Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Opinion Volume 1 Issue 1

Static condition for the formation of earth’s surface under gravity

Paul TE Cusack

Park Ave, Saint John, Canada

Correspondence: Paul TE Cusack, BScE, Dule 23 Park Ave,Saint John, NB E2J 1R2, Canada

Received: February 02, 2018 | Published: March 2, 2018

Citation: Cusack PTE. Static condition for the formation of earth’s surface under gravity. Open Acc J Math Theor Phy. 2018;1(1):19-20. DOI: 10.15406/oajmtp.2018.01.00004

Download PDF

Opinion

When comparing the centripetal acceleration of the Earth which tends to spin the Earth’s mass outward, with the gravitational forces pulling it together, we see an interesting result.

  1. centripetal force
  2. F C =Ma=  M C ( ω²r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbWdamaaBaaajuaibaWdbiaadoeaa8aabeaajuaGpeGa eyypa0JaamytaiaadggacqGH9aqpcaqGGaGaamyta8aadaWgaaqcfa saa8qacaWGdbaapaqabaqcfa4aaeWaaeaapeGaeqyYdCxcfaIaaiOS aKqbakaadkhaa8aacaGLOaGaayzkaaaaaa@46BC@ (1)

                     

    ω²=( dθ/dt )²=( 40,075km /24 hours )²=1669² km/hr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDjuaicaGGYcqcfaOaeyypa0ZdamaabmaabaWdbiaa dsgacqaH4oqCcaGGVaGaamizaiaadshaa8aacaGLOaGaayzkaaqcfa YdbiaacklacaaMc8EcfaOaeyypa0JaaGPaV=aadaqadaqaa8qacaaI 0aGaaGimaiaacYcacaaIWaGaaG4naiaaiwdacaWGRbGaamyBaiaabc cacaGGVaGaaGOmaiaaisdacaqGGaGaamiAaiaad+gacaWG1bGaamOC aiaadohaa8aacaGLOaGaayzkaaqcfaYdbiaacklacaaMc8EcfaOaey ypa0JaaGPaVlaaigdacaaI2aGaaGOnaiaaiMdajuaicaGGYcqcfaOa aeiiaiaadUgacaWGTbGaai4laiaadIgacaWGYbaaaa@68D4@

  3. gravitational forces

F G =g G  M 1 M E /r²   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbWdamaaBaaajuaibaWdbiaadEeaaKqba+aabeaapeGa eyypa0Jaam4zaiaabccacaWGhbGaaeiiaiaad2eapaWaaSbaaKqbGe aapeGaaGymaaWdaeqaaKqba+qacaWGnbWdamaaBaaajuaibaWdbiaa dweaaKqba+aabeaapeGaai4laiaadkhajuaicaGGYcGaaiiOaiaacc kaaaa@480F@ (2)

          

Set the two equal to determine the static conditions for the surface of the planet1

F=g G  M 1 M E /r²= F G =Ma=  M C ( ω²r )C  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbGaeyypa0Jaam4zaiaabccacaWGhbGaaeiiaiaad2ea paWaaSbaaKqbGeaapeGaaGymaaqcfa4daeqaa8qacaWGnbWdamaaBa aajuaibaWdbiaadweaaKqba+aabeaapeGaai4laiaadkhajuaicaGG YcqcfaOaeyypa0JaamOra8aadaWgaaqcfasaa8qacaWGhbaajuaGpa qabaWdbiabg2da9iaad2eacaWGHbGaeyypa0Jaaeiiaiaad2eapaWa aSbaaKqbGeaapeGaam4qaaWdaeqaaKqbaoaabmaabaWdbiabeM8a3L qbGiaacklajuaGcaWGYbaapaGaayjkaiaawMcaa8qacaWGdbGccaGG Gcaaaa@5796@ (3)

 

(Note: G=6.52 not 6.67=Ln π/1.618) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaamOtaiaad+gacaWG0bGaamyzaiaacQdacaqGGaGa am4raiabg2da9iaaiAdacaGGUaGaaGynaiaaikdacaqGGaGaamOBai aad+gacaWG0bGaaeiiaiaaiAdacaGGUaGaaGOnaiaaiEdacqGH9aqp caWGmbGaamOBaiaabccacqaHapaCcaGGVaGaaGymaiaac6cacaaI2a GaaGymaiaaiIdapaGaaiykaaaa@5276@

6.52( 1 )( 5.972 )/ ( 6371 )²C=( 5.972 )( 1669.79 )²( 6371 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiwdacaaIYaWdamaabmaabaWdbiaaigda a8aacaGLOaGaayzkaaWaaeWaaeaapeGaaGynaiaac6cacaaI5aGaaG 4naiaaikdaa8aacaGLOaGaayzkaaWdbiaac+cacaqGGaWdamaabmaa baWdbiaaiAdacaaIZaGaaG4naiaaigdaa8aacaGLOaGaayzkaaqcfa YdbiaacklajuaGcaWGdbGaeyypa0ZdamaabmaabaWdbiaaiwdacaGG UaGaaGyoaiaaiEdacaaIYaaapaGaayjkaiaawMcaamaabmaabaWdbi aaigdacaaI2aGaaGOnaiaaiMdacaGGUaGaaG4naiaaiMdaa8aacaGL OaGaayzkaaqcfaYdbiaacklajuaGpaWaaeWaaeaapeGaaGOnaiaaio dacaaI3aGaaGymaaWdaiaawIcacaGLPaaaaaa@5E38@

6.52C=( 1669.79 )²( 6371 )³=721.07 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiwdacaaIYaGaam4qaiabg2da98aadaqa daqaa8qacaaIXaGaaGOnaiaaiAdacaaI5aGaaiOlaiaaiEdacaaI5a aapaGaayjkaiaawMcaaKqbG8qacaGGYcqcfa4damaabmaabaWdbiaa iAdacaaIZaGaaG4naiaaigdaa8aacaGLOaGaayzkaaqcfaYdbiaaco lajuaGcqGH9aqpcaaI3aGaaGOmaiaaigdacaGGUaGaaGimaiaaiEda aaa@506A@

C=3.007~c =speed of light MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbGaeyypa0JaaG4maiaac6cacaaIWaGaaGimaiaaiEda caGG+bGaam4yaiaabccacqGH9aqpcaWGZbGaamiCaiaadwgacaWGLb GaamizaiaabccacaWGVbGaamOzaiaabccacaWGSbGaamyAaiaadEga caWGObGaamiDaaaa@4C29@ (4)

          

2.9979/3.007=99.69% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiMdacaaI5aGaaG4naiaaiMdacaGGVaGa aG4maiaac6cacaaIWaGaaGimaiaaiEdacqGH9aqpcaaI5aGaaGyoai aac6cacaaI2aGaaGyoaiaacwcaaaa@44DD@ Accurate

Now Using G=6.67 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbGaeyypa0JaaGOnaiaac6cacaaI2aGaaG4naaaa@3B69@ (5)

                                             

g 6.67( 1 )( 5.972 )/ ( 6371 )²=( 5.972 )( 1669.79 )²( 6371 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbGaaeiiaiaaiAdacaGGUaGaaGOnaiaaiEdapaWaaeWa aeaapeGaaGymaaWdaiaawIcacaGLPaaadaqadaqaa8qacaaI1aGaai OlaiaaiMdacaaI3aGaaGOmaaWdaiaawIcacaGLPaaapeGaai4laiaa bccapaWaaeWaaeaapeGaaGOnaiaaiodacaaI3aGaaGymaaWdaiaawI cacaGLPaaajuaipeGaaiOSaKqbakabg2da98aadaqadaqaa8qacaaI 1aGaaiOlaiaaiMdacaaI3aGaaGOmaaWdaiaawIcacaGLPaaadaqada qaa8qacaaIXaGaaGOnaiaaiAdacaaI5aGaaiOlaiaaiEdacaaI5aaa paGaayjkaiaawMcaaKqbG8qacaGGYcqcfa4damaabmaabaWdbiaaiA dacaaIZaGaaG4naiaaigdaa8aacaGLOaGaayzkaaaaaa@5F05@

6.67g=(1669.79)²( 6371 )³=721.078 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiAdacaaI3aqcfaIaam4zaKqbakabg2da 9iaacIcacaaIXaGaaGOnaiaaiAdacaaI5aGaaiOlaiaaiEdacaaI5a WdaiaacMcajuaipeGaaiOSaKqba+aadaqadaqaa8qacaaI2aGaaG4m aiaaiEdacaaIXaaapaGaayjkaiaawMcaaKqbG8qacaGGZcqcfaOaey ypa0JaaG4naiaaikdacaaIXaGaaiOlaiaaicdacaaI3aGaaGioaaaa @51C3@

g=1.081 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbGaeyypa0JaaGymaiaac6cacaaIWaGaaGioaiaaigda aaa@3C3A@ Atomic Mass of Hydrogen     (6)

           

And

6.52C=721.078 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiwdacaaIYaGaam4qaiabg2da9iaaiEda caaIYaGaaGymaiaac6cacaaIWaGaaG4naiaaiIdaaaa@4086@

C=3.007~ c=t²    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbGaeyypa0JaaG4maiaac6cacaaIWaGaaGimaiaaiEda caGG+bGaaeiiaiaadogacqGH9aqpcaWG0bqcfaIaaiOSaiaacckaju aGcaGGGcGaaiiOaaaa@4600@ (7)

                                              

1.081× 3.007/ 6.52    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaiOlaiaaicdacaaI4aGaaGymaiabgEna0kaabcca caaIZaGaaiOlaiaaicdacaaIWaGaaG4naiaac+cacaqGGaGaaGOnai aac6cacaaI1aGaaGOmaiaacckacaGGGcGaaiiOaaaa@4855@

=0.498~0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIWaGaaiOlaiaaisdacaaI5aGaaGioaiaac6ha caaIWaGaaiOlaiaaiwdaaaa@3E86@

=1/201 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIXaGaai4laiaaikdacaaIWaGaaGymaaaa@3B49@

 =1/Y from AT Math MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaeyypa0JaaGymaiaac+cacaWGzbGaaeiiaiaadAga caWGYbGaam4Baiaad2gacaqGGaGaamyqaiaadsfacaqGGaGaamytai aadggacaWG0bGaamiAaaaa@4608@  (8)

                         

=t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWG0baaaa@38A3@

Continuing,

E=1/t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0JaaGymaiaac+cacaWG0baaaa@3ADB@                                                   (9)

t=1/E=1/Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0JaaGymaiaac+cacaWGfbGaeyypa0JaaGym aiaac+cacaWGzbaaaa@3E2D@

1/2.01=0.498 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiaaikdacaGGUaGaaGimaiaaigdacqGH9aqp caaIWaGaaiOlaiaaisdacaaI5aGaaGioaaaa@3FAA@

And E=Mc² MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0JaamytaiaadogajuaicaGGYcaaaa@3B92@ (10)

                                       

1/E=1/( Mc² )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiaadweacqGH9aqpcaaIXaGaai4la8aadaqa daqaa8qacaWGnbGaam4yaKqbGiaacklaaKqba+aacaGLOaGaayzkaa Wdbiaacckaaaa@41E7@

Let M=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaeyypa0JaaGymaaaa@3937@

E/1/c² MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaai4laiaaigdacaGGVaGaam4yaKqbGiaacklaaaa@3BDB@

Now, the distance D.E.:

d= v i t+1/2at² MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbGaeyypa0JaamODa8aadaWgaaqcfasaa8qacaWGPbaa juaGpaqabaWdbiaadshacqGHRaWkcaaIXaGaai4laiaaikdacaWGHb GaamiDaKqbGiaacklaaaa@42DF@ (11)

                                     

Let v=a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bGaeyypa0Jaamyyaaaa@398B@

C=c=v=3=a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbGaeyypa0Jaam4yaiabg2da9iaadAhacqGH9aqpcaaI ZaGaeyypa0Jaamyyaaaa@3F0A@

t²=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bqcfaIaaiOSaKqbakabg2da9iaaiodaaaa@3B52@

d=1/2( 3 )( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbGaeyypa0JaaGymaiaac+cacaaIYaWdamaabmaabaWd biaaiodaa8aacaGLOaGaayzkaaWaaeWaaeaapeGaaG4maaWdaiaawI cacaGLPaaaaaa@3F96@

=9/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaI5aGaai4laiaaikdaaaa@39DC@

=4.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaI0aGaaiOlaiaaiwdaaaa@39D9@

Figure 1

Figure 1 Static Equilibrium of acceleration to gravity with a hollow core.

Now Circumference=Area

2πR=πR² MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaeqiWdaNaamOuaiabg2da9iabec8aWjaadkfajuai caGGYcaaaa@3EF2@ (12)

                                          

R=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0JaaGOmaaaa@393D@

R E =6371 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaajuaibaWdbiaadweaaKqba+aabeaapeGa eyypa0JaaGOnaiaaiodacaaI3aGaaGymaaaa@3D5F@

6.3712=4.371 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI2aGaaiOlaiaaiodacaaI3aGaaGymaiabgkHiTiaaikda cqGH9aqpcaaI0aGaaiOlaiaaiodacaaI3aGaaGymaaaa@40A7@

Let s=d=4.371 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaeyypa0Jaamizaiabg2da9iaaisdacaGGUaGaaG4m aiaaiEdacaaIXaaaaa@3E3A@

d=4.3714.5= v i t+1/2at² MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbGaeyypa0JaaGinaiaac6cacaaIZaGaaG4naiaaigda cqGHsislcaaI0aGaaiOlaiaaiwdacqGH9aqpcaWG2bWdamaaBaaaju aibaWdbiaadMgaa8aabeaajuaGpeGaamiDaiabgUcaRiaaigdacaGG VaGaaGOmaiaadggacaWG0bqcfaIaaiOSaaaa@4AAA@   (13)

                      

v i t=0.271=e =AT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWdamaaBaaajuaibaWdbiaadMgaaKqba+aabeaapeGa amiDaiabg2da9iaaicdacaGGUaGaaGOmaiaaiEdacaaIXaGaeyypa0 JaamyzaiaabccacqGH9aqpcaWGbbGaamivaaaa@4483@ Math Energy

v i ( t )=2.7181.73 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWdamaaBaaajuaibaWdbiaadMgaaKqba+aabeaadaqa daqaa8qacqGHAiI1caWG0baapaGaayjkaiaawMcaa8qacqGH9aqpca aIYaGaaiOlaiaaiEdacaaIXaGaaGioaiabgkHiTiaaigdacaGGUaGa aG4naiaaiodaaaa@4671@

=1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIXaGaaiOlaiaaicdaaaa@39D1@

d=1.0+4.5=5.5     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbGaeyypa0JaaGymaiaac6cacaaIWaGaey4kaSIaaGin aiaac6cacaaI1aGaeyypa0JaaGynaiaac6cacaaI1aGaaiiOaiaacc kacaGGGcGaaiiOaaaa@4591@ (14)

                              

4.3715.5  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI0aGaaiOlaiaaiodacaaI3aGaaGymaiabgkHiTiaaiwda caGGUaGaaGynaiaacckaaaa@3E8E@

=1.271 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIXaGaaiOlaiaaikdacaaI3aGaaGymaaaa@3B4F@

~4/π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG+bGaaGinaiaac+cacqaHapaCaaa@3AD4@

=ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcqaHbpGCaaa@396A@

AT Density

We see that the constant is very close to c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbaaaa@378C@ , the speed of light, within the marginal error of significant digits. The c=eigenvector MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHAiI1caWGJbGaeyypa0JaamyzaiaadMgacaWGNbGaamyz aiaad6gacaWG2bGaamyzaiaadogacaWG0bGaam4Baiaadkhaaaa@4482@ from AT Math.

Acknowledgements

None.

Conflict of interest

The author declare there is no conflict of interest.

References

  1. Cusack P. Astro-theology. Cusack’s Universe. J f Physical Mathematics. 2016.
Creative Commons Attribution License

©2018 Cusack. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.