Computing three-dimensional periodic orbits in the sun-earth system

Abstract

In this paper, a third-order analytic approximation is described for computing the three-dimensional periodic halo orbits around the Lagrangian points in the restricted three-body problem (RTBP) of the Sun-Earth and the Earth-Moon systems. Designing trajectories for these missions is a challenging task due to inadequacy of the conic approximations. The RTBP deals with the situations where one of the Lagrangian points has a negligible mass, and moves under the gravitational influence of two other bodies. In the RTBP, the circular restricted three-body problem (CRTBP) is a special case where two massive bodies move in the circular orbit around their common centre of mass. The collinear Lagrangian point orbits have a lot of attention for the mission design and transfer of trajectories. When the frequencies of two oscillations are commensurable, the motion becomes periodic and such an orbit in the three-dimensional space is called halo. Lyapunov orbits are the two-dimensional planar periodic orbits. These planar periodic orbits are not suitable for space applications since they do not allow the out-of-plane motion, e.g., a spacecraft placed in the Sun-Earth halo orbit must have an out-of-plane amplitude in order to avoid the solar exclusion zone (dangerous for the downlink); a space telescope around the Sun-Earth point must avoid the eclipses and hence requires a three-dimensional periodic orbit. The RTBP does not have any analytic solution, the periodic orbits are difficult to obtain because the problem is highly nonlinear and small changes in the initial conditions break the periodicity. Farquhar was the first person who introduced analytic computation of the halo orbit in his PhD thesis. In 1980, introduced a third-order analytic approximation of the halo orbits near the collinear libration points in the classical CRTBP for the Sun-Earth system. Thurman & Worfolk and Koon et al. found the halo orbits for the CRTBP with the Sun-Earth system in the absence of any perturbative force using Richardson method up to third-order. Breakwell & Brown and Howell numerically obtained the halo orbits in the classical CRTBP Earth-Moon system using the single step differential correction scheme. Numerous applications of the halo orbits in the scientific mission design can be seen such as investigations concerning solar exploration and helio-spheric effects on planetary environments using the spacecraft placed in these orbits at different phases. ISEE-3 was the first mission in a halo orbit of the Sun-Earth system around L_1 to study the interaction between the Earth’s magnetic field and solar wind. Solar and Heliospheric Observatory (SOHO) mission was second libration point mission launched jointly by ESA and NASA in a halo orbit around the Sun-Earth L_1 point, still operational till date, which was a virtual carbon copy of ISEE-3’s orbit.

The classical model of the RTBP does not account perturbing forces such as oblateness, radiation pressure, and variations of masses of the primaries. The photogravitational RTBP arises from the classical RTBP if at least one of the bodies is an intense emitter of radiation. Radzievskii derived the photogravitational RTBP and discussed it for three specific bodies: the Sun, a planet, and a dust particle. Recently, Eappen & Sharma discussed the planar photogravitational CRTBP including solar radiation pressure in the Sun-Mars system around L_1 point using the initial guess of the classical CRTBP.

Numerical computation of the periodic orbits requires an initial approximation to the orbit as an approximate analytic solution. However, the analytic solutions that are available do not generally include solar radiation pressure and other perturbing forces. Including these perturbing forces in the analytic approximation increases the accuracy of the approximation and therefore, simplifies the numerical computations. In this paper, we discuss analytic as well as numerical computations of the halo orbits around the libration points L_1 and L_2 in the CRTBP including solar radiation pressure of the Sun. The paper is organized as follows: Section 2 deals with the governing equations of motion of the Sun as a radiating source. Section 3 describes the construction of a third-order analytic approximate solution for the periodic orbit using the Lindstedt-Poincare method. Section 4 illustrates numerical computation of the halo orbit using Newton’s method of differential correction. Results and discussion are given in Section 5 while Section 6 concludes our study.
Mathematical model

We suppose that the CRTBP consists of the Sun, the Earth and the Moon, and an infinitesimal body such as a spacecraft having masses \(m_1, m_2, \) and \(m \), respectively. Here the Earth and the Moon are clubbed as a single entity and we say this as the Earth. The spacecraft moves under the gravitational influence of the Sun and the Earth (Figure 1). The Sun is assumed as the radiating body contributing solar radiation pressure.

Let \((x, y, z), (-\mu, 0, 0), \) and \((1-\mu, 0, 0)\) denote the coordinates of the spacecraft, the Sun, and the Earth, respectively, where \(\mu \) is the mass ratio parameter of the Sun and the Earth. The equations of motion of the spacecraft in the rotating reference frame accounting solar radiation pressure of the Sun can be expressed as,

\[
\begin{align*}
\ddot{x} - 2\dot{y} &= \frac{\partial U}{\partial x}, \\
\ddot{y} + 2\dot{x} &= \frac{\partial U}{\partial y}, \\
\ddot{z} &= \frac{\partial U}{\partial z},
\end{align*}
\]

Where \(U \) is the pseudo-potential of the system and it is expressed as

\[
U = \frac{x^2 + y^2}{2} + \frac{(1-\mu)q}{r_1} + \frac{\mu}{r_2},
\]

Where \(q \) is known as the mass reduction factor, \(r_2 \) and \(r_1 \) are the position vectors of the spacecraft from the Sun and the Earth, respectively, and these quantities are defined as,

\[
\begin{align*}
q &= -\frac{F_x}{F_y}, \\
r_1 &= \sqrt{(x + \mu)^2 + y^2 + z^2}, \\
r_2 &= \sqrt{(x - \mu)^2 + y^2 + z^2}.
\end{align*}
\]

In Equation (5), \(F_x \) and \(F_y \) are solar radiation pressure and gravitational attraction forces, respectively. Note that when \(q = 1 \), the governing equations of motion (1)-(3) reduce to the classical CRTBP.

The Jacobi constant of the motion also exists and is given by

\[
C = 2U(x, y, z) - \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right).
\]

When the kinetic energy is zero, Equation (6) reduces to

\[
C = 2U(x, y, z),
\]

And defines the zero velocity surfaces in the configuration space. These surfaces projected in the rotating \(xy \) – plane generate some lines called zero velocity curves.

Analytic computation

We construct a third-order analytic approximation using the method of successive approximation (Lindstedt-Poincare method) to compute the halo orbit around the collinear Lagrangian points \(L_2 \) and \(L_3 \) in the photogravitational Sun-Earth system. The origin is translated at the Lagrangian points and \(Y \) is the distance from the Earth to the Lagrangian point as a unit, using the new coordinates

\[
X = x - \left(1 - \mu \right) \gamma y, \quad Y = \gamma y, \quad Z = z,
\]

Where \(X, Y \) and \(Z \) are the new coordinates when origins are shifted at the Lagrangian points, and \(\gamma \) is the distance from the Lagrangian point to the Earth. In Equation (8), the upper (lower) sign corresponds to \(L_2 \) (\(L_3 \)).

Now using the transformation (8), the equations of motion (1)-(3) are expressed as

\[
\gamma \left(\ddot{X} - 2\dot{Y}\right) = \frac{\partial \Psi}{\partial X},
\]

\[
\gamma \left(\ddot{Y} + 2\dot{X}\right) = \frac{\partial \Psi}{\partial Y},
\]

\[
\gamma \ddot{Z} = \frac{\partial \Psi}{\partial Z},
\]

Where

\[
\Psi = \gamma^2 \left(\frac{X^2 + Y^2}{2} + \frac{(1-\mu)q}{R_1} + \frac{\mu}{R_2}\right).
\]

In Equation (12), \(R_1 \) and \(R_2 \) are given by

\[
R_1 = \sqrt{(yX + 1\pm \gamma^2)^2 + (yY)^2 + (yZ)^2}, \\
R_2 = \sqrt{(yX - \gamma^2)^2 + (yY)^2 + (yZ)^2}.
\]

The location of the Lagrangian points \(L_2 \) and \(L_3 \) from the Earth are computed from the root of the fifth degree polynomial:

\[
\gamma^5 - (\mu - 3)\gamma^4 + (3 - 2\mu)\gamma^3 + (1 - \mu)(1 + \mu)\gamma^2 + 2\mu - \mu = 0.
\]

In Equation (14) upper and lower signs correspond to \(L_2 \) and \(L_3 \) points, respectively. We expand the nonlinear terms, \(\frac{(1-\mu)q}{R_1} + \frac{\mu}{R_2} \), in Equation (12) using the formula:

\[
\frac{1}{(yX - \gamma)^2 + (y^2) + (yZ)^2} - \frac{1}{\frac{\partial \Psi}{\partial \rho}} \left(\frac{\partial \Psi}{\partial \rho}\right).
\]
Computation of three-dimensional periodic orbits in the sun-earth system

Where $D^2 = A^2 + B^2 + C^2$ and $\rho^2 = x^2 + y^2 + z^2$, and $c_n^{(m)}$ is the mth degree Legendre polynomial of first kind with argument. After some algebraic manipulation, the equations of motion (9)-(11) can be written as:

\begin{align}
\ddot{X} - 2\dot{Y} + (1 + 2c_2)X &= \frac{\partial}{\partial X} \sum_{\mu=3}^{\infty} c_{m\mu}^{(n)} \rho \left(\frac{X}{\rho} \right), \\
\ddot{Y} + 2\dot{X} + (c_2 - 1)Y &= -\frac{\partial}{\partial Y} \sum_{\mu=3}^{\infty} c_{m\mu}^{(n)} \rho \left(\frac{X}{\rho} \right), \\
\ddot{Z} + c_3 Z &= \frac{\partial}{\partial Z} \sum_{\mu=3}^{\infty} c_{m\mu}^{(n)} \rho \left(\frac{X}{\rho} \right).
\end{align}

Where the left hand side contains the linear terms and the right hand side contains the nonlinear terms. The coefficient $c_n^{(m)}$ is expressed as

$$c_n^{(m)} = \frac{1}{\gamma} \left((\pm 1)^n \mu + (-1)^n \frac{\partial (1 - \mu) \rho^{n+1}}{\partial \gamma} \right), \quad m = 0, 1, 2, \ldots$$

Where the upper sign is for L_3 and the lower one for L_2.

A third-order approximation of Equations (16)-(18) is given by:

\begin{align}
\ddot{X} - 2\dot{Y} + (1 + 2c_2)X &= \frac{1}{2} \left(2x^2 - y^2 - z^2 \right), \\
\ddot{Y} + 2\dot{X} + (c_2 - 1)Y &= -3c_3 X Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
\ddot{Z} + c_3 Z &= -3c_4 X Z + \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.
\end{align}

A correction term $\Delta = \ddot{x} - c_2$ is required for computing the halo orbit which is introduced on the left-hand-side of Equation (22) to make the out-of-plane frequency equals to the in-plane frequency. The new third-order z-equation then becomes:

$$\ddot{Z} + \dddot{Z} = -3c_4 X Z - \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.$$

While using the successive approximation procedure, some secular terms arise. To avoid the secular terms, one uses a new independent variable τ and introduces a frequency modulation through $\tau = \omega \rho$.

The equations of motion (20), (21) & (23) can be then rewritten in terms of the new independent variable τ:

\begin{align}
\omega^2 x' &= 2a_{n0} - (1 + 2c_2)X = \frac{1}{2} \left(2x^2 - y^2 - z^2 \right), \\
\omega^2 y' &= 2a_{n0} + (c_2 - 1)Y = -3c_3 X Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
\omega^2 Z' &= -3c_4 X Z + \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.
\end{align}

Where:

\begin{align}
\frac{dx}{d\tau} &= X', \\
\frac{dy}{d\tau} &= Y', \\
\frac{dZ}{d\tau} &= Z'.
\end{align}

We assume the solutions of Equations (24)-(26), using the perturbation technique, of the form:

\begin{align}
X'(t) &= x_0(t) + \varepsilon x_1(t) + \varepsilon^2 x_2(t) + \cdots, \\
Y'(t) &= y_0(t) + \varepsilon y_1(t) + \varepsilon^2 y_2(t) + \cdots, \\
Z'(t) &= z_0(t) + \varepsilon z_1(t) + \varepsilon^2 z_2(t) + \cdots.
\end{align}

And

$$\omega = 1 + \omega_0 \left(e^0 + \varepsilon e_1^{(0)} + \varepsilon^2 e_2^{(0)} + \cdots \right),$$

where $\omega_0 < 1$.

In Equation (28) ε is the perturbation parameter. Using Equations (27) & (28) into Equations (24)-(26) and equating the coefficient of the same order of ε, ε^2, and ε^3 from both sides we get the first, second, and third-order equations, respectively.

\section{First order equations}

The first order linearized equations are given by:

\begin{align}
\ddot{Y} + 2\dot{X} + (c_2 - 1)Y &= 0, \\
\ddot{X} + 2\dot{Y} + (c_2 - 1)X &= 0, \\
\ddot{Z} + \dddot{Z} &= 0.
\end{align}

Whose periodic solutions are given by:

\begin{align}
\left[x(t) = A_0 \cos (\alpha t + \phi), \\
y(t) = A_0 \sin (\alpha t + \phi), \\
z(t) = A_0 \sin (\alpha t + \phi). \right.
\end{align}

\section{Second order equations}

Collecting the coefficients of ε^2, we get:

\begin{align}
x'' - 2a_{n0} - (1 + 2c_2)X &= -2a_{n0} \left(x_0'' + \gamma_1 \right), \\
y'' + 2a_{n0} + (c_2 - 1)Y &= -3c_3 X Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
Z'' + \dddot{Z} &= -3c_4 X Z + \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.
\end{align}

Now using Equation (32) into (33)-(35), the following equations are obtained:

\begin{align}
x'' - 2a_{n0} - (1 + 2c_2)X &= -2a_{n0} \left(x_0'' + \gamma_1 \right), \\
y'' + 2a_{n0} + (c_2 - 1)Y &= -3c_3 X Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
Z'' + \dddot{Z} &= -3c_4 X Z + \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.
\end{align}

Where $x_0'' + \gamma_1$, $x_1'' + \gamma_2$, $x_2'' + \gamma_3$, etc. are obtained by setting $\epsilon_0 = 0$. Hence, the solutions of the second-order equations are given by:

\begin{align}
\tau &\in (0, 2 \pi), \\
x_0(t) &\in [x_0(t) + \varepsilon x_1(t) + \varepsilon^2 x_2(t) + \cdots], \\
X_1(t) &\in \left[x_1(t) + \varepsilon x_2(t) + \varepsilon^2 x_3(t) + \cdots \right], \\
X_2(t) &\in \left[x_3(t) + \varepsilon x_4(t) + \varepsilon^2 x_5(t) + \cdots \right] + \Delta Z.
\end{align}

\section{Third order equations}

Now collecting the coefficients of ε^3 and setting $\epsilon_0 = 0$, we get

\begin{align}
x'' - 2a_{n0} - (1 + 2c_2)X &= -2a_{n0} \left(x_0'' + \gamma_1 \right) + 6c_3 x_0 X_1 Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
y'' + 2a_{n0} + (c_2 - 1)Y &= -3c_3 x_0 X_1 Y + \frac{3}{2} \ddot{Y} \left(4x^2 - y^2 - z^2 \right), \\
Z'' + \dddot{Z} &= -3c_4 x_0 X_1 Z + \frac{3}{2} \ddot{Z} \left(4x^2 - y^2 - z^2 \right) + \Delta Z.
\end{align}

Using Equations (32) and (39) into Equations (40)-(42), we get

\begin{align}
x'' - 2a_{n0} - (1 + 2c_2)X &= \left(x_0'' + \gamma_1 \right) + \varepsilon x_1''(t) + \varepsilon^2 x_2''(t) + \cdots, \\
y'' + 2a_{n0} + (c_2 - 1)Y &= \left(y_0'' + \gamma_2 \right) + \varepsilon y_1''(t) + \varepsilon^2 y_2''(t) + \cdots, \\
Z'' + \dddot{Z} &= \left(z_0'' + \gamma_3 \right) + \varepsilon z_1''(t) + \varepsilon^2 z_2''(t) + \cdots.
\end{align}
The secular terms in the $X_i - Y_i$ equations (43)-(44) and in the ω_i equation (45) cannot be removed by setting a value of ω_i. These terms from Equations, (43)-(44) are removed by adjusting phases of τ_i and τ_i so that $\sin(2\tau_i - \tau_i)$ can be made 0 in all cases which can be achieved by setting the phase constraint relationship

$$\phi = \psi + \pi p, \text{where } p = 0, 1, 2, 3.$$

After removing the secular terms from Equation (46), the Z_i solution is bounded when

$$v_i + A_i \left[2\omega_i e^{\Delta \frac{\Delta}{\omega}} \right] \sin \tau_i + \frac{\omega_i}{2} \sin(\omega_i \tau_i) + \frac{\omega_i}{2} \sin(2\omega_i \tau_i) + \frac{\omega_i}{2} \sin(2\omega_i \tau_i) = 0.$$

The phase constraint (47) reflects the $X_i - Y_i$ equations, each now contains one secular term. The secular terms from both equations are removed by using a single condition from their particular solutions:

$$\left(v_i + 2\omega_i A_i \left(\lambda \kappa - \omega_i \right) + \omega_i \right) \sin \tau_i + \left(v_i + 2\omega_i A_i \left(\lambda \kappa - \omega_i \right) + \omega_i \right) \sin(2\tau_i) = 0.$$

Condition (48) is satisfied if

$$\omega_i = \frac{v_i - \kappa v_i + \omega_i}{2\omega_i A_i \left(1 + \omega_i^2 - 2\kappa \right)},$$

Where similar type of expressions for s_i and l_i can be referred in.

Substituting the value of ω_i from Equation (49) into Equation (48), we get

$$l_i A_i^2 + l_i A_i^2 + \frac{\Delta \Delta}{\omega_i} = 0.$$

Where similar type of expressions for l_i and s_i can be followed from Equation (50) gives a relationship between the in-plane and the out-of-plane amplitudes. Assuming these constraints, the third-order equations become

$$X''_{3} - 2Y'_{3} - (1 + 2c_2)X_3 = \beta_3 \cos \tau_i + \left(\gamma_3 + \omega_3 \right) \cos 3\tau_i,$$

$$Y''_{3} + 2X'_{3} + (c_2 - 1)Y_3 = \beta_3 \sin \tau_i + \left(\beta_3 + \omega_3 \right) \sin 3\tau_i,$$

$$Z''_{3} + \Delta \Delta Z_3 = \left\{ \begin{array}{ll} -\frac{\Delta \Delta}{\omega_i} \sin 3\tau_i, & p = 0, 2, \\
-\frac{\Delta \Delta}{\omega_i} \sin 3\tau_i, & p = 1, 3, \end{array} \right.$$

Where $\beta_3 = v_3 + 2\omega_i A_i \left(\lambda \kappa - 1 \right) + \omega_i \beta_3$. Thus, the solutions of Equations (51)-(53) are given as

$$X_3 (\tau) = \rho_3 \cos 3\tau_i,$$

$$Y_3 (\tau) = \sigma_3 \sin 3\tau_i + \sigma_3 \cos 3\tau_i,$$

$$Z_3 (\tau) = \left\{ \begin{array}{ll} -\frac{\Delta \Delta}{\omega_i} \sin 3\tau_i, & p = 0, 2, \\
\frac{\Delta \Delta}{\omega_i} \cos 3\tau_i, & p = 1, 3. \end{array} \right.$$

The expressions for all the coefficients can be referred to.

d.Final approximation

Halo orbits of third-order approximations are obtained on removing E from all solutions of equations by using the transformation $A_i \mapsto \frac{A_i}{e}$ and $A_i \mapsto \frac{A_i}{e}$. Then one can use A_1 or A_2 as a small parameter. Combining the above computed solutions, the third-order approximate solution is thus given by

$$X (\tau) = \rho_{31} - A_x \cos \tau_i + \left(\rho_{32} + \rho_{31} \right) \cos 2\tau_i + \rho_{31} \cos 3\tau_i,$$

$$Y (\tau) = \left(\kappa_d \rho_x + \sigma_{32} \right) \sin \tau_i + \left(\sigma_{31} + \sigma_{32} \right) \sin 2\tau_i + \sigma_{31} \sin 3\tau_i,$$

$$Z (\tau) = \left\{ \begin{array}{ll} -\frac{\Delta \Delta}{\omega_i} \left[A_x \sin \tau_i + \kappa_{31} \sin 2\tau_i + \kappa_{31} \sin 3\tau_i \right], & p = 0, 2, \\
\frac{\Delta \Delta}{\omega_i} \left[A_x \cos \tau_i + \kappa_{31} \cos 2\tau_i + \kappa_{31} \cos 3\tau_i \right], & p = 1, 3. \end{array} \right.$$

Time period (in non-dimensional form) of the halo orbit is expressed as

$$T_{h,a} = \frac{2\pi}{\omega_a}, \text{where } \omega_a = 1 + \alpha_1 + \alpha_2: \alpha_1 = 0.$$

Numerical computation

In this section, Newton’s method of differential correction is briefly described for the numerical computation of halo orbit. Assume X denote a column vector containing all of the six state variables of the governing equations of motion, i.e.,

$$X = \left[x \ y \ z \ \dot{x} \ \dot{y} \ \dot{z} \right]^T.$$

Where superscript “T” denotes the transpose.

The state transition matrix (STM), 6×6, is a 6×6 matrix composed of the partial derivatives of the state:

$$\phi(t, t_0) = \frac{\partial X(t)}{\partial t(t_0)},$$

With initial conditions $\phi(t_0, t_0) = I$. Note that the state transition matrix is called monodromy matrix for the full periodic orbit. The eigenvalues of the monodromy matrix tells about the stability of the halo orbit.

The STM is propagated using the relationship:

$$\frac{d\phi(t, t_0)}{dt} = \frac{\partial X(t)}{\partial X(t_0)} \phi(t, t_0).$$

Where the matrix $A(t)$ is known as variational matrix and is made of the partial derivatives of the state derivative with respect to the state variables, i.e.,

$$A(t) = \frac{\partial X(t)}{\partial X(t_0)}.$$

The variation matrix 3×3 can be partitioned into four 3×3 submatrices:

$$A(t) = \begin{pmatrix} O & I \\ Y & 2\Omega \end{pmatrix},$$

Citation: Tiwary RD, Srivastava VK, Kushvah BS. Computation of three-dimensional periodic orbits in the sun-earth system. Phys Astron Int J. 2018;2(1):81–90. DOI: 10.15406/paij.2018.02.00052
Where
\[
O = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad I = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad \Omega = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
\[
Y = U_{xx} U_{xy} U_{xz} U_{yx} U_{yy} U_{yz} U_{zx} U_{zy} U_{zz}
\]

Note that the matrix \(U \) is a symmetric matrix of second order partial derivatives of \(U \) with respect to \(x, y \), and \(z \) evaluated along the orbit. Thus, Equation (59) represents a system of 36 first-order differential equations. These equations, coupled with the equations of motion (1)-(3), are the basic equations that define the dynamical model in the photo-gravitational CRTBP accounting solar radiation pressure. Trajectories are computed by simultaneous numerical integration of the 42 first-order differential equations. It can be easily seen that the governing equations of motion (1)-(3) are symmetric about the \(xz \)-plane by using the transformation \(y \rightarrow -y \) and \(t \rightarrow -t \).

Let \(X(t) \) be the state of a periodic symmetric orbit at the \(xz \)-plane crossing and let \(\dot{X}(t) \) denotes the state of the orbit half of its orbital period later at the \(xz \)-plane. If the orbit is periodic and symmetric about the \(xz \)-plane, then
\[
x(t) = [x_0 \; 0 \; z_0 \; 0 \; y_0 \; 0 \; 0 \; 0 \; 0] = X(t)_{xz} + [0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0].
\]

Assume that \(\dot{X}(t)_{xz} \) be an initial state of a desirable state. Integrating this state forward in time until the next \(xz \)-plane crossing, we obtain the state \(\dot{X}(t)_{xz} \):
\[
\dot{X}(t)_{xz} = \Phi(t - t_{xz}) \dot{X}(t_{xz}) + \frac{\partial}{\partial t} \phi(t_{xz}).
\]

We adjust the initial state of the trajectory in such a way so that the values of \(z_{xz} \) and \(\dot{z}_{xz} \) become zero. Note that by adjusting the initial state, not only the values of \(x \) and \(z \) change, but the propagation time, \(t_{xz} \), needed to penetrate the \(xz \)-plane also changes. In order to target a proper state \(\dot{X}(t)_{xz} \), one may vary the initial values of \(z \), \(\dot{z} \) and/or \(f \). The linearized system of equations relating the final state to the initial state can be written as:
\[
\delta X(t_{xz}) = \Phi(t - t_{xz}) \delta X(t_{xz}) + \frac{\partial}{\partial t} \phi(t_{xz}).
\]

Where \(\delta X(t_{xz}) \) denotes the deviation in the final state due to a deviation in the initial state, \(\delta X(t_{xz}) \), and a corresponding deviation in the orbit’s period, \(\delta T/2 \).

Results and discussion

The variation in the locations of \(L_1 \) and \(L_2 \) with the mass reduction factor, \(q \) are given in Table 1 from the Barycenter. It can be observed that as the value of \(q \) decreases, the distance between \(L_1 \) (\(L_2 \)) and the Barycenter decreases (increases). Thus, as solar radiation pressure dominates, the location of \(L_1 \) moves towards the Sun while that of \(L_2 \) moves away from the Sun.

Halo orbits are computed using the constructed third-order analytic approximate solution as the starting initial guess. Figures 2–5 are generated using the following characteristic properties of ISEE-3 mission: mass of the spacecraft = 435 kg; solar reflectivity constant, \(k = 1.2561 \); spacecraft effective cross sectional area, \(A = 3.55 \text{ m}^2 \); speed of light, \(c = 2.998 \times 10^5 \text{ m/sec} \); solar light flux, \(S_0 = 1352.098 \text{ kg/sec}^2 \) at one astronomical unit from the Sun. We have chosen the out-of-plane amplitude, \(A_3 \) = 1,100,000 km of ISEE-3, for the sake of simplicity, the corresponding value of the in-plane amplitude, \(A_2 \) = 2,060,000 km.

Table 1 Variation of \(L_1 \) and \(L_2 \) locations vs \(q \) with \(\mu = 3.0402988 \times 10^{-6} \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>Barycentric Distance of (L_1)</th>
<th>Barycentric Distance of (L_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>0.98998611876418</td>
<td>1.01007439102449</td>
</tr>
<tr>
<td>0.999934</td>
<td>0.98997872566874</td>
<td>1.01008168361141</td>
</tr>
<tr>
<td>0.999668</td>
<td>0.98994870654538</td>
<td>1.0101129019736</td>
</tr>
<tr>
<td>0.999336</td>
<td>0.98991073085203</td>
<td>1.0101473382821</td>
</tr>
</tbody>
</table>

Figures 2 & 3 depict the projections of \(y \), \(z \), and \(yz \)-planes of northern branch of the halo orbit around \(L_1 \) and \(L_2 \) respectively, whereas Figure 4 depicts its three dimensional (3D) state. Similarly, its southern branch can be obtained by changing the sign of \(z \) since both branches are mirror images to each other. Jacobi constant of the halo orbit around \(L_1 \) is \(C_{halo} = 3.00082686598735 \) while it is \(C_{halo} = 3.00082167380548 \) for \(L_2 \). The halo orbit and its zero velocity curves around \(L_1 \) and \(L_2 \) are shown in Figure 5. It can be observed that the halo orbit lies in the neck and goes around \(L_1 \) (\(L_2 \)).
Computation of three-dimensional periodic orbits in the sun-earth system

Copyright: ©2018 Tiwary et al.

Citation: Tiwary RD, Srivastava VK, Kushvah BS. Computation of three-dimensional periodic orbits in the sun-earth system. Phys Astron Int J. 2018;2(1):81–90. DOI: 10.15406/paij.2018.02.00052

Figure 2 Projection of (A) xy -plane, (B) xz -plane, and (C) L_1 -plane of the halo orbit around L_1.

Figure 3 Projection of (A) xz -plane, (B) xy -plane, and (C) yz -plane of the halo orbit around L_2.
Computation of three-dimensional periodic orbits in the sun-earth system

The effect of solar radiation pressure on the spacecraft’s velocity in a halo orbit around \(L_1 \) and \(Q \) with \(q \) is shown in Figure 6. It is observed that as solar radiation pressure increases, velocity of the spacecraft increases in a halo orbit around \(L_1 \) while it decreases around \(L_2 \). Also maximum (minimum) magnitude of the spacecraft’s velocity are \(2.918 \times 10^{-5} \) \((9.823 \times 10^{-7})\), \(2.947 \times 10^{-5} \) \((9.985 \times 10^{-7})\), and \(3.043 \times 10^{-5} \) \((1.056 \times 10^{-7})\) km/sec for \(q = 1 \), 0.999668, and 0.999334, respectively around \(L_1 \). For \(q = 1 \), 0.999668, and 0.999334, maximum (minimum) magnitude of the spacecraft’s velocity are \(2.963 \times 10^{-5} \) \((9.942 \times 10^{-7})\), \(2.956 \times 10^{-5} \) \((9.903 \times 10^{-7})\), and \(2.948 \times 10^{-5} \) \((9.864 \times 10^{-7})\) km/sec, respectively around \(L_2 \). Maximum (minimum) values of the spacecraft’s velocity are obtained at the \(xz \)-plane crossing time. Time period of the halo orbit and Jacobi constant with \(q \) are shown in Tables 2 & 3 for \(L_1 \) and \(L_2 \), respectively. As solar radiation pressure prevails, time period of the halo orbit increases whereas Jacobi constant decreases about both libration points. The effect of solar radiation pressure on shape of the halo orbit around \(L_1 \) and \(L_2 \) are shown in Figures 7 & 8, respectively. One more important observation is that as solar radiation pressure dominates, shape of the halo orbit increases and move towards the Sun for \(L_2 \) while it shrinks towards the Earth around \(L_1 \).

Table 2 Variation of time period of the halo orbit around \(L_1 \) with \(q \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>Time Period (Non-dimensional)</th>
<th>Time Period (Days)</th>
<th>(C_{h皓})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>3.05704228258574</td>
<td>177.710</td>
<td>3.00082687283842</td>
</tr>
<tr>
<td>0.999934</td>
<td>3.05958829667778</td>
<td>177.858</td>
<td>3.00069350365251</td>
</tr>
<tr>
<td>0.999668</td>
<td>3.06991429623938</td>
<td>178.458</td>
<td>3.00015597586158</td>
</tr>
<tr>
<td>0.999336</td>
<td>3.08294961063377</td>
<td>179.216</td>
<td>2.99948505494555</td>
</tr>
</tbody>
</table>

Figure 4 3D state of the halo orbit around \(L_1 \) (left) and \(L_2 \) (right).

Figure 5 Halo orbit and its zero velocity surfaces around \(L_1 \) (left) and \(L_2 \) (right).
Table 3 Variation of time period of the halo orbit around q with q

<table>
<thead>
<tr>
<th>q</th>
<th>Time Period (Non-dimensional)</th>
<th>Time Period (Days)</th>
<th>C_{halo}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>3.09884183709780</td>
<td>180.140</td>
<td>3.00082168051684</td>
</tr>
<tr>
<td>0.999934</td>
<td>3.10140754272003</td>
<td>180.289</td>
<td>3.00069103137700</td>
</tr>
<tr>
<td>0.999668</td>
<td>3.11181365407607</td>
<td>180.894</td>
<td>3.00016466726777</td>
</tr>
<tr>
<td>0.999336</td>
<td>3.12495070966240</td>
<td>181.658</td>
<td>2.99950723047497</td>
</tr>
</tbody>
</table>

Figure 6 Velocity variation of the spacecraft in the halo orbit with q around L_1 (left) and L_2 (right).

Figure 7 Variation in shape of (A) xz-plane, (B) xz-plane, and (C) yz-plane of the halo orbit with q around L_1.
According to Floquet theory,28,39 stability of the halo orbits is described by the eigenvalues of its monodromy matrix. The monodromy matrix corresponding to the halo orbit around L_1 and L_2 has six eigenvalues $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6)$ which are given by \begin{equation}
abla (1732.916, 0.0008700619, 1.00000018, 1.00000018, 0.999982, 0.9968152 \pm 0.0797459),\end{equation}

And \begin{equation}
abla (1664.2099, 0.0006008857, 0.9970228 \pm 0.0771079, 1.000000 \pm 0.000000244),\end{equation}

for L_1 and L_2, respectively.

The periodic orbit is stable only if the modulus of all eigenvalues of its monodromy matrix is less than one.28 It can be noted that for these orbits two eigenvalues are non-unity (λ_4 and λ_5) near both L_1 and L_2, and the complex eigenvalues lie on the unit circle. Thus, there exists both stable and unstable halo orbits, and orbits near the halo which remain near the halo for all time around L_2 and L_2. The eigenvectors corresponding to stable and unstable eigenvalues direct stable and unstable manifolds of the orbit whereas complex eigenvalues correspond to the center directions of the orbit. The eigenvalues show that halo orbits have saddle \times center and saddle \times center \times center type characteristics behavior around L_1 and L_2 points, respectively.

Conclusion

In this study, a third-order analytic approximate solution using the Lindstedt-Poincare method and Newton’s single step differential correction scheme are used to compute the halo orbit analytically and numerically around the collinear points L_1 and L_2 in the photogravitational circular restricted three-body problem accounting radiation pressure of the Sun. The effects of solar radiation pressure are studied around both collinear libration points. For $q = 1, 0.999934, 0.9999686,$ and $0.999936,$ the Barycentric distance of L_1 (L_2) are $1.481008 \times 10^7 (1.511071 \times 10^7)$, $1.481008 \times 10^7 (1.511082 \times 10^7)$, $1.480963 \times 10^7 (1.511126 \times 10^7)$, and $1.480968 \times 10^7 (1.511183 \times 10^7)$ kilometers, respectively for L_2 (L_1) which shows that as solar radiation pressure dominates, the distance between L_1 (L_2) and the Barycenter decreases (increases). The achieved maximum (minimum) velocity (in terms of magnitude) of the spacecraft are 9.823×10^{-7} (9.823×10^{-7}), $2.947 \times 10^{-1} (9.985 \times 10^{-1})$, and $3.043 \times 10^{-1} (1.056 \times 10^{-1})$ km/sec around L_1 whereas around L_2 are $2.963 \times 10^{-1} (9.942 \times 10^{-1})$, $2.956 \times 10^{-1} (9.903 \times 10^{-1})$, and $2.948 \times 10^{-1} (9.864 \times 10^{-1})$ km/sec, respectively for $q = 1, 0.999668$, and 0.999334, respectively. In other words, as solar radiation pressure increases, velocity of the spacecraft increases around L_1 point while it decreases around L_2 point. It is found that time period of the halo orbit increases around both L_1 and L_2 points. Further, as solar radiation pressure dominates, shape of the halo orbit around L_1 increases and moves towards the Sun while it shrinks around L_2 and moves towards the Earth. The eigenvalues of the monodromy matrix depict that the halo orbits have saddle \times center (L_1) and saddle \times center \times center (L_2) type of behavior in the photogravitational circular restricted three-body problem for the Sun-Earth system.

Acknowledgements

None.

Conflicts of interest

Authors declare there is no conflict of interest.

\section*{Figure 8} Variation in shape of (A) xy -plane, (B) yz -plane, and (C) xz -plane of the halo orbit with q around L_2.

\section*{Citation} Tiwary RD, Srivastava VK, Kushvah BS. Computation of three-dimensional periodic orbits in the sun-earth system. Phys Astron Int J. 2018;2(1):81–90. DOI: 10.15406/paij.2018.02.00052
References

33. Bell JL. The impact of solar radiation pressure on Sun-Earth L1, L2 libration point orbits. MS thesis, Department of Aeronautics and Astronautics, Purdue University, USA. 1991.
37. Perrinck HJ. The numerical determination of nominal Libration point trajectories and development of a stationkeeping strategy. Department of Aeronautics and Astronautics, Purdue University, USA. 1990.