Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Review Article Volume 1 Issue 1

A Proof of the Curious Binomial Coefficient Identity which is Connected with the Fibonacci Numbers

Jovan Mikic

Jovan Cvijić High School Center, Balkans

Correspondence: Jovan Mikic, Jovan Cvijić High School Center (JU SŠC), Modric a 74480, Bosnia and Herzegovina,Balkans

Received: October 31, 2017 | Published: December 4, 2017

Citation: Mikic J. A proof of the curious binomial coefficient identity which is connected with the fibonacci numbers. Open Acc J Math Theor Phy. 2017;1(1):1-7. DOI: 10.15406/oajmtp.2017.01.00001

Download PDF

Abstract

We give an elementary proof of the curious binomial coefficient identity, which is connected with the Fibonacci numbers, by using system of auxiliary sums and the induction principle. We discover some interesting relations between main sum and auxiliary sums, where appear the Fibonacci numbers. With help of these relations, we found a second order linear recurrence with main sums only. We easily solve this recurrence by using the Binet formula for the Fibonacci numbers and then prove the desired identity.

Keywords: binomial coefficient, fibonacci number, recurrence equation, auxiliary sum, combinatorial identity

Introduction

We consider the following sum with binomial coefficients:

S k (n)= i 1 =0 n i 2 =0 n i k =0 n ( n i 1 i 2 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaale aajugWaiaaigdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWG UbaacqGHris5aKqbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaa WcbaqcLbmacaaIYaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGa amOBaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabi qaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaajugW aiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmaca aIYaaaleqaaaaaaOGaayjkaiaawMcaaKqbaoaabmaakeaajugibuaa beqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcba qcLbmacaaIYaaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqz adGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibiabl+UimLqbao aabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaa dMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaa aaa@888C@ (1)

Where n is a non negative integer and k is a natural number greater than 1. We call this sum S k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@3CBC@  a main sum. Let us F n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaBaaaleaajugWaiaad6gaaSqabaaaaa@39CC@  denote the n -th Fibonacci number. Namely, F 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK qbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaaI9aGaaGimaaaa @3BA2@ , F 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aGaaGymaaaa @3BA5@ , and F n = F n1 + F n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaBaaaleaajugWaiaad6gaaSqabaqcLbsacaaI9aGaamOraKGb aoaaBaaaleaajugWaiaad6gacqGHsislcaaIXaaaleqaaKqzGeGaey 4kaSIaamOraKGbaoaaBaaaleaajugWaiaad6gacqGHsislcaaIYaaa leqaaaaa@4748@ ; if n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abgwMiZkaaikdaaaa@398F@ . Our main goal is to prove the following identity:

S k (n)= F k(n+1) F k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaSaaaOqaaKqzGeGaamOraKGbaoaaBaaaleaaju gWaiaadUgacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaaaleqaaaGc baqcLbsacaWGgbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaaaaaaa@4AA6@ (2)

The Identity (2) can be found1 as the Identity 142; and it arises as a generalization of the Identity 5 (when k=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai2dacaaIYaaaaa@388D@ ) from the same book. The same variant of the Identity (2), also, can be found in paper2 as the Identity 3 (with small error). The Identity (2) is interesting, mainly, because of its connection with the Fibonacci numbers.

There are no many proofs of the Identity (2). It is known that exists1 a purely combinatorial proof of the Identity (2). We give an elementary proof of the Identity (2) by using system of auxiliary sums and the induction principle.

Method of auxiliary sums is a new method in proving binomial coefficient identities. This method is introduced by the mathematician Jovan Mikic in papers.3,4 In this paper, we show how the same method works on harder example; such is the Identity (2). In that sense, this proof of the Identity (2) is interesting, particularly, because of a choice of auxiliary sums.

First, we introduce the auxiliary sum P k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@3CBA@ , as follows:

P k (n)= i 1 =0 n i 2 =0 n i k =0 n ( n i 1 i 2 )( n i 2 i 3 )( n i k i 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaale aajugWaiaaigdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWG UbaacqGHris5aKqbaoaaqahakeqaleaajugibiaadMgajuaGdaWgaa WcbaqcLbmacaaIYaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGa amOBaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabi qaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaajugW aiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmaca aIYaaaleqaaaaaaOGaayjkaiaawMcaaKqbaoaabmaakeaajugibuaa beqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcba qcLbmacaaIYaaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqz adGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibiabl+UimLqbao aabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaa dMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabgkHiTiaaigda aaaakiaawIcacaGLPaaaaaa@8ABF@ (3)

We establish our main theorem:

Theorem 1

Let n be a natural number; and let k be a natural number greater than 1. Then the following relations hold between main and auxiliary sum:

S k (n)= F k+1 S k (n1)+ F k P k (n1)+ F k1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaa dUgaaSqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaey 4kaSIaamOraKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacqGH flY1caWGqbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaaiI cacaWGUbGaeyOeI0IaaGymaiaaiMcacqGHRaWkcaWGgbqcga4aa0ba aSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqaaKqzadGaamOBaaaaaa a@6600@ (4)

P k (n)= F k S k (n1)+ F k1 P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaamOraKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLb sacqGHflY1caWGtbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugi biaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacqGHRaWkcaWGgbqcfa 4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsacqGH flY1caWGqbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaaiI cacaWGUbGaeyOeI0IaaGymaiaaiMcaaaa@5DAB@ (5)

From our main theorem, we derive a second order linear recurrence between main sums only. We have:

Corollary 1

Let n be a non negative integer; and let k be a natural number greater than 1. Then the following relation holds:

S k (n+2)=( F k+1 + F k1 ) S k (n+1)+( F k 2 F k1 F k+1 ) S k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gUcaRiaaikdacaaIPaGaaGypaiaaiIcacaWGgbqcga4aaSbaaSqaaK qzadGaam4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHRaWkcaWGgbqc fa4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsaca aIPaGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaadUgaaSqabaqc LbsacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaGaey4kaSIaaGikai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbaaleaajugWaiaaikdaaaqc LbsacqGHsislcaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgkHiTi aaigdaaSqabaqcLbsacqGHflY1caWGgbqcga4aaSbaaSqaaKqzadGa am4AaiabgUcaRiaaigdaaSqabaqcLbsacaaIPaGaeyyXICTaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@7807@ (6)

With initial conditions:

S k (0)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaaGimaiaa iMcacaaI9aGaaGymaaaa@3E06@ (7)

S k (1)= F k+1 + F k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaaGymaiaa iMcacaaI9aGaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaey4kaSIaamOraKGbaoaaBaaaleaajugWaiaa dUgacqGHsislcaaIXaaaleqaaaaa@4960@ (8)

Recall that the Cassini identity states that F k 2 F k1 F k+1 =( 1) k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaDaaaleaajugWaiaadUgaaSqaaKqzadGaaGOmaaaajugibiab gkHiTiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaa WcbeaajugibiabgwSixlaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGa ey4kaSIaaGymaaWcbeaajugibiaai2dacaaIOaGaeyOeI0IaaGymai aaiMcajyaGdaahaaWcbeqaaKqzadGaam4AaiabgkHiTiaaigdaaaaa aa@5391@ . By the Cassini identity, the Relation (6) simplifies to

S k (n+2)=( F k+1 + F k1 ) S k (n+1)+ (1) k1 S k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gUcaRiaaikdacaaIPaGaaGypaiaaiIcacaWGgbqcga4aaSbaaSqaaK qzadGaam4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHRaWkcaWGgbqc ga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsaca aIPaGaeyyXICTaam4uaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqc LbsacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaGaey4kaSIaaGikai abgkHiTiaaigdacaaIPaqcfa4aaWbaaSqabeaajugWaiaadUgacqGH sislcaaIXaaaaKqzGeGaeyyXICTaam4uaKqbaoaaBaaaleaajugWai aadUgaaSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@699E@ (9)

More definitions

In order to prove main theorem (1), beside the auxiliary sum P k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@3CBA@ , we need to define a whole system of auxiliary sums.

Definition 1

Let n be a natural number; and k be a natural number greater than1. Let l be a natural number such that lk+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai abgsMiJkaadUgacqGHRaWkcaaIYaaaaa@3B4E@ . We define auxiliary sums S k,l (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaaaa@3E64@ , as follows:

S k,1 (n)= i 1 =0 n1 i 2 =0 n i k =0 n ( n i 1 i 2 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gacqGHsislcaaIXaaacqGHris5aKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIuoacqWIMaYsju aGdaaeWbGcbeWcbaqcLbsacaWGPbqcfa4aaSbaaSqaaKqzadGaam4A aaWcbeaajugibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLd qcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOe I0IaamyAaKGbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaajugibi aadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaaaOGaayjkaiaa wMcaaKqzGeGaeS47IWucfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcba qcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaajugWaiaadUga aSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaale qaaaaaaOGaayjkaiaawMcaaaaa@7E91@ (10)

S k,l (n)= i 1 =0 n1 i l =0 n1 i l+1 =0 n i k =0 n ( n1 i 1 i 2 )( n1 i l1 i l )( n i l i l+1 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gacqGHsislcaaIXaaacqGHris5aiablAcilLqbao aaqahakeqaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaWGSbaa leqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaig daaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaaBaaa leaajugWaiaadYgajugibiabgUcaRiaaigdaaSqabaqcLbsacaaI9a GaaGimaaWcbaqcLbsacaWGUbaacqGHris5aiablAcilLqbaoaaqaha keqaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaK qzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIuoajuaGdaqa daGcbaqcLbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaaIXa GaeyOeI0IaamyAaKGbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaa jugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaaaOGaay jkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaOqaaKqzGeqbaeqabiqa aaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadMgajyaGda WgaaWcbaqcLbmacaWGSbGaeyOeI0IaaGymaaWcbeaaaOqaaKqzGeGa amyAaKqbaoaaBaaaleaajugWaiaadYgaaSqabaaaaaGccaGLOaGaay zkaaqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGa eyOeI0IaamyAaKGbaoaaBaaaleaajugWaiaadYgaaSqabaaakeaaju gibiaadMgajyaGdaWgaaWcbaqcLbmacaWGSbGaey4kaSIaaGymaaWc beaaaaaakiaawIcacaGLPaaajugibiabl+UimLqbaoaabmaakeaaju gibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaGdaWg aaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaS qaaKqzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaaaaa@B2CD@ 1<lk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGymai aaiYdacaWGSbGaeyizImQaam4Aaaaa@3B31@  (11)

S k,k+1 (n)= S k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaiabgUcaRiaaigda aSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aGaam4uaKGbaoaaBa aaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiabgkHiTiaa igdacaaIPaaaaa@4912@ (12)

S k,k+2 (n)= P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaiabgUcaRiaaikda aSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aGaamiuaKGbaoaaBa aaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiabgkHiTiaa igdacaaIPaaaaa@4910@ (13)

Then we define the following sum:

Definition 2

Let n be a non negative integer; and k be a natural integer greater than 1. We define the sum S k, i 1 =n (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaaaa@43F8@ , as follows:

S k, i 1 =n (n)= i 2 =0 n i k =0 n ( 0 i 2 )( n i 2 i 3 )( n i k n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPbqc ga4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaai2dacaaIWaaale aajugibiaad6gaaiabggHiLdGaeSOjGSucfa4aaabCaOqabSqaaKqz GeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaI9a GaaGimaaWcbaqcLbsacaWGUbaacqGHris5aKqbaoaabmaakeaajugi buaabeqaceaaaOqaaKqzGeGaaGimaaGcbaqcLbsacaWGPbqcga4aaS baaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawIcacaGLPaaajuaGdaqa daGcbaqcLbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaWGPb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaamyAaKGb aoaaBaaaleaajugWaiaaiodaaSqabaaaaaGccaGLOaGaayzkaaqcLb sacqWIVlctjuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaa d6gacqGHsislcaWGPbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaaO qaaKqzGeGaamOBaaaaaOGaayjkaiaawMcaaaaa@7DC3@ (14)

In other words, if we set i 1 =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aGaamOBaaaa @3C00@  in the main sum S k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@3CBC@ , we get the sum S k, i 1 =n (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaaaa@43F8@ . In order to calculate the sum S k, i 1 =n (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaaaa@43F8@ , we need to define one more sum:

Definition 3

Let n be a non negative integer; and k be a natural integer greater than 3. Let j be a non negative integer such that jn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOAai abgsMiJkaad6gaaaa@39B1@ . We define the sum Δ k,j (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucfa4aaSbaaSqaaKqzadGaam4AaiaaiYcacaWGQbaaleqaaKqzGeGa aGikaiaad6gacaaIPaaaaa@3EEF@ , as follows:

Δ k,j (n)= i 3 =0 n i k1 =0 n ( nj i 3 )( n i 3 i 4 )( n i k2 i k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucfa4aaSbaaSqaaKqzadGaam4AaiaaiYcacaWGQbaaleqaaKqzGeGa aGikaiaad6gacaaIPaGaaGypaKqbaoaaqahakeqaleaajugibiaadM gajyaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGaaGypaiaaicda aSqaaKqzGeGaamOBaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGcbeWcba qcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigda aSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacqGHris5aK qbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHi TiaadQgaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaiodaaS qabaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeqbaeqabiqa aaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKGbaoaaBaaaleaajugWai aaiodaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaI 0aaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqb aoaaBaaaleaajugWaiaadUgacqGHsislcaaIYaaaleqaaaGcbaqcLb sacaWGPbqcfa4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqa baaaaaGccaGLOaGaayzkaaaaaa@82AC@ (15)

There is a connection between these two sums from the Definition (2) and Definition (3). Namely, when k4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai abgwMiZkaaisdaaaa@398E@ , the following equation holds

S k, i 1 =n (n)= Δ k,0 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacqqHuoarjuaGdaWgaaWcbaqcLbmacaWG RbGaaGilaiaaicdaaSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@4D5F@ (16)

The Equation (16) is true because of the fact that i 1 =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aGaamOBaaaa @3C00@  implies that both i2 and ik must be equal to zero.

Main lemmas

Before we prove main theorem (1), we need to prove several lemmas. Here, we give a list of all lemmas which are important for us.

Lemma 1

Let integers n, k, and l be from the Definition (1); with condition lk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai abgsMiJkaadUgaaaa@39B0@ . Then the following equation holds

S k,l (n)= S k,l+1 (n)+ S k,l+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGtbqcga4aaSbaaSqaaKqzadGaam 4AaiaaiYcacaWGSbGaey4kaSIaaGymaaWcbeaajugibiaaiIcacaWG UbGaaGykaiabgUcaRiaadofajuaGdaWgaaWcbaqcLbmacaWGRbGaaG ilaiaadYgacqGHRaWkcaaIYaaaleqaaKqzGeGaaGikaiaad6gacaaI Paaaaa@53DB@ (17)

Corollary 2

Let integers n, k, and l be from the Defination (1); with condition lk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai abgsMiJkaadUgaaaa@39B0@ . Let m be a non negative integer such that mk+1l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai abgsMiJkaadUgacqGHRaWkcaaIXaGaeyOeI0IaamiBaaaa@3D2C@ . Then following equations hold

S k,l (n)= F m+1 S k,l+m (n)+ F m S k,l+m+1 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcfa4aaSbaaSqaaKqzadGaam yBaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtbqcfa4aaSba aSqaaKqzadGaam4AaiaaiYcacaWGSbGaey4kaSIaamyBaaWcbeaaju gibiaaiIcacaWGUbGaaGykaiabgUcaRiaadAeajuaGdaWgaaWcbaqc LbmacaWGTbaaleqaaKqzGeGaeyyXICTaam4uaKqbaoaaBaaaleaaju gWaiaadUgacaaISaGaamiBaiabgUcaRiaad2gacqGHRaWkcaaIXaaa leqaaKqzGeGaaGikaiaad6gacaaIPaaaaa@6493@ (18)

S k,1 (n)= F k+1 S k (n1)+ F k P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcga4aaSbaaSqaaKqzadGaam 4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtbqcga4aaSba aSqaaKqzadGaam4AaaWcbeaajugibiaaiIcacaWGUbGaeyOeI0IaaG ymaiaaiMcacqGHRaWkcaWGgbqcga4aaSbaaSqaaKqzadGaam4AaaWc beaajugibiabgwSixlaadcfajyaGdaWgaaWcbaqcLbmacaWGRbaale qaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaa@5F16@ (19)

S k,2 (n)= F k S k (n1)+ F k1 P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaaGOmaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcga4aaSbaaSqaaKqzadGaam 4AaaWcbeaajugibiabgwSixlaadofajyaGdaWgaaWcbaqcLbmacaWG RbaaleqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiabgU caRiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWc beaajugibiabgwSixlaadcfajyaGdaWgaaWcbaqcLbmacaWGRbaale qaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaa@5F23@ (20)

Lemma 2

Let n be a non negative integer; and k be a natural integer greater than 1. The following relation holds

P k (n)= S k,2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaam4uaKGbaoaaBaaaleaajugWaiaadUgacaaISaGaaG OmaaWcbeaajugibiaaiIcacaWGUbGaaGykaaaa@4596@ (21)

Lemma 3

Let n, k, and j be from the Defination (3). Then the following equation holds:

Δ k,j (n)= F k2 j F k1 nj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucga4aaSbaaSqaaKqzadGaam4AaiaaiYcacaWGQbaaleqaaKqzGeGa aGikaiaad6gacaaIPaGaaGypaiaadAeajyaGdaqhaaWcbaqcLbmaca WGRbGaeyOeI0IaaGOmaaWcbaqcLbmacaWGQbaaaKqzGeGaeyyXICTa amOraKGbaoaaDaaaleaajugWaiaadUgacqGHsislcaaIXaaaleaaju gWaiaad6gacqGHsislcaWGQbaaaaaa@535B@ (22)

Lemma 4

Let n and k be from the Defination (2). Then the following equation holds:

S k, i 1 =n (n)= F k1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacaWGgbqcga4aa0baaSqaaKqzadGaam4A aiabgkHiTiaaigdaaSqaaKqzadGaamOBaaaaaaa@4C37@ (23)

A proof of the lemma (1)

Our proof of the Equation (17) relies on the well-known Pascal’s formula for binomial coefficients:

( n k )=( n1 k )+( n1 k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaaGcbaqcLbsacaWGRbaa aaGccaGLOaGaayzkaaqcLbsacaaI9aqcfa4aaeWaaOqaaKqzGeqbae qabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGcbaqcLbsacaWG RbaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaqadaGcbaqcLb safaqabeGabaaakeaajugibiaad6gacqGHsislcaaIXaaakeaajugi biaadUgacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaa@4EDE@ (24)

Where n is a natural number and k may be an arbitrary integer.

Due to the Definition (1), our proof consists of four parts. All proofs of these four parts are very similar. We prove three cases and give a sketch of a proof for the fourth case.

Proof

  1. The first case: l=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai aai2dacaaIXaaaaa@388D@ . Since i 1 n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHKjYOcaWGUbGa eyOeI0IaaGymaaaa@3E96@ , we can apply the Pascal formula on the binomial coefficient

( n i 1 i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaG daWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWGPbqcga4aaS baaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawIcacaGLPaaaaaa@429F@ .

We have gradually:

S k,1 (n)= i 1 =0 n1 i 2 =0 n i k =0 n ( n i 1 i 2 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gacqGHsislcaaIXaaacqGHris5aKqbaoaaqahake qaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIuoacqWIMaYsju aGdaaeWbGcbeWcbaqcLbsacaWGPbqcfa4aaSbaaSqaaKqzadGaam4A aaWcbeaajugibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLd qcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOe I0IaamyAaKGbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaajugibi aadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaaaOGaayjkaiaa wMcaaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBai abgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqc LbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaaakiaawI cacaGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaa aOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbmaca WGRbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaGym aaWcbeaaaaaakiaawIcacaGLPaaaaaa@8BA3@
= i 1 =0 n1 i 2 =0 n i k =0 n (( n1 i 1 i 2 )+( n1 i 1 i 2 1 ))( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLb sacaWGUbaacqGHris5aiablAcilLqbaoaaqahakeqaleaajugibiaa dMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaaGaeyyeIuoacaaIOaqcfa4aaeWaaOqaaKqz GeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTi aadMgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWG Pbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawIcacaGLPa aajugibiabgUcaRKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqz GeGaamOBaiabgkHiTiaaigdacqGHsislcaWGPbqcga4aaSbaaSqaaK qzadGaaGymaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugW aiaaikdaaSqabaqcLbsacqGHsislcaaIXaaaaaGccaGLOaGaayzkaa qcLbsacaaIPaqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsa caWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaajugWaiaaikdaaSqaba aakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa aOGaayjkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaOqaaKqzGeqbae qabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaa jugWaiaadUgaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqcLb macaaIXaaaleqaaaaaaOGaayjkaiaawMcaaaaa@998F@
= i 1 =0 n1 i 2 =0 n i k =0 n ( n1 i 1 i 2 )( n i 2 i 3 )( n i k i 1 )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLb sacaWGUbaacqGHris5aiablAcilLqbaoaaqahakeqaleaajugibiaa dMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqa beGabaaakeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaK GbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaajugibiaadMgajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqbao aabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaa dMgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLbsacaWGPb qcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaaakiaawIcacaGLPaaa jugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGe GaamOBaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqa aaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaa aakiaawIcacaGLPaaajugibiabgUcaRaaa@86AA@ (25)
i 1 =0 n1 i 2 =0 n i k =0 n ( n1 i 1 i 2 1 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugW aiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacq GHris5aiablAcilLqbaoaaqahakeqaleaajugibiaadMgajuaGdaWg aaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGe GaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaa jugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaale aajugWaiaaigdaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqc LbmacaaIYaaaleqaaKqzGeGaeyOeI0IaaGymaaaaaOGaayjkaiaawM caaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiab gkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLb sacaWGPbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaaakiaawIca caGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaaaO qaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaWG RbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaGymaa WcbeaaaaaakiaawIcacaGLPaaaaaa@8619@ (26)

Note that the first binomial coefficient in the Equation (25) perishes if i 2 =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK qbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaamOBaaaa @3C00@ . Therefore, we have

i 1 =0 n1 i 2 =0 n i k =0 n ( n1 i 1 i 2 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaaleaajugW aiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacq GHris5aiablAcilLqbaoaaqahakeqaleaajugibiaadMgajuaGdaWg aaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGe GaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaa jugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKqbaoaaBaaale aajugibiaaigdaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqc LbmacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqbaoaabmaakeaaju gibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWg aaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLbsacaWGPbqcfa4aaSbaaS qaaKqzadGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibiabl+Ui mLqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgk HiTiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsa caWGPbqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaaakiaawIcaca GLPaaaaaa@8343@
= i 1 =0 n1 i 2 =0 n1 i k =0 n ( n1 i 1 i 2 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLb sacaWGUbGaeyOeI0IaaGymaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGc beWcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaju gibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLdqcfa4aaeWa aOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymai abgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqc LbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawI cacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaa d6gacqGHsislcaWGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaO qaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaaaaGc caGLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqcLbsafaqabe Gabaaakeaajugibiaad6gacqGHsislcaWGPbqcfa4aaSbaaSqaaKqz adGaam4AaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWai aaigdaaSqabaaaaaGccaGLOaGaayzkaaaaaa@86E1@
= S k,2 (n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajyaGdaWgaaWcbaqcLbmacaWGRbGaaGilaiaaikdaaSqabaqc LbsacaaIOaGaamOBaiaaiMcacaGGUaaaaa@3FA8@ (27)

The Equation (26) becomes gradually:

i 1 =0 n1 i 2 =0 n i k =0 n ( n1 i 1 i 2 1 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaaleaajugW aiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacq GHris5aiablAcilLqbaoaaqahakeqaleaajugibiaadMgajyaGdaWg aaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGe GaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaa jugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaale aajugWaiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqc LbmacaaIYaaaleqaaKqzGeGaeyOeI0IaaGymaaaaaOGaayjkaiaawM caaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiab gkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLb sacaWGPbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaaakiaawIca caGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaaaO qaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaWG RbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaGymaa WcbeaaaaaakiaawIcacaGLPaaaaaa@861B@
= i 1 =0 n1 i 2 =1 n i k =0 n ( n1 i 1 i 2 1 )( n i 2 i 3 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGymaaWcbaqcLb sacaWGUbaacqGHris5aiablAcilLqbaoaaqahakeqaleaajugibiaa dMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqa beGabaaakeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaK GbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaajugibiaadMgajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyOeI0IaaGymaaaaaO GaayjkaiaawMcaaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqz GeGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIYaaale qaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaG4maaWcbeaa aaaakiaawIcacaGLPaaajugibiabl+UimLqbaoaabmaakeaajugibu aabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWc baqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqcfa4aaSbaaSqaaK qzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaaaaa@8772@
= i 1 =0 n1 t 2 =0 n1 i k =0 n ( n1 i 1 t 2 )( n1 t 2 i 3 )( n i k i 1 )( t 2 = i 2 1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamiDaKqbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLb sacaWGUbGaeyOeI0IaaGymaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGc beWcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaju gibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLdqcfa4aaeWa aOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymai abgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqc LbsacaWG0bqcga4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawI cacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaa d6gacqGHsislcaaIXaGaeyOeI0IaamiDaKGbaoaaBaaaleaajugWai aaikdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaI ZaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKGb aoaaBaaaleaajugWaiaadUgaaSqabaaakeaajugibiaadMgajyaGda WgaaWcbaqcLbmacaaIXaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGa aGikaiaadshajyaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaaG ypaiaadMgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyOe I0IaaGymaiaaiMcaaaa@9573@ (28)

If k=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai2dacaaIYaaaaa@388D@ , then the above sum in the Equation (28) is S k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaaaaa@3E65@ according to the Equation (1). Due to the Equation (12) from the Defination (1), we have that S k (n1)= S k,k+1 (n)= S k,3 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaGaaGypaiaadofajyaGdaWgaaWcbaqcLbmaca WGRbGaaGilaiaadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaaGikaiaa d6gacaaIPaGaaGypaiaadofajuaGdaWgaaWcbaqcLbmacaWGRbGaaG ilaiaaiodaaSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@51ED@ .

If k>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai6dacaaIYaaaaa@388E@ , then the above sum in the Equation (28) is, as follows:

i 1 =0 n1 t 2 =0 n1 i 3 =0 n i k =0 n ( n1 i 1 t 2 )( n1 t 2 i 3 )( n i 3 i 4 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdqcfa4aaabCaOqabSqaaKqzGeGaamiDaKqbaoaaBaaaleaajugW aiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaey OeI0IaaGymaaGaeyyeIuoajuaGdaaeWbGcbeWcbaqcLbsacaWGPbqc ga4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaai2dacaaIWaaale aajugibiaad6gaaiabggHiLdGaeSOjGSucfa4aaabCaOqabSqaaKqz GeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaI9a GaaGimaaWcbaqcLbsacaWGUbaacqGHris5aKqbaoaabmaakeaajugi buaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaaigdacqGHsislca WGPbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaamiD aKGbaoaaBaaaleaajugWaiaaikdaaSqabaaaaaGccaGLOaGaayzkaa qcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOe I0IaaGymaiabgkHiTiaadshajuaGdaWgaaWcbaqcLbmacaaIYaaale qaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaaG4maaWcbeaa aaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaake aajugibiaad6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaG4m aaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaisdaaS qabaaaaaGccaGLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqc LbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaWGPbqcfa4aaS baaSqaaKqzadGaam4AaaWcbeaaaOqaaKqzGeGaamyAaKqbaoaaBaaa leaajugWaiaaigdaaSqabaaaaaGccaGLOaGaayzkaaaaaa@9F03@

= S k,3 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajyaGdaWgaaWcbaqcLbmacaWGRbGaaGilaiaaiodaaSqabaqc LbsacaaIOaGaamOBaiaaiMcaaaa@3EF7@ According to the Defination (1) and the Equation (11). In both cases, the sum in the Equation (28) is equal to S k,3 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaaG4maaWcbeaajugibiaa iIcacaWGUbGaaGykaaaa@3E30@ . Now, from the Equation (25), (26), (27), and (28), it follows that S k,1 (n)= S k,2 (n)+ S k,3 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGtbqcga4aaSbaaSqaaKqzadGaam 4AaiaaiYcacaaIYaaaleqaaKqzGeGaaGikaiaad6gacaaIPaGaey4k aSIaam4uaKqbaoaaBaaaleaajugWaiaadUgacaaISaGaaG4maaWcbe aajugibiaaiIcacaWGUbGaaGykaaaa@5001@ . This proves the first case.

  1. The second case: l=k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai aai2dacaWGRbaaaa@38C2@ . Since i k n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacqGHKjYOcaWGUbGa eyOeI0IaaGymaaaa@3ECB@ , we can apply the Pascal formula on the binomial coefficient ( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaG daWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqcga4aaS baaSqaaKqzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaaaaa@42D3@ . We have gradually:

S k,k (n)= i 1 =0 n1 i k1 =0 n1 i k =0 n1 ( n1 i 1 i 2 )( n1 i k1 i k )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gacqGHsislcaaIXaaacqGHris5aiablAcilLqbao aaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaWGRbGa eyOeI0IaaGymaaWcbeaajugibiaai2dacaaIWaaaleaajugibiaad6 gacqGHsislcaaIXaaacqGHris5aKqbaoaaqahakeqaleaajugibiaa dMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdqcfa4aaeWa aOqaaKqzadqbaeqabiqaaaGcbaqcLbmacaWGUbGaeyOeI0IaaGymai abgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqc LbmacaWGPbqcga4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawI cacaGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaa aOqaaKqzGeGaamOBaiabgkHiTiaaigdacqGHsislcaWGPbqcfa4aaS baaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaaakeaajugibiaa dMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaaaaOGaayjkaiaawM caaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiab gkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLb sacaWGPbqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaaakiaawIca caGLPaaaaaa@9844@
= i 1 =0 n1 i k1 =0 n1 i k =0 n1 ( n1 i 1 i 2 )( n1 i k1 i k )( n1 i k i 1 )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyA aKqbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGe GaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHi Ldqcfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWai aadUgaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOe I0IaaGymaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaake aajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaa leaajugWaiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcba qcLbmacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWuc fa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0 IaaGymaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbGaeyOe I0IaaGymaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWai aadUgaaSqabaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeqb aeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadM gajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqc ga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaaju gibiabgUcaRaaa@9134@
i 1 =0 n1 i k1 =0 n1 i k =0 n1 ( n1 i 1 i 2 )( n1 i k1 i k )( n1 i k i 1 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdqcfa4aaabC aOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqaba qcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGa eyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaad6 gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaaleaajugWaiaa igdaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIYa aaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaOqa aKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaiabgk HiTiaadMgajyaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWc beaaaOqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqaba aaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGc baqcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadMgajuaGdaWgaa WcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqa aKqzadGaaGymaaWcbeaajugibiabgkHiTiaaigdaaaaakiaawIcaca GLPaaajugibiaab6caaaa@91E5@
= S k (n1)+ P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikaiaa d6gacqGHsislcaaIXaGaaGykaiabgUcaRiaadcfajuaGdaWgaaWcba qcLbmacaWGRbaaleqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGa aGykaaaa@4854@ (29)

According to the Equation (1) and the Equation (3).

According to the Equation (12) and the Equation (13) from the Defination (1), the Equation (29) becomes S k,k (n)= S k,k+1 (n)+ S k,k+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGtbqcfa4aaSbaaSqaaKqzadGaam 4AaiaaiYcacaWGRbGaey4kaSIaaGymaaWcbeaajugibiaaiIcacaWG UbGaaGykaiabgUcaRiaadofajyaGdaWgaaWcbaqcLbmacaWGRbGaaG ilaiaadUgacqGHRaWkcaaIYaaaleqaaKqzGeGaaGikaiaad6gacaaI Paaaaa@53D8@ . This proves the second case.

  1. The third case: l=k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai aai2dacaWGRbGaeyOeI0IaaGymaaaa@3A6A@ . Since i k1 n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGa eyizImQaamOBaiabgkHiTiaaigdaaaa@4073@ , we can apply the Pascal formula on the binomial coefficient ( n i k1 i k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaG daWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbeaaaOqaaKqzGe GaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqabaaaaaGccaGLOaGa ayzkaaaaaa@44AF@ . We have gradually:

S k,k1 (n)= i 1 =0 n1 i k1 =0 n1 i k =0 n ( n1 i 1 i 2 )( n i k1 i k )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaiabgkHiTiaaigda aSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aqcfa4aaabCaOqabS qaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsa caaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGaeyyeIu oacqWIMaYsjuaGdaaeWbGcbeWcbaqcLbsacaWGPbqcga4aaSbaaSqa aKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsacaaI9aGaaGimaa WcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGaeyyeIuoajuaGdaaeWbGc beWcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaju gibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLdqcfa4aaeWa aOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymai abgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqc LbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawI cacaGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqaceaa aOqaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmaca WGRbGaeyOeI0IaaGymaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaadUgaaSqabaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqb aoaaBaaaleaajugWaiaadUgaaSqabaaakeaajugibiaadMgajuaGda WgaaWcbaqcLbmacaaIXaaaleqaaaaaaOGaayjkaiaawMcaaaaa@94BD@
= i 1 =0 n1 i k1 =0 n1 i k =0 n ( n1 i 1 i 2 )( n1 i k1 i k )( n i k i 1 )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyA aKGbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGe GaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHi Ldqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWai aadUgaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacqGH ris5aKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBai abgkHiTiaaigdacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaGym aaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaikdaaS qabaaaaaGccaGLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqc LbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0 IaamyAaKGbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqa aaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaaa aakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaa jugibiaad6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaam4Aaa WcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaigdaaSqa baaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkaaa@8DE9@
i 1 =0 n1 i k1 =0 n1 i k =0 n ( n1 i 1 i 2 )( n1 i k1 i k 1 )( n i k i 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdqcfa4aaabC aOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqaba qcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbaacqGHris5aKqbaoaa bmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaaig dacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqa aKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaikdaaSqabaaaaaGcca GLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqcLbsafaqabeGa baaakeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbao aaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaaGcbaqcLbsa caWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiabgkHiTi aaigdaaaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGa baaakeaajugibiaad6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzad Gaam4AaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaa igdaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacaqGUaaaaa@8E98@
= i 1 =0 n1 i k1 =0 n1 i k =0 n1 ( n1 i 1 i 2 )( n1 i k1 i k )( n i k i 1 )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyA aKGbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGe GaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHi Ldqcfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWai aadUgaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOe I0IaaGymaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaake aajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaa leaajugWaiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcba qcLbmacaaIYaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWuc fa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0 IaaGymaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaWGRbGaeyOe I0IaaGymaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWai aadUgaaSqabaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeqb aeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaale aajugWaiaadUgaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqc LbmacaaIXaaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaScaaa@8F8E@
i 1 =0 n1 i k1 =0 n1 i k =1 n ( n1 i 1 i 2 )( n1 i k1 i k 1 )( n i k i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdqcfa4aaabC aOqabSqaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqaba qcLbsacaaI9aGaaGymaaWcbaqcLbsacaWGUbaacqGHris5aKqbaoaa bmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaaig dacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqa aKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaaikdaaSqabaaaaaGcca GLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqcLbsafaqabeGa baaakeaajugibiaad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKqbao aaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaaGcbaqcLbsa caWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiabgkHiTi aaigdaaaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGa baaakeaajugibiaad6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzad Gaam4AaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaa igdaaSqabaaaaaGccaGLOaGaayzkaaaaaa@8D57@
= S k,k (n)+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajuaGdaWgaaWcbaqcLbmacaWGRbGaaGilaiaadUgaaSqabaqc LbsacaaIOaGaamOBaiaaiMcacqGHRaWkaaa@400B@
i 1 =0 n1 i k1 =0 n1 t k =0 n1 ( n1 i 1 i 2 )( n1 i k1 t k )( n1 t k i 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake qaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabgg HiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaiabgkHiTiaaigdaaiabggHiLdqcfa4aaabC aOqabSqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaadUgaaSqaba qcLbsacaaI9aGaaGimaaWcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGa eyyeIuoajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaad6 gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaaleaajugWaiaa igdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIYa aaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaOqa aKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaiabgk HiTiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWc beaaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaadUgaaSqaba aaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGc baqcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadshajuaGdaWgaa WcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqa aKqzadGaaGymaaWcbeaaaaaakiaawIcacaGLPaaajugibiaab6caaa a@8FCE@

In the last equation above, we used substitution t k = i k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaI9aGaamyAaKGb aoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacqGHsislcaaIXaaaaa@4156@ . Therefore, from the last equation above, we obtain that

S k,k1 (n)= S k,k (n)+ S k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaam4AaiabgkHiTiaaigda aSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aGaam4uaKqbaoaaBa aaleaajugWaiaadUgacaaISaGaam4AaaWcbeaajugibiaaiIcacaWG UbGaaGykaiabgUcaRiaadofajuaGdaWgaaWcbaqcLbmacaWGRbaale qaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaa@5245@

= S k,k (n)+ S k,k+1 (n); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajuaGdaWgaaWcbaqcLbmacaWGRbGaaGilaiaadUgaaSqabaqc LbsacaaIOaGaamOBaiaaiMcacqGHRaWkcaWGtbqcfa4aaSbaaSqaaK qzadGaam4AaiaaiYcacaWGRbGaey4kaSIaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaabUdaaaa@4AAE@ (30) (by the Equation (12)). The Equation (30) proves the third case.

  1. The fourth case: 1<l<k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGymai aaiYdacaWGSbGaaGipaiaadUgacqGHsislcaaIXaaaaa@3BEA@ . This case exists only if k>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai6dacaaIZaaaaa@388F@ . We give a short sketch of the proof. The proof of this case is very similar to the proof of the first case. We use the Pascal formula on the binomial coefficient ( n i l i l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaG daWgaaWcbaqcLbmacaWGSbaaleqaaaGcbaqcLbsacaWGPbqcfa4aaS baaSqaaKqzadGaamiBaiabgUcaRiaaigdaaSqabaaaaaGccaGLOaGa ayzkaaaaaa@44A6@ and we get ( n i l i l+1 )=( n1 i l i l+1 )+( n1 i l i l+1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajyaG daWgaaWcbaqcLbmacaWGSbaaleqaaaGcbaqcLbsacaWGPbqcfa4aaS baaSqaaKqzadGaamiBaiabgUcaRiaaigdaaSqabaaaaaGccaGLOaGa ayzkaaqcLbsacaaI9aqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcba qcLbsacaWGUbGaeyOeI0IaaGymaiabgkHiTiaadMgajyaGdaWgaaWc baqcLbmacaWGSbaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaK qzadGaamiBaiabgUcaRiaaigdaaSqabaaaaaGccaGLOaGaayzkaaqc LbsacqGHRaWkjuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibi aad6gacqGHsislcaaIXaGaeyOeI0IaamyAaKGbaoaaBaaaleaajugW aiaadYgaaSqabaaakeaajugibiaadMgajyaGdaWgaaWcbaqcLbmaca WGSbGaey4kaSIaaGymaaWcbeaajugibiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaaaaa@6B2C@ . Then the sum S k,l (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugWaiaa iIcajugibiaad6gacaaIPaaaaa@3F92@  splits on two sums. It is easy to see that the first sum is S k,l (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaaaa@3E64@ .

For the second sum, we need to introduce the substitution t l+1 = i l+1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK GbaoaaBaaaleaajugWaiaadYgacqGHRaWkcaaIXaaaleqaaKqzGeGa aGypaiaadMgajuaGdaWgaaWcbaqcLbmacaWGSbGaey4kaSIaaGymaa WcbeaajugibiabgkHiTiaaigdaaaa@4491@ . Then the second sum becomes S k,l+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaiabgUcaRiaaikda aSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@4002@ . Therefore, it follows that S k,l (n)= S k,l+1 (n)+ S k,l+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGtbqcga4aaSbaaSqaaKqzadGaam 4AaiaaiYcacaWGSbGaey4kaSIaaGymaaWcbeaajugibiaaiIcacaWG UbGaaGykaiabgUcaRiaadofajyaGdaWgaaWcbaqcLbmacaWGRbGaaG ilaiaadYgacqGHRaWkcaaIYaaaleqaaKqzGeGaaGikaiaad6gacaaI Paaaaa@53DC@ . This proves the fourth case.

A proof of the corollary (2)

We need to prove Equations. (18), (19), and (20). All these equations are direct consequences of the Equation (17).

A proof of the equation (18)

Proof: We assume that integers n, k, and l are fixed. We give a proof by using the induction principle on m. If m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai aai2dacaaIWaaaaa@388D@ , then the Equation (18) is satisfied, because F 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaaI9aGaaGimaaaa @3BA3@ . Thus, we confirm the base of the induction. Let us suppose that the Equation (18) holds for some m such that 0m<k+1l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai abgsMiJkaad2gacaaI8aGaam4AaiabgUcaRiaaigdacqGHsislcaWG Sbaaaa@3EAC@ . In other words, our induction hypothesis is S k,l (n)= F m+1 S k,l+m (n)+ F m S k,l+m+1 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcfa4aaSbaaSqaaKqzadGaam yBaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtbqcga4aaSba aSqaaKqzadGaam4AaiaaiYcacaWGSbGaey4kaSIaamyBaaWcbeaaju gibiaaiIcacaWGUbGaaGykaiabgUcaRiaadAeajuaGdaWgaaWcbaqc LbmacaWGTbaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaaju gWaiaadUgacaaISaGaamiBaiabgUcaRiaad2gacqGHRaWkcaaIXaaa leqaaKqzGeGaaGikaiaad6gacaaIPaaaaa@6495@ . Then l+mk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai abgUcaRiaad2gacqGHKjYOcaWGRbaaaa@3B84@ . By the Lemma (1) and the Equation (17), we know that

S k,l+m (n)= S k,l+m+1 (n)+ S k,l+m+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaiabgUcaRiaad2ga aSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aGaam4uaKGbaoaaBa aaleaajugWaiaadUgacaaISaGaamiBaiabgUcaRiaad2gacqGHRaWk caaIXaaaleqaaKqzGeGaaGikaiaad6gacaaIPaGaey4kaSIaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaiabgUcaRiaad2ga cqGHRaWkcaaIYaaaleqaaKqzGeGaaGikaiaad6gacaaIPaaaaa@5958@ (31)

From our induction hypothesis and the Equation (31), we have that

S k,l (n)= F m+1 S k,l+m (n)+ F m S k,l+m+1 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgacaaISaGaamiBaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcfa4aaSbaaSqaaKqzadGaam yBaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtbqcfa4aaSba aSqaaKqzadGaam4AaiaaiYcacaWGSbGaey4kaSIaamyBaaWcbeaaju gibiaaiIcacaWGUbGaaGykaiabgUcaRiaadAeajyaGdaWgaaWcbaqc LbmacaWGTbaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaaju gWaiaadUgacaaISaGaamiBaiabgUcaRiaad2gacqGHRaWkcaaIXaaa leqaaKqzGeGaaGikaiaad6gacaaIPaaaaa@6495@
= F m+1 ( S k,l+m+1 (n)+ S k,l+m+2 (n))+ F m S k,l+m+1 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGTbGaey4kaSIaaGymaaWcbeaa jugibiabgwSixlaaiIcacaWGtbqcfa4aaSbaaSqaaKqzadGaam4Aai aaiYcacaWGSbGaey4kaSIaamyBaiabgUcaRiaaigdaaSqabaqcLbsa caaIOaGaamOBaiaaiMcacqGHRaWkcaWGtbqcfa4aaSbaaSqaaKqzad Gaam4AaiaaiYcacaWGSbGaey4kaSIaamyBaiabgUcaRiaaikdaaSqa baqcLbsacaaIOaGaamOBaiaaiMcacaaIPaGaey4kaSIaamOraKGbao aaBaaaleaajugWaiaad2gaaSqabaqcLbsacqGHflY1caWGtbqcfa4a aSbaaSqaaKqzadGaam4AaiaaiYcacaWGSbGaey4kaSIaamyBaiabgU caRiaaigdaaSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@6BEA@
=( F m+1 + F m ) S k,l+m+1 (n)+ F m+1 S k,l+m+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aaiIcacaWGgbqcga4aaSbaaSqaaKqzadGaamyBaiabgUcaRiaaigda aSqabaqcLbsacqGHRaWkcaWGgbqcfa4aaSbaaSqaaKqzadGaamyBaa WcbeaajugibiaaiMcacqGHflY1caWGtbqcfa4aaSbaaSqaaKqzadGa am4AaiaaiYcacaWGSbGaey4kaSIaamyBaiabgUcaRiaaigdaaSqaba qcLbsacaaIOaGaamOBaiaaiMcacqGHRaWkcaWGgbqcga4aaSbaaSqa aKqzadGaamyBaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtb qcfa4aaSbaaSqaaKqzadGaam4AaiaaiYcacaWGSbGaey4kaSIaamyB aiabgUcaRiaaikdaaSqabaqcLbsacaaIOaGaamOBaiaaiMcaaaa@660C@
= F m+2 S k,l+m+1 (n)+ F m+1 S k,l+m+2 (n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajuaGdaWgaaWcbaqcLbmacaWGTbGaey4kaSIaaGOmaaWcbeaa jugibiabgwSixlaadofajuaGdaWgaaWcbaqcLbmacaWGRbGaaGilai aadYgacqGHRaWkcaWGTbGaey4kaSIaaGymaaWcbeaajugibiaaiIca caWGUbGaaGykaiabgUcaRiaadAeajyaGdaWgaaWcbaqcLbmacaWGTb Gaey4kaSIaaGymaaWcbeaajugibiabgwSixlaadofajuaGdaWgaaWc baqcLbmacaWGRbGaaGilaiaadYgacqGHRaWkcaWGTbGaey4kaSIaaG OmaaWcbeaajugibiaaiIcacaWGUbGaaGykaiaab6caaaa@6037@

From the last equation above, it follows that Equation (18) is satisfied for m+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai abgUcaRiaaigdaaaa@38A9@ ; where 0<m+1k+1l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGimai aaiYdacaWGTbGaey4kaSIaaGymaiabgsMiJkaadUgacqGHRaWkcaaI XaGaeyOeI0IaamiBaaaa@4049@ . Therefore, the step of induction is proved. By the induction principle, the proof of the Equation (18) is completed.

A proof of the equation (19)

Proof: The proof is straightforward. Just set l=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai aai2dacaaIXaaaaa@388D@  and m=k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai aai2dacaWGRbaaaa@38C3@  in the Equation (18). This is allowed, because mk+11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai abgsMiJkaadUgacqGHRaWkcaaIXaGaeyOeI0IaaGymaaaa@3CF6@ , so mk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai abgsMiJkaadUgaaaa@39B1@ . From the Equation (18), we get

S k,1 (n)= F k+1 S k,k+1 (n)+ F k S k,k+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaaGymaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcga4aaSbaaSqaaKqzadGaam 4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHflY1caWGtbqcga4aaSba aSqaaKqzadGaam4AaiaaiYcacaWGRbGaey4kaSIaaGymaaWcbeaaju gibiaaiIcacaWGUbGaaGykaiabgUcaRiaadAeajuaGdaWgaaWcbaqc LbmacaWGRbaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaaju gWaiaadUgacaaISaGaam4AaiabgUcaRiaaikdaaSqabaqcLbsacaaI OaGaamOBaiaaiMcaaaa@624F@
= F k+1 S k (n1)+ F k P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbeaa jugibiabgwSixlaadofajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaK qzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiabgUcaRiaadAea jyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyyXICTaamiuaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaaaaa@5701@ (32)

According to the Equations (12) and (13) from the Defination (1). The Equation (32) is our desired the Equation (19). This proves the Equation (19)

A proof of the equation (20)

Proof: Again, this proof is straightforward. Just set l=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiBai aai2dacaaIYaaaaa@388E@  and m=k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai aai2dacaWGRbGaeyOeI0IaaGymaaaa@3A6B@  in the Equation (2). Since, mk+1l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyBai abgsMiJkaadUgacqGHRaWkcaaIXaGaeyOeI0IaamiBaaaa@3D2C@ , this is allowed. From the Equation (18), we get

S k,2 (n)= F k S k,k+1 (n)+ F k1 S k,k+2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaaGOmaaWcbeaajugibiaa iIcacaWGUbGaaGykaiaai2dacaWGgbqcga4aaSbaaSqaaKqzadGaam 4AaaWcbeaajugibiabgwSixlaadofajuaGdaWgaaWcbaqcLbmacaWG RbGaaGilaiaadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaaGikaiaad6 gacaaIPaGaey4kaSIaamOraKqbaoaaBaaaleaajugWaiaadUgacqGH sislcaaIXaaaleqaaKqzGeGaeyyXICTaam4uaKqbaoaaBaaaleaaju gWaiaadUgacaaISaGaam4AaiabgUcaRiaaikdaaSqabaqcLbsacaaI OaGaamOBaiaaiMcaaaa@6259@
= F k S k (n1)+ F k1 P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyyXICTa am4uaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaam OBaiabgkHiTiaaigdacaaIPaGaey4kaSIaamOraKGbaoaaBaaaleaa jugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaeyyXICTaamiuaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaaaaa@570C@ (33)

According to the Equations (12) and (13) from the Defination (1). The Equation (33) is our desired the Equation (20). This proves the Equation (20) and completes the proof of the Corollary (2).

A proof of the lemma (2)

Proof

This proof immediately follows from the Equation (3) and the Defination (1). We need to introduce the substitution t 1 = i 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aGaamyAaKGb aoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHsislcaaIXaaaaa@40EC@ . We have:

P k (n)= i 1 =0 n i 2 =0 n i k =0 n ( n i 1 i 2 )( n i 2 i 3 )( n i k i 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaabCaOqabSqaaKqzGeGaamyAaKGbaoaaBaaale aajugWaiaaigdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWG UbaacqGHris5aKqbaoaaqahakeqaleaajugibiaadMgajuaGdaWgaa WcbaqcLbmacaaIYaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGa amOBaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGcbeWcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaai2dacaaIWaaa leaajugibiaad6gaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabi qaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKGbaoaaBaaaleaajugW aiaaigdaaSqabaaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmaca aIYaaaleqaaaaaaOGaayjkaiaawMcaaKqbaoaabmaakeaajugibuaa beqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWcba qcLbmacaaIYaaaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqz adGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibiabl+UimLqbao aabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaa dMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWGPb qcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabgkHiTiaaigda aaaakiaawIcacaGLPaaaaaa@8ABF@
= i 1 =1 n i 2 =0 n i k =0 n ( n i 1 i 2 )( n i 2 i 3 )( n i k i 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaigdaaSqaaKqzGeGaamOBaaGaeyyeIu oajuaGdaaeWbGcbeWcbaqcLbsacaWGPbqcfa4aaSbaaSqaaKqzadGa aGOmaaWcbeaajugibiaai2dacaaIWaaaleaajugibiaad6gaaiabgg HiLdGaeSOjGSucfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaaBaaa leaajugWaiaadUgaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsaca WGUbaacqGHris5aKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqz GeGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIXaaale qaaaGcbaqcLbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaa aaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaake aajugibiaad6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaGOm aaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaiodaaS qabaaaaaGccaGLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqc LbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaWGPbqcga4aaS baaSqaaKqzadGaam4AaaWcbeaaaOqaaKqzGeGaamyAaKGbaoaaBaaa leaajugWaiaaigdaaSqabaqcLbsacqGHsislcaaIXaaaaaGccaGLOa Gaayzkaaaaaa@8422@

Now, we introduce the substitution t 1 = i 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aGaamyAaKGb aoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHsislcaaIXaaaaa@40EC@ . Then the last equation above becomes

P k (n)= t 1 =0 n1 i 2 =0 n i k =0 n ( n1 t 1 i 2 )( n i 2 i 3 )( n i k t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaabCaOqabSqaaKqzGeGaamiDaKGbaoaaBaaale aajugWaiaaigdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLbsacaWG UbGaeyOeI0IaaGymaaGaeyyeIuoajuaGdaaeWbGcbeWcbaqcLbsaca WGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaai2dacaaI Waaaleaajugibiaad6gaaiabggHiLdGaeSOjGSucfa4aaabCaOqabS qaaKqzGeGaamyAaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsa caaI9aGaaGimaaWcbaqcLbsacaWGUbaacqGHris5aKqbaoaabmaake aajugibuaabeqaceaaaOqaaKqzGeGaamOBaiabgkHiTiaaigdacqGH sislcaWG0bqcga4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqaaKqzGe GaamyAaKGbaoaaBaaaleaajugWaiaaikdaaSqabaaaaaGccaGLOaGa ayzkaaqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUb GaeyOeI0IaamyAaKqbaoaaBaaaleaajugWaiaaikdaaSqabaaakeaa jugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaaaOGaay jkaiaawMcaaKqzGeGaeS47IWucfa4aaeWaaOqaaKqzGeqbaeqabiqa aaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKqbaoaaBaaaleaajugWai aadUgaaSqabaaakeaajugibiaadshajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaaaaaOGaayjkaiaawMcaaaaa@8BF9@
= t 1 =0 n1 i 2 =0 n1 i k =0 n ( n1 t 1 i 2 )( n i 2 i 3 )( n i k t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadshajyaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aaigdaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaKqbaoaa BaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aGaaGimaaWcbaqcLb sacaWGUbGaeyOeI0IaaGymaaGaeyyeIuoacqWIMaYsjuaGdaaeWbGc beWcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaju gibiaai2dacaaIWaaaleaajugibiaad6gaaiabggHiLdqcfa4aaeWa aOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymai abgkHiTiaadshajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcbaqc LbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawI cacaGLPaaajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaa d6gacqGHsislcaWGPbqcga4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaO qaaKqzGeGaamyAaKGbaoaaBaaaleaajugWaiaaiodaaSqabaaaaaGc caGLOaGaayzkaaqcLbsacqWIVlctjuaGdaqadaGcbaqcLbsafaqabe Gabaaakeaajugibiaad6gacqGHsislcaWGPbqcfa4aaSbaaSqaaKqz adGaam4AaaWcbeaaaOqaaKqzGeGaamiDaKGbaoaaBaaaleaajugWai aaigdaaSqabaaaaaGccaGLOaGaayzkaaaaaa@8703@
= S k,2 (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadofajyaGdaWgaaWcbaqcLbmacaWGRbGaaGilaiaaikdaaSqabaqc LbsacaaIOaGaamOBaiaaiMcaaaa@3EF6@ (34)

According to the Equation (11) from the Defination (1). The Equation (34) completes the proof of the Lemma (2).

A proof of the lemma (3)

Proof

We give a proof of the Lemma (3) by using the induction principle on k. We start with k=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai2dacaaI0aaaaa@388F@ . By the Defination (3), we have

Δ 4,j (n)= i 3 =0 n ( nj i 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucga4aaSbaaSqaaKqzadGaaGinaiaaiYcacaWGQbaaleqaaKqzGeGa aGikaiaad6gacaaIPaGaaGypaKqbaoaaqahakeqaleaajugibiaadM gajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGaaGypaiaaicda aSqaaKqzGeGaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLbsafaqabe Gabaaakeaajugibiaad6gacqGHsislcaWGQbaakeaajugibiaadMga jyaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaaaOGaayjkaiaawMcaaa aa@5484@
= i 3 =0 nj ( nj i 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaI ZaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aadQgaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqc LbsacaWGUbGaeyOeI0IaamOAaaGcbaqcLbsacaWGPbqcga4aaSbaaS qaaKqzadGaaG4maaWcbeaaaaaakiaawIcacaGLPaaaaaa@4DBC@
=2 nj (bythebinomialtheorem) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aaikdajuaGdaahaaWcbeqaaKqzadGaamOBaiabgkHiTiaadQgaaaqc LbsacaaIOaGaaeOyaiaabMhacaqG0bGaaeiAaiaabwgacaqGIbGaae yAaiaab6gacaqGVbGaaeyBaiaabMgacaqGHbGaaeiBaiaabshacaqG ObGaaeyzaiaab+gacaqGYbGaaeyzaiaab2gacaaIPaaaaa@50E0@
= F 2 j F 3 nj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaaIYaaaleaajugWaiaadQgaaaqc LbsacqGHflY1caWGgbqcga4aa0baaSqaaKqzadGaaG4maaWcbaqcLb macaWGUbGaeyOeI0IaamOAaaaaaaa@46CD@
= F (42) j F (41) nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaaIOaGaaGinaiabgkHiTiaaikda caaIPaaaleaajugWaiaadQgaaaqcLbsacqGHflY1caWGgbqcga4aa0 baaSqaaKqzadGaaGikaiaaisdacqGHsislcaaIXaGaaGykaaWcbaqc LbmacaWGUbGaeyOeI0IaamOAaaaajugibiaab6caaaa@4E2B@

The last equation above proves the base of induction. Let us suppose that the Equation (22) holds for some k4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai abgwMiZkaaisdaaaa@398E@ . This is our induction hypothesis. Let us consider Δ k+1,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucga4aaSbaaSqaaKqzadGaam4AaiabgUcaRiaaigdacaaISaGaamOA aaWcbeaaaaa@3DA6@ .

Δ k+1,j = i 3 =0 n i 4 =0 n i k =0 n ( nj i 3 )( n i 3 i 4 )( n i k1 i k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucga4aaSbaaSqaaKqzadGaam4AaiabgUcaRiaaigdacaaISaGaamOA aaWcbeaajugibiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPbqcga 4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaai2dacaaIWaaaleaa jugibiaad6gaaiabggHiLdqcfa4aaabCaOqabSqaaKqzGeGaamyAaK GbaoaaBaaaleaajugWaiaaisdaaSqabaqcLbsacaaI9aGaaGimaaWc baqcLbsacaWGUbaacqGHris5aiablAcilLqbaoaaqahakeqaleaaju gibiaadMgajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGyp aiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIuoajuaGdaqadaGcbaqcLb safaqabeGabaaakeaajugibiaad6gacqGHsislcaWGQbaakeaajugi biaadMgajyaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaaaOGaayjkai aawMcaaKqbaoaabmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamOB aiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaGcba qcLbsacaWGPbqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaaaaaakiaa wIcacaGLPaaajugibiabl+UimLqbaoaabmaakeaajugibuaabeqace aaaOqaaKqzGeGaamOBaiabgkHiTiaadMgajuaGdaWgaaWcbaqcLbma caWGRbGaeyOeI0IaaGymaaWcbeaaaOqaaKqzGeGaamyAaKqbaoaaBa aaleaajugWaiaadUgaaSqabaaaaaGccaGLOaGaayzkaaaaaa@8939@
= i 3 =0 n ( nj i 3 ) i 4 =0 n i k =0 n ( n i 3 i 4 )( n i k1 i k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaI ZaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIu oajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaad6gacqGH sislcaWGQbaakeaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaIZa aaleqaaaaaaOGaayjkaiaawMcaaKqbaoaaqahakeqaleaajugibiaa dMgajyaGdaWgaaWcbaqcLbmacaaI0aaaleqaaKqzGeGaaGypaiaaic daaSqaaKqzGeGaamOBaaGaeyyeIuoacqWIVlctjuaGdaaeWbGcbeWc baqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibi aai2dacaaIWaaaleaajugibiaad6gaaiabggHiLdqcfa4aaeWaaOqa aKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGaeyOeI0IaamyAaKGbao aaBaaaleaajugWaiaaiodaaSqabaaakeaajugibiaadMgajuaGdaWg aaWcbaqcLbmacaaI0aaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeS 47IWucfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbGa eyOeI0IaamyAaKGbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXa aaleqaaaGcbaqcLbsacaWGPbqcga4aaSbaaSqaaKqzadGaam4AaaWc beaaaaaakiaawIcacaGLPaaaaaa@81ED@
= i 3 =0 n ( nj i 3 ) Δ k, i 3 (n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaI ZaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaaGaeyyeIu oajuaGdaqadaGcbaqcLbsafaqabeGabaaakeaajugibiaad6gacqGH sislcaWGQbaakeaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIZa aaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaeyyXICTaeuiLdqucfa4a aSbaaSqaaKqzadGaam4AaiaaiYcacaWGPbqcga4aaSbaaSqaaKqzad GaaG4maaWcbeaaaeqaaKqzGeGaaGikaiaad6gacaaIPaGaaeOlaaaa @5AE3@ (35)

By the induction hypothesis, it follows that

Δ k, i 3 (n)= F k2 i 3 F k1 n i 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucfa4aaSbaaSqaaKqzadGaam4AaiaaiYcacaWGPbqcga4aaSbaaSqa aKqzadGaaG4maaWcbeaaaeqaaKqzGeGaaGikaiaad6gacaaIPaGaaG ypaiaadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGOmaaWc baqcLbmacaWGPbqcga4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaqcLb sacqGHflY1caWGgbqcga4aa0baaSqaaKqzadGaam4AaiabgkHiTiaa igdaaSqaaKqzadGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLb macaaIZaaaleqaaaaaaaa@5B5F@ (36)

By the Equation (36), the Equation (35) becomes

Δ k+1,j = i 3 =0 n ( nj i 3 ) F k2 i 3 F k1 n i 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiLdq ucga4aaSbaaSqaaKqzadGaam4AaiabgUcaRiaaigdacaaISaGaamOA aaWcbeaajugibiaai2dajuaGdaaeWbGcbeWcbaqcLbsacaWGPbqcga 4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaai2dacaaIWaaaleaa jugibiaad6gaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaa GcbaqcLbsacaWGUbGaeyOeI0IaamOAaaGcbaqcLbsacaWGPbqcfa4a aSbaaSqaaKqzadGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibi abgwSixlaadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGOm aaWcbaqcLbmacaWGPbqcga4aaSbaaSqaaKqzadGaaG4maaWcbeaaaa qcLbsacqGHflY1caWGgbqcga4aa0baaSqaaKqzadGaam4AaiabgkHi TiaaigdaaSqaaKqzadGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcba qcLbmacaaIZaaaleqaaaaaaaa@6FD8@
= i 3 =0 nj ( nj i 3 ) F k2 i 3 F k1 n i 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaaqahakeqaleaajugibiaadMgajyaGdaWgaaWcbaqcLbmacaaI ZaaaleqaaKqzGeGaaGypaiaaicdaaSqaaKqzGeGaamOBaiabgkHiTi aadQgaaiabggHiLdqcfa4aaeWaaOqaaKqzGeqbaeqabiqaaaGcbaqc LbsacaWGUbGaeyOeI0IaamOAaaGcbaqcLbsacaWGPbqcfa4aaSbaaS qaaKqzadGaaG4maaWcbeaaaaaakiaawIcacaGLPaaajugibiabgwSi xlaadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGOmaaWcba qcLbmacaWGPbqcga4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaqcLbsa cqGHflY1caWGgbqcga4aa0baaSqaaKqzadGaam4AaiabgkHiTiaaig daaSqaaKqzadGaamOBaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbma caaIZaaaleqaaaaaaaa@6999@
= F k1 j i 3 =0 nj ( nj i 3 ) F k2 i 3 F k1 nj i 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqc LbmacaWGQbaaaKqzGeGaeyyXICDcfa4aaabCaOqabSqaaKqzGeGaam yAaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaaI9aGaaGim aaWcbaqcLbsacaWGUbGaeyOeI0IaamOAaaGaeyyeIuoajuaGdaqada GcbaqcLbsafaqabeGabaaakeaajugibiaad6gacqGHsislcaWGQbaa keaajugibiaadMgajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaaaO GaayjkaiaawMcaaKqzGeGaeyyXICTaamOraKGbaoaaDaaaleaajugW aiaadUgacqGHsislcaaIYaaaleaajugWaiaadMgajyaGdaWgaaWcba qcLbmacaaIZaaaleqaaaaajugibiabgwSixlaadAeajyaGdaqhaaWc baqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqcLbmacaWGUbGaeyOeI0 IaamOAaiabgkHiTiaadMgajyaGdaWgaaWcbaqcLbmacaaIZaaaleqa aaaaaaa@75C2@
= F k1 j ( F k2 + F k1 ) nj (bythebinomialtheorem) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqc LbmacaWGQbaaaKqzGeGaeyyXICTaaGikaiaadAeajyaGdaWgaaWcba qcLbmacaWGRbGaeyOeI0IaaGOmaaWcbeaajugibiabgUcaRiaadAea jyaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbeaajugibi aaiMcajuaGdaahaaWcbeqaaKqzadGaamOBaiabgkHiTiaadQgaaaqc LbsacaaIOaGaaeOyaiaabMhacaqG0bGaaeiAaiaabwgacaqGIbGaae yAaiaab6gacaqGVbGaaeyBaiaabMgacaqGHbGaaeiBaiaabshacaqG ObGaaeyzaiaab+gacaqGYbGaaeyzaiaab2gacaaIPaaaaa@6886@
= F k1 j F k nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqc LbmacaWGQbaaaKqzGeGaeyyXICTaamOraKGbaoaaDaaaleaajugWai aadUgaaSqaaKqzadGaamOBaiabgkHiTiaadQgaaaqcLbsacaqGUaaa aa@4A1C@ (37)

The Equation (37) proves the step of the induction principle. This completes the proof of the Lemma (3).

A proof of the lemma (4)

It is easily verified, by direct calculation, that

S 2, i 1 =n (n)=1; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaaikdacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacaaIXaGaae4oaaaa@4604@

S 3, i 1 =n (n)=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaaiodacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacaaIXaGaaeOlaaaa@45F8@

So, we can conclude, from the above equations, that

S 2, i 1 =n (n)= F 1 n ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaaikdacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacaWGgbqcga4aa0baaSqaaKqzadGaaGym aaWcbaqcLbmacaWGUbaaaKqzGeGaae4oaaaa@4B74@ (38)

S 3, i 1 =n (n)= F 2 n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaaiodacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacaWGgbqcga4aa0baaSqaaKqzadGaaGOm aaWcbaqcLbmacaWGUbaaaKqzGeGaaeOlaaaa@4B69@ (39)

Therefore, the Equation (22) is true, when k=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai2dacaaIYaaaaa@388D@  and k=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aai2dacaaIZaaaaa@388E@ .

Now, let us suppose that k4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai abgwMiZkaaisdaaaa@398E@ . According to the Equations (16) and (22), we have that

S k, i 1 =n (n)= Δ k,0 (n)(bytheEquation (16)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgacaaISaGaamyAaKGbaoaaBaaaleaa jugWaiaaigdaaSqabaqcLbmacaaI9aGaamOBaaWcbeaajugibiaaiI cacaWGUbGaaGykaiaai2dacqqHuoarjuaGdaWgaaWcbaqcLbmacaWG RbGaaGilaiaaicdaaSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaIOa GaaeOyaiaabMhacaqG0bGaaeiAaiaabwgacaqGfbGaaeyCaiaabwha caqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGOaGaaeymai aabAdacaqGPaGaaGykaaaa@5E33@
= F k2 0 F k1 n0 (bytheEquation (16)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGOmaaWcbaqc LbmacaaIWaaaaKqzGeGaeyyXICTaamOraKGbaoaaDaaaleaajugWai aadUgacqGHsislcaaIXaaaleaajugWaiaad6gacqGHsislcaaIWaaa aKqzGeGaaGikaiaabkgacaqG5bGaaeiDaiaabIgacaqGLbGaaeyrai aabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa aeikaiaabgdacaqG2aGaaeykaiaaiMcaaaa@5B7F@
= F k1 n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqc LbmacaWGUbaaaKqzGeGaaeOlaaaa@3F9A@ (40)

The Equations (38), (39), and (40) prove the Equation (23). This completes the proof of the Lemma (4).

A proof of the theorem (1)

Proof

Let n be a natural number. First, we prove the Equation (4). Due to the Equation (10) from the Defination (1) and the Defination (3), we know that:

S k (n)= S k,1 (n)+ S k, i 1 =n (n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaam4uaKqbaoaaBaaaleaajugWaiaadUgacaaISaGaaG ymaaWcbeaajugibiaaiIcacaWGUbGaaGykaiabgUcaRiaadofajuaG daWgaaWcbaqcLbmacaWGRbGaaGilaiaadMgajyaGdaWgaaWcbaqcLb macaaIXaaaleqaaKqzadGaaGypaiaad6gaaSqabaqcLbsacaaIOaGa amOBaiaaiMcacaqGUaaaaa@5507@        (41)

By Equations (19) and (23), the Equation (41) becomes S k (n)=( F k+1 S k (n1)+ F k P k (n1))+ F k1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaaGikaiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey 4kaSIaaGymaaWcbeaajugibiabgwSixlaadofajyaGdaWgaaWcbaqc LbmacaWGRbaaleqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaG ykaiabgUcaRiaadAeajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqz GeGaeyyXICTaamiuaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqcLb sacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaGykaiabgUcaRiaa dAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqcLb macaWGUbaaaaaa@6763@ . The last equation above proves the Equation (4). Now, we prove the Equation (5). The proof of the Equation (5) immediately follows from the Equations (20) and (21).

P k (n)= S k (n)(bytheEquation (21)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaam4uaKGbaoaaBaaaleaajugWaiaadUgaaSqabaqcLb sacaaIOaGaamOBaiaaiMcacaaIOaGaaeOyaiaabMhacaqG0bGaaeiA aiaabwgacaqGfbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabccacaqGOaGaaeOmaiaabgdacaqGPaGaaGykaaaa@54F5@
= F k S k (n1)+ F k1 P k (n1).(bytheEquation (22)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaeyyXICTa am4uaKGbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaam OBaiabgkHiTiaaigdacaaIPaGaey4kaSIaamOraKqbaoaaBaaaleaa jugWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaeyyXICTaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaGaaeOlaiaaiIcacaqGIbGaaeyEaiaabshaca qGObGaaeyzaiaabweacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaa b+gacaqGUbGaaeiiaiaabIcacaqGYaGaaeOmaiaabMcacaaIPaaaaa@6890@

The last equation above proves the Equation (5). This completes the proof of the Theorem (1).

A proof of the corollary (1)

Proof

The Corollary (1) directly follows from the Theorem (1) and from its Equations (4) and (5). Let us suppose that n is a natural number. First, we prove the Equation (6). We express sums P k (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcaaaa@3CBA@  and P k (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaaaaa@3E62@  by main sums with help of the Equation (4). Then we use the Equation (5), in order to get relation between main sums only. First, from the Equation (4), we obtain that:

P k (n1)= S k (n) F k+1 S k (n1) F k1 n F k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gkHiTiaaigdacaaIPaGaaGypaKqbaoaalaaakeaajugibiaadofajy aGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikaiaad6gacaaI PaGaeyOeI0IaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaa dUgaaSqabaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaey OeI0IaamOraKGbaoaaDaaaleaajugWaiaadUgacqGHsislcaaIXaaa leaajugWaiaad6gaaaaakeaajugibiaadAeajuaGdaWgaaWcbaqcLb sacaWGRbaaleqaaaaajugibiaab6caaaa@65AE@ (42)

If we use the substitution n1=t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abgkHiTiaaigdacaaI9aGaamiDaaaa@3A75@ , the Equation (42) becomes

P k (t)= S k (t+1) F k+1 S k (t) F k1 t+1 F k ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamiDaiaa iMcacaaI9aqcfa4aaSaaaOqaaKqzGeGaam4uaKGbaoaaBaaaleaaju gWaiaadUgaaSqabaqcLbsacaaIOaGaamiDaiabgUcaRiaaigdacaaI PaGaeyOeI0IaamOraKqbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaa dUgaaSqabaqcLbsacaaIOaGaamiDaiaaiMcacqGHsislcaWGgbqcga 4aa0baaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqaaKqzadGaamiD aiabgUcaRiaaigdaaaaakeaajugibiaadAeajyaGdaWgaaWcbaqcLb macaWGRbaaleqaaaaajugibiaabUdaaaa@665C@ (43)

Where t is a non negative integer. Therefore, when n is a natural number, the Equation (43) implies that

P k (n)= S k (n+1) F k+1 S k (n) F k1 n+1 F k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaSaaaOqaaKqzGeGaam4uaKGbaoaaBaaaleaaju gWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiabgUcaRiaaigdacaaI PaGaeyOeI0IaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaeyyXICTaam4uaKqbaoaaBaaaleaajugWaiaa dUgaaSqabaqcLbsacaaIOaGaamOBaiaaiMcacqGHsislcaWGgbqcga 4aa0baaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqaaKqzadGaamOB aiabgUcaRiaaigdaaaaakeaajugibiaadAeajuaGdaWgaaWcbaqcLb macaWGRbaaleqaaaaajugibiaab6caaaa@6636@ (44)

Now, we use the Equation (5). By Equations (42) and (44), the Equation (5) becomes gradually:

S k (n+1) F k+1 S k (n) F k1 n+1 F k = F k S k (n1)+ F k1 S k (n) F k+1 S k (n1) F k1 n F k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadofajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGa aGikaiaad6gacqGHRaWkcaaIXaGaaGykaiabgkHiTiaadAeajyaGda WgaaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbeaajugibiabgwSi xlaadofajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikai aad6gacaaIPaGaeyOeI0IaamOraKGbaoaaDaaaleaajugWaiaadUga cqGHsislcaaIXaaaleaajugWaiaad6gacqGHRaWkcaaIXaaaaaGcba qcLbsacaWGgbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaaaqcLbsa caaI9aGaamOraKGbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacq GHflY1caWGtbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaa iIcacaWGUbGaeyOeI0IaaGymaiaaiMcacqGHRaWkcaWGgbqcga4aaS baaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsacqGHflY1 juaGdaWcaaGcbaqcLbsacaWGtbqcfa4aaSbaaSqaaKqzadGaam4Aaa WcbeaajugibiaaiIcacaWGUbGaaGykaiabgkHiTiaadAeajuaGdaWg aaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbeaajugibiabgwSixl aadofajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikaiaa d6gacqGHsislcaaIXaGaaGykaiabgkHiTiaadAeajyaGdaqhaaWcba qcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqcLbmacaWGUbaaaaGcbaqc LbsacaWGgbqcga4aaSbaaSqaaKqzadGaam4AaaWcbeaaaaaaaa@9C1F@

S k (n+1) F k+1 S k (n) F k1 n+1 = F k 2 S k (n1)+ F k1 ( S k (n) F k+1 S k (n1) F k1 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gUcaRiaaigdacaaIPaGaeyOeI0IaamOraKGbaoaaBaaaleaajugWai aadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaam4uaKqbaoaaBaaaleaa jugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaaiMcacqGHsislca WGgbqcga4aa0baaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqaaKqz adGaamOBaiabgUcaRiaaigdaaaqcLbsacaaI9aGaamOraKGbaoaaDa aaleaajugWaiaadUgaaSqaaKqzadGaaGOmaaaajugibiaadofajyaG daWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikaiaad6gacqGHsi slcaaIXaGaaGykaiabgUcaRiaadAeajuaGdaWgaaWcbaqcLbmacaWG RbGaeyOeI0IaaGymaaWcbeaajugibiaaiIcacaWGtbqcga4aaSbaaS qaaKqzadGaam4AaaWcbeaajugibiaaiIcacaWGUbGaaGykaiabgkHi TiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbe aajugibiaadofajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGa aGikaiaad6gacqGHsislcaaIXaGaaGykaiabgkHiTiaadAeajyaGda qhaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbaqcLbmacaWGUbaa aKqzGeGaaGykaaaa@8C68@

S k (n+1) F k+1 S k (n)= F k 2 S k (n1)+ F k1 ( S k (n) F k+1 S k (n1)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gUcaRiaaigdacaaIPaGaeyOeI0IaamOraKGbaoaaBaaaleaajugWai aadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaam4uaKGbaoaaBaaaleaa jugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaaiMcacaaI9aGaam OraKGbaoaaDaaaleaajugWaiaadUgaaSqaaKqzadGaaGOmaaaajugi biaadofajyaGdaWgaaWcbaqcLbmacaWGRbaaleqaaKqzGeGaaGikai aad6gacqGHsislcaaIXaGaaGykaiabgUcaRiaadAeajyaGdaWgaaWc baqcLbmacaWGRbGaeyOeI0IaaGymaaWcbeaajugibiaaiIcacaWGtb qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaaiIcacaWGUbGa aGykaiabgkHiTiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaS IaaGymaaWcbeaajugibiaadofajuaGdaWgaaWcbaqcLbmacaWGRbaa leqaaKqzGeGaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaaiMcaaa a@78E0@

S k (n+1)=( F k+1 + F k1 ) S k (n)+( F k 2 F k1 F k+1 ) S k (n1). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiab gUcaRiaaigdacaaIPaGaaGypaiaaiIcacaWGgbqcga4aaSbaaSqaaK qzadGaam4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHRaWkcaWGgbqc ga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsaca aIPaGaeyyXICTaam4uaKqbaoaaBaaaleaajugWaiaadUgaaSqabaqc LbsacaaIOaGaamOBaiaaiMcacqGHRaWkcaaIOaGaamOraKGbaoaaDa aaleaajugWaiaadUgaaSqaaKqzadGaaGOmaaaajugibiabgkHiTiaa dAeajuaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0IaaGymaaWcbeaaju gibiabgwSixlaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaSIa aGymaaWcbeaajugibiaaiMcacqGHflY1caWGtbqcfa4aaSbaaSqaaK qzadGaam4AaaWcbeaajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaa iMcacaqGUaaaaa@78C1@

If we use the substitution n1=t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abgkHiTiaaigdacaaI9aGaamiDaaaa@3A75@ , the last equation above becomes

S k (t+2)=( F k+1 + F k1 ) S k (t+1)+( F k 2 F k1 F k+1 ) S k (t); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamiDaiab gUcaRiaaikdacaaIPaGaaGypaiaaiIcacaWGgbqcga4aaSbaaSqaaK qzadGaam4AaiabgUcaRiaaigdaaSqabaqcLbsacqGHRaWkcaWGgbqc ga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsaca aIPaGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaadUgaaSqabaqc LbsacaaIOaGaamiDaiabgUcaRiaaigdacaaIPaGaey4kaSIaaGikai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbaaleaajugWaiaaikdaaaqc LbsacqGHsislcaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgkHiTi aaigdaaSqabaqcLbsacqGHflY1caWGgbqcfa4aaSbaaSqaaKqzadGa am4AaiabgUcaRiaaigdaaSqabaqcLbsacaaIPaGaeyyXICTaam4uaK qbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamiDaiaa iMcacaqG7aaaaa@78D7@ (45)

Where t is a non negative integer. The Equation (45) is same as the Equation (6). Therefore, the Equation (6) is proved. Now, we prove Equations (7) and (8). The Equation (7) directly follows from the Equation (1). Obviously, from the Equation (3), it follows that

P k (0)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaaGimaiaa iMcacaaI9aGaaGimaaaa@3E02@ (46)

Therefore, the Equation (8) follows from Equations. (4), (7), and (46). We set n=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aai2dacaaIXaaaaa@388F@  in the Equation (4)

S k (1)= F k+1 S k (0)+ P k (0)+ F k1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaaGymaiaa iMcacaaI9aGaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWkca aIXaaaleqaaKqzGeGaeyyXICTaam4uaKGbaoaaBaaaleaajugWaiaa dUgaaSqabaqcLbsacaaIOaGaaGimaiaaiMcacqGHRaWkcaWGqbqcga 4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaaiIcacaaIWaGaaGyk aiabgUcaRiaadAeajyaGdaqhaaWcbaqcLbmacaWGRbGaeyOeI0IaaG ymaaWcbaqcLbmacaaIXaaaaaaa@5B47@
= F k+1 1+0+ F k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbeaa jugibiabgwSixlaaigdacqGHRaWkcaaIWaGaey4kaSIaamOraKGbao aaBaaaleaajugWaiaadUgacqGHsislcaaIXaaaleqaaaaa@4796@
= F k+1 + F k1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaey4kaSIaaGymaaWcbeaa jugibiabgUcaRiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGaeyOeI0 IaaGymaaWcbeaajugibiaab6caaaa@4435@

The last equation above proves the Equation (8). This proves the Corollary (1).

A proof of the identity (2)

Finally, we prove our main Identity (2). We use the Corollary (1) and the Binet formula for the Fibonacci numbers. Recall that the Binet formula states that

F n = 1 5 [( 1+ 5 2 ) n ( 1 5 2 ) n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraK GbaoaaBaaaleaajugWaiaad6gaaSqabaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGynaaWcbe aaaaqcLbsacqGHflY1caaIBbGaaGikaKqbaoaalaaakeaajugibiaa igdacqGHRaWkjuaGdaGcaaGcbaqcLbsacaaI1aaaleqaaaGcbaqcLb sacaaIYaaaaiaaiMcajuaGdaahaaWcbeqaaKqzadGaamOBaaaajugi biabgkHiTiaaiIcajuaGdaWcaaGcbaqcLbsacaaIXaGaeyOeI0scfa 4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqaaKqzGeGaaGOmaaaacaaI Paqcfa4aaWbaaSqabeaajugWaiaad6gaaaqcLbsacaaIDbaaaa@5AB0@ (47)

Further, we use facts that

( 1+ 5 2 ) k = F k+1 + F k1 + F k 5 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikaK qbaoaalaaakeaajugibiaaigdacqGHRaWkjuaGdaGcaaGcbaqcLbsa caaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbe qaaKqzadGaam4Aaaaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaWG gbqcga4aaSbaaSqaaKqzadGaam4AaiabgUcaRiaaigdaaSqabaqcLb sacqGHRaWkcaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaa igdaaSqabaqcLbsacqGHRaWkcaWGgbqcga4aaSbaaSqaaKqzadGaam 4AaaWcbeaajugibiabgwSixNqbaoaakaaakeaajugibiaaiwdaaSqa baaakeaajugibiaaikdaaaGaae4oaaaa@5B31@ (48)

( 1 5 2 ) k = F k+1 + F k1 F k 5 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikaK qbaoaalaaakeaajugibiaaigdacqGHsisljuaGdaGcaaGcbaqcLbsa caaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajuaGdaahaaWcbe qaaKqzGeGaam4AaaaacaaI9aqcfa4aaSaaaOqaaKqzGeGaamOraKGb aoaaBaaaleaajugWaiaadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaey 4kaSIaamOraKqbaoaaBaaaleaajugWaiaadUgacqGHsislcaaIXaaa leqaaKqzGeGaeyOeI0IaamOraKqbaoaaBaaaleaajugWaiaadUgaaS qabaqcLbsacqGHflY1juaGdaGcaaGcbaqcLbsacaaI1aaaleqaaaGc baqcLbsacaaIYaaaaiaab6caaaa@5A09@ (49)

Namely, Equations (48) and (49) are consequences of following relations:

( 1+ 5 2 ) k = F k ( 1+ 5 2 )+ F k1 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikaK qbaoaalaaakeaajugibiaaigdacqGHRaWkjuaGdaGcaaGcbaqcLbsa caaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajuaGdaahaaWcbe qaaKqzadGaam4Aaaaajugibiaai2dacaWGgbqcga4aaSbaaSqaaKqz adGaam4AaaWcbeaajugibiabgwSixlaaiIcajuaGdaWcaaGcbaqcLb sacaaIXaGaey4kaSscfa4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqa aKqzGeGaaGOmaaaacaaIPaGaey4kaSIaamOraKqbaoaaBaaaleaaju gWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaae4oaaaa@5774@

( 1 5 2 ) k = F k ( 1 5 2 )+ F k1 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikaK qbaoaalaaakeaajugibiaaigdacqGHsisljuaGdaGcaaGcbaqcLbsa caaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbe qaaKqzadGaam4Aaaaajugibiaai2dacaWGgbqcga4aaSbaaSqaaKqz adGaam4AaaWcbeaajugibiabgwSixlaaiIcajuaGdaWcaaGcbaqcLb sacaaIXaGaeyOeI0scfa4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqa aKqzGeGaaGOmaaaacaaIPaGaey4kaSIaamOraKqbaoaaBaaaleaaju gWaiaadUgacqGHsislcaaIXaaaleqaaKqzGeGaae4oaaaa@578B@

Which can be easily proved by the induction principle. Proof: The characteristic equation of the recurrence (6) is

λ 2 ( F k+1 + F k1 )λ+( F k1 F k+1 F k 2 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcga4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsislcaaIOaGa amOraKqbaoaaBaaaleaajugWaiaadUgacqGHRaWkcaaIXaaaleqaaK qzGeGaey4kaSIaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHsisl caaIXaaaleqaaKqzGeGaaGykaiabgwSixlabeU7aSjabgUcaRiaaiI cacaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqa baqcLbsacqGHflY1caWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgU caRiaaigdaaSqabaqcLbsacqGHsislcaWGgbqcga4aa0baaSqaaKqz adGaam4AaaWcbaqcLbmacaaIYaaaaKqzGeGaaGykaiaai2dacaaIWa GaaeOlaaaa@678F@ (50)

The discriminant of the Equation (50) is, as follows

D=( F k+1 + F k1 ) 2 4( F k1 F k+1 F k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamirai aai2dacaaIOaGaamOraKGbaoaaBaaaleaajugWaiaadUgacqGHRaWk caaIXaaaleqaaKqzGeGaey4kaSIaamOraKGbaoaaBaaaleaajugWai aadUgacqGHsislcaaIXaaaleqaaKqzGeGaaGykaKGbaoaaCaaaleqa baqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGinaiabgwSixlaaiIcaca WGgbqcfa4aaSbaaSqaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqc LbsacqGHflY1caWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgUcaRi aaigdaaSqabaqcLbsacqGHsislcaWGgbqcga4aa0baaSqaaKqzadGa am4AaaWcbaqcLbmacaaIYaaaaKqzGeGaaGykaaaa@6361@
=( F k+1 F k1 ) 2 +4 F k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aaiIcacaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgUcaRiaaigda aSqabaqcLbsacqGHsislcaWGgbqcga4aaSbaaSqaaKqzadGaam4Aai abgkHiTiaaigdaaSqabaqcLbsacaaIPaqcga4aaWbaaSqabeaajugW aiaaikdaaaqcLbsacqGHRaWkcaaI0aGaeyyXICTaamOraKGbaoaaDa aaleaajugWaiaadUgaaSqaaKqzadGaaGOmaaaaaaa@51AD@
= F k 2 +4 F k 2 (bythedefinitionoftheFibonaccinumbers) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadAeajyaGdaqhaaWcbaqcLbmacaWGRbaaleaajugWaiaaikdaaaqc LbsacqGHRaWkcaaI0aGaeyyXICTaamOraKGbaoaaDaaaleaajugWai aadUgaaSqaaKqzadGaaGOmaaaajugibiaaiIcacaqGIbGaaeyEaiaa bshacaqGObGaaeyzaiaabsgacaqGLbGaaeOzaiaabMgacaqGUbGaae yAaiaabshacaqGPbGaae4Baiaab6gacaqGVbGaaeOzaiaabshacaqG ObGaaeyzaiaabAeacaqGPbGaaeOyaiaab+gacaqGUbGaaeyyaiaabo gacaqGJbGaaeyAaiaab6gacaqG1bGaaeyBaiaabkgacaqGLbGaaeOC aiaabohacaaIPaaaaa@69C3@
=5 F k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aaiwdacqGHflY1caWGgbqcga4aa0baaSqaaKqzadGaam4AaaWcbaqc LbmacaaIYaaaaKqzGeGaaeOlaaaa@40C4@

From the last equation above, it follows that

D=5 F k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamirai aai2dacaaI1aGaeyyXICTaamOraKGbaoaaDaaaleaajugWaiaadUga aSqaaKqzadGaaGOmaaaajugibiaab6caaaa@418D@ (51)

By using the Equation (51), it follows that roots of the Equation (50) are

λ 1 = F k+1 + F k1 + F k 5 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dajuaGdaWc aaGcbaqcLbsacaWGgbqcga4aaSbaaSqaaKqzadGaam4AaiabgUcaRi aaigdaaSqabaqcLbsacqGHRaWkcaWGgbqcga4aaSbaaSqaaKqzadGa am4AaiabgkHiTiaaigdaaSqabaqcLbsacqGHRaWkcaWGgbqcga4aaS baaSqaaKqzadGaam4AaaWcbeaajugibiabgwSixNqbaoaakaaakeaa jugibiaaiwdaaSqabaaakeaajugibiaaikdaaaGaae4oaaaa@552B@ (52)

λ 2 = F k+1 + F k1 F k 5 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcga4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaai2dajuaGdaWc aaGcbaqcLbsacaWGgbqcfa4aaSbaaSqaaKqzadGaam4AaiabgUcaRi aaigdaaSqabaqcLbsacqGHRaWkcaWGgbqcga4aaSbaaSqaaKqzadGa am4AaiabgkHiTiaaigdaaSqabaqcLbsacqGHsislcaWGgbqcga4aaS baaSqaaKqzadGaam4AaaWcbeaajugibiabgwSixNqbaoaakaaakeaa jugibiaaiwdaaSqabaaakeaajugibiaaikdaaaGaaeOlaaaa@5529@ (53)

Equations (52) and (53) can be written, as follows:

λ 1 =( 1+ 5 2 ) k ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcga4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaai2dacaaIOaqc fa4aaSaaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaakaaakeaajugibi aaiwdaaSqabaaakeaajugibiaaikdaaaGaaGykaKGbaoaaCaaaleqa baqcLbmacaWGRbaaaKqzGeGaae4oaaaa@4789@ (54)

λ 2 =( 1 5 2 ) k ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcga4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaai2dacaaIOaqc fa4aaSaaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaakaaakeaajugibi aaiwdaaSqabaaakeaajugibiaaikdaaaGaaGykaKGbaoaaCaaaleqa baqcLbmacaWGRbaaaKqzGeGaae4oaaaa@4795@ (55)

By using Equations (48) and (49). The general solution of the Equation (6) is, as follows:

S k (n)= C 1 λ 1 n + C 2 λ 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aGaam4qaKGbaoaaBaaaleaajugWaiaaigdaaSqabaqcLb sacqGHflY1cqaH7oaBjyaGdaqhaaWcbaqcLbmacaaIXaaaleaajugW aiaad6gaaaqcLbsacqGHRaWkcaWGdbqcfa4aaSbaaSqaaKqzadGaaG OmaaWcbeaajugibiabgwSixlabeU7aSLGbaoaaDaaaleaajugWaiaa ikdaaSqaaKqzadGaamOBaaaaaaa@58A0@

= C 1 (( 1+ 5 2 ) k ) n + C 2 (( 1 5 2 ) k ) n (Eqns(54)and(55) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadoeajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyyXICTa aGikaiaaiIcajuaGdaWcaaGcbaqcLbsacaaIXaGaey4kaSscfa4aaO aaaOqaaKqzGeGaaGynaaWcbeaaaOqaaKqzGeGaaGOmaaaacaaIPaqc ga4aaWbaaSqabeaajugWaiaadUgaaaqcLbsacaaIPaqcga4aaWbaaS qabeaajugWaiaad6gaaaqcLbsacqGHRaWkcaWGdbqcfa4aaSbaaSqa aKqzadGaaGOmaaWcbeaajugibiabgwSixlaaiIcacaaIOaqcfa4aaS aaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaakaaakeaajugibiaaiwda aSqabaaakeaajugibiaaikdaaaGaaGykaKqbaoaaCaaaleqabaqcLb macaWGRbaaaKqzGeGaaGykaKqbaoaaCaaaleqabaqcLbmacaWGUbaa aKqzGeGaaGikaiaabweacaqGXbGaaeOBaiaabohacaqGOaGaaeynai aabsdacaqGPaGaaeyyaiaab6gacaqGKbGaaeikaiaabwdacaqG1aGa aGykaaaa@70A3@

= C 1 ( 1+ 5 2 ) kn + C 2 ( 1 5 2 ) kn . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypai aadoeajyaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyyXICTa aGikaKqbaoaalaaakeaajugibiaaigdacqGHRaWkjuaGdaGcaaGcba qcLbsacaaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajuaGdaah aaWcbeqaaKqzadGaam4Aaiaad6gaaaqcLbsacqGHRaWkcaWGdbqcga 4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabgwSixlaaiIcajuaG daWcaaGcbaqcLbsacaaIXaGaeyOeI0scfa4aaOaaaOqaaKqzGeGaaG ynaaWcbeaaaOqaaKqzGeGaaGOmaaaacaaIPaqcga4aaWbaaSqabeaa jugWaiaadUgacaWGUbaaaKqzGeGaaeOlaaaa@5CF5@ (56)

By Equations (7) and (8), from the Equation (56), we evaluate constants C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaigdaaSqabaaaaa@3991@  and C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaikdaaSqabaaaaa@3992@ . We get a system of equations, as follows:

C 1 + C 2 =1; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWGdbqc ga4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaai2dacaaIXaGaae 4oaaaa@4149@ (57)

C 1 ( 1+ 5 2 ) k + C 2 ( 1 5 2 ) k = F k+1 + F k1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHflY1caaIOaqc fa4aaSaaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaakaaakeaajugibi aaiwdaaSqabaaakeaajugibiaaikdaaaGaaGykaKGbaoaaCaaaleqa baqcLbmacaWGRbaaaKqzGeGaey4kaSIaam4qaKGbaoaaBaaaleaaju gWaiaaikdaaSqabaqcLbsacqGHflY1caaIOaqcfa4aaSaaaOqaaKqz GeGaaGymaiabgkHiTKqbaoaakaaakeaajugibiaaiwdaaSqabaaake aajugibiaaikdaaaGaaGykaKGbaoaaCaaaleqabaqcLbmacaWGRbaa aKqzGeGaaGypaiaadAeajuaGdaWgaaWcbaqcLbmacaWGRbGaey4kaS IaaGymaaWcbeaajugibiabgUcaRiaadAeajyaGdaWgaaWcbaqcLbma caWGRbGaeyOeI0IaaGymaaWcbeaajugibiaab6caaaa@67B2@ (58)

After short calculation, from Equations (57) and (58), we obtain that

C 1 = 1 5 F k ( 1+ 5 2 ) k ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGynaaWcbe aajugibiabgwSixlaadAeajyaGdaWgaaWcbaqcLbmacaWGRbaaleqa aaaajugibiabgwSixlaaiIcajuaGdaWcaaGcbaqcLbsacaaIXaGaey 4kaSscfa4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqaaKqzGeGaaGOm aaaacaaIPaqcga4aaWbaaSqabeaajugWaiaadUgaaaqcLbsacaqG7a aaaa@53FB@ (59)

C 2 = 1 5 F k ( 1 5 2 ) k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK GbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaeyOeI0IaaGymaaGcbaqcfa4aaOaaaOqaaKqzGeGaaG ynaaWcbeaajugibiabgwSixlaadAeajyaGdaWgaaWcbaqcLbmacaWG RbaaleqaaaaajugibiabgwSixlaaiIcajuaGdaWcaaGcbaqcLbsaca aIXaGaeyOeI0scfa4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqaaKqz GeGaaGOmaaaacaaIPaqcga4aaWbaaSqabeaajugWaiaadUgaaaqcLb sacaqGUaaaaa@54E7@ (60)

By using Equations (59) and (60), the Equation (56) becomes gradually

S k (n)= 1 5 F k [( 1+ 5 2 ) k ( 1+ 5 2 ) kn ( 1 5 2 ) k ( 1 5 2 ) kn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK GbaoaaBaaaleaajugWaiaadUgaaSqabaqcLbsacaaIOaGaamOBaiaa iMcacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaO qaaKqzGeGaaGynaaWcbeaajugibiabgwSixlaadAeajuaGdaWgaaWc baqcLbmacaWGRbaaleqaaaaajugibiabgwSixlaaiUfacaaIOaqcfa 4aaSaaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaakaaakeaajugibiaa iwdaaSqabaaakeaajugibiaaikdaaaGaaGykaKqbaoaaCaaaleqaba qcLbmacaWGRbaaaKqzGeGaeyyXICTaaGikaKqbaoaalaaakeaajugi biaaigdacqGHRaWkjuaGdaGcaaGcbaqcLbsacaaI1aaaleqaaaGcba qcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbeqaaKqzadGaam4Aaiaa d6gaaaqcLbsacqGHsislcaaIOaqcfa4aaSaaaOqaaKqzGeGaaGymai abgkHiTKqbaoaakaaakeaajugibiaaiwdaaSqabaaakeaajugibiaa ikdaaaGaaGykaKGbaoaaCaaaleqabaqcLbmacaWGRbaaaKqzGeGaey yXICTaaGikaKqbaoaalaaakeaajugibiaaigdacqGHsisljuaGdaGc aaGcbaqcLbsacaaI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajy aGdaahaaWcbeqaaKqzadGaam4Aaiaad6gaaaqcLbsacaaIDbaaaa@8009@

= 1 5 F k [( 1+ 5 2 ) kn+k ( 1 5 2 ) kn+k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaalaaakeaajugibiaaigdaaOqaaKqbaoaakaaakeaajugibiaa iwdaaSqabaqcLbsacqGHflY1caWGgbqcga4aaSbaaSqaaKqzadGaam 4AaaWcbeaaaaqcLbsacqGHflY1caaIBbGaaGikaKqbaoaalaaakeaa jugibiaaigdacqGHRaWkjuaGdaGcaaGcbaqcLbsacaaI1aaaleqaaa GcbaqcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbeqaaKqzadGaam4A aiaad6gacqGHRaWkcaWGRbaaaKqzGeGaeyOeI0IaaGikaKqbaoaala aakeaajugibiaaigdacqGHsisljuaGdaGcaaGcbaqcLbsacaaI1aaa leqaaaGcbaqcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbeqaaKqzad Gaam4Aaiaad6gacqGHRaWkcaWGRbaaaKqzGeGaaGyxaaaa@627D@

= 1 F k ( 1 5 [( 1+ 5 2 ) k(n+1) ( 1 5 2 ) k(n+1) ]) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOraKGbaoaaBaaa leaajugWaiaadUgaaSqabaaaaKqzGeGaeyyXICTaaGikaKqbaoaala aakeaajugibiaaigdaaOqaaKqbaoaakaaakeaajugibiaaiwdaaSqa baaaaKqzGeGaeyyXICTaaG4waiaaiIcajuaGdaWcaaGcbaqcLbsaca aIXaGaey4kaSscfa4aaOaaaOqaaKqzGeGaaGynaaWcbeaaaOqaaKqz GeGaaGOmaaaacaaIPaqcga4aaWbaaSqabeaajugWaiaadUgacaaIOa GaamOBaiabgUcaRiaaigdacaaIPaaaaKqzGeGaeyOeI0IaaGikaKqb aoaalaaakeaajugibiaaigdacqGHsisljuaGdaGcaaGcbaqcLbsaca aI1aaaleqaaaGcbaqcLbsacaaIYaaaaiaaiMcajyaGdaahaaWcbeqa aKqzadGaam4AaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcaaaqcLb sacaaIDbGaaGykaaaa@68CD@

= 1 F k F k(n+1) (theEquation (47)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOraKqbaoaaBaaa leaajugWaiaadUgaaSqabaaaaKqzGeGaeyyXICTaamOraKGbaoaaBa aaleaajugWaiaadUgacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaaa leqaaKqzGeGaaGikaiaabshacaqGObGaaeyzaiaabweacaqGXbGaae yDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabIcacaqG 0aGaae4naiaabMcacaaIPaaaaa@571E@

= F k(n+1) F k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGypaK qbaoaalaaakeaajugibiaadAeajyaGdaWgaaWcbaqcLbmacaWGRbGa aGikaiaad6gacqGHRaWkcaaIXaGaaGykaaWcbeaaaOqaaKqzGeGaam OraKGbaoaaBaaaleaajugWaiaadUgaaSqabaaaaKqzGeGaaeOlaaaa @4544@

The last equation above proves the Equation (2). This completes the proof of the Equation (2).

Acknowledgements

I want to thank to my professor Duško Jojić. I am also grateful to Stamatina Theofilou.

Conflict of interest

The author declares no conflict of interest.

References

Creative Commons Attribution License

©2017 Mikic. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.