Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 1

Comparing theoretical and practical solution of the first order first degree ordinary differential equation of population model

Abdullah Bin Masud, Foyez Ahmed

Department of Computer Science & Engineering, Shanto-Mariam University of Creative Technology, India

Correspondence: Abdullah Bin Masud, Department of Computer Science & Engineering, Shanto-Mariam University of Creative Technology, Dhaka-1230, Bangladesh, India

Received: January 25, 2018 | Published: February 21, 2018

Citation: Masud AB, Ahmed F. Comparing theoretical and practical solution of the first order first degree ordinary differential equation of population model. Open Acc J Math Theor Phy. 2018;1(1):11-17. DOI: 10.15406/oajmtp.2018.01.00003

Download PDF

Abstract

Population dynamics is the branch of mathematics that studies the size and age composition of populations as dynamical systems, the biological and environmental processes driving them such as birth and death rates and by immigration and emigration. In this paper, we are discussed how to read mathematical models and how to analyze them with the ultimate aim that we can critically judge the assumptions and the contributions of such models whenever we encounter them in your future biological research. Mathematical models are used in all areas of biology. All models in this paper are formulated in ordinary differential equations (ODEs). These will be analyzed by computing steady states. We developed the differential equations by ourselves following a simple graphical procedure, depicting each biological process separately. Experience with an approach for writing models will help us to evaluate models proposed by others.

Keywords: general equation of population growth, logistic equation, logistic, model for given data; solution of logistic model, comparing logistic model with actual data

Introduction

In 1798, English economist Thomas Malthus was stated that population would grow at a geometric rate while the food supply grows at an arithmetic rate. The theory has been seen as flawed because of the limited factors observed when he developed the Law. It does not include factors, such as technology, disease, poverty, international conflict and natural disasters.

Malthusian models have the form P(t)=P0ektP(t)=P0ekt  where P0 is the initial number of population, k is population growth rate (Malthusian parameter) and t is the time. Sometimes this model is called simple exponential growth model.

General equation of population growth

The rate of change of quantity = the rate of births - The rate of deaths.

SupposeP(t)P(t)  is the population, αα is the per capital births rate and ββ  is the per capital number of deaths population.

 dP(t)dt=αP(t)βP(t)=P(t)(αβ)=P(t)KwhereK=αβ

This is the first order first degree ordinary differential equation.1 The solution of (1) is P(t)=cekt . If t=0,P=P0  P0=CandP=P0eKt

Birth rate is constant and death rate is linearly increasing

If α=α0andβ=β0+β1P(t) then we havedPdt=α0P(t){β0+β1P(t)}P(t) =(α0+β0)P(t)β1P2(t)

Birth rate constant and death rate is exponentially increasing

Ifβ=β1ekt  and α=α0 then dpdt=α0P(t)β1ektP(t)

Birth rate constant and death rate is sine function

Ifβ=β1sint and α=α0 then dPdt=α0P(t)β1Sin(t)P(t)

Death rate constant and birth rate linearly increasing

If α=α0+α1P(t)  and β=β then dP(t)dt=(α0+α1P(t))P(t)βP(t)

Death rate constant and birth rate exponentially increasing

If α=α1ekt  and β=β0 then dP(t)dt=α1ektP(t)β0P(t)

Death rate and birth rate are linearly increasing

Ifα=α0+α1P(t)  and β=β0+β1P(t) then dP(t)dt=(α0+α1P(t))P(β0+β1P)P=(α0β0)P+(α1β1)P2

Logistic equation

In real population growth is not always unlimited but may have an upper limit L where population can no longer be sustained as time increase. The logistic ODE is

dPdt=KP(1PL) .(1)2

Logistic model for given data

Since we have discrete data, then we describe the model using a difference equation. The equation (A) can be written as

P(t+1)P(t)=KP(1PL)ΔPP=K(1PL).............................(2)

The equation says that the ratio of to P is linear function of P. First of all, let’s consider the left hand side (LHS) of equation (2). We calculate the difference of the populations for two consecutive years, and then use those differences against the corresponding function values.3

Year

Bangladesh

India

Pakistan

Canada

P(t)

A

P(t)

a

P(t)

a

P(t)

a

1950

2.859358

0.000425

2.982949

0.000264

2.858823

0.00023

2.79945

0.000566

1951

2.860573

0.000402

2.983737

0:00:24

2.859481

0.000267

2.801036

0.000579

1952

2.861723

0.000405

2.984562

0:00:25

2.860244

0.0003

2.802656

0.00059

1953

2.862882

0.000425

2.985416

0:00:25

2.861101

0.000329

2.804309

0.000598

1954

2.864098

0.000455

2.986294

0:00:26

2.862042

0.000355

2.805987

0.000601

1955

2.865401

0.000488

2.987191

0.000306

2.863058

0.000379

2.807674

0.000597

1956

2.8668

0.000519

2.988106

0.000311

2.864143

0.0004

2.80935

0.000584

1957

2.868287

0.000542

2.989036

0.000316

2.865289

0.00042

2.810992

0.000563

1958

2.869843

0.000556

2.989982

0.000322

2.866491

0.000437

2.812573

0.000532

1959

2.871439

0.00056

2.990945

0.000328

2.867745

0.000454

2.814068

0.000494

1960

2.873049

0.00056

2.991925

0.000333

2.869047

0.000468

2.815458

0.000454

1961

2.874659

0.00056

2.992923

0.000338

2.87039

0.000481

2.816737

0.000418

1962

2.876269

0.000567

2.993935

0.000342

2.87177

0.000491

2.817913

0.000391

1963

2.877902

0.000584

2.99496

0.000344

2.873181

0.000499

2.819015

0.000377

1964

2.879585

0.000604

2.995992

0.000346

2.874615

0.000505

2.820079

0.000372

1965

2.881326

0.00063

2.997029

0.000347

2.876068

0.000512

2.821129

0.000369

1966

2.883143

0.000644

2.998069

0.000348

2.877539

0.000517

2.82217

0.000363

1967

2.885001

0.000625

2.999113

0.000352

2.879027

0.000521

2.823194

0.000358

1968

2.886806

0.000567

3.000168

0.000358

2.880528

9.55E-09

2.824204

0.000352

1969

2.888444

0.000487

3.001242

0.000366

2.880528

0.001048

2.825197

0.000345

1970

2.889852

0.0004

3.002339

0.000374

2.883547

0.000525

2.826173

0.00034

1971

2.891009

0.000333

3.003461

0.00038

2.885062

0.000528

2.827135

0.000335

1972

2.89197

0.000304

3.004603

0.000383

2.886585

0.000534

2.828082

0.000325

1973

2.89285

0.000326

3.005755

0.000383

2.888127

0.000546

2.829

0.000308

1974

2.893793

0.000382

3.006908

0.000381

2.889702

0.00056

2.829872

0.000288

1975

2.894898

0.000446

3.008055

0.000378

2.891321

0.000573

2.830687

0.000268

1976

2.896189

0.000495

3.009191

0.000376

2.892979

0.000585

2.831444

0.00025

1977

2.897622

0.000526

3.010324

0.000372

2.89467

0.000596

2.832153

0.000236

1978

2.899147

0.000533

3.011443

0.000374

2.896396

0.000607

2.832822

0.000226

1979

2.900694

0.000524

3.01257

0.000375

2.898155

0.000617

2.833463

0.00022

1980

2.902215

0.000512

3.013701

0.000377

2.899945

0.000626

2.834085

0.000213

1981

2.903702

0.000505

3.014838

0.000377

2.901759

0.000631

2.834688

0.000207

1982

2.905169

0.000534

3.015975

0.000375

2.903589

0.000631

2.835275

0.00021

1983

2.90672

0.000466

3.017106

0.000371

2.905421

0.000626

2.835871

0.000223

1984

2.908076

0.000502

3.018225

0.000365

2.90724

0.000617

2.836503

0.000242

1985

2.909535

0.000503

3.019325

0.000358

2.909035

0.000608

2.837191

0.000264

1986

2.911

0.000501

3.020407

0.000352

2.910804

0.000598

2.837941

0.000282

1987

2.912459

0.000493

3.02147

0.000346

2.912544

0.000582

2.838741

0.000291

1988

2.913895

0.000478

3.022514

0.000339

2.91424

0.000562

2.839566

0.000287

1989

2.915288

0.000458

3.02354

0.000333

2.915877

0.000538

2.84038

0.000274

1990

2.916624

0.000437

3.024548

0.000327

2.917446

0.000514

2.841157

0.000259

1991

2.917898

0.000418

3.025537

0.000321

2.918945

0.000492

2.841894

0.000247

1992

2.919117

0.000404

3.026507

0.000315

2.92038

0.000475

2.842597

0.000235

1993

2.920298

0.000398

3.02746

0.00031

2.921767

0.000466

2.843265

0.000224

1994

2.921459

0.000395

3.028401

0.000307

2.923128

0.000461

2.843901

0.000213

1995

2.922614

0.000393

3.029329

0.000303

2.924474

0.000458

2.844507

0.000202

1996

2.923763

0.000388

3.030247

0.000299

2.925813

0.000453

2.845083

0.000192

1997

2.924899

0.000381

3.031152

0.000294

2.927139

0.000444

2.84563

0.000186

1998

2.926014

0.00037

3.032042

0.000288

2.928439

0.00043

2.846161

0.000185

1999

2.927098

0.000495

3.032915

0.000281

2.929697

0.000412

2.846688

0.000188

2000

2.928547

0.000205

3.033768

0.000275

2.930905

0.000395

2.847223

0.000191

2001

2.929148

0.000331

3.034601

0.000268

2.932061

0.00038

2.847767

0.000194

2002

2.930118

0.000314

3.035415

0.000262

2.933176

0.000371

2.84832

0.000199

2003

2.931039

0.000352

3.03621

0.000255

2.934264

0.000367

2.848887

0.000206

2004

2.932071

0.000144

3.036985

0.000249

2.935341

0.000356

2.849474

0.000214

2005

2.932492

0.000371

3.037741

0.000243

2.936387

0.000381

2.850083

0.000222

2006

2.933579

0.000152

3.03848

0.000237

2.937506

0.00037

2.850717

0.000229

2007

2.934025

0.000204

3.039199

0.00023

2.938592

0.000371

2.85137

0.000233

2008

2.934624

0.000201

3.0399

0.000223

2.939683

0.000374

2.852033

0.000231

2009

2.935213

0.000205

3.040578

0.000216

2.940781

0.000376

2.852692

0.000226

2010

2.935816

0.000212

3.041235

0.000209

2.941887

0.000378

2.853337

0.00022

2011

2.936438

0.000217

3.04187

0.000202

2.942999

0.00038

2.853965

0.000214

2012

2.937075

0.000219

3.042483

0.000196

2.944117

0.000379

2.854577

0.000209

2013

2.93772

0.000219

3.04308

0.000192

2.945232

0.000375

2.855172

0.000203

2014

2.938363

0.000216

3.043665

0.000189

2.946337

0.00037

2.855752

0.000198

2015

2.938997

0.000213

3.044241

0.000187

2.947427

0.000364

2.856318

0.000193

2016

2.939623

0.00021

3.04481

0.000184

2.948499

0.000357

2.85687

0.000187

Determining the value of K and L: In the Least Square Approximation graph, we know the equation for the line, which is, y=a+bx..............................(3)

Substituting the point P(1950) and P(1951) in (10) we have

Variable/Country

Bangladesh

India

Pakistan

Canada

P1

2.859358

2.982949

2.858823

2.79945

P1

2.860576

2.983737

2.859481

67:13:29

y1

0.045499

0.033148

0.045835

0:50:01

y2

0.044285

0.032359

0.045177

0:47:44

Equation (2) can be written as K(1P1/L)=y1.............................(4)andK(1P2/L)=y2.............................(5) Solving (3) and (4) we have L=P1y2P2y1y2y1andK=y11P1/L

Variable/ Country

Bangladesh

India

Pakistan

Canada

L(Caring Capacity )

2.904878989

3.016041509

2.90468156

2.834196893

Exp(Exp(L))

85415102.72

731302266

85107708.4

24562428.95

K (Constant)

2.903479866

3.021126376

2.90316821

2.833056521

Solution of logistic model

Equation (1) is Bernoulli equation,4 we have

dPdt=KP(1PL)dPdt=KPKLP2dPdtKP=KLP21P2dPdt+KP=KL......................(6) Put 1P=V 1P2dPdt=dVdt From (13) we have dVdt+KV=KL Now this equation is exact. IF=eKdt=eKt Hence integrating factor

V.eKt=KLeKtdtV.eKt=KLeKtK+c1PeKt=1LeKt+c1P=1L+ceKtP=L1+LceKt...............................(7)

Hence the solution is

If t, then P=L.

Comparing logistic model with actual data

dPdt=P(KPKL)dpdt=KP(LPL)1KLP(LP)dP=dt

Integrating we have, 1KLn(PLP)=t+c

If t = 0 then find the value of c

Variable/ Country

Bangladesh

India

Pakistan

Canada

L(Caring Capacity )

2.904878989

3.016041509

2.90468156

2.834196893

Exp(Exp(L))

85415102.72

731302266

85107708.4

24562428.95

K (Constant)

2.903479866

3.021126376

2.90316821

2.833056521

Putting the values of c in (7), we have

Year

Time

Bangladesh

India

Pakistan

Canada

Theoretical Data

Original Data

Theoretical Data

Original Data

Theoretical Data

Original Data

Theoretical Data

Original Data

1950

0

0.564912

2.859358

0.548991

2.982949

0.565691

2.858823

0.525742

2.79945

1951

1

0.338815

2.860573

2.474081

2.983737

2.367713

2.859481

2.252355

2.801036

1952

2

0.507008

2.861723

2.984176

2.984562

2.868994

2.860244

2.791768

2.802656

1953

3

0.73477

2.862882

3.014472

2.985416

2.902701

2.861101

2.831665

2.804309

1954

4

1.021245

2.864098

3.015965

2.986294

2.904573

2.862042

2.834048

2.805987

1955

5

1.349886

2.865401

3.016038

2.987191

2.904676

2.863058

2.834188

2.807674

1956

6

1.689356

2.8668

3.016041

2.988106

2.904681

2.864143

2.834196

2.80935

1957

7

2.004061

2.868287

3.016042

2.989036

2.904682

2.865289

2.834197

2.810992

1958

8

2.26787

2.869843

3.016042

2.989982

2.904682

2.866491

2.834197

2.812573

1959

9

2.470983

2.871439

3.016042

2.990945

2.904682

2.867745

2.834197

2.814068

1960

10

2.617359

2.873049

3.016042

2.991925

2.904682

2.869047

2.834197

2.815458

1961

11

2.717896

2.874659

3.016042

2.992923

2.904682

2.87039

2.834197

2.816737

1962

12

2.784688

2.876269

3.016042

2.993935

2.904682

2.87177

2.834197

2.817913

1963

13

2.828086

2.877902

3.016042

2.99496

2.904682

2.873181

2.834197

2.819015

1964

14

2.855879

2.879585

3.016042

2.995992

2.904682

2.874615

2.834197

2.820079

1965

15

2.873512

2.881326

3.016042

2.997029

2.904682

2.876068

2.834197

2.821129

1966

16

2.884634

2.883143

3.016042

2.998069

2.904682

2.877539

2.834197

2.82217

1967

17

2.891622

2.885001

3.016042

2.999113

2.904682

2.879027

2.834197

2.823194

1968

18

2.896004

2.886806

3.016042

3.000168

2.904682

2.880528

2.834197

2.824204

1969

19

2.898746

2.888444

3.016042

3.001242

2.904682

2.880528

2.834197

2.825197

1970

20

2.900461

2.889852

3.016042

3.002339

2.904682

2.883547

2.834197

2.826173

1971

21

2.901533

2.891009

3.016042

3.003461

2.904682

2.885062

2.834197

2.827135

1972

22

2.902203

2.89197

3.016042

3.004603

2.904682

2.886585

2.834197

2.828082

1973

23

2.902621

2.89285

3.016042

3.005755

2.904682

2.888127

2.834197

2.829

1974

24

2.902883

2.893793

3.016042

3.006908

2.904682

2.889702

2.834197

2.829872

1975

25

2.903046

2.894898

3.016042

3.008055

2.904682

2.891321

2.834197

2.830687

1976

26

2.903148

2.896189

3.016042

3.009191

2.904682

2.892979

2.834197

2.831444

1977

27

2.903212

2.897622

3.016042

3.010324

2.904682

2.89467

2.834197

2.832153

1978

28

2.903251

2.899147

3.016042

3.011443

2.904682

2.896396

2.834197

2.832822

1979

29

2.903276

2.900694

3.016042

3.01257

2.904682

2.898155

2.834197

2.833463

1980

30

2.903292

2.902215

3.016042

3.013701

2.904682

2.899945

2.834197

2.834085

1981

31

2.903301

2.903702

3.016042

3.014838

2.904682

2.901759

2.834197

2.834688

1982

32

2.903307

2.905169

3.016042

3.015975

2.904682

2.903589

2.834197

2.835275

1983

33

2.903311

2.90672

3.016042

3.017106

2.904682

2.905421

2.834197

2.835871

1984

34

2.903313

2.908076

3.016042

3.018225

2.904682

2.90724

2.834197

2.836503

1985

35

2.903315

2.909535

3.016042

3.019325

2.904682

2.909035

2.834197

2.837191

1986

36

2.903316

2.911

3.016042

3.020407

2.904682

2.910804

2.834197

2.837941

1987

37

2.903316

2.912459

3.016042

3.02147

2.904682

2.912544

2.834197

2.838741

1988

38

2.903317

2.913895

3.016042

3.022514

2.904682

2.91424

2.834197

2.839566

1989

39

2.903317

2.915288

3.016042

3.02354

2.904682

2.915877

2.834197

2.84038

1990

40

2.903317

2.916624

3.016042

3.024548

2.904682

2.917446

2.834197

2.841157

1991

41

2.903317

2.917898

3.016042

3.025537

2.904682

2.918945

2.834197

2.841894

1992

42

2.903317

2.919117

3.016042

3.026507

2.904682

2.92038

2.834197

2.842597

1993

43

2.903317

2.920298

3.016042

3.02746

2.904682

2.921767

2.834197

2.843265

1994

44

2.903317

2.921459

3.016042

3.028401

2.904682

2.923128

2.834197

2.843901

1995

45

2.903317

2.922614

3.016042

3.029329

2.904682

2.924474

2.834197

2.844507

1996

46

2.903317

2.923763

3.016042

3.030247

2.904682

2.925813

2.834197

2.845083

1997

47

2.903317

2.924899

3.016042

3.031152

2.904682

2.927139

2.834197

2.84563

1998

48

2.903317

2.926014

3.016042

3.032042

2.904682

2.928439

2.834197

2.846161

1999

49

2.903317

2.927098

3.016042

3.032915

2.904682

2.929697

2.834197

2.846688

2000

50

2.903317

2.928547

3.016042

3.033768

2.904682

2.930905

2.834197

2.847223

2001

51

2.903317

2.929148

3.016042

3.034601

2.904682

2.932061

2.834197

2.847767

2002

52

2.903317

2.930118

3.016042

3.035415

2.904682

2.933176

2.834197

2.84832

2003

53

2.903317

2.931039

3.016042

3.03621

2.904682

2.934264

2.834197

2.848887

2004

54

2.903317

2.932071

3.016042

3.036985

2.904682

2.935341

2.834197

2.849474

2005

55

2.903317

2.932492

3.016042

3.037741

2.904682

2.936387

2.834197

2.850083

2006

56

2.903317

2.933579

3.016042

3.03848

2.904682

2.937506

2.834197

2.850717

2007

57

2.903317

2.934025

3.016042

3.039199

2.904682

2.938592

2.834197

2.85137

2008

58

2.903317

2.934624

3.016042

3.0399

2.904682

2.939683

2.834197

2.852033

2009

59

2.903317

2.935213

3.016042

3.040578

2.904682

2.940781

2.834197

2.852692

2010

60

2.903317

2.935816

3.016042

3.041235

2.904682

2.941887

2.834197

2.853337

2011

61

2.903317

2.936438

3.016042

3.04187

2.904682

2.942999

2.834197

2.853965

2012

62

2.903317

2.937075

3.016042

3.042483

2.904682

2.944117

2.834197

2.854577

2013

63

2.903317

2.93772

3.016042

3.04308

2.904682

2.945232

2.834197

2.855172

2014

64

2.903317

2.938363

3.016042

3.043665

2.904682

2.946337

2.834197

2.855752

2015

65

2.903317

2.938997

3.016042

3.044241

2.904682

2.947427

2.834197

2.856318

2016

66

2.903317

2.939623

3.016042

3.04481

2.904682

2.948499

2.834197

2.85687

Figure 1 Comparing graph of theoretical data with original data of Bangladesh.

Figure 2 Comparing graph of theoretical data with original data of India.

Figure 3 Comparing graph of theoretical data with original data of Pakistan.

Figure 4 Comparing graph of theoretical data with original data of Canada.

Conclusion

The carrying capacity of Bangladesh is 85415102.72 but at this moment total number of population is 164827718. It is the biggest problem. The government of Bangladesh needs to take necessary step otherwise socio economic system is breakdown. Every country of Subcontinent, the total population of these countries is grater twice of carrying capacity. In Canada, total number of population is greater the carrying capacity.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Dreyer TP. Modeling with Ordinary Differential Equations. USA: CRC Press; 1993. 304 p.
  2. Kelley W, Peterson A. Theory of Differential Equations Classical and Qualitative. Springer; 2004.
  3. Mooney DD, Swift RJ. A Course in Mathematical Modeling. UK: Cambridge University Press; 1999. 431 p.
  4. Zill DD. A First Course in Differential Equations. 1993.
Creative Commons Attribution License

©2018 Masud, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.