Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Review Article Volume 3 Issue 2

Some observations about quantum chemistry software GAUSSIAN

Mohit K Sharma

Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied Sciences, Amity University, India

Correspondence: Mohit K Sharma, Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied Sciences, Amity University, Noida 201313, India

Received: December 21, 2018 | Published: April 3, 2019

Citation: Sharma MK. Some observations about quantum chemistry software GAUSSIAN. Open Access J Sci. 2019;3(2):75-79. DOI: 10.15406/oajs.2019.03.00134

Download PDF

Abstract

When laboratory study of some molecule is not available, one may plan to use data obtained from Quantum Chemistry software, such as GAUSSIAN, MOLPRO, NWCHEM, etc. For our investigation of cosmic molecules, we need reliable data for rotational and centrifugal distortion constants. For some molecules, we have obtained these data with the help of Quantum Chemistry software GAUSSIAN and compared them with those obtained from the laboratory studies. We have found that in some cases, the two sets of data are very close to each other whereas in some cases, they differ very much. As the laboratory measurements provide the most reliable data, one would like to use the GAUSSIAN data only when the laboratory data are available. Thus, an obvious question arises how to decide the reliability of GAUSSIAN data, when for that particular molecule no laboratory data are available. Further, when the laboratory data are available, no one would like to use the GAUSSIAN data.

Introduction

In a cosmic object having molecules, kinetic temperature in general is very low; few tens of Kelvin. Thus, one is concerned with the rotational levels in the ground vibrational state and ground electronic state. The rotational and centrifugal distortion constants, electric dipole moment can be used for calculation of energies of rotational levels and radiative transition probabilities (Einstein A-coefficients) for radiative transitions between the levels. We have investigated some molecules where laboratory data are available and for the same molecules we have obtained the data with the help of GAUSSIAN also. We have found that for some molecules, the two sets of data are in good agreement whereas for some molecules, they differ very much. As the laboratory data are the most reliable, one would like to use the GAUSSIAN data only in absence of the laboratory data. Thus, an obvious question arises how to decide the reliability of GAUSSIAN data. We are aware of the fact that the frequencies of spectral lines obtained from the GAUSSIAN data are not as accurate as required by the astronomers. However, the GAUSSIAN data can play important role in getting qualitative results about a molecule. We could not succeed in running the CCSD and CCSD (T) methods for the GAUSSIAN, as the computer program broke down each time during the execution. Therefore, we have employed the functional B3LYP method, i.e., Becke’s three parameter exchange function B3 (Becke1) with Lee, Yang and Parr’s gradient corrected exchange-correlation functional.2

Investigation

In the present discussion, we have considered the following molecules following sections.-to be deleted.

Cyclopropenone

Guillemin et al.,3 have recorded spectrum of cyclopropenone (c-C3H2O) and have derived rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and - to be deleted with A-type reduction, given in Table 1 (column 2). Sharma et al.4 have optimized the cyclopropenone with the help of GAUSSIAN 2009 Frisch et al.5 using B3LYP method and cc-pVDZ basis set. The values are given in Table 1 (column 3). The two sets of data are in good agreement. The deviations of rotational constants A, B and C, with respect to their experimental values are 0.46%, 1.18% and 0.90%, respectively.

Constant

Laboratory

cc-pVDZ

A

32040.73

31894.85

B

7825.046

7733.81

C

6280.685

6224.503

ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbaaaa@38D9@

1.79362×10−3

1.651250766×10−3

ΔJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaam4saaaa@39A9@

33.7882×10−3

3.271020188×10−2

ΔK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGlbaaaa@38DA@

50.65×10−3

4.379488485×10−2

δJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGkbaaaa@3918@

0.38536×10−3

3.533088298×10−4

δK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGlbaaaa@3919@  

22.156×10−3

2.093510188×10−2

HJ

2.937852086×10−10

HJK

6.851055671×10−8

HKJ

−1.128055614×10−7

HK

9.251718141×10−8

hJ

2.362038947×10−10

hJK

3.968188988×10−8

hK

1.205246347×10−6

Table 1 Rotational and centrifugal distortion constants in MHz of c-C3H2O

Titanium dihydride

Inspired with good agreement between two sets of data for c-C3H2O, Sharma et al.,6 decided to go for the investigation of titanium dihydride (TiH2) for which laboratory data are not available. They6 have optimized the molecule TiH2 with the help of GAUSSIAN 2009 Frisch et al.,5 where B3LYP method and cc-pVTZ basis set are used. The rotational and centrifugal distortion constants obtained for Watson’s rotational operator written in Ir representation and - to be deleted with A-type reduction are given in Table 2. The outcome of the investigation is very exciting.

Constant

cc-pVTZ

Constant

cc-pVTZ

A

2.8589602 × 105

ΦJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbaaaa@38ED@

2.037108491 × 10−3

B

1.2520818 × 105

ΦJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaam4saaaa@39BD@

−1.928681064 × 10−2

C

8.707408 × 104

ΦKJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaamOsaaaa@39BD@

−1.946479675 × 10−2

ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbaaaa@38D9@

6.004343

ΦK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbaaaa@38EE@

5.110638046 × 10−1

ΔJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaam4saaaa@39A9@

−4.186548023 × 101

φJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbaaaa@3930@

1.014000418 × 10−3

ΔK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGlbaaaa@38DA@

2.549058853 × 102

φJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbGaam4saaaa@3A00@

−3.557138924 × 10−3

δJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGkbaaaa@3918@

2.465123

φK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGlbaaaa@3931@

1.085768474 × 10−1

δK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGlbaaaa@3919@

2.332384

Table 2 Rotational and centrifugal distortion constants in MHz of TiH2

Ethylene oxide

Pan et al.7 recorded spectrum of ethylene oxide (c-C2H4O) and have derived rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and – to be deleted with A-type reduction, given in Table 3 (column 2). Sharma et al.8 have optimized the ethylene oxide with the help of GAUSSIAN 2009 Frisch et al.5 bf using B3LYP method and cc-pVDZ basis set. The values of data are given in Table 3 (column 3). The two sets of data are in good agreement. The deviations of rotational constants A, B and C, with respect to their experimental values are -0.79%, -0.58% and -0.70%, respectively. It again provided us a confidence about our investigation of TiH2 Sharma et al.6

Constant

Laboratory

cc-pVDZ

A

25483.89

25685.72

B

22120.85

22249.95

C

14097.84

14197.62

ΔJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbaaaa@38D9@

51.1883 × 10−3

50.79096319 × 10−3

ΔJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaam4saaaa@39A9@

−70.4938 × 10−3

−71.09013012 × 10−3

ΔK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGlbaaaa@38DA@

27.6541 × 10−3

28.41532834 × 10−3

δJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGkbaaaa@3918@

−9.01689 × 10−3

8.836730565 × 10−3

δK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGlbaaaa@3919@

3.3491 × 10−3

−6.556467036 × 10−3

ΦJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbaaaa@38ED@

0.2456 × 10−6

−5.960452772 × 10−8

ΦJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaam4saaaa@39BD@

−5.2164 × 10−6

−4.838170644 × 10−6

ΦKJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaamOsaaaa@39BD@

15.7370 × 10−6

15.30527314 × 10−6

ΦK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbaaaa@38EE@

−10.638 × 10−6

−10.40655085 × 10−6

ΦJ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbaaaa@38ED@

−0.05097 × 10−6

−2.887999339 × 10−8

ΦJK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaam4saaaa@39BD@

1.4297 × 10−6

−1.411514955 × 10−6

φK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGlbaaaa@3931@  

−17.8633 × 10−6

1.713117251 × 10−5

LJ

−0.1210 × 10−9

LJJK

−0.1288 × 10−9

LJK

0.624 × 10−9

LKKJ

−0.800 × 10−9

LK

0.892 × 10−9

lJ

−0.00367 × 10−9

lJK

0.0921 × 10−9

lKJ

−0.448 × 10−9

lK

0.679 × 10−9

PK

−1.114 × 10−12

Table 3 Rotational and centrifugal distortion constants (MHz) of c-C2H4O

Vinylidene

Inspired with good agreement between two sets of data for c-C3H2O and for c-C2H4O, we decided to go for the investigation of vinylidene (H2CC) for which also laboratory data are not available. bf Sharma et al.9 have optimized the molecule H2CC with the help of GAUSSIAN 2009 Frisch et al.5 employing the B3LYP method in conjunction with four basis sets, cc-pVTZ, aug-cc-pVDZ, aug-cc- pVTZ and aug-cc-pVQZ. The resulting rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and - to be deleted with S-type reduction are given in Table 4. There is good agreement between the data obtained from different basis sets.

Constant

cc-pVTZ

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

A ×10−5

2.858903

2.858903

2.858903

2.858903

B ×10−4

3.993411

3.993411

3.993411

3.993411

C ×10−4

3.503965

3.503965

3.503965

3.503965

DJ ×103

42.70791

43.44087

44.28356

44.55227

DJK

20.98798

18.94745

20.44459

20.4197

DK

5.317725

6.440168

5.879314

5.933398

d1 ×102

−1.442126677

−1.373607832

−1.445080323

−1.452037644

d2 ×102

−2.675152631

−2.408896481

−2.609261594

−2.613141728

HJ ×106

−9.085110924

−7.573403608

−8.601743486

−8.655849617

HJK ×103

2.717971

2.280665

2.564823

2.580959

HKJ ×102

−1.854934803

−1.597951879

−1.709596957

−1.731162015

HK ×102

2.401038

2.151629

2.272677

2.29427

h1 ×106

−1.524539329

−1.248551723

−1.444404960

−1.443374339

h2 ×106

4.698862

3.929762

4.456302

4.485417

h3 ×106

1.651997

1.367133

1.5717

1.57211

Table 4 Rotational and centrifugal distortion constants in MHz of H2CC

Silanone

Bailleux et al.10 have recorded spectrum of silanone (H2SiO) and derived rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and - to be deleted with A-type reduction, given in Table 5 (column 2). Sharma et al.11 have optimized the molecule H2SiO with the help of GAUSSIAN 2009 Frisch et al.5 bf employing B3LYP method in conjunction with three basis sets, aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ. The values are given in Table 5 (columns 3-5). There is very good agreement between the four sets of data. The deviations of rotational constants A, B and C obtained for the basis set aug-cc-pVQZ, with respect to their experimental values are 0.24%, 0.53% and 0.18%, respectively.

Constant

Experiment

cc-pVDZ

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

A ×105

1.666573

1.62688

1.62316

1.658067

1.662584

B ×10−4

1.867939

1.787253

1.78186

1.842979

1.858002

C ×10−4

1.674277

1.610344

1.605601

1.65862

1.671235

ΔJ × 10 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaIYaaaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaWdaiab=rk8Rbaa@4A3B@

1.75216

1.631609

1.647716

1.66202

1.676962

ΔJK × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaam4saiaabccacqGHxdaTcaaIXaGaaGim a8aadaahaaqabeaapeGaaGymaaaaaaa@3ED4@

6.02486

5.543688

5.632878

5.839659

5.871728

ΔK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGlbaaaa@38DA@

7.5

8.199677

8.090008

8.443277

8374.246

δJ × 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGkbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaIZaaaaaaa@3E45@

2.0811

1.822749

1.836778

1.876133

1.906645

δK × 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGlbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaIXaaaaaaa@3E44@

4.13

3.503961

3.550486

3.660305

3.689542

ΦJ × 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaI5aaaaaaa@3E20@

6.733706

6.296932

5.253595

5.657116

ΦJK × 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaam4saiaabccacqGHxdaTcaaIXaGaaGim a8aadaahaaqabeaapeGaaGOnaaaaaaa@3EED@

4.757

7.800663

7.879044

8.266248

8.41835

ΦKJ × 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaamOsaiaabccacqGHxdaTcaaIXaGaaGim a8aadaahaaqabeaapeGaaGynaaaaaaa@3EEC@

-4.774

-1.57875

-1.796

-2.14959

-2.2458

ΦK × 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaIZaaaaaaa@3E1B@

1.443688

1.377452

1.435596

1.415752

φJ × 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaI5aaaaaaa@3E63@

3.572809

3.531365

3.408102

3.524366

φJK × 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbGaam4saiaabccacqGHxdaTcaaIXaGaaGim a8aadaahaaqabeaapeGaaGOnaaaaaaa@3F30@

4.031514

4.065714

4.256998

4.334719

φK × 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGlbGaaeiiaiabgEna0kaaigdacaaIWaWdamaa Caaabeqaa8qacaaI0aaaaaaa@3E5F@

4.511626

4.605502

4.727325

4.732419

Table 5 Rotational and centrifugal distortion constants in MHz of H2SiO

cis-Formic acid

Winnerwisser et al.12 have recorded spectrum of cis-Formic acid (cis-HCOOH) and derived rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and - to be deleted with A-type reduction, given in Table 6 (column 2). Sharma et al.13 have optimized the molecule cis-HCOOH with the help of GAUSSIAN 2009 Frisch et al.5 bf employing B3LYP method in conjunction with three basis sets, aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ. The values are given in Table 6 (columns 3-5). There is very good agreement between the four sets of data. The deviations of rotational constants A, B and C obtained for the basis set aug-cc-pVQZ, with respect to their experimental values are -1.16%, -0.22% and -0.46%, respectively. All these data provided us a encouragement about our investigations of TiH2 and H2CC molecules.

Constant

Lab

Optimization

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

A

86461.62

85967.44

87387.25

87478.32

B

11689.18

11617.78

11690.94

11715.35

C

10284

10234.65

10311.44

10331.7

ΔJ ×  10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaG4maaaaaaa@3EA9@

8.35515

6.594446

6.564108

6.564716

ΔJK ×  10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGkbGaam4saiaabccacqGHxdaTcaqGGaGaaGym aiaaicdapaWaaWbaaeqabaWdbiaaiodaaaaaaa@3F79@

−71.4412

259.8124

274.8887

275.2381

K ×  10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbGaaeiiaiabgEna0kaabccacaaIXaGaaGima8aadaah aaqabeaapeGaaG4maaaaaaa@3D44@

2361.672

2176.623

2296.741

2303.991

δJ ×  10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGkbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaG4maaaaaaa@3EE8@

1.41773

0.592251

0.556347

0.55381

δK ×  10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGlbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaG4maaaaaaa@3EE9@

40.747

115.2922

118.6733

118.4331

ΦJ ×  10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaGioaaaaaaa@3EC2@

1.064

−0.4527703926

−0.4722888293

−0.4808865771

ΦJK ×  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGkbGaam4saiaabccacqGHxdaTcaqGGaGaaGym aiaaicdapaWaaWbaaeqabaWdbiaaiAdaaaaaaa@3F90@

−0.2974

9.566051

10.98867

11.10552

ΦKJ ×  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaamOsaiaabccacqGHxdaTcaqGGaGaaGym aiaaicdapaWaaWbaaeqabaWdbiaaiAdaaaaaaa@3F90@

−9.673

108.8903

119.0774

119.4857

ΦK ×  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrcaWGlbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaGOnaaaaaaa@3EC1@

185.11

1.389687

1.452612

1.434686

φJ ×  10 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbGaaeiiaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaGyoaaaaaaa@3F06@

2.317

0.108608

0.08907

0.084311

φJK ×  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGkbGaam4saiaabccacqGHxdaTcaqGGaGaaGym aiaaicdapaWaaWbaaeqabaWdbiaaiAdaaaaaaa@3FD3@

−0.73

0.746964

0.783595

0.775275

φK ×  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHgpGAcaWGlbGaaiiOaiabgEna0kaabccacaaIXaGaaGim a8aadaahaaqabeaapeGaaGOnaaaaaaa@3F85@

37.1677

39.04597

38.76245

LK × 109

−20.2

lJK × 109

0.558

Table 6 Rotational and centrifugal distortion constants (MHz) of cis-HCOOH

Disilicon

McCarthy et al.14 has recorded spectrum of disilicon (Si2C) and have derived rotational and centrifugal distortion constants for Watson’s rotational operator written in Ir representation and - to be deleted with S-type reduction, given in Table 7 (column 2). Sharma et al.15 have optimized the molecule Si2C with the help of GAUSSIAN 2009 Frisch et al.5 employing the B3LYP method in conjunction with three basis sets, aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ. The values are given in Table 7 (columns 3-5). There is large disagreement between the laboratory data and those obtained from GAUSSIAN. The deviations of rotational constants A, B and C obtained for the basis set aug-cc-pVQZ, with respect to their experimental values are -51.89%, 20.23% and 15.28%, respectively. These large deviations perturbed us and lead to a question about the reliability of GAUSSIAN data.

Constant

Experimental

aug-cc-pVDZ

aug-cc-pVTZ

aug-cc-pVQZ

A

64074.34

115272.4

141935.4

133191.5

B

4395.621

3648.742

3597.055

3655.86

C

4102.028

3536.791

3508.148

3558.194

DJ ×103

9.7315

18.02061

28.55172

17.97574

DJK

−0.8572075

−7.016988202

−17.432464312

−9.250582631

DK×10−2

0.235881

7.258966

27.69195

12.60339

d1 ×103

1.519832

2.2482

3.425177

2.169344

d2 ×101

0.51591

1.269923

2.405429

1.420247

HJ ×107

−0.41349

−6.979665512

−26.90729235

−4.538089470

HJK ×104

0.93298

9.032487

48.46837

10.80401

HKJ ×101

−0.0188755

−2.856368246

−22.85802143

−4.878977881

HK

0.044863

26.42362

320.7195

61.69333

hj ×108

−0.5231

−11.16426814

−43.12215486

−6.341531159

hk ×102

1.388191

7.346143

3.083056

hjk ×105

−0.6586

−2.147381766

−9.373151002

−1.964934254

Table 7 Rotational and centrifugal distortion constants of Si2C in MHz

Discussion

When got good agreement between the laboratory data and those obtained with the help of GAUS- SION for c-C3H2O, c-C2H4O, H2SiO and cis-HCOOH, we felt encouraged that in absence of lab- oratory data for a particular molecule, at least qualitative analysis of the molecule could be done with the help of the GAUSSIAN data. But, a large disagreement between the two sets of data for Si2C has shattered down all the confidence. Thus, an obvious question irises how to decide the reliability of GAUSSIAN data, when laboratory data are not available. Further, when the laboratory data are available, no one would like to use the GAUSSIAN data. We Sharma et al.16 have earlier presented some observations about the Quantum Chemistry software MOLPRO. Werner et al.17 About the computer code MOLSCAT Hutson et al.,18 we Sharma et al.19 have presented some observations. About the observations, someone may respond. - to be deleted These observations however - to be deleted provide some awareness to the users of the GAUSSIAN, MOLPRO and MOLSCAT.

Acknowledgments

Author is grateful to Hon’ble Dr. Ashok K. Chauhan, Founder President, Hon’ble Dr. Atul Chauhan, Chancellor, and Hon’ble Vice Chancellor Dr. Balvinder Shukla, Amity University for valuable support and encouragements. He is thankful to the SERB, DST, New Delhi for awarding the NPDF.

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993;98:5648–5652.
  2. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–789.
  3. Guillemin JC, Wlodarczak G, Lopez JC. Millimeter-wave spectrum of cyclo- propenone, C3H2O. Journal of Molecular Spectroscopy. 1990;140:190–192.
  4. Sharma MK, Sharma M, Chandra S. Suggestion for search of cyclopropenone (c-C3H2O) in a cosmic object. Molecular Astrophysics. 2017;6:1–8.
  5. Frisch MJ. Gaussian Inc., Wallingfort CT. 2010.
  6. Sharma MK, Mushrif PG, Sharma M, Chandra S. Suggestion for the search for TiH2 molecule in an interstellar molecular cloud. Astronomische Nachrichten. 2017;338(6):715–719.
  7. Pan J, Albert S, Sastry KVLN, De Lucia FC. The Millimeter- and Submillimeter-Wave Spec- trum of Ethylene Oxide (c-C2H4O). The Astrophysical Journal. 1998;499:517–519.
  8. Sharma MK, Sharma M, Chandra S. Suggestion for search of ethylene oxide (c-C2H4O) in a cosmic object. Astrophysics and Space Science. 2018;363:94–101.
  9. Sharma MK, Sharma M, Chandra S. Strengths of rotational lines from H2CC molecule: Ad- dressing tentative detection. Molecular Astrophysics. 2018;12:20–24.
  10. Bailleux S, Bogey M, Demuynck C. Millimeter-wave rotational spectrum of H2SiO. The Journal of Chemical Physics. 1994;101:2279–2733.
  11. Sharma MK, Sharma M, Chandra S. Suggestion for search of silanone (H2SiO) in interstellar medium. Advances in Space Research. 2018.
  12. Winnerwisser M, Winnewisser BP, Stein M, et al. Rotational Spectra of cis-HCOOH, trans-HCOOH, and trans- H13COOH. Journal of Molecular Spectroscopy. 2002;216(2):259–265.
  13. Sharma MK. Transfer of radiation in the formic acid - a precursor for amino acids. Advances in Space Research. 2017.
  14. McCarthy MC, Joshua H Baraban, Joshua H Baraban, et al. Discovery of a Missing Link: Detection and Structure of the Elusive Disilicon Carbide Cluster. Journal of Physical Chemistry Letters. 2015;6(11):2107–2111.
  15. Sharma MK. The Disilicon carbide (Si2C) molecule in interstellar medium. Molecular Astrophysics. 2017.
  16. Sharma MK, Sharma M, Chandra S. Some observations about MOLPRO. Physics & Astronomy International Journal. 2018;2(4):286–288.
  17. Werner HJ, Knowles PJ. MOLPRO. Abilities program (2008, 2015). 2018. 1–737.
  18. Hutson JM, Green S. MOLSCAT Computer CODE, Version 14 (1994) Distributed by Collaborative Computational Project No. 6. The Engnieering and Physical Sciences Research Council (UK). 1994.
  19. Sharma MK, Sharma M, Chandra S. Some Observations about the MOLSCAT. Communications in Theoretical Physics. 2015;64:731–734.
Creative Commons Attribution License

©2019 Sharma. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.