Static condition for the formation of earth's surface under gravity

Opinion

When comparing the centripetal acceleration of the Earth which tends to spin the Earth's mass outward, with the gravitational forces pulling it together, we see an interesting result.
a. centripetal force
$F_{C}=M a=M_{C}\left(\omega^{2} r\right)$
$\omega^{2}=(d \theta / d t)^{2}=(40,075 \mathrm{~km} / 24 \text { hours })^{2}=1669^{2} \mathrm{~km} / \mathrm{hr}$
b. gravitational forces
$F_{G}=g G M_{1} M_{E} / r^{2}$
Set the two equal to determine the static conditions for the surface of the planet ${ }^{1}$
$F=g G M_{1} M_{E} / r^{2}=F_{G}=M a=M_{C}\left(\omega^{2} r\right) C$
(Note: $G=6.52$ not $6.67=\operatorname{Ln} \pi / 1.618)$
$6.52(1)(5.972) /(6371){ }^{2} C=(5.972)(1669.79){ }^{2}(6371)$
$6.52 C=(1669.79)^{2}(6371)^{3}=721.07$
$C=3.007 \sim c=$ speed of light
2.9979 / $3.007=99.69 \%$ Accurate

Now Using $G=6.67$
$g 6.67(1)(5.972) /(6371)^{2}=(5.972)(1669.79){ }^{2}(6371)$
$6.67 \mathrm{~g}=(1669.79)^{2}(6371)^{3}=721.078$
$g=1.081$ Atomic Mass of Hydrogen
And
$6.52 C=721.078$
$C=3.007 \sim c=t^{2}$
$1.081 \times 3.007 / 6.52$
$=0.498 \sim 0.5$
$=1 / 201$
$=1 / Y$ from AT Math
$=t$
Continuing,
$E=1 / t$
$t=1 / E=1 / Y$
$1 / 2.01=0.498$
And $E=M c^{2}$

Opinion
Volume I Issue I-2018

Paul TE Cusack

Park Ave, Saint John, Canada

Correspondence: Paul TE Cusack, BScE, Dule 23 Park Ave,
Saint John, NB E2J IR2, Canada, Email st-michael@hotmail.com
Received: February 02, 2018 | Published: March 02, 2018
$1 / E=1 /\left(M c^{2}\right)$
Let $M=1$
E/1/c c^{2}
Now, the distance D.E.:
$d=v_{i} t+1 / 2 a t^{2}$
Let $v=a$
$C=c=v=3=a$
$t^{2}=3$
$d=1 / 2(3)(3)$
$=9 / 2$
$=4.5$
STATIC EQUILIBRIUM FG

Figure I Static Equilibrium of acceleration to gravity with a hollow core.
Now Circumference=Area
$2 \pi R=\pi R^{2}$

$$
\begin{aligned}
& R=2 \\
& R_{E}=6371 \\
& 6.371-2=4.371 \\
& \text { Let } s=d=4.371 \\
& d=4.371-4.5=v_{i} t+1 / 2 a t^{2} \\
& v_{i} t=0.271=e=A T \text { Math Energy } \\
& v_{i}(\sqrt{ } t)=2.718-1.73 \\
& =1.0 \\
& d=1.0+4.5=5.5 \\
& 4.371-5.5 \\
& =1.271 \\
& \sim 4 / \pi
\end{aligned}
$$

$=\rho$
AT Density
We see that the constant is very close to c, the speed of light, within the marginal error of significant digits.

The $\sqrt{ } c=$ eigenvector from AT Math.

Acknowledgements

None

Conflict of interest

The author declare there is no conflict of interest.

References

1. Cusack P. Astro-theology. Cusack's Universe. J f Physical Mathematics. 2016.
