Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Review Article Volume 1 Issue 5

Decay of solutions for 2D navier-stokes equations posed on rectangles and on a half-strip

Padilha MV, Larkin NA

Departamento de Matematica, Universidade Estadual de Maring

Correspondence: Larkin NA, Departamento de Matemática,Universidade Estadual de Maringá, Av. Colombo 5790, Agência UEM, 87020-900, Maringá, PR, Brazil

Received: June 26, 2018 | Published: September 27, 2018

Citation: Larkin NA, Padilha MV. Decay of solutions for 2D navier-stokes equations posed on rectangles and on a half-strip. Open Acc J Math Theor Phy. 2018;1(5):203-208. DOI: 10.15406/oajmtp.2018.01.00035

Download PDF

Abstract

Initial-boundary value problems for 2D Navier-Stokes equations posed on rectangles and on a half-strip were considered. The existence and uniqueness of regular global solutions on rectangles and their exponential decay as well as exponential decay of generalized solutions on a half-strip have been established.

Keywords: navier-stokes equations, lipschitz and smooth domains, decay in bounded and unbounded domains

Introduction

The main goal of this work is establishing of sharp estimates for the exponential decay rates of solutions to initial-boundary value problems for the 2D Navier-Stokes equations:

u t +(u)u=νΔup,inΩ×(0,t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaamiDaaqabaqcfaOaey4kaSIaaGikaiaadwhacqGH flY1cqGHhis0caaIPaGaamyDaiaai2dacqaH9oGBcqqHuoarcaWG1b GaeyOeI0Iaey4bIeTaamiCaiaaiYcacaaMe8UaaGjbVlaayIW7caWG PbGaamOBaiaayIW7caaMe8UaaGjbVlabgM6axjabgEna0kaaiIcaca aIWaGaaGilaiaadshacaaIPaGaaGilaaaa@5D41@  (1)

u=0inΩ,u | Ω =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaamyDaiaai2dacaaIWaGaaGjbVlaaysW7caaMi8UaamyAaiaad6ga caaMi8UaaGjbVlaaysW7cqGHPoWvcaaISaGaaGjbVlaaysW7caaMe8 UaamyDaiaaiYhadaWgaaqaaiabgkGi2kabgM6axbqabaGaaGypaiaa icdacaaISaaaaa@5379@  (2)

u(x,y,0)= u 0 (x,y), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aIOaGaamiEaiaaiYcacaWG5bGaaGilaiaaicdacaaIPaGaaGypaiaa dwhadaWgaaqcfasaaiaaicdaaeqaaKqbakaaiIcacaWG4bGaaGilai aadMhacaaIPaGaaGilaaaa@451D@  (3)
where Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgM6axb aa@3808@ is either a bounded rectangle or a half-strip in 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaeqa juaibaGaaGOmaaaaaaa@423D@  with the homogeneous Dirichlet condition on the boundary of Ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgM6axj aac6caaaa@38BA@

The question of decay of the energy for generalized solutions had been stated by J.Leray1 and attracts till now attention of many pure and applied mathematicians2‒11. In all of these papers, the decay rate of u (t) L 2 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamyDaiab=vIiqjaaiIcacaWG0bGa aGykamaaBaaajuaibaGaamitaKqbaoaaCaaajuaqbeqcKvay=haaca aIYaaaaKqbGiaaiIcacqGHPoWvcaaIPaaabeaaaaa@4801@  was controlled by the first eigenvalue of the operator A=PΔ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca aI9aGaeyOeI0Iaamiuaiabgs5aejaacYcaaaa@3BDF@ where P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfaaa a@374E@ is the projection operator on solenoidal subspace of L 2 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabKqbGeaacaaIYaaaaKqbakaaiIcacqqHPoWvcaaIPaGaaiOl aaaa@3C89@  Associated with stability questions, problems on dimensions of attractors and nonlinear spectral manifolds also have been studied.2,6,7

It is well-known that solutions of the 2D Navier-Stokes equations posed on smooth bounded domains with the Dirichlet boundary conditions are globally regular.9,11‒14 On the other hand, the question of regularity is not obvious in the case of bounded Lipschitz domains and unbounded Lipschitz and smooth domains. It has been proved that for Lipschitz domains, bounded and unbounded, there exists a unique global generalized solution.9,11,14

u, u t L (0,; L 2 (Ω)) L 2 (0,; H 1 (Ω)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aaiYcacaWG1bWaaSbaaKqbGeaacaWG0baabeaajuaGcaaMe8UaaGjb VlabgIGiolaadYeadaahaaqcfasabeaacqGHEisPaaqcfaOaaGikai aaicdacaaISaGaeyOhIuQaaG4oaiaadYeadaahaaqcfasabeaacaaI YaaaaKqbakaaiIcacqGHPoWvcaaIPaGaaGykaiabgMIihlaadYeada ahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaaIWaGaaGilaiabg6Hi LkaaiUdacaWGibWaaWbaaKqbGeqabaGaaGymaaaajuaGcaaIOaGaey yQdCLaaGykaiaaiMcacaaISaaaaa@5BD4@

but it was not clear whether

u L (0,; H 2 (Ω)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aaysW7cqGHiiIZcaaMe8UaamitamaaCaaajuaibeqaaiabg6HiLcaa juaGcaaIOaGaaGimaiaaiYcacqGHEisPcaaI7aGaamisamaaCaaaju aibeqaaiaaikdaaaqcfaOaaGikaiabgM6axjaaiMcacaaIPaaaaa@4926@

at least for bounded Lipschitz domains.

In this work, we have established this fact for rectangles making use of ideas.15 The following inequality holds for rectangles

u H 2 (Ω) 2 (t)+ u t L 2 (Ω) 2 (t)C u 0 H 2 (Ω) 2 exp(ν( π 2 L 2 + π 2 B 2 )t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamyDaiab=vIiqnaaDaaajuaibaGa amisaKqbaoaaCaaajuaibeqaaiaaikdaaaGaaGikaiabfM6axjaaiM caaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgUcaRiab=vIi qjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=vIiqnaaDaaaju aibaGaamitaKqbaoaaCaaajuaibeqaaiaaikdaaaGaaGikaiabfM6a xjaaiMcaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJk aadoeacqWFLicucaWG1bWaaSbaaKqbGeaacaaIWaaabeaajuaGcqWF LicudaqhaaqcfasaaiaadIeajuaGdaahaaqcfasabeaacaaIYaaaai aaiIcacqqHPoWvcaaIPaaabaGaaGOmaaaajuaGciGGLbGaaiiEaiaa cchacaaIOaGaeyOeI0IaeqyVd4MaaGikamaalaaabaGaeqiWda3aaW baaeqajuaibaGaaGOmaaaaaKqbagaacaWGmbWaaWbaaeqajuaibaGa aGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacqaHapaCdaahaaqcfasabe aacaaIYaaaaaqcfayaaiaadkeadaahaaqabKqbGeaacaaIYaaaaaaa juaGcaaIPaGaamiDaiaaiMcaaaa@7A61@

and
u H 1 (Ω) 2 (t)+ u t L 2 (Ω) 2 (t)C u 0 H 2 (Ω) 2 exp( ν π 2 B 2 t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamyDaiab=vIiqnaaDaaajuaibaGa amisaKqbaoaaCaaajuaibeqaaiaaigdaaaGaaGikaiabfM6axjaaiM caaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgUcaRiab=vIi qjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=vIiqnaaDaaaju aibaGaamitaKqbaoaaCaaajuaibeqaaiaaikdaaaGaaGikaiabfM6a xjaaiMcaaeaacaaIYaaaaiaaiIcajuaGcaWG0bGaaGykaiabgsMiJk aadoeacqWFLicucaWG1bWaaSbaaKqbGeaacaaIWaaajuaGbeaacqWF LicudaqhaaqcfasaaiaadIeajuaGdaahaaqcfasabeaacaaIYaaaai aaiIcacqqHPoWvcaaIPaaabaGaaGOmaaaajuaGciGGLbGaaiiEaiaa cchacaaIOaGaeyOeI0YaaSaaaeaacqaH9oGBcqaHapaCdaahaaqabK qbGeaacaaIYaaaaaqcfayaaiaadkeadaahaaqabKqbGeaacaaIYaaa aaaajuaGcaWG0bGaaGykaaaa@7247@

for a half-strip.

Our paper has the following structure: Chapter I is Introduction. Chapter 2 contains notations and auxiliary facts. In Chapter 3, existence and uniqueness of global generalized solutions on either bounded or unbounded Lipschitz domains have been established. In Chapter 4, regularity and decay of solutions on rectangles and on a half-strip have been studied.

Notations and auxiliary facts

Let Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@ be a domain in 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaeqa juaibaGaaGOmaaaajuaGcaaIUaaaaa@4383@  Define as in:11

D x = x , D y = y , D j = D x j x D y j y = | j x + j y | x j x y j y . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaamiEaaqabaqcfaOaaGypamaalaaabaGaeyOaIyla baGaeyOaIyRaamiEaaaacaaISaGaaGjbVlaaysW7caWGebWaaSbaaK qbGeaacaWG5baajuaGbeaacaaI9aWaaSaaaeaacqGHciITaeaacqGH ciITcaWG5baaaiaaiYcacaaMe8UaaGjbVlaadseadaahaaqabKqbGe aacaWGQbaaaKqbakaai2dacaWGebWaaSbaaKqbGeaacaWG4baabeaa juaGdaahaaqcfasabeaacaWGQbqcfa4aaSbaaKqbGeaacaWG4baabe aaaaqcfaOaamiramaaBaaajuaibaGaamyEaaqabaqcfa4aaWbaaKqb GeqabaGaamOAaKqbaoaaBaaajuaibaGaamyEaaqabaaaaKqbakaai2 dadaWcaaqaaiabgkGi2oaaCaaajuaibeqaaiaaiYhacaWGQbqcfa4a aSbaaKqbGeaacaWG4baabeaacqGHRaWkcaWGQbqcfa4aaSbaaKqbGe aacaWG5baabeaacaaI8baaaaqcfayaaiabgkGi2kaadIhadaahaaqa bKqbGeaacaWGQbqcfa4aaSbaaKqbGeaacaWG4baabeaaaaqcfaOaey OaIyRaamyEamaaCaaabeqcfasaaiaadQgajuaGdaWgaaqcfasaaiaa dMhaaeqaaaaaaaqcfaOaaGOlaaaa@748D@

We denote for scalar functions f(x,y,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiilaiaadMhacaGGSaGaamiDaiaacMcaaaa@3EA1@  by L p (Ω),1<p<+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabKqbGeaacaWGWbaaaKqbakaaiIcacqGHPoWvcaaIPaGaaGil aiaaysW7caaIXaGaaGipaiaadchacaaI8aGaey4kaSIaeyOhIuQaaG jbVdaa@4570@  the Banach space with the norm

f L p (Ω) p = Ω |f | p dxdy,p(1,+),f L (D) =esssu p D |f(x,y)|. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamOzaiab=vIiqnaaDaaajuaibaGa amitaKqbaoaaCaaajuaibeqaaiaadchaaaGaaGikaiabfM6axjaaiM caaeaacaWGWbaaaKqbakaai2dadaWdraqabKqbGeaacqqHPoWvaKqb agqacqGHRiI8aiaaiYhacaWGMbGaaGiFamaaCaaabeqcfasaaiaadc haaaqcfaOaaGjcVlaadsgacaWG4bGaamizaiaadMhacaaISaGaaGjb VlaadchacqGHiiIZcaaIOaGaaGymaiaaiYcacqGHRaWkcqGHEisPca aIPaGaaGilaiaaysW7cqWFLicucaWGMbGae8xjIa1aaSbaaeaacaWG mbWaaWbaaKqbGeqabaGaeyOhIukaaKqbakaaiIcacaWGebGaaGykaa qabaGaaGypaiaadwgacaWGZbGaam4CaiaaysW7caWGZbGaamyDaiaa dchadaWgaaqcfasaaiaadseaaeqaaKqbakaaiYhacaWGMbGaaGikai aadIhacaaISaGaamyEaiaaiMcacaaI8bGaaGOlaaaa@7A97@

For p=2, L 2 (Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aai2dacaaIYaGaaGilaiaaysW7caWGmbWaaWbaaKqbGeqabaGaaGOm aaaajuaGcaaIOaGaeyyQdCfaaa@3F6F@  is a Hilbert space with the scalar product

(u,v)= Ω u(x,y)v(x,y)dxdyandthenormu 2 = Ω |u(x,y )| 2 dxdy. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwhacaaISaGaamODaiaaiMcacaaI9aWaa8qeaeqajuaibaGaeuyQ dCfajuaGbeGaey4kIipacaWG1bGaaGikaiaadIhacaaISaGaamyEai aaiMcacaWG2bGaaGikaiaadIhacaaISaGaamyEaiaaiMcacaWGKbGa amiEaiaadsgacaWG5bGaaGjbVlaayIW7caWGHbGaamOBaiaadsgaca aMe8UaamiDaiaadIgacaWGLbGaaGjbVlaad6gacaWGVbGaamOCaiaa d2gacaaMi8UaaGjbVhbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadw hacqWFLicudaahaaqcfasabeaacaaIYaaaaKqbakaai2dadaWdraqa bKqbGeaacqqHPoWvaKqbagqacqGHRiI8aiaaiYhacaWG1bGaaGikai aadIhacaaISaGaamyEaiaaiMcacaaI8bWaaWbaaKqbGeqabaGaaGOm aaaajuaGcaWGKbGaamiEaiaadsgacaWG5bGaaGOlaaaa@7B69@

The Sobolev space W m,p (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada ahaaqcfasabeaacaWGTbGaaGilaiaadchaaaqcfaOaaGikaiabgM6a xjaaiMcaaaa@3DC4@  is a Banach space with the norm
u W k,p (Ω) = 0|α|k D α u L p (Ω) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYBK8yipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamyDaiab=vIiqnaaBaaabaGaam4v amaaCaaabeqcfasaaiaadUgacaaISaGaamiCaaaajuaGcaaIOaGaey yQdCLaaGykaaqabaGaaGypamaaqafabeqcfasaaiaaicdacqGHKjYO caaI8bGaeqySdeMaaGiFaiabgsMiJkaadUgaaKqbagqacqGHris5ai ab=vIiqjaadseadaahaaqcfasabeaacqaHXoqyaaqcfaOaamyDaiab =vIiqnaaBaaabaGaamitamaaCaaabeqcfasaaiaadchaaaqcfaOaaG ikaiabgM6axjaaiMcaaeqaaiaai6caaaa@5EB7@
When p=2, W m,2 (Ω)= H m (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchaca aI9aGaaGOmaiaaiYcacaaMe8Uaam4vamaaCaaajuaibeqaaiaad2ga caaISaGaaGOmaaaajuaGcaaIOaGaeyyQdCLaaGykaiaai2dacaWGib WaaWbaaKqbGeqabaGaamyBaaaajuaGcaaIOaGaeyyQdCLaaGykaaaa @489E@  is a Hilbert space with the following scalar product and the norm:

((u,v)) H m (Ω) = |j|m ( D j u, D j v),u H m (Ω) 2 = |j|m D j u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGykamaaBaaajuaibaGa amisaKqbaoaaCaaajuaibeqaaiaad2gaaaGaaGikaiabfM6axjaaiM caaeqaaKqbakaai2dadaaeqbqabKqbGeaacaaI8bGaamOAaiaaiYha cqGHKjYOcaWGTbaajuaGbeGaeyyeIuoacaaIOaGaamiramaaCaaaju aibeqaaiaadQgaaaqcfaOaamyDaiaaiYcacaWGebWaaWbaaKqbGeqa baGaamOAaaaajuaGcaWG2bGaaGykaiaaiYcacaaMe8EeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDaiab=vIiqnaaDaaajuaibaGaamis aKqbaoaaCaaajuaibeqaaiaad2gaaaGaaGikaiabfM6axjaaiMcaae aacaaIYaaaaKqbakaai2dadaaeqbqabeaajuaicaaI8bGaamOAaiaa iYhacqGHKjYOcaWGTbaajuaGbeGaeyyeIuoacqWFLicucaWGebWaaW baaKqbGeqabaGaamOAaaaajuaGcaWG1bGae8xjIa1aaWbaaKqbGeqa baGaaGOmaaaajuaGcaaIUaaaaa@76DD@

Let D(Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcfaOae83aXtKaaGikaiab fM6axjaaiMcaaaa@44B3@ or D( Ω ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcfaOae83aXtKaaGikaiqb gM6axzaaraGaaGykaaaa@44CC@ be the space of C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaCaaajuaibeqaaiabg6HiLcaaaaa@3891@  functions with compact support in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@  or Ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbfM6axz aaraaaaa@381F@ . The closure of C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada ahaaqabKqbGeaacqGHEisPaaaaaa@3902@  functions in W m,p (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada ahaaqabKqbGeaacaWGTbGaaGilaiaadchaaaqcfaOaaGikaiabfM6a xjaaiMcaaaa@3DC3@  is denoted by W 0 m,p (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada qhaaqcfasaaiaaicdaaeaacaWGTbGaaGilaiaadchaaaqcfaOaaGik aiabfM6axjaaiMcaaaa@3E7D@  and ( H 0 m (Ω)whenp=2). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaysW7ca aIOaGaamisamaaDaaajuaibaGaaGimaaqaaiaad2gaaaqcfaOaaGik aiabfM6axjaaiMcacaaMc8Uaam4DaiaadIgacaWGLbGaamOBaiaayk W7caWGWbGaeyypa0JaaGOmaiaacMcacaGGUaaaaa@49F4@

Define the auxiliary spaces which are projections for the solenoidal vector functions,

V={uD(Ω),u=0},V=theclosureofVin H 0 1 (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcfaOae8xfXBLaaGypaiaa iUhacaWG1bGaeyicI4Sae83aXtKaaGikaiabgM6axjaaiMcacaaISa Gaey4bIeTaamyDaiaai2dacaaIWaGaaGyFaiaaiYcacaaMe8UaaGjb VlaadAfacaaI9aGaaeiDaiaabIgacaqGLbGaaGPaVlaabogacaqGSb Gaae4BaiaabohacaqG1bGaaeOCaiaabwgacaaMc8Uaae4BaiaabAga caaMc8Uae8xfXBLaaGPaVlaabMgacaqGUbGaaGPaVlaadIeadaqhaa qcfasaaiaaicdaaeaacaaIXaaaaKqbakaaiIcacqqHPoWvcaaIPaGa aGilaaaa@7384@

H=theclosureofVin L 2 (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeaca aI9aGaaeiDaiaabIgacaqGLbGaaGPaVlaabogacaqGSbGaae4Baiaa bohacaqG1bGaaeOCaiaabwgacaaMc8Uaae4BaiaabAgacaaMc8+efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvcaaM c8UaaeyAaiaab6gacaaMc8UaamitamaaCaaajuaibeqaaiaaikdaaa qcfaOaaGikaiabfM6axjaaiMcacaaISaaaaa@5E57@

The space H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeaaa a@3746@ is eqquiped with the natural L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabKqbGeaacaaIYaaaaaaa@3856@ inner product. The space V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaaa a@3754@ will be equipped with the scalar produt
((u,v))=( D x u, D x v)+( D y u, D y v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca aIOaGaamyDaiaaiYcacaWG2bGaaGykaiaaiMcacaaI9aGaaGikaiaa dseadaWgaaqcfasaaiaadIhaaKqbagqaaiaadwhacaaISaGaamiram aaBaaajuaibaGaamiEaaqabaqcfaOaamODaiaaiMcacqGHRaWkcaaI OaGaamiramaaBaaajuaibaGaamyEaaqcfayabaGaamyDaiaaiYcaca WGebWaaSbaaKqbGeaacaWG5baajuaGbeaacaWG2bGaaGykaaaa@5045@

when Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@ is bounded. If Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@ is unbounded, we define the inner product as the sum of the inner products as following:

                                                      

[[u,v]]=(u,v)+((u,v)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiUfaca aIBbGaamyDaiaaiYcacaWG2bGaaGyxaiaai2facaaI9aGaaGikaiaa dwhacaaISaGaamODaiaaiMcacqGHRaWkcaaIOaGaaGikaiaadwhaca aISaGaamODaiaaiMcacaaIPaGaaGOlaaaa@48A2@

We use the usual notations of Sobolev spaces W k,p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada ahaaqcfasabeaacaWGRbGaaGilaiaadchaaaqcfaOaaiilaaaa@3B7E@ L p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaCaaabeqcfasaaiaadchaaaaaaa@381E@ and H k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada ahaaqcfasabeaacaWGRbaaaaaa@3886@ for vector functions and the following notations for the norms:
i) For vector functions u(x,y,t)=( u 1 (x,y,t), u 2 (x,y,t)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aIOaGaamiEaiaaiYcacaWG5bGaaGilaiaadshacaaIPaGaaGypaiaa iIcacaWG1bWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaamiEai aaiYcacaWG5bGaaGilaiaadshacaaIPaGaaGilaiaadwhadaWgaaqc fasaaiaaikdaaKqbagqaaiaaiIcacaWG4bGaaGilaiaadMhacaaISa GaamiDaiaaiMcacaaIPaGaaGilaaaa@517F@

u L p (Ω) p = Ω (| u 1 | p +| u 2 | p )dxdy, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dYeajuaGdaahaaqcfasabeaacaWGWbaaaiaaiIcacqqHPoWvcaaIPa aabaGaamiCaaaajuaGcaaI9aWaa8qeaeqajuaibaGaeuyQdCfajuaG beGaey4kIipacaaIOaGaaGiFaiaadwhadaWgaaqcfasaaiaaigdaae qaaKqbakaaiYhadaahaaqcfasabeaacaWGWbaaaKqbakabgUcaRiaa iYhacaWG1bWaaSbaaKqbGeaacaaIYaaabeaajuaGcaaI8bWaaWbaae qajuaibaGaamiCaaaajuaGcaaMi8UaaGykaiaadsgacaWG4bGaamiz aiaadMhacaaISaaaaa@5FF3@

u W k,p (Ω) = 0|α|k D α u 1 L p (Ω) + D α u 2 L p (Ω) ,p(1,+). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dEfajuaGdaahaaqcfasabeaacaWGRbGaaGilaiaadchaaaGaaGikai abfM6axjaaiMcaaKqbagqaaiaai2dadaaeqbqabKqbGeaacaaIWaGa eyizImQaaGiFaiabeg7aHjaaiYhacqGHKjYOcaWGRbaajuaGbeGaey yeIuoacqWFLicucaWGebWaaWbaaKqbGeqabaGaeqySdegaaKqbakaa dwhadaWgaaqcfasaaiaaigdaaeqaaKqbakab=vIiqnaaBaaabaGaam itamaaCaaabeqcfasaaiaadchaaaqcfaOaaGikaiabfM6axjaaiMca aeqaaiabgUcaRiab=vIiqjaadseadaahaaqcfasabeaacqaHXoqyaa qcfaOaamyDamaaBaaajuaibaGaaGOmaaqabaqcfaOae8xjIa1aaSba aeaacaWGmbWaaWbaaeqajuaibaGaamiCaaaajuaGcaaIOaGaeuyQdC LaaGykaaqabaGaaGilaiaaysW7caWGWbGaeyicI4SaaGikaiaaigda caaISaGaey4kaSIaeyOhIuQaaGykaiaai6caaaa@79CA@

The closures of V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcfaOae8xfXBfaaa@41E4@ in L 2 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqcfasabeaacaaIYaaaaKqbakaaiIcacqqHPoWvcaaIPaaaaa@3BD7@ and in H 0 1 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada qhaaqcfasaaiaaicdaaeaacaaIXaaaaKqbakaaiIcacqqHPoWvcaaI Paaaaa@3C8C@ are the basic spaces in our study. We denote them by H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeaaa a@3746@ and V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaaa a@3754@ respectively.. Obviously V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaaa a@3754@ is a subspace of H 0 1 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada qhaaqcfasaaiaaicdaaeaacaaIXaaaaKqbakaaiIcacqqHPoWvcaaI PaGaaGOlaaaa@3D44@

Define the operator

(u)u=( u 1 u 1x + u 1 u 2x + u 2 u 1y + u 2 u 2y ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WG1bGaeyyXICTaey4bIeTaaGykaiaadwhacaaI9aGaaGikaiaadwha daWgaaqcfasaaiaaigdaaeqaaKqbakaadwhadaWgaaqcfasaaiaaig dacaWG4baajuaGbeaacqGHRaWkcaWG1bWaaSbaaKqbGeaacaaIXaaa juaGbeaacaWG1bWaaSbaaKqbGeaacaaIYaGaamiEaaqcfayabaGaey 4kaSIaamyDamaaBaaajuaibaGaaGOmaaqcfayabaGaamyDamaaBaaa juaibaGaaGymaiaadMhaaeqaaKqbakabgUcaRiaadwhadaWgaaqcfa saaiaaikdaaKqbagqaaiaadwhadaWgaaqcfasaaiaaikdacaWG5baa juaGbeaacaaIPaGaaGOlaaaa@5BB6@

Lemma 4.1 (The Steklov Inequality)16 Let v H 0 1 (0,L). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GHiiIZcaWGibWaa0baaKqbGeaacaaIWaaabaGaaGymaaaajuaGcaaI OaGaaGimaiaaiYcacaWGmbGaaGykaiaai6caaaa@4076@  Then

π 2 L 2 v 2 (t) v x 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeqiWda3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGmbWaaWba aeqajuaibaGaaGOmaaaaaaqeeuuDJXwAKbsr4rNCHbacfaqcfaOae8 xjIaLaamODaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGik aiaadshacaaIPaGaeyizImQae8xjIaLaamODamaaBaaajuaibaGaam iEaaqcfayabaGae8xjIa1aaWbaaeqajuaibaGaaGOmaaaajuaGcaaI OaGaamiDaiaaiMcacaaIUaaaaa@5384@  (4)

Proof. Let v(t) H 0 1 (0,π) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaca aIOaGaamiDaiaaiMcacqGHiiIZcaWGibWaa0baaKqbGeaacaaIWaaa baGaaGymaaaajuaGcaaIOaGaaGimaiaaiYcacqaHapaCcaaIPaaaaa@4308@ , then by the Fourier series,

0 π v t 2 (t)dt 0 π v 2 (t)dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qmae qajuaibaGaaGimaaqcfauaaiabec8aWbqcfaOaey4kIipacaWG2bWa a0baaKqbGeaacaWG0baabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiM cacaaMi8UaamizaiaadshacqGHLjYSdaWdXaqabKqbGeaacaaIWaaa juaqbaGaeqiWdahajuaGcqGHRiI8aiaadAhadaahaaqcfasabeaaca aIYaaaaKqbakaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaa i6caaaa@5571@

Inequality (4) follows by a simple scaling.

Lemma 4.2 (Differential form of the Grownwall Inequality) Let I=[ t 0 , t 1 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeaca aI9aGaaG4waiaadshadaWgaaqcfasaaiaaicdaaeqaaKqbakaaiYca caWG0bWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIDbGaaiOlaaaa@4063@ Suppose that functions a,b:I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca aISaGaamOyaiaaiQdacaWGjbGaeyOKH46efv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@4733@  are integrable and a function a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca aIOaGaamiDaiaaiMcaaaa@39BD@ may be of any sign. Let u:I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aI6aGaamysaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae8xhHifaaa@45AA@  be a differentiable function satisfying

u (t)a(t)u(t)+b(t),fortIandu( t 0 )= u 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga qbaiaaiIcacaWG0bGaaGykaiabgsMiJkaadggacaaIOaGaamiDaiaa iMcacaWG1bGaaGikaiaadshacaaIPaGaey4kaSIaamOyaiaaiIcaca WG0bGaaGykaiaaiYcacaqGMbGaae4BaiaabkhacaWG0bGaeyicI4Sa amysaiaabggacaqGUbGaaeizaiaayIW7caaMi8UaamyDaiaaiIcaca WG0bWaaSbaaKqbGeaacaaIWaaajuaGbeaacaaIPaGaaGypaiaadwha daWgaaqcfasaaiaaicdaaeqaaKqbakaaiYcaaaa@5C01@  (5)

then
u(t) u 0 e t 0 t a(t)dt + t 0 t e t 0 s a(r)dr b(s)ds. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aIOaGaamiDaiaaiMcacqGHKjYOcaWG1bWaaSbaaKqbGeaacaaIWaaa juaGbeaacaWGLbWaaWbaaeqabaWaa8qmaKqbGeqabaqcfaKaamiDaK qbaoaaBaaajqwba+FaaiaaicdaaeqaaaqcfauaaiaadshaaKqbGiab gUIiYdGaamyyaiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaa aajuaGcqGHRaWkdaWdXaqabKqbafaacaWG0bqcfa4aaSbaaKqbafaa caaIWaaabeaaaeaacaWG0baajuaGcqGHRiI8aiaadwgadaahaaqabK qbGeaajuaGdaWdXaqcfasabeaacaWG0bqcfa4aaSbaaKqbGeaacaaI WaaabeaaaeaacaWGZbaacqGHRiI8aiaadggacaaIOaGaamOCaiaaiM cacaaMi8UaamizaiaadkhaaaqcfaOaamOyaiaaiIcacaWGZbGaaGyk aiaayIW7caWGKbGaam4Caiaai6caaaa@6C76@  (6)

Proof. Multiply (5) by the integrating factor e t 0 s a(r)dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada ahaaqcfasabeaajuaGdaWdXaqcfasabeaajuaqcaWG0bqcfa4aaSba aKqbGeaacaaIWaaabeaaaKqbafaacaWGZbaajuaicqGHRiI8aiaadg gacaaIOaGaamOCaiaaiMcacaaMi8Uaamizaiaadkhaaaaaaa@4586@ and integrate from t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqcfasaaiaaicdaaKqbagqaaaaa@3909@ to t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshaca GGUaaaaa@3824@

The next Lemmas will be used in estimates:

Lemma 4.3 (See: 11,14 ) Let v H 0 1 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GHiiIZcaWGibWaa0baaKqbGeaacaaIWaaabaGaaGymaaaajuaGcaaI OaGaeuyQdCLaaGykaaaa@3F0B@ , then

v L 4 (Ω) 2 1/4 v L 2 (Ω) 1/2 v L 2 (Ω) 1/2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadAhacqWFLicudaWgaaqcfasaaiaa dYeajuaGdaahaaqcfasabeaacaaI0aaaaiaaiIcacqqHPoWvcaaIPa aabeaajuaGcqGHKjYOcaaIYaWaaWbaaKqbGeqabaGaaGymaiaai+ca caaI0aaaaKqbakab=vIiqjaadAhacqWFLicudaqhaaqcfasaaiaadY eajuaGdaahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPaaa baGaaGymaiaai+cacaaIYaaaaKqbakab=vIiqjabgEGirlaadAhacq WFLicudaqhaaqcfasaaiaadYeajuaGdaahaaqcfasabeaacaaIYaaa aiaaiIcacqqHPoWvcaaIPaaabaGaaGymaiaai+cacaaIYaaaaKqbak aai6caaaa@6382@  (7)

Lemma 4.4 (See: 14 ) Let b(u,v,w)=((u)v,w), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkgaca aIOaGaamyDaiaaiYcacaWG2bGaaGilaiaadEhacaaIPaGaaGypaiaa iIcacaaIOaGaamyDaiabgwSixlabgEGirlaaiMcacaWG2bGaaGilai aadEhacaaIPaGaaGilaaaa@48E0@  then

|b(u,v,w)| 2 1/2 u 1/2 u V 1/2 v V w 1/2 w V 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiYhaca WGIbGaaGikaiaadwhacaaISaGaamODaiaaiYcacaWG3bGaaGykaiaa iYhacqGHKjYOcaaIYaWaaWbaaKqbGeqabaGaaGymaiaai+cacaaIYa aaaebbfv3ySLgzGueE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicu daahaaqcfasabeaacaaIXaGaaG4laiaaikdaaaqcfaOae8xjIaLaam yDaiab=vIiqnaaDaaajuaibaGaamOvaaqaaiaaigdacaaIVaGaaGOm aaaajuaGcqWFLicucaWG2bGae8xjIa1aaSbaaKqbGeaacaWGwbaaju aGbeaacqWFLicucaWG3bGae8xjIa1aaWbaaKqbGeqabaGaaGymaiaa i+cacaaIYaaaaKqbakab=vIiqjaadEhacqWFLicudaqhaaqcfasaai aadAfaaeaacaaIXaGaaG4laiaaikdaaaaaaa@6860@

u,v,w H 0 1 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgcGiIi aadwhacaaISaGaamODaiaaiYcacaWG3bGaeyicI4SaamisamaaDaaa juaibaGaaGimaaqaaiaaigdaaaqcfaOaaGikaiabfM6axjaaiMcaaa a@433D@ . If u L 2 (0,;V) L (0,;H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaaGim aiaaiYcacqGHEisPcaaI7aGaamOvaiaaiMcacqGHPiYXcaWGmbWaaW baaKqbGeqabaGaeyOhIukaaKqbakaaiIcacaaIWaGaaGilaiabg6Hi LkaaiUdacaWGibGaaGykaaaa@4BDE@ , then we can define the operator Bu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca WG1baaaa@383A@ such that Bu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca WG1baaaa@383A@ belongs to L 2 (0,; V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabKqbGeaacaaIYaaaaKqbakaaiIcacaaIWaGaaGilaiabg6Hi LkaaiUdaceWGwbGbauaacaaIPaaaaa@3ED6@  and
(Bu,v)=b(u,u,v), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WGcbGaamyDaiaaiYcacaWG2bGaaGykaiaai2dacaWGIbGaaGikaiaa dwhacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaaiYcaaaa@4374@

B u L 2 (0,; V ) 2 1/2 u L (0,;H) u L 2 (0,;V) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xjIaLaamOqamaaBaaajuaibaGaamyDaaqc fayabaGae8xjIa1aaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqaba GaaGOmaaaacaaIOaGaaGimaiaaiYcacqGHEisPcaaI7aGabmOvayaa faGaaGykaaqcfayabaGaeyizImQaaGOmamaaCaaajuaibeqaaiaaig dacaaIVaGaaGOmaaaajuaGcqWFLicucaWG1bGae8xjIa1aaSbaaKqb GeaacaWGmbqcfa4aaWbaaKqbGeqabaGaeyOhIukaaiaaiIcacaaIWa GaaGilaiabg6HiLkaaiUdacaWGibGaaGykaaqabaqcfaOae8xjIaLa amyDaiab=vIiqnaaBaaajuaibaGaamitaKqbaoaaCaaajuaibeqaai aaikdaaaGaaGikaiaaicdacaaISaGaeyOhIuQaaG4oaiaadAfacaaI PaaajuaGbeaacaaIUaaaaa@6852@

Existence theorems

Let Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@  be a bounded Lipschitz domain. Given u 0 H, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiabgIGiolaadIeacaGGSaaaaa@3C0B@ consider the following problem:

( u t νΔu+p+(u)u=0inΩ×(0,t), u=0inΩ×(0,t), u=0onΩ×(0,t),t>0, u(x,y,0)= u 0 (x,y),inΩ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabeaaba qbaeqabqqaaaaabaGaamyDamaaBaaajuaibaGaamiDaaqcfayabaGa eyOeI0IaeqyVd4MaeuiLdqKaamyDaiabgUcaRiabgEGirlaadchacq GHRaWkcaaIOaGaamyDaiabgwSixlabgEGirlaaiMcacaWG1bGaaGyp aiaaicdacaqGPbGaaeOBaiabfM6axjabgEna0kaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaaGilaaqaaiabgEGirlaadwhacaaI9aGaaGim aiaabMgacaqGUbGaeuyQdCLaey41aqRaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaISaaabaGaamyDaiaai2dacaaIWaGaaGPaVlaab+ga caqGUbGaaGPaVlabgkGi2kabfM6axjabgEna0kaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaaGilaiaadshacaaI+aGaaGimaiaaiYcaaeaa caWG1bGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaaIWaGaaGykai aai2dacaWG1bWaaSbaaKqbGeaacaaIWaaajuaGbeaacaaIOaGaamiE aiaaiYcacaWG5bGaaGykaiaaiYcacaqGPbGaaeOBaiabfM6axbaaai aawUhaaaaa@8AB1@  (8)

equivalent to the variational problem given by,11

( u +Au+Bu=0in(0,t),t>0 u(0)= u 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabeaaba qbaeqabiqaaaqaaiqadwhagaqbaiabgUcaRiaadgeacaWG1bGaey4k aSIaamOqaiaadwhacaaI9aGaaGimaiaabMgacaqGUbGaaGikaiaaic dacaaISaGaamiDaiaaiMcacaaISaGaamiDaiaai6dacaaIWaaabaGa amyDaiaaiIcacaaIWaGaaGykaiaai2dacaWG1bWaaSbaaKqbGeaaca aIWaaajuaGbeaacaaISaaaaaGaay5Eaaaaaa@4F6E@  (9)

where Au V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG1bGaeyicI4SabmOvayaafaaaaa@3AA4@ such that (Au,v)=ν((u,v)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WGbbGaamyDaiaaiYcacaWG2bGaaGykaiaai2dacqGHsislcqaH9oGB caaIOaGaaGikaiaadwhacaaISaGaamODaiaaiMcacaaIPaaaaa@4430@ for all vV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GHiiIZcaWGwbaaaa@39D3@ and Bu V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca WG1bGaeyicI4SabmOvayaafaaaaa@3AA5@ such that

(Bu,v)=b(u,u,v). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WGcbGaamyDaiaaiYcacaWG2bGaaGykaiaai2dacaWGIbGaaGikaiaa dwhacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaai6caaaa@4376@  (10)

Theorem 5.1 Given u 0 H 2 (Ω)V, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiabgIGiolaadIeadaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacqqHPoWvcaaIPaGaeyykICSaamOvai aacYcaaaa@4311@ there exists a unique generalized solution u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ to (8) such that for all ΦV,Φ | Ω =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agj abgIGiolaadAfacaaISaGaaGjbVlabfA6agjaaiYhadaWgaaqcfasa aiabgkGi2kabfM6axbqcfayabaGaaGypaiaaicdaaaa@4467@  it satisfies the following integral identity:

Ω { u t Φ+ν( u x Φ x + u y Φ y )u(u)Φ}dxdy=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapebabe qcfasaaiabfM6axbqcfayabiabgUIiYdGaaG4EaiaadwhadaWgaaqc fasaaiaadshaaeqaaKqbakabfA6agjabgUcaRiabe27aUjaaiIcaca WG1bWaaSbaaKqbGeaacaWG4baajuaGbeaacqqHMoGrdaWgaaqcfasa aiaadIhaaKqbagqaaiabgUcaRiaadwhadaWgaaqcfasaaiaadMhaaK qbagqaaiabfA6agnaaBaaajuaibaGaamyEaaqabaqcfaOaaGykaiab gkHiTiaadwhacaaIOaGaamyDaiabgwSixlabgEGirlaaiMcacqqHMo GrcaaI9bGaamizaiaadIhacaWGKbGaamyEaiaai2dacaaIWaGaaGil aaaa@61D3@  (11)

where

u L (0,;V), u t L (0,;H) L 2 (0;;V). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaeqajuaibaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGwbGaaGykaiaaiYcacaaMe8UaaG jbVlaadwhadaWgaaqcfasaaiaadshaaKqbagqaaiabgIGiolaadYea daahaaqabKqbGeaacqGHEisPaaqcfaOaaGikaiaaicdacaaISaGaey OhIuQaaG4oaiaadIeacaaIPaGaeyykICSaamitamaaCaaajuaibeqa aiaaikdaaaqcfaOaaGikaiaaicdacaaI7aGaeyOhIuQaaG4oaiaadA facaaIPaGaaGOlaaaa@5DCF@

Proof. The estimates that follow may be established on Gallerkin approximations.14,9 We estimate:

Estimate I - u L (0,;H) L 2 (0,;V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGibGaaGykaiabgMIihlaadYeada ahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaaIWaGaaGilaiabg6Hi LkaaiUdacaWGwbGaaGykaaaa@4BDE@ .

Multiply (9) by u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ to obtain

( u t ,u)(t)+(Au,u)(t)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwhadaWgaaqcfasaaiaadshaaKqbagqaaiaaiYcacaWG1bGaaGyk aiaaiIcacaWG0bGaaGykaiabgUcaRiaaiIcacaWGbbGaamyDaiaaiY cacaWG1bGaaGykaiaaiIcacaWG0bGaaGykaiaai2dacaaIWaGaaGOl aaaa@4899@  (12)

It follows from here that

d dt u 2 (t)+2νu 2 (t) V =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhacqWFLicudaahaaqcfasabeaacaaIYaaaaKqbakaaiI cacaWG0bGaaGykaiabgUcaRiaaikdacqaH9oGBcqWFLicucaWG1bGa e8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiM cadaWgaaqcfasaaiaadAfaaKqbagqaaiaai2dacaaIWaGaaGOlaaaa @538B@  (13)

Integrating (13) over (0,t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca aIWaGaaGilaiaadshacaaIPaGaaiilaaaa@3AF7@ , we get

u 2 (t)+2ν 0 t u V 2 (s)ds= u 0 2 ,t>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaahaaqcfasabeaa caaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgUcaRiaaikdacqaH9o GBdaWdXaqabKqbGeaacaaIWaaajuaqbaGaamiDaaqcfaOaey4kIipa cqWFLicucaWG1bGae8xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOmaa aajuaGcaaIOaGaam4CaiaaiMcacaaMi8UaamizaiaadohacaaI9aGa e8xjIaLaamyDamaaBaaajuaibaGaaGimaaqcfayabaGae8xjIa1aaW baaKqbGeqabaGaaGOmaaaajuaGcaaISaGaaGjbVlaaysW7caWG0bGa aGOpaiaaicdacaaIUaaaaa@6407@  (14)
Hence u L (0,;H) L 2 (0,;V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGibGaaGykaiabgMIihlaadYeada ahaaqabKqbGeaacaaIYaaaaKqbakaaiIcacaaIWaGaaGilaiabg6Hi LkaaiUdacaWGwbGaaGykaaaa@4BDE@ .

Estimate II - u t L (0,;H) L 2 (0,;V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaKqbagqaaiabgIGiolaadYeadaahaaqabKqb GeaacqGHEisPaaqcfaOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oai aadIeacaaIPaGaeyykICSaamitamaaCaaajuaibeqaaiaaikdaaaqc faOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oaiaadAfacaaIPaaaaa@4DB4@ .

Derivating (9) and multiplying by u t , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaeqaaKqbakaacYcaaaa@39F9@ we get

d dt u t 2 (t)+2ν u t V 2 (t)+2b( u t ,u, u t )(t)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbagqaaiab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa aGOmaiabe27aUjab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbag qaaiab=vIiqnaaDaaajuaibaGaamOvaaqaaiaaikdaaaqcfaOaaGik aiaadshacaaIPaGaey4kaSIaaGOmaiaadkgacaaIOaGaamyDamaaBa aajuaibaGaamiDaaqabaqcfaOaaGilaiaadwhacaaISaGaamyDamaa BaaajuaibaGaamiDaaqcfayabaGaaGykaiaaiIcacaWG0bGaaGykai aai2dacaaIWaGaaGOlaaaa@64A8@  (15)

By Lemma 4.4,

2|b( u t ,u, u t )(t)| 2 3/2 u t (t) u t V u V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca aI8bGaamOyaiaaiIcacaWG1bWaaSbaaKqbafaacaWG0baajuaGbeaa caaISaGaamyDaiaaiYcacaWG1bWaaSbaaKqbGeaacaWG0baajuaGbe aacaaIPaGaaGikaiaadshacaaIPaGaaGiFaiabgsMiJkaaikdadaah aaqabKqbGeaacaaIZaGaaG4laiaaikdaaaqeeuuDJXwAKbsr4rNCHb acfaqcfaOae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqcfayabaGa e8xjIaLaaGikaiaadshacaaIPaGae8xjIaLaamyDamaaBaaajuaiba GaamiDaaqcfayabaGae8xjIa1aaSbaaKqbGeaacaWGwbaajuaGbeaa cqWFLicucaWG1bGae8xjIa1aaSbaaKqbGeaacaWGwbaabeaaaaa@62B0@

ν u t V 2 + 2 3 ν u V 2 (t) u t 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgsMiJk abe27aUfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaWgaaqc fasaaiaadshaaKqbagqaaiab=vIiqnaaDaaajuaibaGaamOvaaqaai aaikdaaaqcfaOaey4kaSYaaSaaaeaacaaIYaWaaWbaaeqajuaibaGa aG4maaaaaKqbagaacqaH9oGBaaGae8xjIaLaamyDaiab=vIiqnaaDa aajuaibaGaamOvaaqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGa e8xjIaLaamyDamaaBaaajuaibaGaamiDaaqcfayabaGae8xjIa1aaW baaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiMcaaaa@5C05@

and (15) becomes

d dt u t 2 (t)+ν u t V 2 (t)ϕ(t) u t 2 (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbagqaaiab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa eqyVd4Mae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqcfayabaGae8 xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOmaaaajuaGcaaIOaGaamiD aiaaiMcacqGHKjYOcqaHvpGzcaaIOaGaamiDaiaaiMcacqWFLicuca WG1bWaaSbaaKqbGeaacaWG0baajuaGbeaacqWFLicudaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiaaiYcaaaa@62F6@  (16)

where ϕ(t)= 2 3 ν u V 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMj aaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiaaikdadaahaaqcfasa beaacaaIZaaaaaqcfayaaiabe27aUbaarqqr1ngBPrgifHhDYfgaiu aacqWFLicucaWG1bGae8xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOm aaaajuaGcaaIOaGaamiDaiaaiMcacaGGUaaaaa@4CD8@ Making use of Lemma 4.2, we obtain

u t 2 (t) u t 2 (0) e 0 t ϕ(s)ds . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaeyizImQae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqc fayabaGae8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaaG imaiaaiMcacaWGLbWaaWbaaKqbGeqabaqcfa4aa8qmaKqbGeqajqwb a+FaaiaaicdaaKqbGeaacaWG0baacqGHRiI8aiaaykW7cqaHvpGzca aIOaGaam4CaiaaiMcacaaMi8UaamizaiaadohaaaqcfaOaaGOlaaaa @60CD@  (17)

To prove that u t (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqjaaiIcacaaIWaGaaGykaaaa@423C@  is in H, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeaca GGSaaaaa@37F6@ multiply equation (9) by u t (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaeqaaKqbakaaiIcacaWG0bGaaGykaaaa@3BA7@  to get

u t 2 (t)+ν((u, u t ))(t)+b(u,u, u t )(t)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaey4kaSIaeqyVd4MaaGikaiaaiIcacaWG1bGaaGilaiaa dwhadaWgaaqcfasaaiaadshaaeqaaKqbakaaiMcacaaIPaGaaGikai aadshacaaIPaGaey4kaSIaamOyaiaaiIcacaWG1bGaaGilaiaadwha caaISaGaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOaaGykaiaaiI cacaWG0bGaaGykaiaai2dacaaIWaGaaGOlaaaa@5E4C@

In particular, for t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshaca aI9aGaaGimaaaa@38F3@  we have

u t (0) 2 =ν(Δ u 0 , u t (0))b( u 0 , u 0 , u t (0)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakaaiIcacaaIWaGaaGykaiab=vIiqnaaCaaabeqcfasaaiaaik daaaqcfaOaaGypaiabe27aUjaaiIcacqqHuoarcaWG1bWaaSbaaKqb GeaacaaIWaaajuaGbeaacaaISaGaamyDamaaBaaajuaibaGaamiDaa qabaqcfaOaaGikaiaaicdacaaIPaGaaGykaiabgkHiTiaadkgacaaI OaGaamyDamaaBaaajuaibaGaaGimaaqabaqcfaOaaGilaiaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiaaiYcacaWG1bWaaSbaaKqbGeaa caWG0baajuaGbeaacaaIOaGaaGimaiaaiMcacaaIPaGaaGilaaaa@60C2@  (18)

where u t (0)= lim t0 u t (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaKqbagqaaiaaiIcacaaIWaGaaGykaiaai2da daqfqaqabKqbGeaacaWG0bGaeyOKH4QaaGimaaqcfayabeaaciGGSb GaaiyAaiaac2gaaaGaamyDamaaBaaajuaibaGaamiDaaqcfayabaGa aGikaiaadshacaaIPaGaaiilaaaa@4967@ [19]. From this

u t (0)νΔ u 0 +B u 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakaaiIcacaaIWaGaaGykaiab=vIiqjabgsMiJkabe27aUjab=v Iiqjabfs5aejaadwhadaWgaaqcfasaaiaaicdaaKqbagqaaiab=vIi qjabgUcaRiab=vIiqjaadkeacaWG1bWaaSbaaKqbGeaacaaIWaaabe aajuaGcqWFLicucaaIUaaaaa@5302@  (19)

By the Hölder inequality,

|b(u,u,v)|u L 4 (Ω) (2u L 4 (Ω) + u 2x L 4 (Ω) + u 1y L 4 (Ω) )v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiYhaca WGIbGaaGikaiaadwhacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaa iYhacqGHKjYOrqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1bGae8 xjIa1aaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaaaa caaIOaGaeuyQdCLaaGykaaqabaqcfaOaaGikaiaaikdacqWFLicucq GHhis0caWG1bGae8xjIa1aaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqb GeqabaGaaGinaaaacaaIOaGaeuyQdCLaaGykaaqabaqcfaOaey4kaS Iae8xjIaLaamyDamaaBaaajuaibaGaaGOmaiaadIhaaeqaaKqbakab =vIiqnaaBaaajuaibaGaamitaKqbaoaaCaaajuaibeqaaiaaisdaaa GaaGikaiabfM6axjaaiMcaaeqaaKqbakabgUcaRiab=vIiqjaadwha daWgaaqcfasaaiaaigdacaWG5baajuaGbeaacqWFLicudaWgaaqcfa saaiaadYeajuaGdaahaaqcfasabeaacaaI0aaaaiaaiIcacqqHPoWv caaIPaaajuaGbeaacaaIPaGae8xjIaLaamODaiab=vIiqbaa@7903@
Cu V u H 2 (Ω) v,u H 2 (Ω),v L 2 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgsMiJk aadoearqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1bGae8xjIa1a aSbaaKqbGeaacaWGwbaajuaGbeaacqWFLicucaWG1bGae8xjIa1aaS baaKqbGeaacaWGibqcfa4aaWbaaKqbGeqabaGaaGOmaaaacaaIOaGa euyQdCLaaGykaaqabaqcfaOae8xjIaLaamODaiab=vIiqjaaiYcaca aMe8UaaGjbVlabgcGiIiaadwhacqGHiiIZcaWGibWaaWbaaKqbGeqa baGaaGOmaaaajuaGcaaIOaGaeuyQdCLaaGykaiaaiYcacqGHaiIica WG2bGaeyicI4SaamitamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGik aiabfM6axjaaiMcacaaIUaaaaa@65AB@  (20)

Hence

|B u 0 |C u 0 V u 0 H 2 (Ω) C u 0 H 2 (Ω) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiYhaca WGcbGaamyDamaaBaaajuaibaGaaGimaaqabaqcfaOaaGiFaiabgsMi Jkaadoearqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1bWaaSbaaK qbGeaacaaIWaaabeaajuaGcqWFLicudaWgaaqcfasaaiaadAfaaKqb agqaaiab=vIiqjaadwhadaWgaaqcfasaaiaaicdaaKqbagqaaiab=v IiqnaaBaaajuaibaGaamisaKqbaoaaCaaajuaibeqaaiaaikdaaaGa aGikaiabfM6axjaaiMcaaeqaaKqbakabgsMiJkaadoeacqWFLicuca WG1bWaaSbaaKqbGeaacaaIWaaajuaGbeaacqWFLicudaqhaaqcfasa aiaadIeajuaGdaahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvca aIPaaabaGaaGOmaaaaaaa@6223@  (21)

and by (18), u t (0)H. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaeqaaKqbakaaiIcacaaIWaGaaGykaiabgIGi olaadIeacaGGUaaaaa@3E6B@  This and (16) imply that

u t L (0,;H) L 2 (0,;V). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaKqbagqaaiabgIGiolaadYeadaahaaqcfasa beaacqGHEisPaaqcfaOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oai aadIeacaaIPaGaeyykICSaamitamaaCaaajuaibeqaaiaaikdaaaqc faOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oaiaadAfacaaIPaGaaG Olaaaa@4E6C@

Returning to (12), we calculate

νu V 2 (t)=(u, u t )(t)u(t) u t (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe27aUf bbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhacqWFLicudaqhaaqc fasaaiaadAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiaai2 dacaaIOaGaamyDaiaaiYcacaWG1bWaaSbaaKqbGeaacaWG0baabeaa juaGcaaIPaGaaGikaiaadshacaaIPaGaeyizImQae8xjIaLaamyDai ab=vIiqjaaiIcacaWG0bGaaGykaiab=vIiqjaadwhadaWgaaqcfasa aiaadshaaeqaaKqbakab=vIiqjaaiIcacaWG0bGaaGykaiaaiYcaaa a@5D3D@  (22)

hence u L (0,;V). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaeqajuaibaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGwbGaaGykaiaac6caaaa@42AF@  This and (17) prove validity of (11) and consequently the existence part of Theorem 3.1. Uniqueness of the generalized solution, u, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca GGSaaaaa@3823@ u t L (0,;H) L 2 (0,;V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaadshaaeqaaKqbakabgIGiolaadYeadaahaaqcfasa beaacqGHEisPaaqcfaOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oai aadIeacaaIPaGaeyykICSaamitamaaCaaajuaibeqaaiaaikdaaaqc faOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oaiaadAfacaaIPaaaaa@4DB4@  has been established.9,14

Remark 5.1 Estimates u, u t L (0,;H L 2 (0,;V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aISaGaamyDamaaBaaajuaibaGaamiDaaqcfayabaGaeyicI4Saamit amaaCaaajuaibeqaaiabg6HiLcaajuaGcaaIOaGaaGimaiaaiYcacq GHEisPcaaI7aGaamisaiabgMIihlaadYeadaahaaqcfasabeaacaaI YaaaaKqbakaaiIcacaaIWaGaaGilaiabg6HiLkaaiUdacaWGwbGaaG ykaaaa@4EB1@  were established first for Lipschitz domains9,14 and were valid also for unbounded domains with a natural condition li m |x|+ u(x,y,t)=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgaca WGPbGaamyBamaaBaaajuaibaGaaGiFaiaadIhacaaI8bGaeyOKH4Qa ey4kaSIaeyOhIukajuaGbeaacaWG1bGaaGikaiaadIhacaaISaGaam yEaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaGaaGOlaaaa@4A68@  We repeat them because we will need these estimates while establishing decay of solutions in bounded and unbounded Lipschitz domains.

Regularity and decay on rectangles and on the half-strip

Consider the Poisson problem in a bounded rectangle Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axb aa@3807@

( Δu=f(x,y),(x,y)Ω, u | Ω =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabeaaba qbaeqabiqaaaqaaiabfs5aejaadwhacaaI9aGaamOzaiaaiIcacaWG 4bGaaGilaiaadMhacaaIPaGaaGilaiaaysW7caaMe8UaaGikaiaadI hacaaISaGaamyEaiaaiMcacqGHiiIZcqqHPoWvcaaISaaabaGaamyD aiaaiYhadaWgaaqcfasaaiabgkGi2kabfM6axbqabaqcfaOaaGypai aaicdacaaISaaaaaGaay5Eaaaaaa@537D@  (23)

Remark 6.1 It has been proved10 that for

Ω π ={x=( x 1 ,..., x n ),0< x i <π;i=1,...,n} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axn aaBaaabaGaeqiWdahabeaacaaI9aGaaG4EaiaadIhacaaI9aGaaGik aiaadIhadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiYcacaaIUaGaaG Olaiaai6cacaaISaGaamiEamaaBaaajuaibaGaamOBaaqabaqcfaOa aGykaiaaiYcacaaMe8UaaGjbVlaaicdacaaI8aGaamiEamaaBaaaju aibaGaamyAaaqabaqcfaOaaGipaiabec8aWjaaiUdacaaMe8UaaGjb VlaadMgacaaI9aGaaGymaiaaiYcacaaIUaGaaGOlaiaai6cacaaISa GaamOBaiaai2haaaa@5E48@

the following inequality holds

u W 2,p ( Ω π ) C(Ω)f L p ( Ω π ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dEfajuaGdaahaaqcfasabeaacaaIYaGaaGilaiaadchaaaGaaGikai abfM6axLqbaoaaBaaajuaibaGaeqiWdahabeaacaaIPaaabeaajuaG cqGHKjYOcaWGdbGaaGikaiabfM6axjaaiMcacqWFLicucaWGMbGae8 xjIa1aaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaamiCaaaa caaIOaGaeuyQdCvcfa4aaSbaaKqbGeaacqaHapaCaeqaaiaaiMcaaK qbagqaaiaai6caaaa@5B2B@

It is easy to generalize this result for any rectangle in 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaKqb GeqabaGaaGOmaaaajuaGcaaIUaaaaa@4383@  

Theorem 6.1 The problem (23) posed in rectangle Ω={(x,y) 2 ,0<x<L;0<y<B}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axj aai2dacaaI7bGaaGikaiaadIhacaaISaGaamyEaiaaiMcacqGHiiIZ tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risn aaCaaajuaibeqaaiaaikdaaaqcfaOaaGilaiaaicdacaaI8aGaamiE aiaaiYdacaWGmbGaaG4oaiaaysW7caaIWaGaaGipaiaadMhacaaI8a GaamOqaiaai2hacaGGSaaaaa@589D@ where f L p (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgacq GHiiIZcaWGmbWaaWbaaeqajuaibaGaamiCaaaajuaGcaaIOaGaeuyQ dCLaaGykaiaacYcaaaa@3F2F@   1<p2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdaca aI8aGaamiCaiabgsMiJkaaikdacaGGSaaaaa@3C10@ has a solution u W 2,p (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGxbWaaWbaaKqbGeqabaGaaGOmaiaaiYcacaWGWbaaaKqb akaaiIcacqqHPoWvcaaIPaGaaiOlaaaa@40BD@  Moreover,

u W 2,p (Ω) c Ω f L p (Ω) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dEfajuaGdaahaaqcfasabeaacaaIYaGaaGilaiaadchaaaGaaGikai abfM6axjaaiMcaaeqaaKqbakabgsMiJkaadogadaWgaaqcfasaaiab fM6axbqcfayabaGae8xjIaLaamOzaiab=vIiqnaaBaaajuaibaGaam itaKqbaoaaCaaajuaibeqaaiaadchaaaGaaGikaiabfM6axjaaiMca aeqaaKqbakaai6caaaa@558F@  (24)

Returning to the original problem for the Navier-Stokes equations,

( u t νΔu+p+(u)u=0inΩ×(0,t) u=0inΩ×(0,t), u=0inΩ×(0,t),t>0, u(x,y,0)= u 0 (x,y),inΩ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabeaaba qbaeqabqqaaaaabaGaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOa eyOeI0IaeqyVd4MaeuiLdqKaamyDaiabgUcaRiabgEGirlaadchacq GHRaWkcaaIOaGaamyDaiabgwSixlabgEGirlaaiMcacaWG1bGaaGyp aiaaicdacaqGPbGaaeOBaiabfM6axjabgEna0kaaiIcacaaIWaGaaG ilaiaadshacaaIPaaabaGaey4bIeTaamyDaiaai2dacaaIWaGaaeyA aiaab6gacqqHPoWvcqGHxdaTcaaIOaGaaGimaiaaiYcacaWG0bGaaG ykaiaaiYcaaeaacaWG1bGaaGypaiaaicdacaqGPbGaaeOBaiabgkGi 2kabfM6axjabgEna0kaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG ilaiaadshacaaI+aGaaGimaiaaiYcaaeaacaWG1bGaaGikaiaadIha caaISaGaamyEaiaaiYcacaaIWaGaaGykaiaai2dacaWG1bWaaSbaaK qbGeaacaaIWaaabeaajuaGcaaIOaGaamiEaiaaiYcacaWG5bGaaGyk aiaaiYcacaqGPbGaaeOBaiabfM6axjaaiYcaaaaacaGL7baaaaa@8795@  (25)

where u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaaa a@3773@ is a vector function from 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaKqb GeqabaGaaGOmaaaaaaa@423D@ into 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaKqb GeqabaGaaGOmaaaaaaa@423D@ and p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchaaa a@376E@ is a real function from 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHi1aaWbaaeqa juaibaGaaGOmaaaaaaa@423D@ into , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcfaOae8xhHifeaaaaaaaa a8qacaGGSaaaaa@4201@ and making use of Galerkin approximations, we establish the following result.

Theorem 6.2 Given u 0 H 2 (Ω)V, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiabgIGiolaadIeadaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacqqHPoWvcaaIPaGaeyykICSaamOvai aacYcaaaa@4311@  the problem (25) has a unique solution (u,p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WG1bGaaGilaiaadchacaaIPaaaaa@3A83@  such that

u L (0,;V H 2 (Ω)), u t L (0,;H) L 2 (0,;V), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaeqajuaibaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGwbGaeyykICSaamisamaaCaaaju aibeqaaiaaikdaaaqcfaOaaGikaiabfM6axjaaiMcacaaIPaGaaGil aiaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakabgIGiolaadYeada ahaaqcfasabeaacqGHEisPaaqcfaOaaGikaiaaicdacaaISaGaeyOh IuQaaG4oaiaadIeacaaIPaGaeyykICSaamitamaaCaaajuaibeqaai aaikdaaaqcfaOaaGikaiaaicdacaaISaGaeyOhIuQaaG4oaiaadAfa caaIPaGaaGilaaaa@619C@
p L (0,;H). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEGirl aadchacqGHiiIZcaWGmbWaaWbaaKqbGeqabaGaeyOhIukaaKqbakaa iIcacaaIWaGaaGilaiabg6HiLkaaiUdacaWGibGaaGykaiaai6caaa a@4428@       (26)

Moreover,

u t (t)+u (t) H 2 (Ω) +p(t)C e 1 2 χt , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakab=vIiqjaaiIcacaWG0bGaaGykaiabgUcaRiab=vIiqjaadw hacqWFLicucaaIOaGaamiDaiaaiMcadaWgaaqcfasaaiaadIeajuaG daahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPaaabeaaju aGcqGHRaWkcqWFLicucqGHhis0caWGWbGae8xjIaLaaGikaiaadsha caaIPaGaeyizImQaam4qaiaadwgadaahaaqabeaajuaicqGHsislju aGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaiabeE8aJjaadshaaaqc faOaaGilaaaa@61F2@  (27)
where χ=ν( π 2 L 2 + π 2 B 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJj aai2dacqaH9oGBcaaIOaWaaSaaaeaacqaHapaCdaahaaqabKqbGeaa caaIYaaaaaqcfayaaiaadYeadaahaaqabKqbGeaacaaIYaaaaaaaju aGcqGHRaWkdaWcaaqaaiabec8aWnaaCaaabeqcfasaaiaaikdaaaaa juaGbaGaamOqamaaCaaabeqcfasaaiaaikdaaaaaaKqbakaaiMcaaa a@4890@  and C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaaa a@3741@  depends on u 0 H 2 (Ω) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaaicdaaKqb agqaaiab=vIiqnaaBaaajuaibaGaamisaKqbaoaaCaaajuaibeqaai aaikdaaaGaaGikaiabfM6axjaaiMcaaeqaaKqbakaac6caaaa@46C7@

Proof. Decay of L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabKqbGeaacaaIYaaaaaaa@3856@ Norm

By definition,

u V 2 (t)= u x 2 (t)+ u y 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiaai2dacqWFLi cucaWG1bWaaSbaaKqbGeaacaWG4baabeaajuaGcqWFLicudaahaaqc fasabeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgUcaRiab=v IiqjaadwhadaWgaaqcfasaaiaadMhaaKqbagqaaiab=vIiqnaaCaaa juaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaaGOlaaaa@5784@

Since u | Ω =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhaca aI8bWaaSbaaKqbGeaacqGHciITcqqHPoWvaKqbagqaaiaai2dacaaI WaGaaiilaaaa@3E7B@ making use of Lemma 4.1, we get

u x 2 (t) π 2 L 2 u 2 (t), u y 2 (t) π 2 B 2 u 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadIhaaKqb agqaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaeyyzIm7aaSaaaeaacqaHapaCdaahaaqabKqbGeaacaaI YaaaaaqcfayaaiaadYeadaahaaqabKqbGeaacaaIYaaaaaaajuaGcq WFLicucaWG1bGae8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaI OaGaamiDaiaaiMcacaaISaGaaGzbVlab=vIiqjaadwhadaWgaaqcfa saaiaadMhaaKqbagqaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqc faOaaGikaiaadshacaaIPaGaeyyzIm7aaSaaaeaacqaHapaCdaahaa qcfasabeaacaaIYaaaaaqcfayaaiaadkeadaahaaqcfasabeaacaaI YaaaaaaajuaGcqWFLicucaWG1bGae8xjIa1aaWbaaKqbGeqabaGaaG OmaaaajuaGcaaIOaGaamiDaiaaiMcacaaIUaaaaa@6D94@
This implies u V 2 (t)( π 2 L 2 + π 2 B 2 )u 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgwMiZkaaiI cadaWcaaqaaiabec8aWnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGa amitamaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgUcaRmaalaaaba GaeqiWda3aaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWGcbWaaWba aKqbGeqabaGaaGOmaaaaaaqcfaOaaGykaiab=vIiqjaadwhacqWFLi cudaahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiaa i6caaaa@5AA3@  (28)

Returning to (12), we obtain

d dt u 2 (t)+2ν( π 2 L 2 + π 2 B 2 )u 2 (t)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhacqWFLicudaahaaqcfasabeaacaaIYaaaaKqbakaaiI cacaWG0bGaaGykaiabgUcaRiaaikdacqaH9oGBcaaIOaWaaSaaaeaa cqaHapaCdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadYeadaahaa qabKqbGeaacaaIYaaaaaaajuaGcqGHRaWkdaWcaaqaaiabec8aWnaa CaaabeqcfasaaiaaikdaaaaajuaGbaGaamOqamaaCaaabeqcfasaai aaikdaaaaaaKqbakaaiMcacqWFLicucaWG1bGae8xjIa1aaWbaaKqb GeqabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiMcacqGHKjYOcaaIWa GaaGOlaaaa@60A2@  (29)

Define χ=ν( π 2 L 2 + π 2 B 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJj aai2dacqaH9oGBcaaIOaWaaSaaaeaacqaHapaCdaahaaqcfasabeaa caaIYaaaaaqcfayaaiaadYeadaahaaqabKqbGeaacaaIYaaaaaaaju aGcqGHRaWkdaWcaaqaaiabec8aWnaaCaaabeqcfasaaiaaikdaaaaa juaGbaGaamOqamaaCaaabeqcfasaaiaaikdaaaaaaKqbakaaiMcaca GGUaaaaa@4942@ Then (29) implies
u 2 (t) u 0 2 e 2χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaahaaqcfasabeaa caaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJkab=vIiqjaadw hadaWgaaqcfasaaiaaicdaaKqbagqaaiab=vIiqnaaCaaajuaibeqa aiaaikdaaaqcfaOaaGjcVlaadwgadaahaaqcfasabeaacqGHsislca aIYaGaeq4XdmMaamiDaaaajuaGcaaIUaaaaa@52C1@  (30)

Decay of H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada ahaaqcfasabeaacaaIXaaaaaaa@3851@  Norm
Rewrite (15) in the form

d dt u t 2 (t)+ν u t V 2 (t)ϕ(t) u t 2 (t)0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa eqyVd4Mae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOae8 xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOmaaaajuaGcaaIOaGaamiD aiaaiMcacqGHsislcqaHvpGzcaaIOaGaamiDaiaaiMcacqWFLicuca WG1bWaaSbaaKqbGeaacaWG0baabeaajuaGcqWFLicudaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJkaaicdaca aISaaaaa@649D@  (31)

where ϕ= 2 3 ν u V 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMj aai2dadaWcaaqaaiaaikdadaahaaqcfasabeaacaaIZaaaaaqcfaya aiabe27aUbaarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1bGae8 xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOmaaaajuaGcaaIOaGaamiD aiaaiMcacaGGUaaaaa@4A7A@ Acting similarly to the proof of (29), we obtain

u t V 2 (t)( π 2 L 2 + π 2 B 2 ) u t 2 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqnaaDaaajuaibaGaamOvaaqaaiaaikdaaaqcfaOaaG ikaiaadshacaaIPaGaeyyzImRaaGikamaalaaabaGaeqiWda3aaWba aeqajuaibaGaaGOmaaaaaKqbagaacaWGmbWaaWbaaeqajuaibaGaaG OmaaaaaaqcfaOaey4kaSYaaSaaaeaacqaHapaCdaahaaqcfasabeaa caaIYaaaaaqcfayaaiaadkeadaahaaqabKqbGeaacaaIYaaaaaaaju aGcaaIPaGae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqcfayabaGa e8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiM cacaaIUaaaaa@5E4F@  (32)

Hence (31) reduces to the form

d dt u t 2 (t)+(χϕ(t)) u t 2 (t)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbagqaaiab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa aGikaiabeE8aJjabgkHiTiabew9aMjaaiIcacaWG0bGaaGykaiaaiM cacqWFLicucaWG1bWaaSbaaKqbGeaacaWG0baajuaGbeaacqWFLicu daahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgs MiJkaaicdacaaIUaaaaa@5C28@  (33)

By Lemma 4.2,

u t 2 (t) u t (0) 2 e 0 t ϕ(s)ds e χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaeyizImQae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqa baqcfaOaaGikaiaaicdacaaIPaGae8xjIa1aaWbaaKqbGeqabaGaaG OmaaaajuaGcaaMi8UaamyzamaaCaaajuaibeqaaKqbaoaapedajuai beqaaiaaicdaaeaacaWG0baacqGHRiI8aiaaykW7cqaHvpGzcaaIOa Gaam4CaiaaiMcacaaMi8UaamizaiaadohaaaGaaGjcVlaadwgajuaG daahaaqcfasabeaacqGHsislcqaHhpWycaWG0baaaKqbakaai6caaa a@6735@  (34)

Since u L 2 (0,,V), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaaGim aiaaiYcacqGHEisPcaaISaGaamOvaiaaiMcacaGGSaaaaa@41E9@ then by (14),

0 t ϕ(s)ds 2 ν u 0 2 ,t>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedabe qcfasaaiaaicdaaeaacaWG0baajuaGcqGHRiI8aiabew9aMjaaiIca caWGZbGaaGykaiaayIW7caWGKbGaam4CaiaaykW7cqGHKjYOcaaMc8 +aaSaaaeaacaaIYaaabaGaeqyVd4gaaiaaykW7rqqr1ngBPrgifHhD YfgaiuaacqWFLicucaWG1bWaaSbaaKqbGeaacaaIWaaajuaGbeaacq WFLicudaahaaqcfasabeaacaaIYaaaaKqbakaaiYcacaaMe8UaaGjb VlaadshacaaI+aGaaGimaiaaiYcaaaa@5D6B@

and it follows from (13) that

νu V 2 (t)(u, u t )(t)u(t) u t (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe27aUf bbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhacqWFLicudaqhaaqc fasaaiaadAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgs MiJkaaiIcacaWG1bGaaGilaiaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiaaiMcacaaIOaGaamiDaiaaiMcacqGHKjYOcqWFLicucaWG1b Gae8xjIaLaaGikaiaadshacaaIPaGae8xjIaLaamyDamaaBaaajuai baGaamiDaaqabaqcfaOae8xjIaLaaGikaiaadshacaaIPaaaaa@5D75@

u 0 u 0 e 2 ν u 0 e χt e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm AeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaBaaajuaibaGa aGimaaqcfayabaGae8xjIaLae8xjIaLaamyDamaaBaaajuaibaGabG imayaafaaabeaajuaGcqWFLicucaaMi8UaamyzamaaCaaajuaibeqa aKqbaoaalaaajuaibaGaaGOmaaqaaiabe27aUbaacqWFLicucaWG1b qcfa4aaSbaaKqbGeaacaaIWaaabeaacqWFLicuaaGaaGjcVNqbakaa dwgadaahaaqcfasabeaacqGHsislcqaHhpWycaWG0baaaKqbakaayI W7caWGLbWaaWbaaeqajuaibaGaeyOeI0scfa4aaSaaaKqbGeaacaaI XaaabaGaaGOmaaaacqaHhpWycaWG0baaaKqbakaai6caaaa@6240@  (35)
Therefore u V 2 (t) 1 ν u 0 u 0 e 2 ν u 0 e 3 2 χt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJoaala aabaGaaGymaaqaaiabe27aUbaacqWFLicucaWG1bWaaSbaaeaacaaI WaaabeaacqWFLicucqWFLicucaWG1bWaaSbaaKqbGeaaceaIWaGbau aaaKqbagqaaiab=vIiqjaadwgadaahaaqabKqbGeaajuaGdaWcaaqc fasaaiaaikdaaeaacqaH9oGBaaGae8xjIaLaamyDaKqbaoaaBaaaju aibaGaaGimaaqabaGae8xjIafaaKqbakaayIW7caWGLbWaaWbaaKqb GeqabaGaeyOeI0scfa4aaSaaaKqbGeaacaaIZaaabaGaaGOmaaaacq aHhpWycaWG0baaaaaa@62B2@  (36)
and u H 0 1 (Ω) 2 (t)( 1 ν u 0 u 0 e 2 ν u 0 + u 0 2 ) e 3 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dIeajuaGdaqhaaqcfasaaiaaicdaaeaacaaIXaaaaiaaiIcacqqHPo WvcaaIPaaabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiMcacqGHKjYO caaIOaWaaSaaaeaacaaIXaaabaGaeqyVd4gaaiab=vIiqjaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiab=vIiqjab=vIiqjaadwhadaWg aaqcfasaaiqaicdagaqbaaqcfayabaGae8xjIaLaamyzamaaCaaabe qcfasaaKqbaoaalaaajuaibaGaaGOmaaqaaiabe27aUbaacqWFLicu caWG1bqcfa4aaSbaaKqbGeaacaaIWaaabeaacqWFLicuaaqcfaOaey 4kaSIae8xjIaLaamyDamaaBaaajuaibaGaaGimaaqabaqcfaOae8xj Ia1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIPaGaamyzamaaCaaaju aibeqaaiabgkHiTKqbaoaalaaajuaibaGaaG4maaqaaiaaikdaaaGa eq4XdmMaamiDaaaajuaGcaaIUaaaaa@7105@  (37)

Decay of H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada ahaaqcfasabeaacaaIYaaaaaaa@3852@ -Norm
In order to estimate u H 2 (Ω) (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dIeajuaGdaahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPa aajuaGbeaacaaIOaGaamiDaiaaiMcacaGGSaaaaa@478C@ we will use Theorem 6.1. First write (8) as

Δu=f= 1 ν ( u t +p(u)u). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVuYJK8sipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamyDaiaai2dacaWGMbGaaGypamaalaaabaGaaGymaaqaaiabe27a UbaacaaIOaGaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOaey4kaS Iaey4bIeTaamiCaiabgkHiTiaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacaaIPaGaaGOlaaaa@4DC4@

We estimate

|b(u,u,v)|(t)=|((u),v)(t)| c 2 u (t) L 4 (Ω) u (t) H 0 1 (Ω) v (t) L 4 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiYhaca WGIbGaaGikaiaadwhacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaa iYhacaaIOaGaamiDaiaaiMcacaaI9aGaaGiFaiaaiIcacaaIOaGaam yDaiabgwSixlabgEGirlaaiMcacaaISaGaamODaiaaiMcacaaIOaGa amiDaiaaiMcacaaI8bGaeyizImQaam4yamaaBaaajuaibaGaaGOmaa qcfayabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDaiab=vIi qjaaiIcacaWG0bGaaGykamaaBaaajuaibaGaamitaKqbaoaaCaaaju aibeqaaiaaisdaaaGaaGikaiabfM6axjaaiMcaaeqaaKqbakab=vIi qjaadwhacqWFLicucaaIOaGaamiDaiaaiMcadaWgaaqcfasaaiaadI eajuaGdaqhaaqcfasaaiaaicdaaeaacaaIXaaaaiaaiIcacqqHPoWv caaIPaaajuaGbeaacqWFLicucaWG2bGae8xjIaLaaGikaiaadshaca aIPaWaaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaaaa caaIOaGaeuyQdCLaaGykaaqcfayabaaaaa@7CED@
Cu 2 (t) H 0 1 (Ω) v (t) L 4 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgsMiJk aadoearqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1bGae8xjIa1a aWbaaeqajuaibaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiMcadaWgaa qcfasaaiaadIeajuaGdaqhaaqcfasaaiaaicdaaeaacaaIXaaaaiaa iIcacqqHPoWvcaaIPaaajuaGbeaacqWFLicucaWG2bGae8xjIaLaaG ikaiaadshacaaIPaWaaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqa baGaaGinaaaacaaIOaGaeuyQdCLaaGykaaqabaaaaa@56EC@  (38)

and by (30),

(u)u (t) L 4/3 (Ω) C e 3 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacqWFLicucaaIOaGaamiDaiaaiMcadaWgaaqcfasaai aadYeajuaGdaahaaqcfasabeaacaaI0aGaaG4laiaaiodaaaGaaGik aiabfM6axjaaiMcaaeqaaKqbakabgsMiJkaadoeacaWGLbWaaWbaae qajuaibaGaeyOeI0IaaGPaVlaaykW7juaGdaWcaaqcfasaaiaaioda aeaacaaIYaaaaiabeE8aJjaadshaaaqcfaOaaGOlaaaa@5C7C@

Returning to (9), we obtain

Au L 4/3 (Ω) (t)Bu L 4/3 (Ω) (t)+ u t L 2 (Ω) (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadgeacaWG1bGae8xjIa1aaSbaaKqb GeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaiaai+cacaaIZaaaai aaiIcacqqHPoWvcaaIPaaabeaajuaGcaaIOaGaamiDaiaaiMcacqGH KjYOcqWFLicucaWGcbGaamyDaiab=vIiqnaaBaaajuaibaGaamitaK qbaoaaCaaajuaibeqaaiaaisdacaaIVaGaaG4maaaacaaIOaGaeuyQ dCLaaGykaaqabaqcfaOaaGikaiaadshacaaIPaGaey4kaSIae8xjIa LaamyDamaaBaaajuaibaGaamiDaaqcfayabaGae8xjIa1aaSbaaKqb GeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGOmaaaacaaIOaGaeuyQdC LaaGykaaqabaqcfaOaaGikaiaadshacaaIPaGaaGOlaaaa@6818@  (39)

It follows by (38) and (34) that Au (t) L 4/3 C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadgeacaWG1bGae8xjIaLaaGikaiaa dshacaaIPaWaaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaG inaiaai+cacaaIZaaaaaqcfayabaGaeyizImQaam4qaiaadwgadaah aaqabeaajuaicqGHsislcaaMc8UaaGPaVNqbaoaalaaajuaibaGaaG ymaaqaaiaaikdaaaGaeq4XdmwcfaOaamiDaaaacaGGUaaaaa@5418@  By Theorem of de Rham,17 one can check that there exists p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEGirl aadchaaaa@38F4@  such that11

p= u t +Au+Bu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi abgEGirlaadchacaaI9aGaamyDamaaBaaajuaibaGaamiDaaqabaqc faOaey4kaSIaamyqaiaadwhacqGHRaWkcaWGcbGaamyDaaaa@42BD@     (40)

and

p L 4/3 (Ω) (t) u t L 2 (Ω) (t)+Au L 4/3 (Ω) (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjabgEGirlaadchacqWFLicudaWgaaqc fasaaiaadYeajuaGdaahaaqcfasabeaacaaI0aGaaG4laiaaiodaaa GaaGikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiab gsMiJkab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=v IiqnaaBaaajuaibaGaamitaKqbaoaaCaaajuaibeqaaiaaikdaaaGa aGikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiabgU caRiab=vIiqjaadgeacaWG1bGae8xjIa1aaSbaaKqbGeaacaWGmbqc fa4aaWbaaKqbGeqabaGaaGinaiaai+cacaaIZaaaaiaaiIcacqqHPo WvcaaIPaaabeaajuaGcaaIOaGaamiDaiaaiMcaaaa@681A@
+Bu L 4/3 (Ω) (t)C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgUcaRe bbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadkeacaWG1bGae8xjIa1a aSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaiaai+caca aIZaaaaiaaiIcacqqHPoWvcaaIPaaajuaGbeaacaaIOaGaamiDaiaa iMcacqGHKjYOcaWGdbGaamyzamaaCaaajuaibeqaaiabgkHiTiaayk W7juaGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaiabeE8aJjaadsha aaqcfaOaaGOlaaaa@5669@  (41)

Since f L 4/3 (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGinaiaai+cacaaIZaaaaKqb akaaiIcacqGHPoWvcaaIPaGaaiilaaaa@406F@ due to Theorem 6.1,

u (t) W 2, 4 3 (Ω) u t L 2 (Ω) (t)+p L 4/3 (Ω) (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicucaaIOaGaamiDaiaa iMcadaWgaaqcfasaaiaadEfajuaGdaahaaqcfasabeaacaaIYaGaaG ilaKqbaoaalaaajuaibaGaaGinaaqaaiaaiodaaaaaaiaaiIcacqqH PoWvcaaIPaaajuaGbeaacqGHKjYOcqWFLicucaWG1bWaaSbaaKqbGe aacaWG0baabeaajuaGcqWFLicudaWgaaqcfasaaiaadYeajuaGdaah aaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPaaabeaajuaGca aIOaGaamiDaiaaiMcacqGHRaWkcqWFLicucqGHhis0caWGWbGae8xj Ia1aaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaiaai+ cacaaIZaaaaiaaiIcacqqHPoWvcaaIPaaabeaajuaGcaaIOaGaamiD aiaaiMcaaaa@68E4@
+(u)u L 4/3 (Ω) (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgUcaRe bbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaaiIcacaWG1bGaeyyXICTa ey4bIeTaaGykaiaadwhacqWFLicudaWgaaqcfasaaiaadYeajuaGda ahaaqcfasabeaacaaI0aGaaG4laiaaiodaaaGaaGikaiabfM6axjaa iMcaaKqbagqaaiaaiIcacaWG0bGaaGykaaaa@4F69@  (42)

and by (42), we get u (t) W 2,4/3 (Ω) C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicucaaIOaGaamiDaiaa iMcadaWgaaqcfasaaiaadEfajuaGdaahaaqcfasabeaacaaIYaGaaG ilaiaaisdacaaIVaGaaG4maaaacaaIOaGaeuyQdCLaaGykaaqabaqc faOaeyizImQaam4qaiaadwgadaahaaqabeaajuaicqGHsislcaaMc8 Ecfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaacqaHhpWycaWG0baa aKqbakaac6caaaa@5637@  By the Sobolev theorems,

u L (Ω) (t)Cu W 2,4/3 (Ω) (t)C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dYeajuaGdaahaaqcfasabeaacqGHEisPaaGaaGikaiabfM6axjaaiM caaeqaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJkaadoeacqWFLicu caWG1bGae8xjIa1aaSbaaKqbGeaacaWGxbqcfa4aaWbaaKqbGeqaba GaaGOmaiaaiYcacaaI0aGaaG4laiaaiodaaaGaaGikaiabfM6axjaa iMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJkaadoeacaWGLb WaaWbaaeqajuaibaGaeyOeI0scfa4aaSaaaKqbGeaacaaIXaaabaGa aGOmaaaacqaHhpWycaWG0baaaKqbakaai6caaaa@63AF@  (43)
This implies

Bu(t)Cu (t) L (Ω) u (t) H 0 1 (Ω) L 2 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadkeacaWG1bGae8xjIaLaaGikaiaa dshacaaIPaGaeyizImQaam4qaiab=vIiqjaadwhacqWFLicucaaIOa GaamiDaiaaiMcadaWgaaqcfasaaiaadYeajuaGdaahaaqcfasabeaa cqGHEisPaaGaaGikaiabfM6axjaaiMcaaeqaaKqbakab=vIiqjaadw hacqWFLicucaaIOaGaamiDaiaaiMcadaWgaaqcfasaaiaadIeajuaG daqhaaqcfasaaiaaicdaaeaacaaIXaaaaiaaiIcacqqHPoWvcaaIPa aabeaajuaGcqGHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGOmaaaajuaG caaIOaGaeuyQdCLaaGykaiaai6caaaa@6483@

To prove that the norms u t L 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqnaaBaaabaqcfaIaamitaKqbaoaaCaaajuaibeqaai aaikdaaaqcfaOaaiilaaqabaaaaa@4415@ p L 2 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjabgEGirlaadchacqWFLicudaWgaaqc fasaaiaadYeajuaGdaahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPo WvcaaIPaaajuaGbeaaaaa@4603@ and (u)u L 2 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacqWFLicudaWgaaqcfasaaiaadYeajuaGdaahaaqcfa sabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPaaajuaGbeaaaaa@4AB1@  have exponential decay, we use the equality (10)

(u)u(t)=Bu(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacqWFLicucaaIOaGaamiDaiaaiMcacaaI9aGae8xjIa LaamOqaiaadwhacqWFLicucaaIOaGaamiDaiaaiMcacaaISaaaaa@4EA8@

where Bu L 2 (Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca WG1bGaeyicI4SaamitamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGik aiabfM6axjqaiMcagaqbaaaa@3F28@ such that

Bu,v= Ω ( u 1 u 1x v 1 + u 1 u 1y v 2 + u 2 u 2x v 1 + u 2 u 2y v 2 )dΩ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgMYiHl aadkeacaWG1bGaaGilaiaadAhacqGHQms8caaI9aWaa8qeaeqajuai baGaeuyQdCfajuaGbeGaey4kIipacaaIOaGaamyDamaaBaaajuaiba GaaGymaaqabaqcfaOaamyDamaaBaaajuaibaGaaGymaiaadIhaaeqa aKqbakaadAhadaWgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaadw hadaWgaaqcfasaaiaaigdaaKqbagqaaiaadwhadaWgaaqaaKqbGiaa igdacaWG5baajuaGbeaacaWG2bWaaSbaaKqbGeaacaaIYaaabeaaju aGcqGHRaWkcaWG1bWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWG1bWa aSbaaKqbGeaacaaIYaGaamiEaaqcfayabaGaamODamaaBaaajuaiba GaaGymaaqabaqcfaOaey4kaSIaamyDamaaBaaajuaibaGaaGOmaaqa baqcfaOaamyDamaaBaaajuaibaGaaGOmaiaadMhaaeqaaKqbakaadA hadaWgaaqcfasaaiaaikdaaKqbagqaaiaaiMcacaaMi8Uaamizaiab fM6axbaa@6D5D@

for every v L 2 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaeuyQ dCLaaGykaiaac6caaaa@3F08@  We calculate

|b(u,u,v)|(t)Cu L (Ω) (t)u H 0 1 (Ω) (t)v(t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiYhaca WGIbGaaGikaiaadwhacaaISaGaamyDaiaaiYcacaWG2bGaaGykaiaa iYhacaaIOaGaamiDaiaaiMcacqGHKjYOcaWGdbqeeuuDJXwAKbsr4r NCHbacfaGae8xjIaLaamyDaiab=vIiqnaaBaaajuaibaGaamitaKqb aoaaCaaajuaibeqaaiabg6HiLcaacaaIOaGaeuyQdCLaaGykaaqcfa yabaGaaGikaiaadshacaaIPaGae8xjIaLaamyDaiab=vIiqnaaBaaa juaibaGaamisaKqbaoaaDaaajuaibaGaaGimaaqaaiaaigdaaaGaaG ikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiab=vIi qjaadAhacqWFLicucaaIOaGaamiDaiaaiMcacaaIUaaaaa@67EC@  (44)

Since the right-hand side of (44) has exponential decay for every v L 2 (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaeuyQ dCLaaGykaiaacYcaaaa@3F06@ it follows

(u)u(t)C e 5 4 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacqWFLicucaaIOaGaamiDaiaaiMcacqGHKjYOcaWGdb GaamyzamaaCaaabeqcfasaaiabgkHiTKqbaoaalaaajuaibaGaaGyn aaqaaiaaisdaaaGaeq4XdmMaamiDaaaajuaGcaaIUaaaaa@51B7@  (45)

Returning to (9), we obtain the decay rate for the operator Au MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG1baaaa@3839@

Au(t)Bu(t)+ u t (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadgeacaWG1bGae8xjIaLaaGikaiaa dshacaaIPaGaeyizImQae8xjIaLaamOqaiaadwhacqWFLicucaaIOa GaamiDaiaaiMcacqGHRaWkcqWFLicucaWG1bWaaSbaaKqbGeaacaWG 0baabeaajuaGcqWFLicucaaIOaGaamiDaiaaiMcacaaIUaaaaa@5277@

It follows from (34) and (45) that Au(t)C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadgeacaWG1bGae8xjIaLaaGikaiaa dshacaaIPaGaeyizImQaam4qaiaadwgadaahaaqabKqbGeaacqGHsi sljuaGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaiabeE8aJjaadsha aaqcfaOaaiOlaaaa@4C42@  By (40),

p L 2 (t) u t (t)+Au(t)+Bu(t)C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjabgEGirlaadchacqWFLicudaWgaaqc fasaaiaadYeajuaGdaahaaqcfasabeaacaaIYaaaaaqcfayabaGaaG ikaiaadshacaaIPaGaeyizImQae8xjIaLaamyDamaaBaaajuaibaGa amiDaaqcfayabaGae8xjIaLaaGikaiaadshacaaIPaGaey4kaSIae8 xjIaLaamyqaiaadwhacqWFLicucaaIOaGaamiDaiaaiMcacqGHRaWk cqWFLicucaWGcbGaamyDaiab=vIiqjaaiIcacaWG0bGaaGykaiabgs MiJkaadoeacaWGLbWaaWbaaKqbGeqabaGaeyOeI0scfa4aaSaaaKqb GeaacaaIXaaabaGaaGOmaaaacqaHhpWycaWG0baaaKqbakaai6caaa a@67D7@  (46)

Since now f L 2 (Ω), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgacq GHiiIZcaWGmbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaaIOaGaeuyQ dCLaaGykaiaaiYcaaaa@3EFC@  substituting (34), (45), (46) into (24) and making use of Theorem 6,1, we prove
u H 2 (Ω) (t)C e 1 2 χt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaWgaaqcfasaaiaa dIeajuaGdaahaaqcfasabeaacaaIYaaaaiaaiIcacqqHPoWvcaaIPa aajuaGbeaacaaIOaGaamiDaiaaiMcacqGHKjYOcaWGdbGaamyzamaa CaaabeqcfasaaiabgkHiTKqbaoaalaaajuaibaGaaGymaaqaaiaaik daaaGaeq4XdmMaamiDaaaajuaGcaGGUaaaaa@51B3@  It means that a unique generalized soliution is regular.

The proof of Theorem 6.2 is complete.

Existence and decay on the half-strip

Theorem 7.1 Consider the half-strip Ω={(x,y) 2 ;0<x,0<y<B}. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axj aai2dacaaI7bGaaGikaiaadIhacaaISaGaamyEaiaaiMcacqGHiiIZ tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risn aaCaaajuaibeqaaiaaikdaaaqcfaOaaG4oaiaaicdacaaI8aGaamiE aiaaiYcacaaMi8UaaGimaiaaiYdacaWG5bGaaGipaiaadkeacaaI9b GaaiOlaaaa@570C@  Given u 0 H 2 (Ω)V, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada WgaaqcfasaaiaaicdaaKqbagqaaiabgIGiolaadIeadaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacqqHPoWvcaaIPaGaeyykICSaamOvai aacYcaaaa@4311@  the following problem:

( u t νΔu+p+(u)u=0inΩ×(0,t), u=0inΩ×(0,t), u=0onΩ×(0,t),t>0, lim x |u(x,y,t)|=0,t>0, u(x,y,0)= u 0 (x),inΩ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabeaaba qbaeqabuqaaaaabaGaamyDamaaBaaajuaibaGaamiDaaqcfayabaGa eyOeI0IaeqyVd4MaeuiLdqKaamyDaiabgUcaRiabgEGirlaadchacq GHRaWkcaaIOaGaamyDaiabgwSixlabgEGirlaaiMcacaWG1bGaaGyp aiaaicdacaqGPbGaaeOBaiabgM6axjabgEna0kaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaaGilaaqaaiabgEGirlaadwhacaaI9aGaaGim aiaabMgacaqGUbGaeyyQdCLaey41aqRaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaISaaabaGaamyDaiaai2dacaaIWaGaae4Baiaab6ga cqGHciITcqGHPoWvcqGHxdaTcaaIOaGaaGimaiaaiYcacaWG0bGaaG ykaiaaiYcacaWG0bGaaGOpaiaaicdacaaISaaabaWaaybuaeqajuai baGaamiEaiabgkziUkabg6HiLcqcfayabeaaciGGSbGaaiyAaiaac2 gaaaGaaGiFaiaadwhacaaIOaGaamiEaiaaiYcacaWG5bGaaGilaiaa dshacaaIPaGaaGiFaiaai2dacaaIWaGaaGilaiaayIW7caaMi8UaaG jcVlaadshacaaI+aGaaGimaiaaiYcaaeaacaWG1bGaaGikaiaadIha caaISaGaamyEaiaaiYcacaaIWaGaaGykaiaai2dacaWG1bWaaSbaaK qbGeaacaaIWaaabeaajuaGcaaIOaGaamiEaiaaiMcacaaISaGaaeyA aiaab6gacqGHPoWvaaaacaGL7baaaaa@A129@  (47)

has a unique solution (u,p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca WG1bGaaGilaiaadchacaaIPaaaaa@3A83@ such that

u L (0,; H 0 1 (Ω)), u t L (0,; L 2 (Ω)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GHiiIZcaWGmbWaaWbaaKqbGeqabaGaeyOhIukaaKqbakaaiIcacaaI WaGaaGilaiabg6HiLkaaiUdacaWGibWaa0baaKqbGeaacaaIWaaaba GaaGymaaaajuaGcaaIOaGaeuyQdCLaaGykaiaaiMcacaaISaGaamyD amaaBaaajuaibaGaamiDaaqabaqcfaOaeyicI4SaamitamaaCaaaju aibeqaaiabg6HiLcaajuaGcaaIOaGaaGimaiaaiYcacqGHEisPcaaI 7aGaamitamaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiabfM6axj aaiMcacaaIPaGaaGilaaaa@5A7E@
p L (0,; L 2 (Ω)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEGirl aadchacqGHiiIZcaWGmbWaaWbaaeqajuaibaGaeyOhIukaaKqbakaa iIcacaaIWaGaaGilaiabg6HiLkaaiUdacaWGmbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaaIOaGaeuyQdCLaaGykaiaaiMcacaaIUaaaaa@48B9@  (48)

Moreover,

u t (t)+u H 0 1 (Ω) (t)+p L 4/3 (Ω) (t) C 2 e 1 2 θt , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqjaaiIcacaWG0bGaaGykaiabgUcaRiab=vIiqjaadw hacqWFLicudaWgaaqcfasaaiaadIeajuaGdaqhaaqcfasaaiaaicda aeaacaaIXaaaaiaaiIcacqqHPoWvcaaIPaaajuaGbeaacaaIOaGaam iDaiaaiMcacqGHRaWkcqWFLicucqGHhis0caWGWbGae8xjIa1aaSba aKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaiaai+cacaaIZa aaaiaaiIcacqqHPoWvcaaIPaaajuaGbeaacaaIOaGaamiDaiaaiMca cqGHKjYOcaWGdbWaaSbaaKqbGeaacaaIYaaajuaGbeaacaWGLbWaaW baaeqajuaibaGaeyOeI0scfa4aaSaaaKqbGeaacaaIXaaabaGaaGOm aaaacqaH4oqCcaWG0baaaKqbakaaiYcaaaa@6BF6@  (49)

where θ=ν π 2 B 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXj aai2dacqaH9oGBdaWcaaqaaiabec8aWnaaCaaabeqcfasaaiaaikda aaaajuaGbaGaamOqamaaCaaabeqcfasaaiaaikdaaaaaaaaa@3FE8@ and C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqcfasaaiaaikdaaKqbagqaaaaa@38DA@ depends on ν, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe27aUj aacYcaaaa@38E1@ u 0 H 2 (Ω) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaaicdaaKqb agqaaiab=vIiqnaaBaaajuaibaGaamisaKqbaoaaCaaajuaibeqaai aaikdaaaGaaGikaiabfM6axjaaiMcaaKqbagqaaiaac6caaaa@46C7@

Proof. Obviously, the variational formulation of (47) is also (9). Repeating the proof of Theorem 5.1 (see Remark 3.1), we can proof the existence and uniqueness of the generalized solution18 to problem (47). Note that (14) holds for the problem (47). Using the Steklov inequality with respect to variable y, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhaca GGSaaaaa@3827@ we obtain

u y 2 π 2 B 2 u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadMhaaKqb agqaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaeyyzIm7aaS aaaeaacqaHapaCdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadkea daahaaqcfasabeaacaaIYaaaaaaajuaGcqWFLicucaWG1bGae8xjIa 1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaISaaaaa@4ECC@

hence, similarly to (13),

d dt u 2 (t)+2ν π 2 B 2 u 2 (t)+2ν u x 2 (t)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhacqWFLicudaahaaqcfasabeaacaaIYaaaaKqbakaaiI cacaWG0bGaaGykaiabgUcaRiaaikdacqaH9oGBdaWcaaqaaiabec8a WnaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaamOqamaaCaaajuaibe qaaiaaikdaaaaaaKqbakab=vIiqjaadwhacqWFLicudaahaaqcfasa beaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgUcaRiaaikdacq aH9oGBcqWFLicucaWG1bWaaSbaaKqbGeaacaWG4baajuaGbeaacqWF LicudaahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykai abgsMiJkaaicdacaaIUaaaaa@64E3@  (50)

By Lemma 5, u 2 (t) u 0 2 e 2ν π 2 B 2 t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaahaaqcfasabeaa caaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJkab=vIiqjaadw hadaWgaaqcfasaaiaaicdaaKqbagqaaiab=vIiqnaaCaaajuaibeqa aiaaikdaaaqcfaOaamyzamaaCaaabeqcfasaaiabgkHiTiaaikdacq aH9oGBjuaGdaWcaaqcfasaaiabec8aWLqbaoaaCaaajuaibeqaaiaa ikdaaaaabaGaamOqaKqbaoaaCaaajuaibeqaaiaaikdaaaaaaiaads haaaqcfaOaaGOlaaaa@57B5@  (51)

Since (31) holds for the problem (47), making use of Lemma 4.4, we estimate

 

d dt u t 2 (t)+2ν u t 2 (t) V 2 u t (t)u (t) V u t (t) V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa aGOmaiabe27aUjab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbag qaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaadsha caaIPaWaaSbaaKqbGeaacaWGwbaajuaGbeaacqGHKjYOcaaIYaGae8 xjIaLaamyDamaaBaaajuaibaGaamiDaaqcfayabaGae8xjIaLaaGik aiaadshacaaIPaGae8xjIaLaamyDaiab=vIiqjaaiIcacaWG0bGaaG ykamaaBaaajuaibaGaamOvaaqcfayabaGae8xjIaLaamyDamaaBaaa juaibaGaamiDaaqcfayabaGae8xjIaLaaGikaiaadshacaaIPaWaaS baaKqbGeaacaWGwbaajuaGbeaaaaa@6F3B@  (52)

which we rewrite as

d dt u t 2 (t)+ν u t V 2 (t) 2 ν u V 2 (t) u t 2 (t)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa eqyVd4Mae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOae8 xjIa1aa0baaKqbGeaacaWGwbaabaGaaGOmaaaajuaGcaaIOaGaamiD aiaaiMcacqGHsisldaWcaaqaaiaaikdaaeaacqaH9oGBaaGae8xjIa LaamyDaiab=vIiqnaaDaaajuaibaGaamOvaaqaaiaaikdaaaqcfaOa aGikaiaadshacaaIPaGae8xjIaLaamyDamaaBaaajuaibaGaamiDaa qabaqcfaOae8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGa amiDaiaaiMcacqGHKjYOcaaIWaGaaGOlaaaa@6B02@  (53)

By Lemma 4.1,

u ty 2 (t) π 2 B 2 u t 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshacaWG 5baabeaajuaGcqWFLicudaahaaqcfasabeaacaaIYaaaaKqbakaaiI cacaWG0bGaaGykaiabgwMiZoaalaaabaGaeqiWda3aaWbaaKqbGeqa baGaaGOmaaaaaKqbagaacaWGcbWaaWbaaeqajuaibaGaaGOmaaaaaa qcfaOae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqabaqcfaOae8xj Ia1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaamiDaiaaiMcaaa a@55A1@

and (53) becomes

d dt u t 2 (t)+[ν π 2 B 2 2 ν u V 2 (t)] u t 2 (t)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaaqaaiaadsgacaWG0baaaebbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadwhadaWgaaqcfasaaiaadshaaKqbagqaaiab=vIiqnaaCa aajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaey4kaSIa aG4waiabe27aUnaalaaabaGaeqiWda3aaWbaaeqajuaibaGaaGOmaa aaaKqbagaacaWGcbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaaGPa VlabgkHiTiaaykW7caaMc8+aaSaaaeaacaaIYaaabaGaeqyVd4gaai ab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaadAfaaeaacaaIYaaa aKqbakaaiIcacaWG0bGaaGykaiaai2facqWFLicucaWG1bWaaSbaaK qbGeaacaWG0baabeaajuaGcqWFLicudaahaaqcfasabeaacaaIYaaa aKqbakaaiIcacaWG0bGaaGykaiabgsMiJkaaicdacaaIUaaaaa@6D5C@  (54)

By Lemma 5, (54) provides

u t 2 (t) u t 2 (0) e 2 3 ν 0 t u V 2 (s)ds e ν π 2 B 2 t , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaeyizImQae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqc fayabaGae8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaaG imaiaaiMcacaWGLbGcdaahaaWcbeqaamaalaaabaGaaGOmamaaCaaa beqaaiaaiodaaaaabaGaeqyVd4gaamaapedabeqaaiaaicdaaeaaca WG0baaniabgUIiYdWccqWFLicucaWG1bGae8xjIa1aa0baaeaacaWG wbaabaGaaGOmaaaacaaIOaGaam4CaiaaiMcacaaMi8Uaamizaiaado haaaqcfaOaamyzaOWaaWbaaSqabeaacqGHsislcqaH9oGBdaWcaaqa aiabec8aWnaaCaaabeqaaiaaikdaaaaabaGaamOqamaaCaaabeqaai aaikdaaaaaaiaadshaaaGccaaISaaaaa@6C03@

hence

u t 2 (t) u t 2 (0) e 2 ν u 0 e ν π 2 B 2 t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhadaWgaaqcfasaaiaadshaaKqb agqaaiab=vIiqnaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaads hacaaIPaGaeyizImQae8xjIaLaamyDamaaBaaajuaibaGaamiDaaqa baqcfaOae8xjIa1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaIOaGaaG imaiaaiMcacaWGLbWaaWbaaKqbGeqabaqcfa4aaSaaaKqbGeaacaaI YaaabaGaeqyVd4gaaiab=vIiqjaadwhajuaGdaWgaaqcfasaaiaaic daaeqaaiab=vIiqbaajuaGcaWGLbWaaWbaaeqajuaibaGaeyOeI0Ia eqyVd4wcfa4aaSaaaKqbGeaacqaHapaCjuaGdaahaaqcfasabeaaca aIYaaaaaqaaiaadkeajuaGdaahaaqcfasabeaacaaIYaaaaaaacaWG 0baaaKqbakaai6caaaa@64FE@  (55)

Returning to (35), we estimate

u V 2 (t) 1 ν u t (t)u(t) 1 ν u 0 u t (0) e 2 ν u 0 e ν 3 π 2 2 B 2 t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadwhacqWFLicudaqhaaqcfasaaiaa dAfaaeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiabgsMiJoaala aabaGaaGymaaqaaiabe27aUbaacqWFLicucaWG1bWaaSbaaKqbGeaa caWG0baabeaajuaGcqWFLicucaaIOaGaamiDaiaaiMcacqWFLicuca WG1bGae8xjIaLaaGikaiaadshacaaIPaGaeyizIm6aaSaaaeaacaaI XaaabaGaeqyVd4gaaiab=vIiqjaadwhadaWgaaqcfasaaiaaicdaae qaaKqbakab=vIiqjab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqa aKqbakab=vIiqjaaiIcacaaIWaGaaGykaiaadwgakmaaCaaaleqaba WaaSaaaeaacaaIYaaabaGaeqyVd4gaaiab=vIiqjaadwhadaWgaaqa aiaaicdaaeqaaiab=vIiqbaajuaGcaWGLbGcdaahaaWcbeqaaiabgk HiTiabe27aUnaalaaabaGaaG4maiabec8aWnaaCaaabeqaaiaaikda aaaabaGaaGOmaiaadkeadaahaaqabeaacaaIYaaaaaaacaWG0baaaO GaaGOlaaaa@77FA@  (56)

Decay for Pressure
In order to obtain decay for p L 4/3 (Ω) (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjabgEGirlaadchacqWFLicudaWgaaqc fasaaiaadYeajuaGdaahaaqcfasabeaacaaI0aGaaG4laiaaiodaaa GaaGikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiaa cYcaaaa@4A89@  we start with

(u)u L 4/3 (Ω) (t)=Bu L 4 (Ω ) (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaaiIcacaWG1bGaeyyXICTaey4bIeTa aGykaiaadwhacqWFLicudaWgaaqcfasaaiaadYeajuaGdaahaaqcfa sabeaacaaI0aGaaG4laiaaiodaaaGaaGikaiabfM6axjaaiMcaaeqa aKqbakaaiIcacaWG0bGaaGykaiaai2dacqWFLicucaWGcbGaamyDai ab=vIiqnaaBaaajuaibaGaamitaKqbaoaaCaaajuaibeqaaiaaisda aaGaaGikaiabfM6axjqaiMcagaqbaaqabaqcfaOaaGikaiaadshaca aIPaGaaGilaaaa@5CA4@

where L 4 (Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqcfasabeaacaaI0aaaaKqbakaaiIcacqqHPoWvceaIPaGbauaa aaa@3BE5@ is the dual of the space L 4 (Ω). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqcfasabeaacaaI0aaaaKqbakaaiIcacqqHPoWvcaaIPaGaaiOl aaaa@3C8B@  Since

Au= u t Bu, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG1bGaaGypaiabgkHiTiaadwhadaWgaaqcfasaaiaadshaaeqaaKqb akabgkHiTiaadkeacaWG1bGaaGilaaaa@4021@

repeating calculations of (38) and making use of (34), we get

Au (t) L 4/3 (Ω) c 1 e 1 2 θt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjaadgeacaWG1bGae8xjIaLaaGikaiaa dshacaaIPaWaaSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaG inaiaai+cacaaIZaaaaiaaiIcacqqHPoWvcaaIPaaajuaGbeaacqGH KjYOcaWGJbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWGLbWaaWbaaK qbGeqabaGaeyOeI0scfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaa cqaH4oqCcaWG0baaaKqbakaac6caaaa@55AC@  Observing that (40) holds for the problem (47), we obtain

p L 4/3 (Ω) (t) u t L 2 (Ω) (t)+Au L 4/3 (Ω) (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaKqbakab=vIiqjabgEGirlaadchacqWFLicudaWgaaqc fasaaiaadYeajuaGdaahaaqcfasabeaacaaI0aGaaG4laiaaiodaaa GaaGikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiab gsMiJkab=vIiqjaadwhadaWgaaqcfasaaiaadshaaeqaaKqbakab=v IiqnaaBaaajuaibaGaamitaKqbaoaaCaaajuaibeqaaiaaikdaaaGa aGikaiabfM6axjaaiMcaaeqaaKqbakaaiIcacaWG0bGaaGykaiabgU caRiab=vIiqjaadgeacaWG1bGae8xjIa1aaSbaaKqbGeaacaWGmbqc fa4aaWbaaKqbGeqabaGaaGinaiaai+cacaaIZaaaaiaaiIcacqqHPo WvcaaIPaaabeaajuaGcaaIOaGaamiDaiaaiMcaaaa@681A@
+Bu L 4/3 (Ω) (t) c 2 e 1 2 θt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgUcaRe bbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadkeacaWG1bGae8xjIa1a aSbaaKqbGeaacaWGmbqcfa4aaWbaaKqbGeqabaGaaGinaiaai+caca aIZaaaaiaaiIcacqqHPoWvcaaIPaaabeaajuaGcaaIOaGaamiDaiaa iMcacqGHKjYOcaWGJbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGLb WaaWbaaKqbGeqabaGaeyOeI0scfa4aaSaaaKqbGeaacaaIXaaabaGa aGOmaaaacqaH4oqCcaWG0baaaKqbakaai6caaaa@5696@  (57)

Jointly (55), (56) and (57) prove (48), (49).

Conclusion

In our work, we tried to respond some questions posed by J. Leray,1 namely, regularity of global solutions of the Navier-Stokes equations and their decay. Therefore, our results can be divided in two parts: the first one concerns decay of global regular solutions of the 2D Navier-Stokes equations posed on rectangles.19 It is known that there exist global regular solutions for the 2D Navier-Stokes equations posed on smooth bounded domains,4,10,11,14 but regularity in nonsmooth (Lipschitz) domains, such as rectangles, is not obvious. For bounded rectangles, we have established the existence of an unique global regular solution which decays exponentially as  We demonstrated that the decay rate is different for different norms, see (26), (30), (36), whereis defined by the geometrical characteristics of a domain

The second part of our work concerns decay of solutions for the 2D Navier-Stokes equations posed on a half-strip. In existing publications,3–11 the decay rate of  is controlled by the first eigenvalue of the operatorwhereis the projection operator on solenoidal subspace of  It is clear that this approach does not work in unbounded domains On the other hand, our approach based on the Steklov inequality with respect toallowed us to estimate the decay rate of a generalized solution for the 2D Navier-Stokes equations posed on a half-strip.

We must emphasize that this estimate is the first in the history which gives an explicit value of the decay rate for unbounded domains. Results established in our work can be used in constructing of numerical schemes for solving initial-boundary value problems for the Navier-Stokes equations appearing in Mechanics of viscous liquid. From the physical point of view, decay estimates show that the decay rate of perturbations of solutions caused by the initial data is bigger for bigger values of viscosityand smaller values of the width and length of the rectangles and the width of a half-strip.

Acknowledgements

None.

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

References

  1. Leray Essai J. Sur le mouvement d'un uide visqueux emplissant l'espace. Acta Math. 1934;63:193–248.
  2.  Brown RM, Perry P, Shen Z. On the dimension of the attractor for the non-homogeneous Navier-Stokes equations in non-smooth domains. Indiana Univ Math Journal. 2000;40(1):81–112.
  3. Edmunds DE. Asymptotic behavior of solutions of the Navier-Stokes equations. Arch Rational Mech Anal. 1966;22(1):15–21.
  4. Foias C, Prodi G. Sur le comportement global des solutions non-stationairos des equations de Navier-Stokes en dimension 2. Rendiconti del Seminario Matemtico della Universit di Padova. 1967;39:1–34.
  5. Foias C, Saut JC. Asynptotic behavior as t! 1of solutions of Navier-stokes equations in nonlinear partial dierential equations and their applications. College of France Seminar. 1983;4:74–86.
  6. Foias C, Temam R. Some analytic and geometric properties of the solutions of the evolution of Navier-Stokes equations. J Math Pures Appl. 1979;58:339–368
  7. Foias C, Saut JC. Asymptotic Behavior, as t! 1 of Solutions of Navier- Stokes Equations and Nonlinear Spectral Manifolds Indiana University Mathematics Journal. 1984;33.10.1512/iumj.1984.33.33025.
  8. Guillop C. Comportement l'in ni des solutions des equations de Navier-Stokes et proprit des ensembles fonctionnels invariants (ou attracteurs). Annales de l'institut Fourier. 1982;32(3):1–37.
  9. Ladyzhenskaya O. Solution in the large of the nonstationary boundary value problem for the navier-stokes system with two space variables. Comm Pur Applied Math. 1959;12(3):427–433.
  10. Prodi G, Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensional. Rend Sem Mat Univ Padova. 1965;30:1–15.
  11. Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Noth-Holland, Amsterdam; 1979.
  12. Cattabriga L. Su un problema al contorno relativo al sistema di equazioni di Stokes. Rendiconti del Seminario Matematico della Universit di Padova. 1961;31:308–340.
  13. Constantin P, Foias C. Navier-Stokes Equations. Chicago Lectures in Mathematics; 1988.
  14. Ladyzhenskaya OA. The Mathematical Theory of Viscous Incompressible Flow. 2nd ed. English translation, New York: Gordon and Breach; 1969.
  15. Koshelev AI. A priori estimates in Lp and generalized solutions of elliptic equations and systems. Amer Math Soc Transl. 1962;20(2):105–171.
  16. Steklov AV. The problem of cooling of an heterogeneous rigid rod. Communs Kharkov Math Soc Ser. 1896;2(5):136–181.
  17. de Rham G. Vari et es dierentiables. Herman, Paris; 1960.
  18. Marcinkiewicz J. Sur les multiplicateurs des s eries de Fourier. Studia Mathematica. 1939;8(1):78–91.
  19.  Temam R. Behavior at t=0 of the solutions of the semi-linear evoluation equations. J Di Equats. 1982;43(1):73–92.
Creative Commons Attribution License

©2018 Larkin, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.