Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 5

A theoretical approach to the possibility of an upper limit to temperature

Marvel Bate Eno Aiyuk

Department of Engineering, Ecole National Superieure des Travaux Publics, Cameroon

Correspondence: Marvel Bate Eno Aiyuk, Department of Engineering, Ecole National Supérieure des Travaux Publics,Yaoundé, Cameroon

Received: September 18, 2018 | Published: October 23, 2018

Citation: Aiyuk MBE. A theoretical approach to the possibility of an upper limit to temperature. Open Acc J Math Theor Phy. 2018;1(5):219-223. DOI: 10.15406/oajmtp.2018.01.00038

Download PDF

Abstract

Temperature is known to have a lower limit, absolute zero corresponding to a temperature of 0K. Is there also an upper limit above which matter as we know it cannot exist? This paper is aimed at obtaining a theory for the establishment of a possible upper limit to temperature, with the use of concepts from thermodynamics and special relativity. This is done by using the kinetic theory and ideal gas equation to obtain an expression of temperature as a function of velocity of the particles, then using special relativity to establish the speed of light as a velocity barrier, thus providing a corresponding upper limit to temperature. Such a temperature should be unreachable, or the particles would be moving at the speed of light, which is against the second postulate of special relativity. This approach leads to results indicating the existence of not one but several temperature limits, characteristic to each element.

Keywords: maximum temperature, ideal gas equation, kinetic theory of gases, special relativity

Introduction

This paper aims at presenting a theory postulating an upper limit to temperature. An upper limit to temperature is not a completely new concept in physics. Examples of temperatures considered as upper limits include the Plank temperature (~1032K) and the Hagedorn temperature (~1030K).1

In this paper, a different approach, using concepts from special relativity is used. This leads to an interesting observation, that this temperature is characteristic to each element. This work is done using the same assumptions used in the kinetic theory and in the ideal gas equation, coupled with some additional ones. The entire system is also considered at rest. Only the particles are considered to be moving; the container is in a state of rest. This is done to avoid complications such as the Lorentz invariance of thermodynamic quantities. For example, some papers suggest that temperature is invariant,2‒6 while others suggest it is not.2,3,6 Such questions will be avoided entirely. The relativistic kinetic theory7 will not be considered either.

Also, the theory is formulated assuming the system is composed only of atoms. As such, the temperatures are considered to be high enough for bond energies of all compounds to be reached and that atomic processes such as fusion and fission do not occur. This temperature limit differs with respect to the different elements, since it depends on the molar mass. Thus an element with a higher molar mass will have a higher temperature limit.

In this paper the temperature as a function of velocity is analyzed to answer the following: if there is a velocity limit, can there be a corresponding temperature limit?

Concepts and theory

We will begin by looking at some concepts which will be necessary for the establishment of the theory.

The ideal gas equation

The ideal gas equation is the result of a macroscopic analysis of the behavior of gases. It gives the relationship between the macroscopic properties of volume, pressure and temperature and the mass of a gas expressed as number of moles. An ideal gas is defined as a gas whose behavior (pressure, volume and temperature) can be completely described using the ideal gas equation. The equation is gotten from the three gas laws:8

Boyle's law: pressure is inversely proportional to volume at constant temperature.

Charles' law: volume is directly proportional to temperature at constant volume.

Gay-Lussac's law: pressure is directly proportional to temperature at constant volume.

These laws are combined to give the ideal gas equation:

PV= nRT9,10

P is the pressure of the gas

V is volume

n is the number of molecules; n = m/M, where m is the mass and M is the molar mass

R is the gas constant, and it is equal to 8.31J/mol.K

T is the temperature

The kinetic theory of gases

The kinetic theory of gases aims at explaining the behavior of gases by considering the motion of their molecules. Here, the pressure of a gas is considered to be generated due to the bombardment of the walls of a container by the molecules of gas within the container. The following assumptions are made to simplify the calculations:10

  1. The volume of the molecules is negligible compared with the volume of the container
  2. The motion is considered to be random and isotropic
  3. Intermolecular forces between the molecules are negligible
  4. Collisions between molecules considered to be perfectly elastic

The kinetic theory, in accordance with the above assumptions, provides a relationship between the pressure generated by a gas and the speed with which the gas molecules move through the following equation:

p=(1/3)p< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeGaa8 hCaiabg2da9iaacIcacaaIXaGaai4laiaaiodacaGGPaGaamiCaiab gYda8iaa=zhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibi abg6da+aaa@4354@ 10

P is the pressure

p is the density of the gas

<v2> is called the mean square speed

< v 2 > = ( v 1 2 +  v 2 2 +  v 3 2 +.............. +  v N 2 )/N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGH8aapcaWG2bqcfa4damaaCaaaleqajqwaG9FaaKqzadWd biaaikdaaaqcLbsacqGH+aGpcaqGGaGaeyypa0JaaeiiaKqba+aada qadaGcbaqcLbsapeGaamODaKqbaoaaDaaajuaibaqcLbmacaaIXaaa juaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaeiiaiaadAhajuaGda qhaaqcfasaaKqzadGaaGOmaaqcfasaaKqzadGaaGOmaaaajugibiab gUcaRiaabccacaWG2bqcfa4aa0baaKqbGeaajugWaiaaiodaaKqbGe aajugWaiaaikdaaaqcLbsacqGHRaWkcaGGUaGaaiOlaiaac6cacaGG UaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6 cacaGGUaGaaiOlaiaabccacqGHRaWkcaqGGaGaamODaKqbaoaaDaaa juaibaqcLbmacaWGobaajuaibaqcLbmacaaIYaaaaaGcpaGaayjkai aawMcaaKqzGeWdbiaac+cacaWGobaaaa@6F1A@

The kinetic theory also provides a relationship between the kinetic energy and the temperature of the gas:

KE=( 3/2 )  K B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGlbGaamyraiabg2da9Kqba+aadaqadaGcbaqcLbsapeGa aG4maiaac+cacaaIYaaak8aacaGLOaGaayzkaaqcLbsapeGaaeiiai aadUeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGcbaal8aabeaajugi b8qacaWGubaaaa@44DF@ 10,11

KE is kinetic energy

 is the Boltzmann's constant:

K B = R/ N A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGlbqcfa4damaaBaaajeaibaqcLbmapeGaamOqaaWcpaqa baqcLbsapeGaeyypa0JaaeiiaiaadkfacaGGVaGaamOtaKqba+aada WgaaqcbasaaKqzadWdbiaadgeaaSWdaeqaaaaa@421C@ 9

Where R is the gas constant and  is the Avogadro's constant (6.02x1023)

T is the temperature

Einstein's special theory of relativity

Einstein's special theory of relativity provides us with some interesting concepts in the realm of physics. It is based on two postulates:11

The laws of physics are the same for every observer who is not accelerating. This implies that an experiment performed in a lab at rest should give the same results when performed in a lab moving at constant velocity with respect to the one at rest.

The speed of light is constant for every observer; c=3x108m/s. (This value has been rounded up). This means the speed of light, contrary to the common notion of relative speed, remains unchanged whether the observer is moving or not.

The speed of light thus represents an upper limit to velocity with positive rest mass; no massive object can move faster than light or even quite reach the speed of light.12

Some important consequences of special relativity are time dilation and length contraction. These lead to the introduction of the Lorentz factor:

γ= 1 1 v 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFZoGaeyypa0tcfa4aaSaaaeaajugibiaaigdaaKqb agaadaGcaaqaaKqzGeGaaGymaiabgkHiTKqbaoaalaaabaqcLbsaca WG2bqcfa4aaWbaaeqajuaibaqcLbmacaaIYaaaaaqcfayaaKqzGeGa am4yaKqbaoaaCaaabeqcfasaaKqzadGaaGOmaaaaaaaajuaGbeaaaa aaaa@47E8@ 13,14

The theory of maximum temperature

First, some extra assumptions will be added to those already presented in the kinetic theory:

The temperatures are high enough for all matter to be present in the gaseous phase; thus the theory is extended beyond gases at room temperature.

All the gases behave like ideal gases. The gas container system is isolated and all the energy entering is used solely to increase the speed of the gas molecules.

Based on these assumptions, we can begin the mathematical analysis:

PV=nRT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFqbGaa8Nvaiaa=1dacaWFUbGaa8Nuaiaa=rfaaaa@3BA0@ thus, p= n V RT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeGaa8 hCaiabg2da9Kqbaoaalaaakeaajugibiaad6gaaOqaaKqzGeGaamOv aaaacaWGsbGaamivaaaa@3DC8@

P =ρ< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFqbGaa8hiaiaa=1dacaWFbpGaa8hpaiaa=zhajuaG paWaaWbaaSqabKqaGeaajugWa8qacaWFYaaaaKqzGeWdaiaa=5daaa a@400E@

This implies that n V RT= 1 3 ρ< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaad6gaaOqaaKqzGeGaamOvaaaaieaacaWFsbGaa8hvaiaa =1dajuaGdaWcaaGcbaqcLbsacaWFXaaakeaajugibiaa=ndaaaGaa8 xWdiaa=XdacaWF2bqcfa4aaWbaaSqabKqaGeaajugWaiaa=jdaaaqc LbsacaWF+aaaaa@463B@

RT=( 1 3 )( V n )ρ< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeGaa8 Nuaiaa=rfacaWF9aqcfa4aaeWaaeaadaWcaaqaaKqzGeGaa8xmaaqc fayaaKqzGeGaa83maaaaaKqbakaawIcacaGLPaaadaqadaqaamaala aabaqcLbsacaWGwbaajuaGbaqcLbsacaWGUbaaaaqcfaOaayjkaiaa wMcaaKqzGeGaa8xWdiaa=XdacaWF2bqcfa4aaWbaaSqabKazba2=ba qcLbmacaWFYaaaaKqzGeGaa8Npaaaa@4D90@ (1)

But ρ = m/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFbpGaa8hiaiaa=1dacaWFGaGaa8xBaiaa=9cacaWF wbaaaa@3C5D@

( 1 ) =( 1 3 )( V n × m V ) v 2 > = ( mV 3nV )< v 2 > = ( m 3n )< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeaeaaaaaaaaa8qacaaIXaaak8aacaGLOaGaayzkaaqc LbsapeGaaeiiaiabg2da9Kqbaoaabmaak8aabaqcfa4dbmaalaaak8 aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaiodaaaaakiaawIca caGLPaaajuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbi aadAfaaOWdaeaajugib8qacaWGUbaaaiabgEna0Mqbaoaalaaak8aa baqcLbsapeGaamyBaaGcpaqaaKqzGeWdbiaadAfaaaaakiaawIcaca GLPaaajugibiaadAhajuaGpaWaaWbaaSqabKazba2=baqcLbmapeGa aGOmaaaajugibiabg6da+aGcbaqcLbsafaqabeqacaaakeaaaeaaju gibiabg2da9aaajuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqz GeWdbiaad2gacaWGwbaak8aabaqcLbsapeGaaG4maiaad6gacaWGwb aaaaGccaGLOaGaayzkaaqcLbsacqGH8aapcaWG2bqcfa4damaaCaaa leqajeaibaqcLbmapeGaaGOmaaaajugibiabg6da+aGcbaqcLbsafa qabeqacaaakeaaaeaajugibiabg2da9aaajuaGdaqadaGcpaqaaKqb a+qadaWcaaGcpaqaaKqzGeWdbiaad2gaaOWdaeaajugib8qacaaIZa GaamOBaaaaaOGaayjkaiaawMcaaKqzGeGaeyipaWJaamODaKqba+aa daahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacqGH+aGpaaaa@77D3@ (2)

But n = m/M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFUbGaa8hiaiaa=1dacaWFGaGaa8xBaiaa=9cacaWF nbaaaa@3BFE@

( 2 ) =( mM 3m )< v 2 >  =( M 3 )< v 2 > RT =( M 3 )< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeaeaaaaaaaaa8qacaaIYaaak8aacaGLOaGaayzkaaqc LbsapeGaaeiiaiabg2da9Kqbaoaabmaak8aabaqcfa4dbmaalaaak8 aabaqcLbsapeGaamyBaiaad2eaaOWdaeaajugib8qacaaIZaGaamyB aaaaaOGaayjkaiaawMcaaKqzGeGaeyipaWJaamODaKqba+aadaahaa WcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacqGH+aGpcaGGGcaakeaa jugibuaabeqabiaaaOqaaaqaaaaajugibiabg2da9Kqbaoaabmaak8 aabaqcfa4dbmaalaaak8aabaqcLbsapeGaamytaaGcpaqaaKqzGeWd biaaiodaaaaakiaawIcacaGLPaaajugibiabgYda8iaadAhajuaGpa WaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeyOpa4dakeaa jugibiaadkfacaWGubGaaeiiaiabg2da9Kqbaoaabmaak8aabaqcfa 4dbmaalaaak8aabaqcLbsapeGaamytaaGcpaqaaKqzGeWdbiaaioda aaaakiaawIcacaGLPaaajugibiabgYda8iaadAhajuaGpaWaaWbaaS qabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeyOpa4daaaa@6C0D@

Thus T =( M 3R )< v 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGubGaamiAaiaadwhacaWGZbGaaeiiaiaadsfacaqGGaGa eyypa0tcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qaca WGnbaak8aabaqcLbsapeGaaG4maiaadkfaaaaakiaawIcacaGLPaaa jugibiabgYda8iaadAhajuaGpaWaaWbaaSqabKqaGeaajugWa8qaca aIYaaaaKqzGeGaeyOpa4daaa@4B48@ (3)

Now v = v x + v y + v z  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bGaa8hiaiaa=1dacaWFGaGaa8NDaKqba+aadaWg aaqcbasaaKqzadWdbiaa=HhaaSWdaeqaaKqzGeWdbiaa=TcacaWFGa Gaa8NDaKqba+aadaWgaaqcbasaaKqzadWdbiaa=LhaaSWdaeqaaKqz GeWdbiaa=TcacaWFGaGaa8NDaKqba+aadaWgaaqcbasaaKqzadWdbi aa=PhacaWFGcaal8aabeaaaaa@4B26@ and v x = v y = v z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bqcfa4damaaBaaajeaibaqcLbmapeGaa8hEaaWc paqabaqcLbsapeGaa8xpaiaa=bcacaWF2bqcfa4damaaBaaajeaiba qcLbmapeGaa8xEaaWcpaqabaqcLbsapeGaa8xpaiaa=bcacaWF2bqc fa4damaaBaaajeaibaqcLbmapeGaa8NEaaWcpaqabaaaaa@4732@

This implies that v = 3 v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bGaa8hiaiaa=1dacaWFGaGaa83maiaa=zhajuaG paWaaSbaaKqaGeaajugWa8qacaWF4baal8aabeaaaaa@3E7E@

Let's establish that v x <c, v y <c, v z <c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bqcfa4damaaBaaajqwaG9FaaKqzadWdbiaa=Hha aSWdaeqaaKqzGeGaa8hpaiaa=ngacaWFSaWdbiaa=bcacaWF2bqcfa 4damaaBaaajqwaG9FaaKqzadWdbiaa=LhaaSWdaeqaaKqzGeGaa8hp aiaa=ngacaWFSaWdbiaa=zhajuaGpaWaaSbaaKazba2=baqcLbmape Gaa8NEaaWcpaqabaqcLbsacqGH8aapcaWFJbaaaa@5111@ where c is the speed of light.

From special relativity, v max =c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bqcfa4aaSbaaKqbGeaajugWaiaa=1gacaWFHbGa a8hEaaqcfayabaqcLbsacaWF9aWdaiaa=ngaaaa@3F3C@

Thus v x,max = v y,max = v z, max =c/3=1X 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF2bqcfa4aaSbaaKazfa0=baqcLbmacaWF4bGaa8hl aiaa=1gacaWFHbGaa8hEaaqcfayabaqcLbsacaWF9aGaa8hiaiaa=z hajuaGpaWaaSbaaKazba2=baqcLbmapeGaa8xEaiaa=XcacaWFTbGa a8xyaiaa=HhaaSWdaeqaaKqzGeGaa8xpa8qacaWF2bqcfa4damaaBa aajqwaG9FaaKqzadWdbiaa=PhacaWFSaGaa8hiaiaa=1gacaWFHbGa a8hEaaWcpaqabaqcLbsacqGH9aqpcaWFJbGaai4laiaaiodacqGH9a qpcaaIXaGaamiwaiaaigdacaaIWaqcfa4aaWbaaeqajuaibaqcLbma caaI4aaaaaaa@6170@

This enables us to write V max =3 V x =c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFwbqcfa4aaSbaaKqbGeaajugWaiaa=1gacaWFHbGa a8hEaaqcfayabaqcLbsacaWF9aGaa83maiaa=zfajuaGdaWgaaqcfa saaKqzadGaa8hEaaqcfayabaqcLbsacaWF9aGaa83yaaaa@4577@

The system is isolated and all the energy input goes in increasing the speed of the molecules, so this will go on until all the molecules are at their maximum speed, c.

Thus, < v 2 > = ( Σ v i 2 )/N = ( Σ c 2 )/N = N c 2 /N = c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWF8aGaa8NDaKqba+aadaahaaWcbeqcbasaaKqzadWd biaa=jdaaaqcLbsacaWF+aGaa8hiaiaa=1dacaWFGaqcfa4damaabm aakeaajugib8qacaWFJoGaa8NDaKqba+aadaWgaaqcbasaaKqzadWd biaa=LgaaSWdaeqaaKqbaoaaCaaaleqajeaibaqcLbmapeGaa8Nmaa aaaOWdaiaawIcacaGLPaaajugib8qacaWFVaGaa8Ntaiaa=bcacaWF 9aGaa8hiaKqba+aadaqadaGcbaqcLbsapeGaa83Odiaa=ngajuaGpa WaaWbaaSqabKqaGeaajugWa8qacaWFYaaaaaGcpaGaayjkaiaawMca aKqzGeWdbiaa=9cacaWFobGaa8hiaiaa=1dacaWFGaGaa8Ntaiaa=n gajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaWFYaaaaKqzGeGaa83l aiaa=5eacaWFGaGaa8xpaiaa=bcacaWFJbqcfa4damaaCaaaleqaje aibaqcLbmapeGaa8Nmaaaaaaa@6613@

Thus, ( 3 )=( M/3R ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aaieaajugibabaaaaaaaaapeGaa83maaGcpaGaayjkaiaawMcaaKqz GeGaa8xpaKqbaoaabmaakeaajugib8qacaWFnbGaa83laiaa=ndaca WFsbaak8aacaGLOaGaayzkaaqcLbsapeGaa8hiaiaa=ngajuaGpaWa aWbaaSqabKqaGeaajugWa8qacaWFYaaaaaaa@45C5@

Since c is the maximum speed, this temperature represents the maximum temperature.

T max = ( M/3R ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFubqcfa4damaaBaaajeaibaqcLbmapeGaa8xBaiaa =fgacaWF4baal8aabeaajugib8qacaWF9aGaa8hiaKqba+aadaqada GcbaqcLbsapeGaa8xtaiaa=9cacaWFZaGaa8NuaaGcpaGaayjkaiaa wMcaaKqzGeWdbiaa=bcacaWFJbqcfa4damaaCaaaleqajeaibaqcLb mapeGaa8Nmaaaaaaa@4975@

Now, about the molar mass:

We are left to wonder: Is the molar mass Lorentz invariant? At first glance it appears not to be, considering the concept of relativistic mass. Being fully aware of the disagreements on whether or not it’s correct,15‒18 let’s consider it here for the purpose of this analysis. Relativistic mass tells us that the mass of a point particle is not constant, but depends on the particle’s velocity. We have the following formula:

m = γ m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFTbGaa8hiaiaa=1dacaWFGaGaa83Sdiaa=1gajuaG paWaaSbaaKqaGeaajugWa8qacaWFWaaal8aabeaaaaa@3EA7@ 19

Where m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFTbqcfa4damaaBaaajeaibaqcLbmapeGaa8hmaaWc paqabaaaaa@3A82@ is the particle’s rest mass.

The molar mass is defined as the atomic mass expressed in grams per mole. For an element, the molar mass is the same as the atomic mass.8 The molar mass is the mass of an atom exactly equal to one-twelfth the mass of one carbon-12atom. Thus it is a mass dependent on a reference mass, one-twelfth the mass of one carbon-12atom. The mass of the particle will increase as its velocity increases. Now consider a setup for the determination of the molar mass of an element. If the entire frame is considered to be moving at a constant velocity with respect to a stationary one, the mass of both an atom belonging to the element and the reference C-12atom will increase by the same factor. Let the molar mass of the element be x and the mass of the C-12atom be y.

X =( 1/12 )y   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGybGaaeiiaiabg2da9Kqba+aadaqadaGcbaqcLbsapeGa aGymaiaac+cacaaIXaGaaGOmaaGcpaGaayjkaiaawMcaaKqzGeWdbi aadMhacaGGGcGaaiiOaaaa@42D2@ at rest. At v different from 0, we have:

γx=( 1/12 ) (γy) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHZoWzcaWG4bGaeyypa0tcfa4damaabmaakeaajugib8qa caaIXaGaai4laiaaigdacaaIYaaak8aacaGLOaGaayzkaaqcLbsape Gaaeiia8aacaGGOaWdbiabeo7aNjaadMhapaGaaiykaaaa@457F@ which implies x =( 1/12 )y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGaaeiiaiabg2da9Kqba+aadaqadaGcbaqcLbsapeGa aGymaiaac+cacaaIXaGaaGOmaaGcpaGaayjkaiaawMcaaKqzGeWdbi aadMhaaaa@40AA@ . Thus the molar mass is considered invariant.

Thus we have our equation:

T= 1 3 q A c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGubGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIZaaaaiaadghajuaGdaWgaaqcfasaaKqzadGaamyqaaqcfa yabaqcLbsacaWGJbqcfa4damaaCaaaleqajqwaG9FaaKqzadWdbiaa ikdaaaaaaa@461E@

Where q A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGXbqcfa4aaSbaaKqbGeaajugWaiaadgeaaKqbagqaaaaa @3AEF@ is the constant M/R. This result can also be obtained from the kinetic energy of gases:

The total translational kinetic energy of the molecules is given by the following formula:

K E Tot =( 3/2 ) nRT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFlbGaa8xraKqba+aadaWgaaqcbasaaKqzadWdbiaa =rfacaWFVbGaa8hDaaWcpaqabaqcLbsacaWF9aqcfa4aaeWaaOqaaK qzGeWdbiaa=ndacaWFVaGaa8NmaaGcpaGaayjkaiaawMcaaKqzGeWd biaa=bcacaWFUbGaa8Nuaiaa=rfaaaa@4743@ 11

Solving for T, and placing v = c, we obtain the same result:

T=( M/3R ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFubGaa8xpaKqba+aadaqadaGcbaqcLbsapeGaa8xt aiaa=9cacaWFZaGaa8NuaaGcpaGaayjkaiaawMcaaKqzGeWdbiaa=b cacaWFJbqcfa4damaaCaaaleqajeaibaqcLbmapeGaa8Nmaaaaaaa@432C@

Now let's take a look at the kinetic energy.

Special relativity tells us that the kinetic energy of a body goes to infinity as v approaches c. Thus if the temperature has an upper limit, then something else must be changing. Consider the following approach:

Relativistic mass of an object corresponds to its energy.20 The number of moles is given by

n = m/M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFUbGaa8hiaiaa=1dacaWFGaGaa8xBaiaa=9cacaWF nbaaaa@3BFE@

As v approaches c, m goes to infinity and M doesn’t change. Thus, the number of moles equals infinity at c. But n can also be defined as N/NA, where N is the number of molecules, NA is Avogadro’s number. This means at c, either N goes to infinity or NA goes to zero. Due to the law of conservation of mass,8 N must remain constant so NA must go to zero. This can be interpreted as each molecule occupying more ‘space’ in the mole as its mass increases, so a lesser amount of particles are sufficient for one mole.

The kinetic energy of one particle is given by

KE =( 3/2 ) K B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFlbGaa8xraiaa=bcacaWF9aqcfa4damaabmaakeaa jugib8qacaWFZaGaa83laiaa=jdaaOWdaiaawIcacaGLPaaajugib8 qacaWFGaGaa83saKqba+aadaWgaaqcbasaaKqzadWdbiaa=jeaaSWd aeqaaKqzGeWdbiaa=rfaaaa@4516@

Where KB the Boltzmann is constant. We can consider the kinetic energy as going to infinity not due to the temperature, but due to a change in KB.

K B = R/ N A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeaeaa aaaaaaa8qacaWFlbqcfa4damaaBaaajeaibaqcLbmapeGaa8NqaaWc paqabaqcLbsapeGaa8xpaiaa=bcacaWFsbGaa83laiaa=5eajuaGpa WaaSbaaKqaGeaajugWa8qacaWFbbaal8aabeaaaaa@41C4@

Where, NA is Avogadro’s number. Thus KE goes to infinity even though the temperature reaches a limit because KB goes to infinity due to NA going to zero.

Results

The equation for the calculation of the maximum temperature indicates the dependence on the molar mass of the substance. This implies that the maximum attainable temperature will be different for each element, progressively getting higher as the molar mass increases. Below is a curve showing the progression of maximum temperature with molar mass (for the first 20 elements of the periodic table) (Figure 1).

Figure 1 Graph showing variation in temperature limit for the first 20 elements. The temperature limit increases with molar mass. The value of R used is 8.31J/mol.K and M is in Kg/mol. The values are x1012.

Table 1 shows the variation of this temperature with respect to element for the first 20 elements of the periodic table. The temperatures are rounded up and are times 10 to the power 12 (x1012). The temperatures are measured in Kelvin.

H

He

Li

Be

B

a

N

O

F

Ne

3.64

14.4

25

33

39

43

51

58

69

73

Na

Mg

Al

Si

P

S

Cl

Ar

K

Ca

83

88

97

101

112

116

128

144

141

145

Table 1 Maximum temperature values for the first 20 elements (x1012)

Discussion

This study suggests that there is an upper limit to temperature which is characteristic to each element. Thus there are several upper temperature limits for each element. Reaching or going above this temperature would require the particles to be moving at or above c, which is in contradiction with the second postulate of special relativity.
This differs from other suggested upper temperature limits in that it is based on special relativity and there is not a unique temperature limit.

This approach has some limitations:

  1. Lack of experimental backup, rendering the work purely theoretical.
  2. Oversimplification of the model by neglecting concepts and using many assumptions. This helps in the mathematical analysis and all assumptions are kept reasonable.
  3. The dependence of temperature on molar mass indicates that the theory works only for atomic systems. Atomic systems here mean systems composed of atoms and molecules, such as a gas in a container. The theory breaks down if considering for example a subatomic or elementary particle system.
  4. An upper temperature limit based on thermodynamics and special relativity is possible. Although these temperatures may be unrealistically high for real gas systems, the approach is aimed at shedding some light on the issue.

Conclusion

An upper limit to temperature dependent on molar mass implies a variation of this temperature with respect to the various elements. Thus contrary to the lower limit absolute zero, there are not one but several upper limits. Based on this, a more absolute upper limit might be that of the element with the highest molar mass.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Tyson P. Absolute Hot: Is there an opposite to absolute zero? NOVA.
  2. Ares de Parga M, Angulo-Brown F, Ares de Parga G. Deduction of lorentz transformation from classical thermodynamics. Entropy. 2015;17(1):197‒213.
  3. Przanowski M, Tosiek J. Notes on thermodynamics in special relativity.
  4. Mareš JJ, Hubík P, Šesták J, et al. Relativistic transformation of temperature and mosengeil‒ott's antinomy. Physica E-Low-Dimensional Systems & Nanostructures. 2016;42(3):484‒487.
  5. Cubero D, Casado-Pascual J, Dunkel J, et al. Thermal equilibrium and Statistical Thermometers in Special Relativity. Physics review letters PRL. 2007.
  6. Dunkel J, Hanggi P. Relativistic Brownian Motion.Physics reports. 2009;471(1):1‒73.
  7. Sarbach O, Zannias T. Relativistic Kinetic Theory: An Introduction. AIP Conf Proc. 2013;1548:134‒155.
  8. Chang R. Chemistry. 6th ed. 1998.
  9. Arnaud J, Chusseau L, Philipe F. On Classical Ideal Gases. 2011.
  10. Nelkon M, Parker P. Advanced level physics. 7th ed. CBS Publishers & Distributors; 2012.
  11. Serway R, Jewett J. Physics for Scientists and Engineers with Modern Physics. 9th ed. Boston: Brooks/Cole; 2014. p. 1‒1622.
  12. Adams S, Allday J. Advanced Physics. Oxford University Press; 2000. 656 p.
  13. Einstein. Relativity: The Special and General Theory. Methuen & Co ltd; 1916. p. 1‒115.
  14. Tipler P, Mosca G. Physics for Scientists and Engineers. 5th ed. Freeman WH & Company; 2004. 16 p.
  15. Brown PM. On the concept of mass in relativity. 2007. p. 1‒17.
  16. Kokosar J. Pedagogical use of relativistic mass at better visualization of special relativity. 2012.
  17. Oas G.  On the abuse and use of relativistic mass.2005.
  18. Okun LB. Mass versus relativistic and rest masses. 2008. p. 1‒2.
  19. Fadda G. Course of Mechanics.
  20. Millette PA. On Time Dilation, Space Contraction, and the Question of Relativistic Mass. Progress in Physics. 2017;13(4):1‒4.
Creative Commons Attribution License

©2018 Aiyuk. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.