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaeyypa0JaaGOm aiabeM8a3TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaam yqaSWaaSbaaKqaGeaajugWaiaadQfaaKqaGeqaaKqzGeGaeq4UdW2c daahaaqcbasabeaajugWaiaaikdaaaqcLbsaciGGZbGaaiyAaiaac6 gacqaHepaDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiab gUcaRiabes7aKTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGe Gaci4CaiaacMgacaGGUbqcfa4aaeWaaOqaaKqzGeGaeqiXdq3cdaWg aaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcqaHepaDju aGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqz GeGaey4kaSIaeqiTdqwcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsaciGGZbGaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaHepaD lmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHiTiabes 8a0TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGccaGLOaGaayzk aaqcLbsacaGGSaaaaa@86EF@   (38)

Where τ 1 =λτ+ϕ, τ 2 =λτ+ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabg2da9iab eU7aSjabes8a0jabgUcaRiabew9aMjaacYcacqaHepaDjuaGdaWgaa qcbasaaKqzadGaaGOmaaWcbeaajugibiabg2da9iabeU7aSjabes8a 0jabgUcaRiabeI8a5baa@4F6C@ . Equations (36)-(38) are a set of non-homogenous linear differential equations whose bounded homogenous solution is incorporated from the first-order equations. We need to find only particular solutions of (36)-(38). The secular terms sin τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGZb GaaiyAaiaac6gacqaHepaDlmaaBaaajeaibaqcLbmacaaIXaaajeai beaaaaa@3D8B@ , cos τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGJb Gaai4BaiaacohacqaHepaDlmaaBaaajeaibaqcLbmacaaIXaaajeai beaaaaa@3D86@ and sin τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGZb GaaiyAaiaac6gacqaHepaDlmaaBaaajeaibaqcLbmacaaIYaaajeai beaaaaa@3D8C@ are eliminated by setting ω 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabg2da9iaa icdaaaa@3D0A@ . Hence, the solutions of the second-order equations are given by

{ X 2 ( τ )= ρ 20 + ρ 21 cos( 2 τ 1 )+ ρ 22 cos( 2 τ 2 ), Y 2 ( τ )= σ 21 sin( 2 τ 1 )+ σ 22 sin( 2 τ 2 ), Z 2 ( τ )= κ 21 sin( τ 1 + τ 2 )+ κ 22 sin( τ 2 τ 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadIfajuaGdaWgaaqcbasaaKqzadGaaGOm aaWcbeaajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawMcaaK qzGeGaeyypa0JaeqyWdi3cdaWgaaqcbauaaKqzGdGaaGOmaiaaicda aKqaafqaaKqzGeGaey4kaSIaeqyWdi3cdaWgaaqcbasaaKqzadGaaG OmaiaaigdaaKqaGeqaaKqzGeGaci4yaiaac+gacaGGZbqcfa4aaeWa aOqaaKqzGeGaaGOmaiabes8a0TWaaSbaaKqaGeaajugWaiaaigdaaK qaGeqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaHbpGClmaaBaaa jeaibaqcLbmacaaIYaGaaGOmaaqcbasabaqcLbsaciGGJbGaai4Bai aacohajuaGdaqadaGcbaqcLbsacaaIYaGaeqiXdq3cdaWgaaqcbasa aKqzadGaaGOmaaqcbasabaaakiaawIcacaGLPaaajugibiaacYcaaO qaaKqzGeGaamywaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqb aoaabmaakeaajugibiabes8a0bGccaGLOaGaayzkaaqcLbsacqGH9a qpcqaHdpWCjuaGdaWgaaqcbasaaKqzadGaaGOmaiaaigdaaSqabaqc LbsaciGGZbGaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacaaIYaGaeq iXdq3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakiaawIcacaGL PaaajugibiabgUcaRiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdaca aIYaaajeaibeaajugibiGacohacaGGPbGaaiOBaKqbaoaabmaakeaa jugibiaaikdacqaHepaDjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbe aaaOGaayjkaiaawMcaaKqzGeGaaiilaaGcbaqcLbsacaWGAbqcfa4a aSbaaKqaGeaajugWaiaaikdaaSqabaqcfa4aaeWaaOqaaKqzGeGaeq iXdqhakiaawIcacaGLPaaajugibiabg2da9iabeQ7aRTWaaSbaaKqa GeaajugWaiaaikdacaaIXaaajeaibeaajugibiGacohacaGGPbGaai OBaKqbaoaabmaakeaajugibiabes8a0TWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaey4kaSIaeqiXdqxcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaaakiaawIcacaGLPaaajugibiabgUcaRiabeQ7a RTWaaSbaaKqaGeaajugWaiaaikdacaaIYaaajeaibeaajugibiGaco hacaGGPbGaaiOBaKqbaoaabmaakeaajugibiabes8a0TWaaSbaaKqa GeaajugWaiaaikdaaKqaGeqaaKqzGeGaeyOeI0IaeqiXdq3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaaakiaawIcacaGLPaaajugibiaa c6caaaGccaGL7baaaaa@D095@   (39)

  1. Third order equations

Now collecting the coefficients of 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZlmaaCaaajeaibeqaaKqzadGaaG4maaaaaaa@3A4B@ and setting   ω 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabg2da9iaa icdaaaa@3D0A@ , we get

X 3 2 Y 3 ( 1+2 c 2 ) X 3 =2 ω 2 ( X 1 Y 1 )+3 c 3 ( 2 X 1 X 2 Y 1 Y 2 Z 1 Z 2 )+2 c 4 X( 2 X 1 2 3 Y 1 2 3 Z 1 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbayaalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiabgkHi TiaaikdaceWGzbGbauaalmaaBaaajeaibaqcLbmacaaIZaaajeaibe aajugibiabgkHiTKqbaoaabmaakeaajugibiaaigdacqGHRaWkcaaI YaGaam4yaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaGccaGLOa GaayzkaaqcLbsacaWGybWcdaWgaaqcbasaaKqzadGaaG4maaqcbasa baqcLbsacqGH9aqpcqGHsislcaaIYaGaeqyYdC3cdaWgaaqcbasaaK qzadGaaGOmaaqcbasabaqcfa4aaeWaaOqaaKqzGeGabmiwayaagaWc daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHsislceWGzb GbauaalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaOGaayjkaiaa wMcaaKqzGeGaey4kaSIaaG4maiaadogalmaaBaaajeaibaqcLbmaca aIZaaajeaibeaajuaGdaqadaGcbaqcLbsacaaIYaGaamiwaSWaaSba aKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamiwaSWaaSbaaKqaGe aajugWaiaaikdaaKqaGeqaaKqzGeGaeyOeI0IaamywaSWaaSbaaKqa GeaajugWaiaaigdaaKqaGeqaaKqzGeGaamywaKqbaoaaBaaajeaiba qcLbmacaaIYaaaleqaaKqzGeGaeyOeI0IaamOwaSWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaamOwaKqbaoaaBaaajeaibaqcLb macaaIYaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIYaGa am4yaSWaaSbaaKqaGeaajugWaiaaisdaaKqaGeqaaKqzGeGaamiwaK qbaoaabmaakeaajugibiaaikdacaWGybWcdaqhaaqcbasaaKqzadGa aGymaaqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiaaiodacaWGzb WcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugi biabgkHiTiaaiodacaWGAbWcdaqhaaqcbasaaKqzadGaaGymaaqcba saaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@A12B@   (40)

Y 3 +2 X 3 +( c 2 1 ) Y 3 =2 ω 2 ( Y 1 + X 1 )3 c 3 ( X 1 Y 2 + X 2 Y 1 ) 3 2 c 4 Y 1 ( 4 X 1 2 Y 1 2 Z 1 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbayaalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiabgUca RiaaikdaceWGybGbauaajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbe aajugibiabgUcaRKqbaoaabmaakeaajugibiaadogalmaaBaaajeai baqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaaigdaaOGaayjkai aawMcaaKqzGeGaamywaKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqa aKqzGeGaeyypa0JaeyOeI0IaaGOmaiabeM8a3TWaaSbaaKqaafaaju g4aiaaikdaaKqaafqaaKqbaoaabmaakeaajugibiqadMfagaGbaKqb aoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIabmiway aafaWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakiaawIcacaGL PaaajugibiabgkHiTiaaiodacaWGJbWcdaWgaaqcbasaaKqzadGaaG 4maaqcbasabaqcfa4aaeWaaOqaaKqzGeGaamiwaSWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaamywaSWaaSbaaKqaGeaajugWai aaikdaaKqaGeqaaKqzGeGaey4kaSIaamiwaSWaaSbaaKqaGeaajugW aiaaikdaaKqaGeqaaKqzGeGaamywaKqbaoaaBaaajeaibaqcLbmaca aIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHsisljuaGdaWcaaGc baqcLbsacaaIZaaakeaajugibiaaikdaaaGaam4yaSWaaSbaaKqaGe aajugWaiaaisdaaKqaGeqaaKqzGeGaamywaSWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqbaoaabmaakeaajugibiaaisdacaWGybWcda qhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiab gkHiTiaadMfalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmaca aIYaaaaKqzGeGaeyOeI0IaamOwaSWaa0baaKqaGeaajugWaiaaigda aKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaacYcaaa a@9C43@   (41)

Z 3 + λ 2 Z 3 =2 ω 2 Z 1 + Δ 2 Z 1 3 c 3 ( X 2 Z 1 + X 1 Z 2 ) 3 2 c 4 Z 1 ( 4 X 1 2 Y 1 2 Z 1 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbayaajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiabgUca RiabeU7aSTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOwaS WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaeyypa0JaeyOe I0IaaGOmaiabeM8a3TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaK qzGeGabmOwayaagaWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacqqHuoaraOqaaKqzGeGaey icI4Ccfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaamOw aSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyOeI0IaaG 4maiaadogalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajuaGdaqa daGcbaqcLbsacaWGybWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasaba qcLbsacaWGAbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa cqGHRaWkcaWGybWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacaWGAbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaakiaawIca caGLPaaajugibiabgkHiTKqbaoaalaaakeaajugibiaaiodaaOqaaK qzGeGaaGOmaaaacaWGJbWcdaWgaaqcbasaaKqzadGaaGinaaqcbasa baqcLbsacaWGAbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcfa 4aaeWaaOqaaKqzGeGaaGinaiaadIfalmaaDaaajeaibaqcLbmacaaI XaaajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamywaSWaa0baaK qaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHsisl caWGAbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaa aaaOGaayjkaiaawMcaaKqzGeGaaiOlaaaa@9737@   (42)

Using Equations (32) and (39) into Equations (40)-(42), we get

X 3 2 Y 3 ( 1+2 c 2 ) X 3 =[ υ 1 +2 ω 2 A X λ( nκλ ) ]cos τ 1 + γ 3 cos τ 1 + γ 4 cos( 2 τ 2 + τ 1 )+ γ 5 cos( 2 τ 2 τ 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbayaalmaaBaaajqwaa+FaaKqzadGaaG4maaqcKfaG=hqaaKqzGeGa eyOeI0IaaGOmaiqadMfagaqbaKqbaoaaBaaajqwaa+FaaKqzadGaaG 4maaqcbasabaqcLbsacqGHsisljuaGdaqadaGcbaqcLbsacaaIXaGa ey4kaSIaaGOmaiaadogalmaaBaaajqwaa+FaaKqzadGaaGOmaaqcKf aG=hqaaaGccaGLOaGaayzkaaqcLbsacaWGybqcfa4aaSbaaKazba4= baqcLbmacaaIZaaajeaibeaajugibiabg2da9Kqbaoaadmaakeaaju gibiabew8a1LqbaoaaBaaajqwaa+FaaKqzadGaaGymaaqcbasabaqc LbsacqGHRaWkcaaIYaGaeqyYdCxcfa4aaSbaaKazba4=baqcLbmaca aIYaaaleqaaKqzGeGaamyqaKqbaoaaBaaajqwaa+FaaKqzadGaamiw aaqcbasabaqcLbsacqaH7oaBjuaGdaqadaGcbaqcLbsacaWGUbGaeq OUdSMaeyOeI0Iaeq4UdWgakiaawIcacaGLPaaaaiaawUfacaGLDbaa jugibiGacogacaGGVbGaai4Caiabes8a0TWaaSbaaKazba4=baqcLb macaaIXaaajeaibeaajugibiabgUcaRiabeo7aNLqbaoaaBaaajqwa a+FaaKqzadGaaG4maaqcbasabaqcLbsaciGGJbGaai4Baiaacohacq aHepaDlmaaBaaajqwaa+FaaKqzadGaaGymaaqcKfaG=hqaaKqzGeGa ey4kaSIaeq4SdC2cdaWgaaqcKfaG=haajugWaiaaisdaaKazba4=be aajugibiGacogacaGGVbGaai4CaKqbaoaabmaakeaajugibiaaikda cqaHepaDlmaaBaaajqwaa+FaaKqzadGaaGOmaaqcKfaG=hqaaKqzGe Gaey4kaSIaeqiXdq3cdaWgaaqcKfaG=haajugWaiaaigdaaKazba4= beaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaeq4SdC2cdaWgaaqcKf aG=haajugWaiaaiwdaaKazba4=beaajugibiGacogacaGGVbGaai4C aKqbaoaabmaakeaajugibiaaikdacqaHepaDlmaaBaaajeaibaqcLb macaaIYaaajeaibeaajugibiabgkHiTiabes8a0TWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacaGGSaaaaa@D4B8@   (43)

Y 3 +2 X 3 +( c 2 1 ) Y 3 =[ ν 2 +2 ω 2 λ A X ( λκ1 ) ]sin τ 1 + β 3 sin3 τ 1 + β 4 sin( τ 1 +2 τ 2 )+ β 5 sin( 2 τ 2 τ 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGzb GbayaajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiabgUca RiaaikdaceWGybGbauaalmaaBaaajeaibaqcLbmacaaIZaaajeaibe aajugibiabgUcaRKqbaoaabmaakeaajugibiaadogalmaaBaaajeai baqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaaigdaaOGaayjkai aawMcaaKqzGeGaamywaSWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqa aKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeGaeqyVd42cdaWgaaqcba saaKqzadGaaGOmaaqcbasabaqcLbsacqGHRaWkcaaIYaGaeqyYdC3c daWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqaH7oaBcaWGbb qcfa4aaSbaaKqaGeaajugWaiaadIfaaSqabaqcfa4aaeWaaOqaaKqz GeGaeq4UdWMaeqOUdSMaeyOeI0IaaGymaaGccaGLOaGaayzkaaaaca GLBbGaayzxaaqcLbsaciGGZbGaaiyAaiaac6gacqaHepaDlmaaBaaa jeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRiabek7aILqbao aaBaaajeaibaqcLbmacaaIZaaaleqaaKqzGeGaci4CaiaacMgacaGG UbGaaG4maiabes8a0TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGaey4kaSIaeqOSdi2cdaWgaaqcbasaaKqzadGaaGinaaqcbasa baqcLbsaciGGZbGaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacqaHep aDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRiaa ikdacqaHepaDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaOGaay jkaiaawMcaaKqzGeGaey4kaSIaeqOSdi2cdaWgaaqcbasaaKqzadGa aGynaaqcbasabaqcLbsaciGGZbGaaiyAaiaac6gajuaGdaqadaGcba qcLbsacaaIYaGaeqiXdq3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasa baqcLbsacqGHsislcqaHepaDlmaaBaaajeaibaqcLbmacaaIXaaaje aibeaaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@ADA5@   (44)

Z 3 + λ 2 Z 3 =[ ν 3 + A Z ( 2 ω 2 λ 2 + Δ 2 ) ]sin τ 2 + δ 3 sin3 τ 2 + δ 4 sin( 2 τ 1 + τ 2 )+ δ 5 sin( 2 τ 1 τ 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGAb GbayaajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiabgUca RiabeU7aSTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOwaS WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaeyypa0tcfa4a amWaaOqaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaaG4maaqcba sabaqcLbsacqGHRaWkcaWGbbWcdaWgaaqcbasaaKqzadGaamOwaaqc basabaqcfa4aaeWaaOqaaKqzGeGaaGOmaiabeM8a3LqbaoaaBaaaje aibaqcLbmacaaIYaaaleqaaKqzGeGaeq4UdW2cdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacqqHuo araOqaaKqzGeGaeyicI48cdaahaaqcbasabeaajugWaiaaikdaaaaa aaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsaciGGZbGaaiyAai aac6gacqaHepaDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabgUcaRiabes7aKTWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaK qzGeGaci4CaiaacMgacaGGUbGaaG4maiabes8a0TWaaSbaaKqaGeaa jugWaiaaikdaaKqaGeqaaKqzGeGaey4kaSIaeqiTdq2cdaWgaaqcba saaKqzadGaaGinaaqcbasabaqcLbsaciGGZbGaaiyAaiaac6gajuaG daqadaGcbaqcLbsacaaIYaGaeqiXdq3cdaWgaaqcbasaaKqzadGaaG ymaaqcbasabaqcLbsacqGHRaWkcqaHepaDlmaaBaaajeaibaqcLbma caaIYaaajeaibeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaeqiTdq 2cdaWgaaqcbasaaKqzadGaaGynaaqcbasabaqcLbsaciGGZbGaaiyA aiaac6gajuaGdaqadaGcbaqcLbsacaaIYaGaeqiXdq3cdaWgaaqcba saaKqzadGaaGymaaqcbasabaqcLbsacqGHsislcqaHepaDlmaaBaaa jeaibaqcLbmacaaIYaaajeaibeaaaOGaayjkaiaawMcaaKqzGeGaai Olaaaa@A926@   (45)

The secular terms in the X 3 Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb WcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacqGHsislcaWG zbWcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaaaaa@3E92@ equations (43)-(44) and in the Z 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGAb qcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaaaaa@3A33@  equation (45) cannot be removed by setting a value of ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaaa@3ABC@ .1 These terms from Equations. (43)-(45) are removed by adjusting phases of τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3AB3@ and τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3AB3@  so that sin( 2 τ 1 τ 2 )~sin τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGZb GaaiyAaiaac6gajuaGdaqadaGcbaqcLbsacaaIYaGaeqiXdqxcfa4a aSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHsislcqaHepaDlm aaBaaajeaibaqcLbmacaaIYaaajeaibeaaaOGaayjkaiaawMcaaKqz GeGaaiOFaiGacohacaGGPbGaaiOBaiabes8a0TWaaSbaaKqaGeaaju gWaiaaikdaaKqaGeqaaaaa@4FA8@ which can be achieved by setting the phase constraint relationship

ϕ=ψ+p π 2 where p=0,1,2, 3.  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcqGH9aqpcqaHipqEcqGHRaWkcaWGWbqcfa4aaSaaaOqaaKqzGeGa eqiWdahakeaajugibiaaikdaaaGaaeilaiaabccacaWG3bGaamiAai aadwgacaWGYbGaamyzaiaabccacaWGWbGaeyypa0JaaGimaiaacYca caaIXaGaaiilaiaaikdacaGGSaGaaeiiaiaaiodacaGGUaGaaeiiaa aa@50DB@   (46)

After removing the secular terms from Equation (46), the Z 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGAb qcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaaaaa@3A33@  solution is bounded when

ν 3 + A Z ( 2 ω 2 λ 2 + Δ 2 )+ζ δ 5 =0, ζ= ( -1 ) p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBjuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiabgUcaRiaa dgeajuaGdaWgaaqcbasaaKqzadGaamOwaaWcbeaajuaGdaqadaGcba qcLbsacaaIYaGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaaikdaaKqa GeqaaKqzGeGaeq4UdWwcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeuiLdqeakeaajugibiab gIGioNqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaOGaayjkai aawMcaaKqzGeGaey4kaSIaeqOTdONaeqiTdqwcfa4aaSbaaKqaGeaa jugWaiaaiwdaaSqabaqcLbsacqGH9aqpcaaIWaGaaiilaiaabccacq aH2oGEcqGH9aqpjuaGdaqadaGcbaqcLbsacaGGTaGaaGymaaGccaGL OaGaayzkaaWcdaahaaqcbasabeaajugWaiaadchaaaqcLbsacaGGUa aaaa@6C4F@   (47)

The phase constraint (47) reflects the X 3 Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb WcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacqGHsislcaWG zbqcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaaaaa@3EF6@ equations, each now contains one secular term. The secular terms from both equations are removed by using a single condition from their particular solutions:

( ν 1 +2 ω 2 λ A X ( κλ )+ζ γ 5 )κ( ν 2 +2 ω 2 λ A X ( κλn )+ζ β 5 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacqGHRaWkcaaIYaGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaaik daaSqabaqcLbsacqaH7oaBcaWGbbqcfa4aaSbaaKqaGeaajugWaiaa dIfaaSqabaqcfa4aaeWaaOqaaKqzGeGaeqOUdSMaeyOeI0Iaeq4UdW gakiaawIcacaGLPaaajugibiabgUcaRiabeA7a6jabeo7aNLqbaoaa BaaajeaibaqcLbmacaaI1aaaleqaaaGccaGLOaGaayzkaaqcLbsacq GHsislcqaH6oWAjuaGdaqadaGcbaqcLbsacqaH9oGBjuaGdaWgaaqc basaaKqzadGaaGOmaaWcbeaajugibiabgUcaRiaaikdacqaHjpWDju aGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabeU7aSjaadgea juaGdaWgaaqcbasaaKqzadGaamiwaaWcbeaajuaGdaqadaGcbaqcLb sacqaH6oWAcqGHsislcqaH7oaBcaWGUbaakiaawIcacaGLPaaajugi biabgUcaRiabeA7a6jabek7aITWaaSbaaKqaGeaajugWaiaaiwdaaK qaGeqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiOlaaaa @8213@   (48)

Condition (48) is satisfied if

ω 2 = ν 1 κ ν 2 +ζ( γ 5 κ β 5 ) 2λ A X [ λ( 1+ κ 2 )2κ ] = s 1 A X 2 + s 2 A Z 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabg2da9Kqb aoaalaaakeaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaaigdaaK qaGeqaaKqzGeGaeyOeI0IaeqOUdSMaeqyVd42cdaWgaaqcbasaaKqz adGaaGOmaaqcbasabaqcLbsacqGHRaWkcqaH2oGEjuaGdaqadaGcba qcLbsacqaHZoWzlmaaBaaajeaibaqcLbmacaaI1aaajeaibeaajugi biabgkHiTiabeQ7aRjabek7aILqbaoaaBaaajeaibaqcLbmacaaI1a aaleqaaaGccaGLOaGaayzkaaaabaqcLbsacaaIYaGaeq4UdWMaamyq aSWaaSbaaKqaGeaajugWaiaadIfaaKqaGeqaaKqbaoaadmaakeaaju gibiabeU7aSLqbaoaabmaakeaajugibiaaigdacqGHRaWkcqaH6oWA lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGe GaeyOeI0IaaGOmaiabeQ7aRbGccaGLBbGaayzxaaaaaKqzGeGaeyyp a0Jaam4CaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaam yqaSWaa0baaKqaGeaajugWaiaadIfaaKqaGeaajugWaiaaikdaaaqc LbsacqGHRaWkcaWGZbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasaba qcLbsacaWGbbWcdaqhaaqcbasaaKqzadGaamOwaaqcbasaaKqzadGa aGOmaaaajugibiaacYcaaaa@8890@   (49)

Where similar type of expressions for s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39E6@  and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39E6@  can be referred in.1 Substituting the value of ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaaa@3ABC@  from Equation (49) into Equation (48), we get

l 1 A X 2 + l 2 A Z 2 + Δ 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGbbWcdaqh aaqcbasaaKqzadGaamiwaaqcbasaaKqzadGaaGOmaaaajugibiabgU caRiaadYgalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaa dgealmaaDaaajeaibaqcLbmacaWGAbaajeaibaqcLbmacaaIYaaaaK qzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeuiLdqeakeaajugibiab gIGioNqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiabg2 da9iaaicdacaGGSaaaaa@563C@   (50)

Where similar type of expressions for l 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39DF@  and l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39DF@  can be followed from.1 Equation (50) gives a relationship between the in-plane and the out-of-plane amplitudes. Assuming these constraints, the third-order equations become

X 3 2 Y 3 ( 1+2 c 2 ) X 3 =κ β 6 cos τ 1 +( γ 3 +ζ γ 4 )cos3 τ 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaaga WaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOmaiqadMfagaqbamaa BaaaleaacaaIZaaabeaakiabgkHiTmaabmaabaGaaGymaiabgUcaRi aaikdacaWGJbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGa amiwamaaBaaaleaacaaIZaaabeaakiabg2da9iabeQ7aRjabek7aIn aaBaaaleaacaaI2aaabeaakiGacogacaGGVbGaai4Caiabes8a0naa BaaaleaacaaIXaaabeaakiabgUcaRmaabmaabaGaeq4SdC2aaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaeqOTdONaeq4SdC2aaSbaaSqaaiaa isdaaeqaaaGccaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaaG4mai abes8a0naaBaaaleaacaaIXaaabeaakiaacYcaaaa@5FDF@   (51)

Y 3 +2 X 3 +( c 2 1 ) Y 3 = β 6 sin τ 1 +( β 3 +ζ β 4 )sin3 τ 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaga WaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGOmaiqadIfagaqbamaa BaaaleaacaaIZaaabeaakiabgUcaRmaabmaabaGaam4yamaaBaaale aacaaIYaaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGzbWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeqOSdi2aaSbaaSqaaiaaiA daaeqaaOGaci4CaiaacMgacaGGUbGaeqiXdq3aaSbaaSqaaiaaigda aeqaaOGaey4kaSYaaeWaaeaacqaHYoGydaWgaaWcbaGaaG4maaqaba GccqGHRaWkcqaH2oGEcqaHYoGydaWgaaWcbaGaaGinaaqabaaakiaa wIcacaGLPaaaciGGZbGaaiyAaiaac6gacaaIZaGaeqiXdq3aaSbaaS qaaiaaigdaaeqaaOGaaiilaaaa@5D65@   (52)

Z 3 + λ 2 Z 3 ={ ( 1 ) p 2 ( δ 3 + δ 4 )sin3 τ 1 ,p=0,2, ( 1 ) p1 2 ( δ 4 δ 3 )cos3 τ 1 ,p=1,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOwayaaga WaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeq4UdW2aaWbaaSqabeaa caaIYaaaaOGaamOwamaaBaaaleaacaaIZaaabeaakiabg2da9maace aaeaqabeaadaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaah aaWcbeqaamaalaaabaGaamiCaaqaaiaaikdaaaaaaOWaaeWaaeaacq aH0oazdaWgaaWcbaGaaG4maaqabaGccqGHRaWkcqaH0oazdaWgaaWc baGaaGinaaqabaaakiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gaca aIZaGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadchacqGH 9aqpcaaIWaGaaiilaiaaikdacaGGSaaabaWaaeWaaeaacqGHsislca aIXaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaadchacqGH sislcaaIXaaabaGaaGOmaaaaaaGcdaqadaqaaiabes7aKnaaBaaale aacaaI0aaabeaakiabgkHiTiabes7aKnaaBaaaleaacaaIZaaabeaa aOGaayjkaiaawMcaaiGacogacaGGVbGaai4CaiaaiodacqaHepaDda WgaaWcbaGaaGymaaqabaGccaGGSaGaamiCaiabg2da9iaaigdacaGG SaGaaG4maiaacYcaaaGaay5Eaaaaaa@7229@   (53)

Where β 6 = ν 2 +2 ω 2 λ A X ( λκ1 )+ζ β 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaiAdaaeqaaOGaeyypa0JaeqyVd42aaSbaaSqaaiaaikda aeqaaOGaey4kaSIaaGOmaiabeM8a3naaBaaaleaacaaIYaaabeaaki abeU7aSjaadgeadaWgaaWcbaGaamiwaaqabaGcdaqadaqaaiabeU7a SjabeQ7aRjabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkcqaH2o GEcqaHYoGydaWgaaWcbaGaaGynaaqabaaaaa@4FE9@ . Thus, the solutions of Equations (51)-(53) are given as

X 3 ( τ )= ρ 31 cos3 τ 1 , Y 3 ( τ )= σ 31 sin3 τ 1 + σ 32 sin τ 1 , Z 3 ( τ )={ ( 1 ) p 2 κ 31 sin3 τ 1 ,p=0,2, ( 1 ) p1 2 κ 32 cos3 τ 1 ,p=1,3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadIfalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajuaGdaqadaGc baqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeGaeyypa0JaeqyWdi xcfa4aaSbaaKqaGeaajugWaiaaiodacaaIXaaaleqaaKqzGeGaci4y aiaac+gacaGGZbGaaG4maiabes8a0TWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaaiilaaGcbaqcLbsacaWGzbWcdaWgaaqcbasa aKqzadGaaG4maaqcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiXdqhaki aawIcacaGLPaaajugibiabg2da9iabeo8aZTWaaSbaaKqaGeaajugW aiaaiodacaaIXaaajeaibeaajugibiGacohacaGGPbGaaiOBaiaaio dacqaHepaDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiab gUcaRiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIZaGaaGOmaaWcbe aajugibiGacohacaGGPbGaaiOBaiabes8a0TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaiilaaGcbaqcLbsacaWGAbWcdaWgaa qcbasaaKqzadGaaG4maaqcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiX dqhakiaawIcacaGLPaaajugibiabg2da9Kqbaoaaceaajugibqaabe Gcbaqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzk aaWcdaahaaqcbasabeaalmaalaaajeaibaqcLbmacaWGWbaajeaiba qcLbmacaaIYaaaaaaajugibiabeQ7aRLqbaoaaBaaajeaibaqcLbma caaIZaGaaGymaaWcbeaajugibiGacohacaGGPbGaaiOBaiaaiodacq aHepaDlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaacYca caWGWbGaeyypa0JaaGimaiaacYcacaaIYaGaaiilaaGcbaqcfa4aae WaaOqaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcfa4aaWba aSqabKqaGeaalmaalaaajeaibaqcLbmacaWGWbGaeyOeI0IaaGymaa qcbasaaKqzadGaaGOmaaaaaaqcLbsacqaH6oWAlmaaBaaajeaqbaqc LboacaaIZaGaaGOmaaqcbauabaqcLbsaciGGJbGaai4Baiaacohaca aIZaGaeqiXdq3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsa caGGSaGaamiCaiabg2da9iaaigdacaGGSaGaaG4maiaac6caaaGcca GL7baaaaaa@BECC@   (54)

The expressions for all the coefficients can be referred to.29

  1. Final approximation

Halo orbits of third-order approximations are obtained on removing MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4maaa@377A@ from all solutions of equations by using the transformation A X A X / MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaKqaGeaajugWaiaadIfaaSqabaqcLbsacqWIMgsyjuaG daWcgaGcbaqcLbsacaWGbbWcdaWgaaqcbasaaKqzadGaamiwaaqcba sabaaakeaajugibiabgIGiodaaaaa@432D@ and A Z A Z / MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaKqaGeaajugWaiaadQfaaSqabaqcLbsacqWIMgsyjuaG daWcgaGcbaqcLbsacaWGbbWcdaWgaaqcbasaaKqzadGaamOwaaqcba sabaaakeaajugibiabgIGiodaaaaa@4331@ . Then one can use A X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaKqaGeaajugWaiaadIfaaSqabaaaaa@3A3A@  or A Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaamOwaaqcbasabaaaaa@39D8@  as a small parameter. Combining the above computed solutions, the third-order approximate solution is thus given by

X( τ )= ρ 20 A X cos τ 1 +( ρ 21 +ζ ρ 22 )cos2 τ 1 + ρ 31 cos3 τ 1 , Y( τ )=( κ A X + σ 32 )sin τ 1 +( σ 21 +ζ σ 22 )sin2 τ 1 + σ 31 sin3 τ 1 , Z( τ )={ ( 1 ) p 2 [ A Z sin τ 1 + κ 21 sin2 τ 1 + κ 31 sin3 τ 1 ],p=0,2 ( 1 ) p1 2 [ A Z cos τ 1 + κ 21 cos2 τ 1 + κ 22 + κ 32 cos3 τ 1 ],p=1,3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadIfajuaGdaqadaGcbaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqz GeGaeyypa0JaeqyWdi3cdaWgaaqcKfaG=haajugWaiaaikdacaaIWa aajqwaa+FabaqcLbsacqGHsislcaWGbbWcdaWgaaqcKfaG=haajugW aiaadIfaaKqaGeqaaKqzGeGaci4yaiaac+gacaGGZbGaeqiXdq3cda WgaaqcKfaG=haajugWaiaaigdaaKazba4=beaajugibiabgUcaRKqb aoaabmaakeaajugibiabeg8aYLqbaoaaBaaajqwaa+FaaKqzadGaaG OmaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeqOTdONaeqyWdi3cdaWg aaqcKfaG=haajugWaiaaikdacaaIYaaajqwaa+FabaaakiaawIcaca GLPaaajugibiGacogacaGGVbGaai4CaiaaikdacqaHepaDlmaaBaaa jeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRiabeg8aYTWaaS baaKqaGeaajugWaiaaiodacaaIXaaajeaibeaajugibiGacogacaGG VbGaai4CaiaaiodacqaHepaDjuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaajugibiaacYcaaOqaaKqzGeGaamywaKqbaoaabmaakeaajugi biabes8a0bGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaqadaGcba qcLbsacqaH6oWAcaWGbbWcdaWgaaqcbasaaKqzadGaamiwaaqcbasa baqcLbsacqGHRaWkcqaHdpWCjuaGdaWgaaqcbasaaKqzadGaaG4mai aaikdaaSqabaaakiaawIcacaGLPaaajugibiGacohacaGGPbGaaiOB aiabes8a0TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey 4kaSscfa4aaeWaaOqaaKqzGeGaeq4Wdm3cdaWgaaqcbasaaKqzadGa aGOmaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeqOTdONaeq4Wdm3cda WgaaqcbasaaKqzadGaaGOmaiaaikdaaKqaGeqaaaGccaGLOaGaayzk aaqcLbsaciGGZbGaaiyAaiaac6gacaaIYaGaeqiXdq3cdaWgaaqcba saaKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcqaHdpWClmaaBaaa jeaibaqcLbmacaaIZaGaaGymaaqcbasabaqcLbsaciGGZbGaaiyAai aac6gacaaIZaGaeqiXdq3cdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaGGSaaakeaajugibiaadQfajuaGdaqadaGcbaqcLbsacq aHepaDaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaiqaaKqzGeab aeqakeaajuaGdaqadaGcbaqcLbsacqGHsislcaaIXaaakiaawIcaca GLPaaalmaaCaaajeaibeqaaSWaaSaaaKqaGeaajugWaiaadchaaKqa GeaajugWaiaaikdaaaaaaKqbaoaadmaakeaajugibiaadgeajuaGda WgaaqcbasaaKqzadGaamOwaaWcbeaajugibiGacohacaGGPbGaaiOB aiabes8a0TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey 4kaSIaeqOUdSwcfa4aaSbaaKqaGeaajugWaiaaikdacaaIXaaaleqa aKqzGeGaci4CaiaacMgacaGGUbGaaGOmaiabes8a0TWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeqOUdSwcfa4aaSba aKqaGeaajugWaiaaiodacaaIXaaaleqaaKqzGeGaci4CaiaacMgaca GGUbGaaG4maiabes8a0LqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aaGccaGLBbGaayzxaaqcLbsacaGGSaGaamiCaiabg2da9iaaicdaca GGSaGaaGOmaaGcbaqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGymaaGc caGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaalmaalaaajeaibaqcLb macaWGWbGaeyOeI0IaaGymaaqcbasaaKqzadGaaGOmaaaaaaqcfa4a amWaaOqaaKqzGeGaamyqaKqbaoaaBaaajeaibaqcLbmacaWGAbaale qaaKqzGeGaci4yaiaac+gacaGGZbGaeqiXdq3cdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacqGHRaWkcqaH6oWAlmaaBaaajeaiba qcLbmacaaIYaGaaGymaaqcbasabaqcLbsaciGGJbGaai4Baiaacoha caaIYaGaeqiXdqxcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLb sacqGHRaWkcqaH6oWAlmaaBaaajeaibaqcLbmacaaIYaGaaGOmaaqc basabaqcLbsacqGHRaWkcqaH6oWAlmaaBaaajeaibaqcLbmacaaIZa GaaGOmaaqcbasabaqcLbsaciGGJbGaai4BaiaacohacaaIZaGaeqiX dq3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakiaawUfacaGLDb aajugibiaacYcacaWGWbGaeyypa0JaaGymaiaacYcacaaIZaGaaiOl aaaakiaawUhaaaaaaa@5720@   (55)

Time period (in non-dimensional form) of the halo orbit is expressed as

T halo = 2π λω ,where ω=1+ ω 1 + ω 2 ; ω 1 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaKqaGeaajugWaiaadIgacaWGHbGaamiBaiaad+gaaSqa baqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYaGaeqiWdahake aajugibiabeU7aSjabeM8a3baacaGGSaGaam4DaiaadIgacaWGLbGa amOCaiaadwgacaqGGaGaeqyYdCNaeyypa0JaaGymaiabgUcaRiabeM 8a3TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIa eqyYdCxcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacaGG7a GaeqyYdC3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH 9aqpcaaIWaGaaiOlaaaa@63C5@   (56)

Numerical computation

In this section, Newton’s method of differential correction is briefly described for the numerical computation of halo orbit. Assume X denote a column vector containing all of the six state variables of the governing equations of motion, i.e.,

X= [ x y z  x ˙   y ˙   z ˙ ] T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb Gaeyypa0tcfa4aamWaaOqaaKqzGeGaamiEaiaabccacaWG5bGaaeii aiaadQhacaqGGaGabmiEayaacaGaaeiiaiqadMhagaGaaiaabccace WG6bGbaiaaaOGaay5waiaaw2faaSWaaWbaaKqaGeqabaqcLbmacaWG ubaaaKqzGeGaaiilaaaa@4866@   (57)

Where superscript “T” denotes the transpose.

The state transition matrix (STM), Φ( t, t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrjuaGdaqadaGcbaqcLbsacaWG0bGaaiilaiaadshajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaaaOGaayjkaiaawMcaaaaa@4027@ , is a 6×6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI2a Gaey41aqRaaGOnaaaa@3A1C@ matrix composed of the partial derivatives of the state:

Φ( t, t 0 )= X( t ) X( t 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrjuaGdaqadaGcbaqcLbsacaWG0bGaaiilaiaadshajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamiwaKqbaoaabmaakeaajugi biaadshaaOGaayjkaiaawMcaaaqaaKqzGeGaeyOaIyRaamiwaKqbao aabmaakeaajugibiaadshajuaGdaWgaaqcbasaaKqzadGaaGimaaWc beaaaOGaayjkaiaawMcaaaaajugibiaacYcaaaa@5379@   (58)

With initial conditions Φ( t 0 , t 0 )=I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrjuaGdaqadaGcbaqcLbsacaWG0bWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacaGGSaGaamiDaKqbaoaaBaaajeaibaqcLbmaca aIWaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGjbaaaa@4581@ . Note that the state transition matrix is called monodromy matrix for the full periodic orbit. The eigenvalues of the monodromy matrix tells about the stability of the halo orbit.

The STM is propagated using the relationship:

dΦ( t, t 0 ) dt =A( t )Φ( t, t 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabfA6agLqbaoaabmaakeaajugibiaadshacaGG SaGaamiDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaGccaGLOa GaayzkaaaabaqcLbsacaWGKbGaamiDaaaacqGH9aqpcaWGbbqcfa4a aeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqqHMoGrju aGdaqadaGcbaqcLbsacaWG0bGaaiilaiaadshalmaaBaaajeaibaqc LbmacaaIWaaajeaibeaaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@54B4@   (59)

Where the matrix A( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaaaaa@3AFE@ is known as variational matrix and is made of the partial derivatives of the state derivative with respect to the state variables, i.e.,

A( t )= X ˙ ( t ) X( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpjuaGdaWcaaGcbaqcLbsacqGHciITceWGybGbaiaajuaGdaqada GcbaqcLbsacaWG0baakiaawIcacaGLPaaaaeaajugibiabgkGi2kaa dIfajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaaaaqcLb sacaGGUaaaaa@4B8F@   (60)

The variation matrix A( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaaaaa@3AFE@ can be partitioned into four sub-matrices:

A( t )=( O I ϒ 2Ω ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpjuaGdaqadaGcbaqcLbsafaqabeGacaaakeaajugibiaad+eaaO qaaKqzGeGaamysaaGcbaqcLbsacqqHspqOaOqaaKqzGeGaaGOmaiab fM6axbaaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@48ED@   (61)

Where

O=[ 0 0 0 0 0 0 0 0 0 ], I=[ 1 0 0 0 1 0 0 0 1 ], Ω=[ 0 1 0 1 0 0 0 0 0 ] ϒ=[ x ¨ x x ¨ y x ¨ z y ¨ x y ¨ y y ¨ z z ¨ x z ¨ y z ¨ z ]=[ U XX U XY U XZ U YX U YY U YZ U ZX U ZY U ZZ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aad+eacqGH9aqpjuaGdaWadaGcbaqcLbsafaqabeWadaaakeaajugi biaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibi aaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaa icdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaaaaGccaGLBbGaay zxaaqcLbsacaGGSaGaaeiiaiaadMeacqGH9aqpjuaGdaWadaGcbaqc LbsafaqabeWadaaakeaajugibiaaigdaaOqaaKqzGeGaaGimaaGcba qcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLb sacaaIXaaaaaGccaGLBbGaayzxaaqcLbsacaGGSaGaaeiiaiabfM6a xjabg2da9KqbaoaadmaakeaajugibuaabeqadmaaaOqaaKqzGeGaaG imaaGcbaqcLbsacaaIXaaakeaajugibiaaicdaaOqaaKqzGeGaeyOe I0IaaGymaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGe GaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaaaakiaawUfa caGLDbaaaeaajugibiabfk9aHkabg2da9Kqbaoaadmaakeaajugibu aabeqadmaaaOqaaKqbaoaalaaakeaajugibiabgkGi2kqadIhagaWa aaGcbaqcLbsacqGHciITcaWG4baaaaGcbaqcfa4aaSaaaOqaaKqzGe GaeyOaIyRabmiEayaadaaakeaajugibiabgkGi2kaadMhaaaaakeaa juaGdaWcaaGcbaqcLbsacqGHciITceWG4bGbamaaaOqaaKqzGeGaey OaIyRaamOEaaaaaOqaaKqbaoaalaaakeaajugibiabgkGi2kqadMha gaWaaaGcbaqcLbsacqGHciITcaWG4baaaaGcbaqcfa4aaSaaaOqaaK qzGeGaeyOaIyRabmyEayaadaaakeaajugibiabgkGi2kaadMhaaaaa keaajuaGdaWcaaGcbaqcLbsacqGHciITceWG5bGbamaaaOqaaKqzGe GaeyOaIyRaamOEaaaaaOqaaKqbaoaalaaakeaajugibiabgkGi2kqa dQhagaWaaaGcbaqcLbsacqGHciITcaWG4baaaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRabmOEayaadaaakeaajugibiabgkGi2kaadMha aaaakeaajuaGdaWcaaGcbaqcLbsacqGHciITceWG6bGbamaaaOqaaK qzGeGaeyOaIyRaamOEaaaaaaaakiaawUfacaGLDbaajugibiabg2da 9KqbaoaadmaakeaajugibuaabeqadmaaaOqaaKqzGeGaamyvaKqbao aaBaaajeaibaqcLbmacaWGybGaamiwaaWcbeaaaOqaaKqzGeGaamyv aKqbaoaaBaaajeaibaqcLbmacaWGybGaamywaaWcbeaaaOqaaKqzGe GaamyvaSWaaSbaaKqaGeaajugWaiaadIfacaWGAbaajeaibeaaaOqa aKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaadMfacaWGybaajeaibe aaaOqaaKqzGeGaamyvaKqbaoaaBaaajeaibaqcLbmacaWGzbGaamyw aaWcbeaaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaadMfaca WGAbaajeaibeaaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaa dQfacaWGybaajeaibeaaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaaju gWaiaadQfacaWGzbaajeaibeaaaOqaaKqzGeGaamyvaKqbaoaaBaaa jeaibaqcLbmacaWGAbGaamOwaaWcbeaaaaaakiaawUfacaGLDbaaaa aa@E3F3@   (62)

Note that the matrix ϒ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHsp qOaaa@3886@  is a symmetric matrix of second order partial derivatives of U  with respect to x, y, and z evaluated along the orbit. Thus, Equation (59) represents a system of 36 first-order differential equations. These equations, coupled with the equations of motion (1)-(3), are the basic equations that define the dynamical model in the photo-gravitational CRTBP accounting solar radiation pressure. Trajectories are computed by simultaneous numerical integration of the 42 first-order differential equations. It can be easily seen that the governing equations of motion (1)-(3) are symmetric about the xz-plane by using the transformation yy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b GaeyOKH4QaeyOeI0IaamyEaaaa@3B5B@  and tt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyOKH4QaeyOeI0IaamiDaaaa@3B51@ .

Let X( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb qcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaaGccaGLOaGaayzkaaaaaa@3DE1@ be the state of a periodic symmetric orbit at the xz-plane crossing and let X( t T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb qcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaalmaaliaajeai baqcLbmacaWGubaajeaibaqcLbmacaaIYaaaaaqcbasabaaakiaawI cacaGLPaaaaaa@3FF7@ denotes the state of the orbit half of its orbital period later at the xz-plane. If the orbit is periodic and symmetric about the xz- plane, then

X( t 0 )= [ x 0  0  z 0  0  y ˙  0 ] T X( t T 2 )= [ x T 2  0  z T 2  0  y ˙ T 2  0 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb qcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWadaGcba qcLbsacaWG4bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsa caqGGaGaaGimaiaabccacaWG6bWcdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacaqGGaGaaGimaiaabccaceWG5bGbaiaacaqGGaGa aGimaaGccaGLBbGaayzxaaWcdaahaaqcbasabeaajugWaiaadsfaaa qcLbsacqGHshI3caWGybqcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaa BaaajeaibaWcdaWccaqcbasaaKqzadGaamivaaqcbasaaKqzadGaaG OmaaaaaSqabaaakiaawIcacaGLPaaajugibiabg2da9Kqbaoaadmaa keaajugibiaadIhalmaaBaaajeaibaWcdaWccaqcbasaaKqzadGaam ivaaqcbasaaKqzadGaaGOmaaaaaKqaGeqaaKqzGeGaaeiiaiaaicda caqGGaGaamOEaSWaaSbaaKqaGeaalmaaliaajeaibaqcLbmacaWGub aajeaibaqcLbmacaaIYaaaaaqcbasabaqcLbsacaqGGaGaaGimaiaa bccaceWG5bGbaiaalmaaBaaajeaibaWcdaWccaqcbasaaKqzadGaam ivaaqcbasaaKqzadGaaGOmaaaaaKqaGeqaaKqzGeGaaeiiaiaaicda aOGaay5waiaaw2faaSWaaWbaaKqaGeqabaqcLbmacaWGubaaaKqzGe GaaiOlaaaa@8111@   (63)

Assume that X ^ ( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbaKaajuaGdaqadaGcbaqcLbsacaWG0bqcfa4aaSbaaKqaGeaajugW aiaaicdaaSqabaaakiaawIcacaGLPaaaaaa@3DF1@ be an initial state of a desirable state. Integrating this state forward in time until the next xz-plane crossing, we obtain the state X ^ ( t T ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbaKaajuaGdaqadaGcbaqcLbsacaWG0bqcfa4aaSbaaKqaGeaalmaa liaajeaibaqcLbmaceWGubGbaKaaaKqaGeaajugWaiaaikdaaaaale qaaaGccaGLOaGaayzkaaaaaa@407B@ :

X ^ ( t T ^ 2 )= [ x 0  z T ^ 2   x ˙ T ^ 2   y ˙ T ^ 2   z ˙ T ^ 2 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGyb GbaKaajuaGdaqadaGcbaqcLbsacaWG0bqcfa4aaSbaaKqaGeaalmaa liaajeaibaqcLbmaceWGubGbaKaaaKqaGeaajugWaiaaikdaaaaale qaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWadaGcbaqcLbsa caWG4bGaaeiiaiaaicdacaqGGaGaamOEaSWaaSbaaKqaGeaalmaali aajeaibaqcLbmaceWGubGbaKaaaKqaGeaajugWaiaaikdaaaaajeai beaajugibiaabccaceWG4bGbaiaalmaaBaaajeaibaWcdaWccaqcba saaKqzadGabmivayaajaaajeaibaqcLbmacaaIYaaaaaqcbasabaqc LbsacaqGGaGabmyEayaacaWcdaWgaaqcbasaaSWaaSGaaKqaGeaaju gWaiqadsfagaqcaaqcbasaaKqzadGaaGOmaaaaaKqaGeqaaKqzGeGa aeiiaiqadQhagaGaaKqbaoaaBaaajeaibaWcdaWccaqcbasaaKqzad GabmivayaajaaajeaibaqcLbmacaaIYaaaaaWcbeaaaOGaay5waiaa w2faaKqbaoaaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaiOlaa aa@6833@   (64)

We adjust the initial state of the trajectory in such a way so that the values of x ˙ T ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbaiaalmaaBaaajeaibaWcdaWccaqcbasaaKqzadGabmivayaajaaa jeaibaqcLbmacaaIYaaaaaqcbasabaaaaa@3C7D@ and z ˙ T ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG6b GbaiaajuaGdaWgaaqcbasaaSWaaSGaaKqaGeaajugWaiqadsfagaqc aaqcbasaaKqzadGaaGOmaaaaaSqabaaaaa@3CE3@  become zero. Note that by adjusting the initial state, not only the values of and change, but the propagation time, T ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGaaS qaaKqzGeGabmivayaajaaaleaajugibiaaikdaaaaaaa@396F@ , needed to penetrate the xz -plane also changes. In order to target a proper state X( t T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb qcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaaBaaajeaibaWcdaWccaqc basaaKqzadGaamivaaqcbasaaKqzadGaaGOmaaaaaSqabaaakiaawI cacaGLPaaaaaa@405B@ , one may vary the initial values of x, z and/or y ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b Gbaiaaaaa@378C@ . The linearized system of equations relating the final state to the initial state can be written as:

δX( t T 2 )Φ( t T 2 , t 0 )δX( t 0 )+ X t δ( T 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGybqcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaalmaa liaajeaibaqcLbmacaWGubaajeaibaqcLbmacaaIYaaaaaqcbasaba aakiaawIcacaGLPaaajugibiabgIKi7kabfA6agLqbaoaabmaakeaa jugibiaadshajuaGdaWgaaqcbasaaSWaaSGaaKqaGeaajugWaiaads faaKqaGeaajugWaiaaikdaaaaaleqaaKqzGeGaaiilaiaadshajuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGe GaeqiTdqMaamiwaKqbaoaabmaakeaajugibiaadshajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaS scfa4aaSaaaOqaaKqzGeGaeyOaIyRaamiwaaGcbaqcLbsacqGHciIT caWG0baaaiabes7aKLqbaoaabmaakeaajuaGdaWccaGcbaqcLbsaca WGubaakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiaacYca aaa@6D3C@   (65)

Where δX( t T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGybqcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaalmaa liaajeaibaqcLbmacaWGubaajeaibaqcLbmacaaIYaaaaaqcbasaba aakiaawIcacaGLPaaaaaa@419C@ denotes the deviation in the final state due to a deviation in the initial state, δX( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGybqcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaaGccaGLOaGaayzkaaaaaa@3F22@ , and a corresponding deviation in the orbit’s period, δ( T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azjuaGdaqadaGcbaqcfa4aaSGaaOqaaKqzGeGaamivaaGcbaqcLbsa caaIYaaaaaGccaGLOaGaayzkaaaaaa@3DBC@ .

Results and discussion

The variation in the locations of L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A23@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@  with the mass reduction factor, q are given in Table 1 from the Barycenter. It can be observed that as the value of q decreases, the distance between L 1 ( L 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaWccaGGOaqcLbsacaWG mbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaWccaGGPaaaaa@3EF8@   and the Barycenter decreases (increases). Thus, as solar radiation pressure dominates, the location of L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ moves towards the Sun while that of L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@ moves away from the Sun.

q

Barycentric Distance of L1

Barycentric Distance of L2

1.000000

0.98998611876418

1.01007439102449

0.999934

0.98997872566874

1.01008168361141

0.999668

0.98994870654538

1.01011129019736

0.999336

0.98991073085203

1.01014873382821

Table 1 Variation of L1 and L2 locations vs q with μ=3.0402988*10-6

Halo orbits are computed using the constructed third-order analytic approximate solution as the starting initial guess. Figures 2–5 are generated using the following characteristic properties of ISEE-3 mission:37 mass of the spacecraft = 435kg; solar reflectivity constant, k=1.2561 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb Gaeyypa0JaaGymaiaac6cacaaIYaGaaGynaiaaiAdacaaIXaaaaa@3CDE@ ; spacecraft effective cross sectional area, A=3.55 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb Gaeyypa0JaaG4maiaac6cacaaI1aGaaGynaaaa@3B3E@ m2; speed of light, c=2.998× 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaeyypa0JaaGOmaiaac6cacaaI5aGaaGyoaiaaiIdacqGHxdaTcaaI XaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@41FC@ m/sec; solar light flux, S 0 =1352.098  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGH9aqpcaqG XaGaae4maiaabwdacaqGYaGaaeOlaiaabcdacaqG5aGaaeioaiaabc caaaa@41AF@  kg/sec2 at one astronomical unit from the Sun. We have chosen the out-of-plane amplitude, A Z = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaKqaGeaajugWaiaadQfaaSqabaqcLbsacqGH9aqpaaa@3BD1@ 1,10000km of ISEE-3, for the sake of simplicity, the corresponding value of the in-plane amplitude, A X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaamiwaaqcbasabaaaaa@39D6@  is 2,06000km.

Figures 2 & 3 depict the projections of xy, xz, and yz- planes of northern branch of the halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@ , respectively, whereas Figure 4 depicts its three dimensional (3D) state. Similarly, its southern branch can be obtained by changing the sign of z since both branches are mirror images to each other. Jacobi constant of the halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ is C halo = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqcbasaaKqzadGaamiAaiaadggacaWGSbGaam4Baaqcbasa baqcLbsacqGH9aqpaaa@3E48@ 3.00082686598735 while it is C halo = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcfa4aaSbaaKqaGeaajugWaiaadIgacaWGHbGaamiBaiaad+gaaSqa baqcLbsacqGH9aqpaaa@3EAC@ 3.00082167380548 for L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@ . The halo orbit and it’s zero velocity curves around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@  are shown in Figure 5. It can be observed that the halo orbit lies in the neck and goes around   L 1 ( L 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaWccaGGOaqcLbsacaWG mbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaGaaiykaaaa@3F51@ .

Figure 2 Projection of (A) xy-plane, (B) xz-plane, and (C) yz-plane of the halo orbit around L1.

Figure 3 Projection of (A) xy-plane, (B) xz-plane, and (C) yz-plane of the halo orbit around L2.

Figure 4 3D state of the halo orbit around L1 (left) and L2 (right).

Figure 5 Halo orbit and its zero velocity surfaces around L1 (left) and L2 (right).

The effect of solar radiation pressure on the spacecraft’s velocity in a halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  with q is shown in Figure 6. It is observed that as solar radiation pressure increases, velocity of the spacecraft increases in a halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  while it decreases around L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ . Also maximum (minimum) magnitude of the spacecraft’s velocity are 2.918 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.823 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), 2.947 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.985 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), and 3.043 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@  (1.056 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ ) km/sec for q = 1, 0.998668, and 0.984334, respectively around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ . For q=1, 0.999668, and 0.999334, maximum (minimum) magnitude of the spacecraft’s velocity are 2.963 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.942 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaafqabaqcLboacqGHsislcaaIYaaa aaaa@3D7F@ ), 2.956 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.903 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), and 2.948 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.864 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ )km/sec, respectively around L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@ . Maximum (minimum) values of the spacecraft’s velocity are obtained at the xz (xy)-plane crossing time. Time period of the halo orbit and Jacobi constant with q are shown in Tables 2 & 3 for L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ , respectively. As solar radiation pressure prevails, time period of the halo orbit increases whereas Jacobi constant decreases about both libration points. The effect of solar radiation pressure on shape of the halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ are shown in Figures 7 & 8, respectively. One more important observation is that as solar radiation pressure dominates, shape of the halo orbit increases and move towards the Sun for L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  while it shrinks towards the Earth around L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ .

Figure 6 Velocity variation of the spacecraft in the halo orbit with q around L1 (left) and L2 (right).

q

Time Period
(Non-dimensional)

Time Period (Days)

Chalo

1.000000

3.05704228258574

177.710

3.00082687283842

0.999934

3.05958829667778

177.858

3.00069350365251

0.999668

3.06991429623938

178.458

3.00015597586158

0.999336

3.08294961063377

179.216

2.99948505494555

Table 2 Variation of time period of the halo orbit around L1 with q

q

Time Period
(Non-dimensional)

Time Period (Days)

Chalo

1.000000

3.09884183709780

180.140

3.00082168051684

0.999934

3.10140754272003

180.289

3.00069103137700

0.999668

3.11181365407607

180.894

3.00016446672677

0.999336

3.12495070966240

181.658

2.99950723047497

Table 3 Variation of time period of the halo orbit around L2 with q

Figure 7 Variation in shape of (A) xy-plane, (B) xz-plane, and (C) yz-plane of the halo orbit with q around L1.

Figure 8 Variation in shape of (A) xy-plane, (B) xz-plane, and (C) yz-plane of the halo orbit with q around L2.

According to Floquet theory,26,38,39 stability of the halo orbits is described by the eigenvalues of its monodromy matrix. The monodromy matrix corresponding to the halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ has six eigenvalues ( λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsacaGGSaGaeq4UdW2cdaWgaaqcbasaaKqzadGaaG4maaqcbasa baqcLbsacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaaisdaaS qabaqcLbsacaGGSaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaaiwda aSqabaqcLbsacaGGSaGaeq4UdW2cdaWgaaqcbasaaKqzadGaaGOnaa qcbasabaaakiaawIcacaGLPaaaaaa@5938@ which are given by

( 1732.916,0. 0005770619,1.0000018,1.0000018,0. 9999982,0.9968152±0.0797459i ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaaGymaiaaiEdacaaIZaGaaGOmaiaac6cacaaI5aGaaGym aiaaiAdacaGGSaGaaGimaiaac6cacaqGGaGaaGimaiaaicdacaaIWa GaaGynaiaaiEdacaaI3aGaaGimaiaaiAdacaaIXaGaaGyoaiaacYca caaIXaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdacaaIWaGaaGymai aaiIdacaGGSaGaaGymaiaac6cacaaIWaGaaGimaiaaicdacaaIWaGa aGimaiaaigdacaaI4aGaaiilaiaaicdacaGGUaGaaeiiaiaaiMdaca aI5aGaaGyoaiaaiMdacaaI5aGaaGioaiaaikdacaGGSaGaaGimaiaa c6cacaaI5aGaaGyoaiaaiAdacaaI4aGaaGymaiaaiwdacaaIYaGaey ySaeRaaGimaiaac6cacaaIWaGaaG4naiaaiMdacaaI3aGaaGinaiaa iwdacaaI5aGaamyAaaGccaGLOaGaayzkaaqcLbsacaGGSaaaaa@715F@   (71)

And

( 1664.2099,0.00060088575,0.9970228±0.0771079i,1.000000±0.0000024i ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaaGymaiaaiAdacaaI2aGaaGinaiaac6cacaaIYaGaaGim aiaaiMdacaaI5aGaaiilaiaaicdacaGGUaGaaGimaiaaicdacaaIWa GaaGOnaiaaicdacaaIWaGaaGioaiaaiIdacaaI1aGaaG4naiaaiwda caGGSaGaaGimaiaac6cacaaI5aGaaGyoaiaaiEdacaaIWaGaaGOmai aaikdacaaI4aGaeyySaeRaaGimaiaac6cacaaIWaGaaG4naiaaiEda caaIXaGaaGimaiaaiEdacaaI5aGaamyAaiaacYcacaaIXaGaaiOlai aaicdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiabgglaXkaaicda caGGUaGaaGimaiaaicdacaaIWaGaaGimaiaaicdacaaIYaGaaGinai aadMgaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@6B88@   (72)

for L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ , respectively.

The periodic orbit is stable only if the modulus of all eigenvalues of its monodromy matrix is less than one.28 It can be noted that for these orbits two eigenvalues are non-unity ( λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3AA2@  and λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3AA2@ ) near both L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ , and the complex eigenvalues lie on the unit circle. Thus, there exists both stable and unstable halo orbits, and orbits near the halo which remain near the halo for all time around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ . The eigenvectors corresponding to stable and unstable eigenvalues direct stable and unstable manifolds of the orbit whereas complex eigenvalues correspond to the center directions of the orbit. The eigenvalues show that halo orbits have and typecharacteristics behavior around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ points, respectively.

Conclusion

In this study, a third-order analytic approximate solution using the Lindstedt-Poincare method and Newton’s single step differential correction scheme are used to compute the halo orbit analytically and numerically around the collinear points L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  in the photogravitational circular restricted three-body problem accounting radiation pressure of the Sun. The effects of solar radiation pressure are studied around both collinear libration points. For q = 1, 0.999934, 0.999668, and 0.999336, the Barycentric distance of L 1 ( L 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaWccaGGOaqcLbsacaWG mbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaWccaGGPaaaaa@3EF8@ are 1.481019 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@ (1.511071 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@ ), 1.481008 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@ (1.511082 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaafqabaqcLboacaaI4aaaaaaa@3C98@ ), 1.480963 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@  (1.511126 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@ ), and 1.480906 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@  (1.511183 × 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaaaa@3C58@ ) kilometers, respectively for L 1 ( L 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaWccaGGOaqcLbsacaWG mbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaWccaGGPaaaaa@3EF8@ which shows that as solar radiation pressure dominates, the distance between L 1 ( L 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaWccaGGOaqcLbsacaWG mbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaWccaGGPaaaaa@3EF8@ and the Barycenter decreases (increases). The achieved maximum (minimum) velocity (in terms of magnitude) of the spacecraft are 2.918 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.823 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), 2.947 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.985 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), and 3.043 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@  (1.056 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ )km/sec around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  whereas around L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ are 2.963 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.942 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), 2.956 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.903 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ ), and 2.948 × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aaaa@3D3E@ (9.864 × 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHxd aTcaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaa aaaa@3D3F@ )km/sec, respectively for q=1, 0.999668, and 0.999334, respectively. In other words, as solar radiation pressure increases, velocity of the spacecraft increases around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  point while it decreases around L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ point. It is found that time period of the halo orbit increases around both L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ points. Further, as solar radiation pressure dominates, shape of the halo orbit around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ increases and moves towards the Sun while it shrinks around L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@  and moves towards the Earth. The eigenvalues of the monodromy matrix depict that the halo orbits have saddle×center MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb GaamyyaiaadsgacaWGKbGaamiBaiaadwgacqGHxdaTcaWGJbGaamyz aiaad6gacaWG0bGaamyzaiaadkhaaaa@43C6@ ( L 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39BF@ ) and saddle×center×center MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb GaamyyaiaadsgacaWGKbGaamiBaiaadwgacqGHxdaTcaWGJbGaamyz aiaad6gacaWG0bGaamyzaiaadkhacqGHxdaTcaWGJbGaamyzaiaad6 gacaWG0bGaamyzaiaadkhaaaa@4B7C@  ( L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A24@ ) type of behavior in the photogravitational circular restricted three-body problem for the Sun-Earth system.

Acknowledgments

None.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Thurman R, Worfolk PA. The geometry of halo orbits in the circular restricted three-body problem. Technical report. CiteSeerX, USA; 1996.
  2. Schuerman DW. The restricted three-body problem including radiation pressure. The Astrophysical Journal. 1980;238:337–342.
  3. Simmons JFL, McDonald AJC, Brown JC. The restricted 3-body problem with radiation pressure. Celestial mechanics. 1985;35(2):145–187.
  4. Ragos O, Zafiropoulos FA. A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photogravitational restricted three-body problem. I. Coplanar case. Astronomy and Astrophysics. 1995;300:579–590.
  5. McInnes CR. Solar Sailing: Technology, Dynamics and Mission Applications. Springer-Verlag, Berlin, Germany. 1990.
  6. Waters TJ, McInnes CR. Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. Journal of Guidance Control and Dynamics. 2007;30(3):687–693.
  7. Kishor R, Kushvah BS. Periodic orbits in the generalized photogravitational Chermnykh-like problem with power-law profile. Astrophysics and Space Science. 2013;344(2):333–346.
  8. Verrier P, Waters W, Sieber J. Evolution of the L1 halo family in the radial solar sail circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy. 2014;120(4):373–400.
  9. Srivastava VK, Kumar J, Kushvah BS. The effects of oblateness and solar radiation pressure on halo orbits in the photogravitational Sun-Earth system. Acta Astronautica. 2014;129:389–399.
  10. Moulton FR. An Introduction to Celestial Mechanics. Kessinger Publishing, USA. 1914.
  11. McCuskey SW. Introduction to Celestial Mechanics. Dover Publications, USA. 1963.
  12. Szebehely V. Theory of Orbits, The Restricted Problem of Three Bodies. Academic Press, USA. 1967.
  13. Baoyin H, McInnes C. Solar sail halo orbits at the Sun-Earth artificial L1 point. Celestial Mechanics and Dynamical Astronomy. 2006;94(2):155–171.
  14. Heiligers J, McInnes C. Novel Solar Sail Mission Concepts for Space Weather Forecasting. 24th AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, New Mexico, USA, 2014. p. 1–20.
  15. Farquhar RW, Kamel AA. Quasi-periodic orbits about the translunar libration point. Celestial mechanics. 1973;7(4):458–473.
  16. D’Amario LA, Bright LE, Wolf AA. Galileo trajectory design. Space Science Reviews. 1992;60(1–4):23–78.
  17. Martin WL. Libration point trajectory design. Numerical Algorithms. 1997;14(1–3):153–164.
  18. Gomez G, Koon WS, Martin WL, et al. Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity. 2004;17(5):1571–1606.
  19. Xu R, Cui P, Qiao D, et al. Design and optimization of trajectory to Near-Earth asteroid for sample return mission using gravity assists. Advances in Space Research. 2007;40(20):220–225.
  20. Pergola P, Geurts K, Casaregola C, et al. Earth–Mars halo to halo low thrust manifold transfers. Celestial Mechanics and Dynamical Astronomy. 2009;105.
  21. Landgraf M, Renk F, Vogeleer BD. Mission design and analysis of European astrophysics missions orbiting libration points. Acta Astronautica. 2013;84:49–55.
  22. Vaquero M, Howell KC. Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem. Acta Astronautica. 2014;94(1):302–317.
  23. Farquhar RW. The control and Use of Libration-Point Satellites. Department of Aeronautics and Astronautics, Stanford University, USA; 1968. p. 1–138.
  24. Zazzera FB, Topputo F, Massari M. Assessment of Mission Design Including Utilization of Libration Points and Weak Stability Boundaries. ESA, ACT, France; 2005. p. 1–173.
  25. Richardson DL. Analytic construction of periodic orbits about the collinear points. Celestial Mechanics. 1980;22(2):241–253.
  26. Koon WS, Lo MW, Marsden JE. Dynamical Systems: The Three-Body Problem and Space Mission Design. Interdisciplinary Applied Mathematics, Springer, Berlin, Germany; 2011. p. 1–331.
  27. Breakwell JV, Brown JV. The ‘Halo’ family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem. Celestial mechanics. 1979;20(4):389–404.
  28. Howell KC. Three-dimensional, periodic, ‘halo’ orbits. Celestial mechanics. 1984;32(1):53–71.
  29. Tiwary RD, Kushvah BS. Computation of halo orbits in the photogravitational Sun-Earth system with oblateness. Astrophysics and Space Science. 2015;73:357.
  30. Dunham DW, Farquhar RW. Libration point missions, 1978–2002. In: Gómez G, et al. editors. Proceedings of the Conference on Libration Point Orbits and Applications, World Scientific, Singapore; 2003.
  31. Radzievskii VV. Astronomical Journal USSR. 1950;27(5):250.
  32. Eapen RT, Sharma RK. A study of halo orbits at the Sun–Mars L1 Lagrangian point in the photogravitational restricted three-body problem. Astrophysics and Space Science. 2014;352(2):437–441.
  33. Bell JL. The impact of solar radiation pressure on Sun-Earth L1 Libration point orbits. MS thesis, Department of Aeronautics and Astronautics, Purdue University, USA. 1991.
  34. Srivastava VK, Kumar J, Kushvah BS. Regularization of circular restricted three-body problem accounting radiation pressure and oblateness. Astrophysics and Space Science. 2017;362.
  35. Jorba A, Masdemont J. Dynamics in the center manifold of the collinear points of the restricted three body problem. Physica D. 1999;132(1–2):189–213.
  36. Bucciarelli S, Ceccaroni M, Celletti A. Annali di matematica pura e applicata 01, Springer, Germany. 2015.
  37. Pernicka HJ. The numerical determination of nominal Libration point trajectories and development of a stationkeeping strategy. Department of Aeronautics and Astronautics, Purdue University, USA. 1990.
  38. Baig S, McInnes MC. Artificial halo orbits for low-thrust propulsion spacecraft. Celestial Mechanics and Dynamical Astronomy. 2009;104(4):321–335.
  39. Gomez G, Mondelo, JM. The dynamics around the collinear equilibrium points of the RTBP. Physica D. 2001;157(4):283–321.
Creative Commons Attribution License

©2018 Tiwary, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.