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Introduction
This paper aims at presenting a theory postulating an upper limit 

to temperature. An upper limit to temperature is not a completely new 
concept in physics. Examples of temperatures considered as upper 
limits include the Plank temperature (~1032K) and the Hagedorn 
temperature (~1030K).1

In this paper, a different approach, using concepts from special 
relativity is used. This leads to an interesting observation, that this 
temperature is characteristic to each element. This work is done using 
the same assumptions used in the kinetic theory and in the ideal gas 
equation, coupled with some additional ones. The entire system is also 
considered at rest. Only the particles are considered to be moving; 
the container is in a state of rest. This is done to avoid complications 
such as the Lorentz invariance of thermodynamic quantities. For 
example, some papers suggest that temperature is invariant,2‒6 while 
others suggest it is not.2,3,6 Such questions will be avoided entirely. 
The relativistic kinetic theory7 will not be considered either.

Also, the theory is formulated assuming the system is composed 
only of atoms. As such, the temperatures are considered to be high 
enough for bond energies of all compounds to be reached and that 
atomic processes such as fusion and fission do not occur. This 
temperature limit differs with respect to the different elements, since 
it depends on the molar mass. Thus an element with a higher molar 
mass will have a higher temperature limit. 

In this paper the temperature as a function of velocity is analyzed 
to answer the following: if there is a velocity limit, can there be a 
corresponding temperature limit?

Concepts and theory 

We will begin by looking at some concepts which will be necessary 
for the establishment of the theory.

The ideal gas equation

The ideal gas equation is the result of a macroscopic analysis of the 
behavior of gases. It gives the relationship between the macroscopic 

properties of volume, pressure and temperature and the mass of a gas 
expressed as number of moles. An ideal gas is defined as a gas whose 
behavior (pressure, volume and temperature) can be completely 
described using the ideal gas equation. The equation is gotten from 
the three gas laws:8

Boyle’s law: pressure is inversely proportional to volume at constant 
temperature.

Charles’ law: volume is directly proportional to temperature at 
constant volume.

Gay-Lussac’s law: pressure is directly proportional to temperature at 
constant volume.

These laws are combined to give the ideal gas equation:

PV= nRT9,10

P is the pressure of the gas

V is volume

n is the number of molecules; n = m/M, where m is the mass and 
M is the molar mass

R is the gas constant, and it is equal to 8.31J/mol.K

T is the temperature

The kinetic theory of gases

The kinetic theory of gases aims at explaining the behavior of 
gases by considering the motion of their molecules. Here, the pressure 
of a gas is considered to be generated due to the bombardment of the 
walls of a container by the molecules of gas within the container. The 
following assumptions are made to simplify the calculations:10

I.	 The volume of the molecules is negligible compared with the 
volume of the container

II.	 The motion is considered to be random and isotropic
III.	 Intermolecular forces between the molecules are negligible
IV.	 Collisions between molecules considered to be perfectly elastic
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Abstract

Temperature is known to have a lower limit, absolute zero corresponding to a 
temperature of 0K. Is there also an upper limit above which matter as we know it 
cannot exist? This paper is aimed at obtaining a theory for the establishment of a 
possible upper limit to temperature, with the use of concepts from thermodynamics 
and special relativity. This is done by using the kinetic theory and ideal gas equation 
to obtain an expression of temperature as a function of velocity of the particles, 
then using special relativity to establish the speed of light as a velocity barrier, thus 
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unreachable, or the particles would be moving at the speed of light, which is against 
the second postulate of special relativity. This approach leads to results indicating the 
existence of not one but several temperature limits, characteristic to each element.
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The kinetic theory, in accordance with the above assumptions, 
provides a relationship between the pressure generated by a gas and 
the speed with which the gas molecules move through the following 
equation:

2p (1 / 3) vp= < > 10

P is the pressure

p is the density of the gas

<v2> is called the mean square speed

( )2 2 2 2 2

1 2 3
    ..............  /

N
v v v v v N< > = + + + +

The kinetic theory also provides a relationship between the kinetic 
energy and the temperature of the gas:

( )3 / 2  BKE K T= 10,11

KE is kinetic energy

BK  is the Boltzmann’s constant:

 /B AK R N=  9

Where R is the gas constant and AN  is the Avogadro’s constant 
(6.02x1023)

T is the temperature

Einstein’s special theory of relativity

Einstein’s special theory of relativity provides us with some 
interesting concepts in the realm of physics. It is based on two 
postulates:11

The laws of physics are the same for every observer who is not 
accelerating. This implies that an experiment performed in a lab at 
rest should give the same results when performed in a lab moving at 
constant velocity with respect to the one at rest.

The speed of light is constant for every observer; c=3x108m/s. 
(This value has been rounded up). This means the speed of light, 
contrary to the common notion of relative speed, remains unchanged 
whether the observer is moving or not.

The speed of light thus represents an upper limit to velocity with 
positive rest mass; no massive object can move faster than light or 
even quite reach the speed of light.12

Some important consequences of special relativity are time 
dilation and length contraction. These lead to the introduction of the 
Lorentz factor:

			                         

13,14

The theory of maximum temperature 

First, some extra assumptions will be added to those already 
presented in the kinetic theory:

The temperatures are high enough for all matter to be present in 
the gaseous phase; thus the theory is extended beyond gases at room 
temperature.

All the gases behave like ideal gases. The gas container system is 
isolated and all the energy entering is used solely to increase the speed 
of the gas molecules.

Based on these assumptions, we can begin the mathematical 
analysis:

PV = nRT  thus, p
n

RT
V

=

2P = < v >ρ

This implies that
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This implies that xv = 3v

Let’s establish that x y z< c, <v v c, v c< where c is the speed of 
light.
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From special relativity, 
max

v = c

Thus y,max z, maxx,max

8= c / 3v = v v 1 10X= =

This enables us to write 
max x

V = 3V = c

The system is isolated and all the energy input goes in increasing 
the speed of the molecules, so this will go on until all the molecules 
are at their maximum speed, c.

Thus, ( ) ( )2 2 2 2 2  /   /   /   iv v N c N Nc N c< > = Σ = Σ = =

Thus, ( ) ( ) 23 M / 3R  c=

Since c is the maximum speed, this temperature represents the 
maximum temperature.

( ) 2
maxT = M / 3R  c

Now, about the molar mass:

We are left to wonder: Is the molar mass Lorentz invariant? At 
first glance it appears not to be, considering the concept of relativistic 
mass. Being fully aware of the disagreements on whether or not it’s 
correct,15‒18 let’s consider it here for the purpose of this analysis. 
Relativistic mass tells us that the mass of a point particle is not 
constant, but depends on the particle’s velocity. We have the following 
formula:

0m m= γ  19

Where 0m is the particle’s rest mass.

The molar mass is defined as the atomic mass expressed in grams 
per mole. For an element, the molar mass is the same as the atomic 
mass.8 The molar mass is the mass of an atom exactly equal to one-
twelfth the mass of one carbon-12atom. Thus it is a mass dependent 
on a reference mass, one-twelfth the mass of one carbon-12atom. 
The mass of the particle will increase as its velocity increases. Now 
consider a setup for the determination of the molar mass of an element. 
If the entire frame is considered to be moving at a constant velocity 
with respect to a stationary one, the mass of both an atom belonging 
to the element and the reference C-12atom will increase by the same 
factor. Let the molar mass of the element be x and the mass of the 
C-12atom be y.

( ) 1 / 12   X y= at rest. At v different from 0, we have:

( )1 / 12 ) (x yγ γ= which implies ( ) 1 / 12x y= . Thus the molar 
mass is considered invariant.

Thus we have our equation:

21

3 A
T q c=

Where 
A

q  is the constant M/R. This result can also be obtained 
from the kinetic energy of gases:

The total translational kinetic energy of the molecules is given by 
the following formula:

( )TotKE 3= / 2  nRT 11

Solving for T, and placing v = c, we obtain the same result:

( ) 2T = M / 3R  c

Now let’s take a look at the kinetic energy.

Special relativity tells us that the kinetic energy of a body goes 
to infinity as v approaches c. Thus if the temperature has an upper 
limit, then something else must be changing. Consider the following 
approach:

Relativistic mass of an object corresponds to its energy.20 The 
number of moles is given by

n = m / M

As v approaches c, m goes to infinity and M doesn’t change. Thus, 
the number of moles equals infinity at c. But n can also be defined 
as N/NA, where N is the number of molecules, AN  is Avogadro’s 
number. This means at c, either N goes to infinity or AN  goes to 
zero. Due to the law of conservation of mass,8 N must remain constant 
so AN  must go to zero. This can be interpreted as each molecule 
occupying more ‘space’ in the mole as its mass increases, so a lesser 
amount of particles are sufficient for one mole.

The kinetic energy of one particle is given by

( ) BKE = 3 / 2  K T

Where BK the Boltzmann is constant. We can consider the kinetic 
energy as going to infinity not due to the temperature, but due to a 
change in BK .

B AK = R / N

Where, NA is Avogadro’s number. Thus KE goes to infinity even 
though the temperature reaches a limit because KB goes to infinity due 
to NA going to zero.

Results
The equation for the calculation of the maximum temperature 

indicates the dependence on the molar mass of the substance. This 
implies that the maximum attainable temperature will be different 
for each element, progressively getting higher as the molar mass 
increases. Below is a curve showing the progression of maximum 
temperature with molar mass (for the first 20 elements of the periodic 
table) (Figure 1).

Table 1 shows the variation of this temperature with respect 
to element for the first 20 elements of the periodic table. The 
temperatures are rounded up and are times 10 to the power 12 (x1012). 
The temperatures are measured in Kelvin.
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Table 1 Maximum temperature values for the first 20 elements (x1012)

H He Li Be B a N O F Ne

3.64 14.4 25 33 39 43 51 58 69 73

Na Mg Al Si P S Cl Ar K Ca

83 88 97 101 112 116 128 144 141 145

Figure 1 Graph showing variation in temperature limit for the first 20 elements. The temperature limit increases with molar mass. The value of R used is 8.31J/
mol.K and M is in Kg/mol. The values are x1012.

Discussion
This study suggests that there is an upper limit to temperature 

which is characteristic to each element. Thus there are several upper 
temperature limits for each element. Reaching or going above this 
temperature would require the particles to be moving at or above c, 
which is in contradiction with the second postulate of special relativity.

This differs from other suggested upper temperature limits in that 
it is based on special relativity and there is not a unique temperature 
limit.

This approach has some limitations:

i.	 Lack of experimental backup, rendering the work purely 
theoretical.

ii.	 Oversimplification of the model by neglecting concepts and using 
many assumptions. This helps in the mathematical analysis and 
all assumptions are kept reasonable.

iii.	 The dependence of temperature on molar mass indicates that the 
theory works only for atomic systems. Atomic systems here mean 
systems composed of atoms and molecules, such as a gas in a 
container. The theory breaks down if considering for example a 
subatomic or elementary particle system.

iv.	 An upper temperature limit based on thermodynamics and 
special relativity is possible. Although these temperatures may be 
unrealistically high for real gas systems, the approach is aimed at 
shedding some light on the issue.

Conclusion
An upper limit to temperature dependent on molar mass implies 

a variation of this temperature with respect to the various elements. 
Thus contrary to the lower limit absolute zero, there are not one but 
several upper limits. Based on this, a more absolute upper limit might 
be that of the element with the highest molar mass.
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