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Introduction
The main goal of this work is establishing of sharp estimates for 

the exponential decay rates of solutions to initial-boundary value 
problems for the 2D Navier-Stokes equations:

 ( ) = , (0, ),tu u u u p in tν+ ⋅∇ ∆ −∇ Ω×                   (1)

 =0 , | =0,u in u∇ Ω ∂Ω                  (2)

 0( , ,0)= ( , ),u x y u x y
                 

(3)

whereΩ is either a bounded rectangle or a half-strip in 2  with 
the homogeneous Dirichlet condition on the boundary of .Ω

The question of decay of the energy for generalized solutions had 
been stated by J.Leray1 and attracts till now attention of many pure 
and applied mathematicians2‒11. In all of these papers, the decay rate 
of 2

( )( )Lu t Ω   was controlled by the first eigenvalue of the operator 
= ,A P− ∆ where P is the projection operator on solenoidal subspace of 

2 ( ).L Ω  Associated with stability questions, problems on dimensions 
of attractors and nonlinear spectral manifolds also have been 
studied.2,6,7

It is well-known that solutions of the 2D Navier-Stokes equations 
posed on smooth bounded domains with the Dirichlet boundary 
conditions are globally regular.9,11‒14 On the other hand, the question 
of regularity is not obvious in the case of bounded Lipschitz domains 
and unbounded Lipschitz and smooth domains. It has been proved 
that for Lipschitz domains, bounded and unbounded, there exists a 
unique global generalized solution.9,11,14

 
2 2 1, (0, ; ( )) (0, ; ( )),tu u L L L H∞∈ ∞ Ω ∩ ∞ Ω

but it was not clear whether 

 
2(0, ; ( ))u L H∞∈ ∞ Ω

at least for bounded Lipschitz domains.

In this work, we have established this fact for rectangles making 
use of ideas.15 The following inequality holds for rectangles

2 2
2 2 2

02 2 2 2 2( ) ( ) ( )
( ) ( ) exp( ( ) )t

H L H
u t u t C u t

L B

π π
ν

Ω Ω Ω
+ ≤ − +     

and

 

2
2 2 2

( 01 2 2 2( ) ( ) ( )
( ) ) exp( )t

H L H
u t u t C u t

B

νπ

Ω Ω Ω
+ ≤ −     

for a half-strip.

Our paper has the following structure: Chapter I is Introduction. 
Chapter 2 contains notations and auxiliary facts. In Chapter 3, 
existence and uniqueness of global generalized solutions on either 
bounded or unbounded Lipschitz domains have been established. In 
Chapter 4, regularity and decay of solutions on rectangles and on a 
half-strip have been studied.

Notations and auxiliary facts
LetΩ be a domain in 2.  Define as in:11

 

| |
= , = , = = .

j jx yj j jx y
x y x y j jx y

D D D D D
x y x y

+∂ ∂ ∂
∂ ∂ ∂ ∂

We denote for scalar functions ( , , )f x y t  by ( ),1< <pL pΩ +∞  the 
Banach space with the norm

( )
= | | , (1, ), = | ( , )|.( )

p p
Dp

L
f f dxdy p f ess sup f x yL D∞

Ω
Ω

∈ +∞∫   

For 2=2, (p L Ω  is a Hilbert space with the scalar product

2 2( , )= ( , ) ( , ) = | ( , )| .u v u x y v x y dxdy and the norm u u x y dxdyΩ Ω∫ ∫ 

The Sobolev space , ( )m pW Ω  is a Banach space with the norm

,

0 | |
= .( ) ( )k p p

k
u D uW L

α

α≤ ≤

∑Ω Ω   

When ,2=2, ( )= ( )m mp W HΩ Ω  is a Hilbert space with the 
following scalar product and the norm:

2 2
( )

( )| | | |

(( , )) = ( , ), = .j j jm
H m

Hj m j m

u v D u D v u D uΩ
Ω≤ ≤

∑ ∑   
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Let ( )Ω or ( )Ω be the space of C∞  functions with compact 
support in Ω  or Ω . The closure of C∞  functions in , ( )m pW Ω  is 
denoted by ,

0 ( )m pW Ω  and 0( ( ) 2).mH when pΩ =

Define the auxiliary spaces which are projections for the solenoidal 
vector functions,

 
1
0={ ( ), =0}, =theclosureof in ( ),u u V H∈ Ω ∇ Ω  

 
2=theclosureof in ( ),H L Ω

The space H is eqquiped with the natural 2L inner product. The 
spaceV will be equipped with the scalar produt

  (( , ))=( , ) ( , )x x y yu v D u D v D u D v+

whenΩ is bounded. IfΩ is unbounded, we define the inner product 
as the sum of the inner products as following:

  [[ , ]]=( , ) (( , )).u v u v u v+

We use the usual notations of Sobolev spaces , ,k pW pL and kH
for vector functions and the following notations for the norms:

i) For vector functions 1 2( , , )=( ( , , ), ( , , )),u x y t u x y t u x y t

  
1 2

( )
= (| | | | ) ,p p p

p
L

u u u dxdyΩ
Ω

+∫ 

,
( ) 1 2

0 | |

= , (1, ).( ) ( )k p p p
W

k

u D u D u pL L
α α

α
Ω

≤ ≤

+ ∈ +∞∑ Ω Ω     

The closures of  in 2 ( )L Ω and in 1
0 ( )H Ω are the basic spaces in 

our study. We denote them by H andV respectively.. ObviouslyV is 
a subspace of 1

0 ( ).H Ω

Define the operator

 1 1 1 2 2 1 2 2( ) =( ).x x y yu u u u u u u u u u⋅∇ + + +

Lemma 4.1 (The Steklov Inequality)16 Let 1
0 (0, ).v H L∈  Then

 

  

2
2 2

2
( ) ( ).xv t v t

L

π
≤                 (4)

Proof. Let 1
0( ) (0, )v t H π∈ , then by the Fourier series,

  
2 2

0 0( ) ( ) .tv t dt v t dtπ π≥∫ ∫

Inequality (4) follows by a simple scaling. 

Lemma 4.2 (Differential form of the Grownwall Inequality) 
Let 0 1=[ , ].I t t Suppose that functions , :a b I→  are integrable and 
a function ( )a t may be of any sign. Let :u I→  be a differentiable 
function satisfying

 0 0( ) ( ) ( ) ( ),for and ( )= ,u t a t u t b t t I u t u′ ≤ + ∈                         (5)

then

 
0

( )( )
00

0
( ) ( ) .

s a r dra t dt
t

t
tt
t

u t u e e b s ds
∫∫

≤ +∫                                 (6)

Proof. Multiply (5) by the integrating factor
( )

0
a r drs

te
∫

and integrate 
from 0t to .t

The next Lemmas will be used in estimates:

Lemma 4.3 (See: 11,14 ) Let 1
0 ( )v H∈ Ω , then

 

1/4 1/2 1/24
( ) 2 2

( ) ( )
2 .L

L L
v v vΩ

Ω Ω
≤ ∇     

                
(7)

Lemma 4.4 (See: 14 ) Let ( , , )=(( ) , ),b u v w u v w⋅∇  then

1/2 1/2 1/2 1/2 1/2| ( , , )| 2 V V Vb u v w u u v w w≤          

1
0, , ( )u v w H∀ ∈ Ω . If 2 (0, ; ) (0, ; )u L V L H∞∈ ∞ ∩ ∞ , then we can define 

the operator Bu such that Bu belongs to 2 (0, ; )L V ′∞  and 

( , )= ( , , ),Bu v b u u v
1/22 2

(0, ; ) (0, ; ) (0, ; )2 .u L V L H L VB u u∞′∞ ∞ ∞≤     

Existence theorems
Let Ω  be a bounded Lipschitz domain. Given 0 ,u H∈ consider the 

following problem:

 0

( ) =0in (0, ),
=0in (0, ),

=0on (0, ), >0,
( , ,0)= ( , ),in

tu u p u u t
u t

u t t
u x y u x y

ν− ∆ +∇ + ⋅∇ Ω×
 ∇ Ω×
 ∂Ω×
 Ω

                (8)

equivalent to the variational problem given by,11

 
0

=0in(0, ), >0
(0)= ,

u Au Bu t t
u u

′+ +



                 (9)

where Au V ′∈ such that ( , )= (( , ))Au v u vν− for all v V∈ and Bu V ′∈ such 
that

 ( , )= ( , , ).Bu v b u u v                               (10)

Theorem 5.1 Given 2
0 ( ) ,u H V∈ Ω ∩ there exists a unique generalized 

solution u to (8) such that for all , | =0V ∂ΩΦ∈ Φ  it satisfies the 
following integral identity:

{ ( ) ( ) } =0,t x x y yu u u u u dxdyνΩ Φ+ Φ + Φ − ⋅∇ Φ∫               (11)

where
2(0, ; ), (0, ; ) (0; ; ).tu L V u L H L V∞ ∞∈ ∞ ∈ ∞ ∩ ∞

Proof. The estimates that follow may be established on Gallerkin 
approximations.14,9 We estimate:

Estimate I - 2(0, ; ) (0, ; )u L H L V∞∈ ∞ ∩ ∞ .

Multiply (9) by u to obtain

 ( , )( ) ( , )( )=0.tu u t Au u t+                                       (12)

It follows from here that

 
2 2( ) 2 ( ) =0.V

d u t u t
dt

ν+                                                     (13)
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Integrating (13) over (0, ),t , we get

2 2 2
00( ) 2 ( ) = , >0.V

tu t u s ds u tν+ ∫                    (14)

 Hence 2(0, ; ) (0, ; )u L H L V∞∈ ∞ ∩ ∞ .

Estimate II - 2(0, ; ) (0, ; )tu L H L V∞∈ ∞ ∩ ∞ .

Derivating (9) and multiplying by ,tu we get

2 2( ) 2 ( ) 2 ( , , )( )=0.t t V t t
d u t u t b u u u t
dt

ν+ +                                    (15)

By Lemma 4.4,

 
3/22| ( , , )( )| 2 ( )t t t V Vtb u u u t u t u u≤      

 

3
2 2 22 ( ) ( )t V V tu u t u tν

ν
≤ +     

and (15) becomes

 
2 2 2( ) ( ) ( ) ( ),t t V t

d u t u t t u t
dt

ν φ+ ≤                    (16)

where 
3

22( )= ( ).Vt u tφ
ν
  Making use of Lemma 4.2, we obtain

 
02 2 ( )( ) (0) .
t s ds

t tu t u e φ∫≤                          (17)

To prove that (0)tu   is in ,H multiply equation (9) by ( )tu t  to 
get

 
2 ( ) (( , ))( ) ( , , )( )=0.t t tu t u u t b u u u tν+ + 

In particular, for =0t  we have
2

0 0 0(0) = ( , (0)) ( , , (0)),t t tu u u b u u uν ∆ −                (18)

where 0(0)= ( ),limt ttu u t→ [19]. From this

 0 0(0) .tu u Buν≤ ∆ +                                    (19)

By the Hölder inequality,

4 4 4 4
( ) ( ) 2 ( ) 1 ( )| ( , , )| (2 )L L x L y Lb u u v u u u u vΩ Ω Ω Ω≤ ∇ + +         

2 22
( ) , ( ), ( ).V HC u u v u H v LΩ≤ ∀ ∈ Ω ∀ ∈ Ω                   (20)

Hence
22

0 0 0 ( ) 0 2
( )

| | V H
H

Bu C u u C uΩ
Ω

≤ ≤     
              (21)

and by (18), (0) .tu H∈  This and (16) imply that

 
2(0, ; ) (0, ; ).tu L H L V∞∈ ∞ ∩ ∞

Returning to (12), we calculate

 
2 ( )=( , )( ) ( ) ( ),V t tu t u u t u t u tν ≤                   (22)

hence (0, ; ).u L V∞∈ ∞  This and (17) prove validity of (11) and 
consequently the existence part of Theorem 3.1. Uniqueness of 
the generalized solution, ,u 2(0, ; ) (0, ; )tu L H L V∞∈ ∞ ∩ ∞  has been 
established.9,14

Remark 5.1 Estimates 2, (0, ; (0, ; )tu u L H L V∞∈ ∞ ∩ ∞  were established 
first for Lipschitz domains9,14 and were valid also for unbounded 
domains with a natural condition | | ( , , )=0.xlim u x y t→+∞  We repeat 
them because we will need these estimates while establishing decay 
of solutions in bounded and unbounded Lipschitz domains. 

Regularity and decay on rectangles and on 
the half-strip

Consider the Poisson problem in a bounded rectangle Ω

  
= ( , ), ( , ) ,

| =0,
u f x y x y

u ∂Ω

∆ ∈Ω



             (23)

Remark 6.1 It has been proved10 that for

 1={ =( ,..., ), 0< < ; =1,..., }n ix x x x i nππΩ

the following inequality holds

 
2,

( ) ( )( ) .p p
W Lu C f

π πΩ Ω≤ Ω   

It is easy to generalize this result for any rectangle in 2.  

Theorem 6.1 The problem (23) posed in rectangle 
2={( , ) ,0< < ; 0< < },x y x L y BΩ ∈ where ( ),pf L∈ Ω  1< 2,p≤ has a 

solution 2, ( ).pu W∈ Ω  Moreover,

  2,
( ) ( ).p p

W Lu c fΩ Ω Ω≤                 (24)

Returning to the original problem for the Navier-Stokes equations,

  0

( ) =0in (0, )
=0in (0, ),

=0in (0, ), >0,
( , ,0)= ( , ),in ,

tu u p u u t
u t

u t t
u x y u x y

ν− ∆ +∇ + ⋅∇ Ω×
 ∇ Ω×
 ∂Ω×
 Ω

            (25)

where u is a vector function from 2 into 2 and p is a real 
function from 2 into , and making use of Galerkin approximations, 
we establish the following result.

Theorem 6.2 Given 2
0 ( ) ,u H V∈ Ω ∩  the problem (25) has a unique 

solution ( , )u p  such that

2 2(0, ; ( )), (0, ; ) (0, ; ),tu L V H u L H L V∞ ∞∈ ∞ ∩ Ω ∈ ∞ ∩ ∞

(0, ; ).p L H∞∇ ∈ ∞                (26)

Moreover,
 

 

1

2 2( )( ) ( ) ( ) ,
t

t Hu t u t p t Ce
χ−

Ω+ + ∇ ≤                    (27)

where 
2 2

2 2
= ( )

L B

π πχ ν +  and C  depends on 2
0 ( ).Hu Ω 

Proof. Decay of 2L Norm

By definition,

 
2 2 2( )= ( ) ( ).V x yu t u t u t+     

Since | =0,u ∂Ω making use of Lemma 4.1, we get
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2 2
2 2 2 2

2 2
( ) ( ), ( ) ( ).x yu t u t u t u t

L B

π π
≥ ≥       

This implies 
2 2

2 2
2 2

( ) ( ) ( ).Vu t u t
L B

π π
≥ +                  (28)

Returning to (12), we obtain

 

2 2
2 2

2 2
( ) 2 ( ) ( ) 0.d u t u t

dt L B

π πν+ + ≤                  (29)

Define 
2 2

2 2
= ( ).

L B

π πχ ν + Then (29) implies

  
2 2 2

0( ) .tu t u e χ−≤                  (30)

Decay of 1H  Norm

Rewrite (15) in the form

 
2 2 2( ) ( ) ( ) ( ) 0,t t V t

d u t u t t u t
dt

ν φ+ − ≤                    (31)

where 
3

22= ( ).Vu tφ
ν
  Acting similarly to the proof of (29), we 

obtain

 

2 2
2 2

2 2
( ) ( ) ( ).t V tu t u t

L B

π π
≥ +                   (32)

Hence (31) reduces to the form

 
2 2( ) ( ( )) ( ) 0.t t

d u t t u t
dt

χ φ+ − ≤                  (33)

By Lemma 4.2,

 
2 2 ( )0( ) (0) .

t s ds t
et tu t u e φ χ−∫≤                 (34)

Since 2 (0, , ),u L V∈ ∞ then by (14),

 
2

00
2( ) , >0,t s ds u tφ
ν

≤∫  

and it follows from (13) that

 
2 ( ) ( , )( ) ( ) ( )V t tu t u u t u t u tν ≤ ≤     

 

2 1
0

20 0 .
u ttu u e e e

χχ
ν

−−
′≤

 

                 (35)

Therefore 
2 3

02
20

1( ) 0
u t

Vu t u u e e
χ

ν
ν

−
′≤

 

                  (36)

and 
2 3

02 2
20 0 01

( )0

1( ) ( ) .
u t

H
u t u u e u e

χ
ν

ν
−

′
Ω

≤ +
 

      
                    (37)

Decay of 2H -Norm

In order to estimate 2
( ) ( ),Hu tΩ  we will use Theorem 6.1. First 

write (8) as

 

1= = ( ( ) ).tu f u p u u
ν

∆ +∇ − ⋅∇

We estimate

4 1 4
2 ( ) ( ) ( )0

| ( , , )|( )=|(( ), )( )| ( ) ( ) ( )L H Lb u u v t u v t c u t u t v tΩ Ω Ω⋅∇ ≤      

2 1 4
( ) ( )0

( ) ( )H LC u t v tΩ Ω≤                                   (38)

and by (30),

3

4/3 2( )( ) ( ) .
t

Lu u t Ce
χ−

Ω⋅∇ ≤ 

Returning to (9), we obtain

4/3 4/3 2
( ) ( ) ( )( ) ( ) ( ).L L t LAu t Bu t u tΩ Ω Ω≤ +                   (39)

It follows by (38) and (34) that 
1

4/3 2( ) .L
t

Au t Ce
χ−

≤   By Theorem 
of de Rham,17 one can check that there exists p∇  such that11

  = tp u Au Bu−∇ + +              (40)

and

 
4/3 2 4/3

( ) ( ) ( )( ) ( ) ( )L t L Lp t u t Au tΩ Ω Ω∇ ≤ +     

 

1

4/3 2( ) ( ) .
t

LBu t Ce
χ−

Ω+ ≤ 

             
 (41)

Since 4/3 ( ),f L∈ Ω due to Theorem 6.1,

 

4 2 4/32, ( ) ( )
( )3

( ) ( ) ( )t L L
W

u t u t p tΩ Ω
Ω
≤ + ∇     

 
4/3

( )( ) ( )Lu u tΩ+ ⋅∇                (42)

and by (42), we get 
1

2,4/3 2( )( ) .
t

Wu t Ce
χ−

Ω ≤   By the Sobolev 
theorems,

 

 

1

2,4/3 2( ) ( )( ) ( ) .
t

L Wu t C u t Ce
χ−

∞
Ω Ω≤ ≤                 (43)

This implies

21
( ) ( )0

( ) ( ) ( ) ( ).L HBu t C u t u t L∞
Ω Ω≤ ∈ Ω     

To prove that the norms 2 ,t Lu 

2
( )Lp Ω∇  and 2

( )( ) Lu u Ω⋅∇   have 
exponential decay, we use the equality (10)

  ( ) ( )= ( ),u u t Bu t⋅∇   

where 2 ( )Bu L ′∈ Ω such that

 1 1 1 1 1 2 2 2 1 2 2 2, = ( )x y x yBu v u u v u u v u u v u u v dΩ〈 〉 + + + Ω∫

for every 2 ( ).v L∈ Ω  We calculate

 
1

( ) ( )0
| ( , , )|( ) ( ) ( ) ( ).L Hb u u v t C u t u t v t∞

Ω Ω≤                    (44)

Since the right-hand side of (44) has exponential decay for every 
2 ( ),v L∈ Ω it follows
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5

4( ) ( ) .
t

u u t Ce
χ−

⋅∇ ≤                (45)

Returning to (9), we obtain the decay rate for the operator Au

( ) ( ) ( ).tAu t Bu t u t≤ +     

It follows from (34) and (45) that 
1

2( ) .
t

Au t Ce
χ−

≤   By (40),

 

1

2 2( ) ( ) ( ) ( ) .
t

L tp t u t Au t Bu t Ce
χ−

∇ ≤ + + ≤                     (46)

Since now 2 ( ),f L∈ Ω  substituting (34), (45), (46) into (24) and 
making use of Theorem 6,1, we prove 

1

2 2( ) ( ) .
t

Hu t Ce
χ−

Ω ≤   It means that a unique generalized soliution 
is regular.

The proof of Theorem 6.2 is complete.

Existence and decay on the half-strip

Theorem 7.1 Consider the half-strip 2={( , ) ;0< ,0< < }.x y x y BΩ ∈  
Given 2

0 ( ) ,u H V∈ Ω ∩  the following problem:

 0

( ) =0in (0, ),
=0in (0, ),

=0on (0, ), >0,
| ( , , )|=0, >0,lim

( , ,0)= ( ),in

t

x

u u p u u t
u t

u t t
u x y t t

u x y u x

ν

→∞

− ∆ +∇ + ⋅∇ Ω×
 ∇ Ω×
 ∂Ω×



 Ω

                             (47)

has a unique solution ( , )u p such that

 
1 2
0(0, ; ( )), (0, ; ( )),tu L H u L L∞ ∞∈ ∞ Ω ∈ ∞ Ω

 
2(0, ; ( )).p L L∞∇ ∈ ∞ Ω               (48)

Moreover,

 

1

1 4/3 2( ) ( ) 20
( ) ( ) ( ) ,

t
t H Lu t u t p t C e

θ−
Ω Ω+ + ∇ ≤     

          
 (49)

where
2

2
=

B

πθ ν and 2C depends on ,ν 2
0 ( ).Hu Ω 

Proof. Obviously, the variational formulation of (47) is also (9). 
Repeating the proof of Theorem 5.1 (see Remark 3.1), we can proof 
the existence and uniqueness of the generalized solution18 to problem 
(47). Note that (14) holds for the problem (47). Using the Steklov 
inequality with respect to variable ,y we obtain

  

2
2 2

2
,yu u

B

π
≥   

hence, similarly to (13),

 

2
2 2 2

2
( ) 2 ( ) 2 ( ) 0.x

d u t u t u t
dt B

πν ν+ + ≤                   (50)

By Lemma 5, 

2
2

2 2 2
0( ) .

t
Bu t u e
π

ν−
≤                  (51)

Since (31) holds for the problem (47), making use of Lemma 4.4, 
we estimate

2 2( ) 2 ( ) 2 ( ) ( ) ( )t t V t V t V
d u t u t u t u t u t
dt

ν+ ≤         

           
 (52)

which we rewrite as

 
2 2 2 22( ) ( ) ( ) ( ) 0.t t V V t

d u t u t u t u t
dt

ν
ν

+ − ≤                   (53)

By Lemma 4.1,

 

2
2 2

2
( ) ( )ty tu t u t

B

π
≥   

and (53) becomes

2
2 2 2

2

2( ) [ ( )] ( ) 0.t V t
d u t u t u t
dt B

πν
ν

+ − ≤                   (54)

By Lemma 5, (54) provides

2 2

3 22 2 ( )
20( ) (0) ,

t t

t
u s ds tV

Bu t u e e

πν
ν

−

≤
∫  

   

hence

2
2

02 2 2( ) (0) .
tu

Bt tu t u e e
π

ν
ν

−
≤

 

                  (55)

Returning to (35), we estimate

2

0

232
20 21 1

( ) ( ) ( ) (0) .
V t t

tu
Bu t u t u t u u e e

πν
ν

ν ν

−

≤ ≤
 

        
  

        
                              (56)

Decay for Pressure 

In order to obtain decay for 4/3
( ) ( ),Lp tΩ∇   we start with

4/3 4
( ) ( )( ) ( )= ( ),L Lu u t Bu t′Ω Ω⋅∇   

where 4 ( )L ′Ω is the dual of the space 4 ( ).L Ω  Since

= ,tAu u Bu− −

repeating calculations of (38) and making use of (34), we get

1

4/3 2( ) 1( ) .
t

LAu t c e
θ−

Ω ≤   Observing that (40) holds for the problem 
(47), we obtain

4/3 2 4/3
( ) ( ) ( )( ) ( ) ( )L t L Lp t u t Au tΩ Ω Ω∇ ≤ +     

 

1

4/3 2( ) 2( ) .
t

LBu t c e
θ−

Ω+ ≤                              (57)

Jointly (55), (56) and (57) prove (48), (49). 
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Conclusion 
In our work, we tried to respond some questions posed by J. 

Leray,1 namely, regularity of global solutions of the Navier-Stokes 
equations and their decay. Therefore, our results can be divided in 
two parts: the first one concerns decay of global regular solutions of 
the 2D Navier-Stokes equations posed on rectangles.19 It is known 
that there exist global regular solutions for the 2D Navier-Stokes 
equations posed on smooth bounded domains,4,10,11,14 but regularity in 
nonsmooth (Lipschitz) domains, such as rectangles, is not obvious. For 
bounded rectangles, we have established the existence of an unique 
global regular solution which decays exponentially as .t→+∞  We 
demonstrated that the decay rate is different for different norms, see 
(26), (30), (36), where χ is defined by the geometrical characteristics 
of a domain .Ω

The second part of our work concerns decay of solutions for 
the 2D Navier-Stokes equations posed on a half-strip. In existing 
publications,3–11 the decay rate of 2

( ) ( )Lu tΩ   is controlled by the first 
eigenvalue of the operator = ,A P− ∆ where P is the projection operator 
on solenoidal subspace of 2 ( ).L Ω  It is clear that this approach does 
not work in unbounded domains .Ω  On the other hand, our approach 
based on the Steklov inequality with respect to ,y allowed us to 
estimate the decay rate of a generalized solution for the 2D Navier-
Stokes equations posed on a half-strip.

We must emphasize that this estimate is the first in the history 
which gives an explicit value of the decay rate for unbounded 
domains. Results established in our work can be used in constructing 
of numerical schemes for solving initial-boundary value problems 
for the Navier-Stokes equations appearing in Mechanics of viscous 
liquid. From the physical point of view, decay estimates show that the 
decay rate of perturbations of solutions caused by the initial data is 
bigger for bigger values of viscosityν and smaller values of the width 
and length of the rectangles and the width of a half-strip.
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