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Introduction
We consider the following sum with binomial coefficients: 
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Where n is a non negative integer and k is a natural number greater 
than 1. We call this sum ( )kS n  a main sum. Let us nF  denote the n 

-th Fibonacci number. Namely, 0 = 0F , 1 = 1F , and 1 2=n n nF F F− −+

; if 2n ≥ . Our main goal is to prove the following identity: 
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The Identity (2) can be found1 as the Identity 142; and it arises as 
a generalization of the Identity 5 (when = 2k ) from the same book. 
The same variant of the Identity (2), also, can be found in paper2 as the 
Identity 3 (with small error). The Identity (2) is interesting, mainly, 
because of its connection with the Fibonacci numbers.

There are no many proofs of the Identity (2). It is known that 
exists1 a purely combinatorial proof of the Identity (2). We give an 
elementary proof of the Identity (2) by using system of auxiliary sums 
and the induction principle.

Method of auxiliary sums is a new method in proving binomial 
coefficient identities. This method is introduced by the mathematician 
Jovan Mikic in papers.3,4 In this paper, we show how the same method 
works on harder example; such is the Identity (2). In that sense, this 
proof of the Identity (2) is interesting, particularly, because of a choice 
of auxiliary sums. 

First, we introduce the auxiliary sum ( )kP n , as follows: 
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We establish our main theorem:

Theorem 1

Let n be a natural number; and let k be a natural number greater 
than 1. Then the following relations hold between main and auxiliary 
sum: 

1 1( ) = ( 1) ( 1) n
k k k k k kS n F S n F P n F+ −⋅ − + ⋅ − +                            

(4)

1( ) = ( 1) ( 1)k k k k kP n F S n F P n−⋅ − + ⋅ −
                                    

(5)

From our main theorem, we derive a second order linear recurrence 
between main sums only. We have: 

Corollary 1

Let n be a non negative integer; and let k be a natural number 
greater than 1. Then the following relation holds: 

2
1 1 1 1( 2) = ( ) ( 1) ( ) ( )k k k k k k k kS n F F S n F F F S n+ − − ++ + ⋅ + + − ⋅ ⋅  

                                                                                                     
(6)

With initial conditions: 

(0) = 1kS
                                                                                       

(7)

1 1(1) =k k kS F F+ −+
                                                                      

(8)

Recall that the Cassini identity states that  
2 1

1 1 = ( 1)k
k k kF F F −

− +− ⋅ − . By the Cassini identity, the Relation (6) 

simplifies to
1

1 1( 2) = ( ) ( 1) ( 1) ( )k
k k k k kS n F F S n S n−

+ −+ + ⋅ + + − ⋅               
(9)

More definitions
In order to prove main theorem (1), beside the auxiliary sum ( )kP n

, we need to define a whole system of auxiliary sums.

Definition 1

Let n be a natural number; and k be a natural number greater than1. 
Let l be a natural number such that 2l k≤ + . We define auxiliary 
sums , ( )k lS n , as follows:
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                                                                                 1 < l k≤  (11)
 

, 1 ( ) = ( 1)k k kS n S n+ −
                                                                 

(12)

, 2 ( ) = ( 1)k k kS n P n+ −
                                                                

(13)

Then we define the following sum: 

Definition 2

Let n be a non negative integer; and k be a natural integer greater 
than 1. We define the sum , =1

( )k i nS n , as follows: 
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In other words, if we set 1 =i n  in the main sum ( )kS n , we get the 

sum , =1
( )k i nS n . In order to calculate the sum , =1

( )k i nS n , we need to 

define one more sum:

Definition 3

Let n be a non negative integer; and k be a natural integer greater 
than 3. Let j be a non negative integer such that j n≤ . We define the 
sum , ( )k j n∆ , as follows:
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There is a connection between these two sums from the Definition 
(2) and Definition (3). Namely, when 4k ≥ , the following equation 
holds

, = ,01
( ) = ( )k i n kS n n∆

                                                              
(16)

The Equation (16) is true because of the fact that 1 =i n  implies 
that both i2 and ik must be equal to zero.

Main lemmas
Before we prove main theorem (1), we need to prove several 

lemmas. Here, we give a list of all lemmas which are important for us.

Lemma 1

Let integers n, k, and l be from the Definition (1); with condition
l k≤ . Then the following equation holds

, , 1 , 2( ) = ( ) ( )k l k l k lS n S n S n+ ++
                                                 

(17)

Corollary 2

Let integers n, k, and l be from the Defination (1); with condition
l k≤ . Let m be a non negative integer such that 1m k l≤ + − . Then 
following equations hold

, 1 , , 1( ) = ( ) ( )k l m k l m m k l mS n F S n F S n+ + + +⋅ + ⋅
                           

(18)

,1 1( ) = ( 1) ( 1)k k k k kS n F S n F P n+ ⋅ − + ⋅ −
                              

(19)

,2 1( ) = ( 1) ( 1)k k k k kS n F S n F P n−⋅ − + ⋅ −
                              

(20)

Lemma 2

Let n be a non negative integer; and k be a natural integer greater 
than 1. The following relation holds

,2( ) = ( )k kP n S n
                                                                          

(21)

Lemma 3

Let n, k, and j be from the Defination (3). Then the following 
equation holds:

, 2 1( ) = j n j
k j k kn F F −

− −∆ ⋅
                                                              

(22)

Lemma 4 

Let n and k be from the Defination (2). Then the following equation 
holds:

, = 11
( ) = n

k i n kS n F −                                                                         
(23)

A proof of the lemma (1)
Our proof of the Equation (17) relies on the well-known Pascal’s 

formula for binomial coefficients: 

1 1
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+
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(24)

Where n is a natural number and k may be an arbitrary integer.

Due to the Definition (1), our proof consists of four parts. All 
proofs of these four parts are very similar. We prove three cases and 
give a sketch of a proof for the fourth case.

Proof

The first case: = 1l . Since 1 1i n≤ − , we can apply the Pascal 
formula on the binomial coefficient
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We have gradually: 
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Note that the first binomial coefficient in the Equation (25) perishes 
if 2 =i n . Therefore, we have
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(27)

The Equation (26) becomes gradually:
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If = 2k , then the above sum in the Equation (28) is ( 1)kS n −  
according to the Equation (1). Due to the Equation (12) from the 

Defination (1), we have that , 1 ,3( 1) = ( ) = ( )k k k kS n S n S n+− .

If > 2k , then the above sum in the Equation (28) is, as follows:
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 ,3= ( )kS n According to the Defination (1) and the Equation 

(11). In both cases, the sum in the Equation (28) is equal to ,3 ( )kS n
. Now, from the Equation (25), (26), (27), and (28), it follows that 

,1 ,2 ,3( ) = ( ) ( )k k kS n S n S n+ . This proves the first case.

The second case: =l k . Since 1ki n≤ − , we can apply the Pascal 

formula on the binomial coefficient
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= ( 1) ( 1)k kS n P n− + − (29) According to the Equation (1) and 
the Equation (3).

According to the Equation (12) and the Equation 
(13) from the Defination (1), the Equation (29) becomes

, , 1 , 2( ) = ( ) ( )k k k k k kS n S n S n+ ++ . This proves the second case.

The third case: = 1l k − . Since 1 1ki n− ≤ − , we can apply the 

Pascal formula on the binomial coefficient 1k
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In the last equation above, we used substitution = 1k kt i − . 
Therefore, from the last equation above, we obtain that

, 1 ,( ) = ( ) ( 1)k k k k kS n S n S n− + −

, , 1= ( ) ( );k k k kS n S n++ (30) (by the Equation (12)). The Equation 

(30) proves the third case.

The fourth case:1 < < 1l k − . This case exists only if > 3k . We 
give a short sketch of the proof. The proof of this case is very similar 
to the proof of the first case. We use the Pascal formula on the binomial 

coefficient 
1

l

l

n i
i +

− 
 
 

and we get
1 1 1

1 1
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l l l
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. Then the sum (, )k lS n  splits on two sums. It is easy to see that the 

first sum is , ( )k lS n .

For the second sum, we need to introduce the substitution
1 1= 1l lt i+ + − . Then the second sum becomes , 2 ( )k lS n+ . Therefore, 

it follows that , , 1 , 2( ) = ( ) ( )k l k l k lS n S n S n+ ++ . This proves the fourth 
case.

 A proof of the corollary (2)
We need to prove Equations. (18), (19), and (20). All these 

equations are direct consequences of the Equation (17). 

A proof of the equation (18)

Proof: We assume that integers n, k, and l are fixed. We give a proof 
by using the induction principle on m. If = 0m , then the Equation 
(18) is satisfied, because 0 = 0F . Thus, we confirm the base of the 
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induction. Let us suppose that the Equation (18) holds for some m 
such that 0 < 1m k l≤ + − . In other words, our induction hypothesis 

is , 1 , , 1( ) = ( ) ( )k l m k l m m k l mS n F S n F S n+ + + +⋅ + ⋅ . Then l m k+ ≤ . By 

the Lemma (1) and the Equation (17), we know that

, , 1 , 2( ) = ( ) ( )k l m k l m k l mS n S n S n+ + + + ++
                                          

(31)

From our induction hypothesis and the Equation (31), we have that

, 1 , , 1( ) = ( ) ( )k l m k l m m k l mS n F S n F S n+ + + +⋅ + ⋅

1 , 1 , 2 , 1= ( ( ) ( )) ( )m k l m k l m m k l mF S n S n F S n+ + + + + + +⋅ + + ⋅

1 , 1 1 , 2= ( ) ( ) ( )m m k l m m k l mF F S n F S n+ + + + + ++ ⋅ + ⋅

2 , 1 1 , 2= ( ) ( ).m k l m m k l mF S n F S n+ + + + + +⋅ + ⋅

From the last equation above, it follows that Equation (18) is 
satisfied for 1m + ; where 0 < 1 1m k l+ ≤ + − . Therefore, the step 
of induction is proved. By the induction principle, the proof of the 
Equation (18) is completed. 

A proof of the equation (19)
Proof: The proof is straightforward. Just set = 1l  and =m k  in 

the Equation (18). This is allowed, because 1 1m k≤ + − , so m k≤
. From the Equation (18), we get

,1 1 , 1 , 2( ) = ( ) ( )k k k k k k kS n F S n F S n+ + +⋅ + ⋅

1= ( 1) ( 1)k k k kF S n F P n+ ⋅ − + ⋅ −
                                           

(32)

According to the Equations (12) and (13) from the Defination (1). 
The Equation (32) is our desired the Equation (19). This proves the 
Equation (19)

A proof of the equation (20)

Proof: Again, this proof is straightforward. Just set = 2l  and 
= 1m k −  in the Equation (2). Since, 1m k l≤ + − , this is allowed. 

From the Equation (18), we get

,2 , 1 1 , 2( ) = ( ) ( )k k k k k k kS n F S n F S n+ − +⋅ + ⋅

1= ( 1) ( 1)k k k kF S n F P n−⋅ − + ⋅ −
                                           

(33)

According to the Equations (12) and (13) from the Defination (1). 
The Equation (33) is our desired the Equation (20). This proves the 
Equation (20) and completes the proof of the Corollary (2). 

A proof of the lemma (2)

Proof

This proof immediately follows from the Equation (3) and the 
Defination (1). We need to introduce the substitution 1 1= 1t i − . We 
have:
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Now, we introduce the substitution 1 1= 1t i − . Then the last 
equation above becomes
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,2= ( )kS n
                                                                               

(34)

According to the Equation (11) from the Defination (1). The 
Equation (34) completes the proof of the Lemma (2).

A proof of the lemma (3)

Proof

We give a proof of the Lemma (3) by using the induction principle 
on k. We start with = 4k . By the Defination (3), we have

4,
33

( ) =
=0j

n n j
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= 2 (bythebinomialtheorem)n j−

2 3= j n jF F −⋅

(4 2) (4 1)= .j n jF F −
− −⋅

The last equation above proves the base of induction. Let us 
suppose that the Equation (22) holds for some 4k ≥ . This is our 
induction hypothesis. Let us consider 1,k j+∆ .

13
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(35)

By the induction hypothesis, it follows that

3 3
, 2 13

( ) =
i n i

k i k kn F F
−
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(36)

By the Equation (36), the Equation (35) becomes

3 3
1, 2 1
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3 3
1 2 1
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=0

i n j ij
k k k

n j n j
F F F
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1 2 1= ( ) (bythebinomialtheorem)j n j
k k kF F F −
− − −⋅ +

1= .j n j
k kF F −
− ⋅                                                                              

(37)

The Equation (37) proves the step of the induction principle. This 
completes the proof of the Lemma (3). 

A proof of the lemma (4)
It is easily verified, by direct calculation, that

2, =1
( ) = 1;i nS n

3, =1
( ) = 1.i nS n

So, we can conclude, from the above equations, that

2, = 11
( ) = ;n

i nS n F
                                                                       

(38)

3, = 21
( ) = .n

i nS n F
                                                                         

(39)

Therefore, the Equation (22) is true, when = 2k  and = 3k .

Now, let us suppose that 4k ≥ . According to the Equations (16) 
and (22), we have that

, = ,01
( ) = ( )(bytheEquation (16))k i n kS n n∆

0 0
2 1= (bytheEquation (16))n

k kF F −
− −⋅

1= .n
kF −                                                                                        

(40)

The Equations (38), (39), and (40) prove the Equation (23). This 
completes the proof of the Lemma (4).

A proof of the theorem (1)

Proof

Let n be a natural number. First, we prove the Equation (4). Due 
to the Equation (10) from the Defination (1) and the Defination (3), 
we know that:

,1 , =1
( ) = ( ) ( ).k k k i nS n S n S n+

 
                                              (41)

By Equations (19) and (23), the Equation (41) becomes  

1 1( ) = ( ( 1) ( 1)) n
k k k k k kS n F S n F P n F+ −⋅ − + ⋅ − + . The last equation 

above proves the Equation (4). Now, we prove the Equation (5). The 
proof of the Equation (5) immediately follows from the Equations 
(20) and (21).

( ) = ( )(bytheEquation (21))k kP n S n

1= ( 1) ( 1).(bytheEquation (22))k k k kF S n F P n−⋅ − + ⋅ −

The last equation above proves the Equation (5). This completes 
the proof of the Theorem (1). 

A proof of the corollary (1)
Proof

The Corollary (1) directly follows from the Theorem (1) and 
from its Equations (4) and (5). Let us suppose that n is a natural 
number. First, we prove the Equation (6). We express sums ( )kP n  
and ( 1)kP n −  by main sums with help of the Equation (4). Then we 

use the Equation (5), in order to get relation between main sums only. 
First, from the Equation (4), we obtain that:

1 1( ) ( 1)
( 1) = .

n
k k k k

k

S n F S n F
P n

Fk

+ −− ⋅ − −
−

                          

(42)

If we use the substitution 1 =n t− , the Equation (42) becomes
1

1 1( 1) ( )
( ) = ;

t
k k k k

k
k

S t F S t F
P t

F

+
+ −+ − ⋅ −

                                    

(43)

Where t is a non negative integer. Therefore, when n is a natural 
number, the Equation (43) implies that

1
1 1( 1) ( )

( ) = .
n

k k k k
k

k

S n F S n F
P n

F

+
+ −+ − ⋅ −

                                 

(44)

Now, we use the Equation (5). By Equations (42) and (44), the 
Equation (5) becomes gradually:

If we use the substitution 1 =n t− , the last equation above 
becomes

2
1 1 1 1( 2) = ( ) ( 1) ( ) ( );k k k k k k k kS t F F S t F F F S t+ − − ++ + ⋅ + + − ⋅ ⋅   

                                                                                                      
(45)

Where t is a non negative integer. The Equation (45) is same as the 
Equation (6). Therefore, the Equation (6) is proved. Now, we prove 
Equations (7) and (8). The Equation (7) directly follows from the 
Equation (1). Obviously, from the Equation (3), it follows that 

(0) = 0kP (46)

Therefore, the Equation (8) follows from Equations. (4), (7), and 
(46). We set = 1n  in the Equation (4)

1
1 1(1) = (0) (0)k k k k kS F S P F+ −⋅ + +

1 1= 1 0k kF F+ −⋅ + +

1 1= .k kF F+ −+

The last equation above proves the Equation (8). This proves the 
Corollary (1).

1
1 1 1 1

1

( 1) ( ) ( ) ( 1)
= ( 1)

n n
k k k k k k k k

k k k
k k

S n F S n F S n F S n F
F S n F

F F

+
+ − + −

−

+ − ⋅ − − ⋅ − −
⋅ − + ⋅

1 2
1 1 1 1 1( 1) ( ) = ( 1) ( ( ) ( 1) )n n

k k k k k k k k k k kS n F S n F F S n F S n F S n F+
+ − − + −+ − − − + − − −

2
1 1 1( 1) ( ) = ( 1) ( ( ) ( 1))k k k k k k k k kS n F S n F S n F S n F S n+ − ++ − − + − −

2
1 1 1 1( 1) = ( ) ( ) ( ) ( 1).k k k k k k k kS n F F S n F F F S n+ − − ++ + ⋅ + − ⋅ ⋅ −
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A proof of the identity (2)
Finally, we prove our main Identity (2). We use the Corollary (1) 

and the Binet formula for the Fibonacci numbers. Recall that the Binet 
formula states that

1 1 5 1 5
= [( ) ( ) ]

2 25

n n
nF

+ −
⋅ −

                                            
(47)

Further, we use facts that 

1 1 51 5
( ) = ;

2 2
k k k kF F F+ −+ + ⋅+

                                         
(48)

1 1 51 5
( ) = .

2 2
k k kF F Fk + −+ − ⋅−

                                            
(49)

Namely, Equations (48) and (49) are consequences of following 
relations: 

1

1 5 1 5
( ) = ( ) ;

2 2
k

k kF F −

+ +
⋅ +

1

1 5 1 5
( ) = ( ) ;

2 2
k

k kF F −

− −
⋅ +

Which can be easily proved by the induction principle. Proof: The 
characteristic equation of the recurrence (6) is 

2 2
1 1 1 1( ) ( ) = 0.k k k k kF F F F Fλ λ+ − − +− + ⋅ + ⋅ −                           

(50)

The discriminant of the Equation (50) is, as follows 
2 2

1 1 1 1= ( ) 4 ( )k k k k kD F F F F F+ − − ++ − ⋅ ⋅ −

2 2
1 1= ( ) 4k k kF F F+ −− + ⋅

2 2= 4 (bythedefinitionoftheFibonaccinumbers)k kF F+ ⋅

2= 5 .kF⋅

From the last equation above, it follows that 
2= 5 .kD F⋅                                                                                 

(51)

By using the Equation (51), it follows that roots of the Equation 
(50) are

1 1
1

5
= ;

2
k k kF F F

λ + −+ + ⋅

                                                      
(52)

1 1
2

5
= .

2
k k kF F F

λ + −+ − ⋅

                                                     
(53)

Equations (52) and (53) can be written, as follows:

1

1 5
= ( ) ;

2
kλ

+

                                                                       
(54)

2

1 5
= ( ) ;

2
kλ

−

                                                                           
(55)

By using Equations (48) and (49). The general solution of the 
Equation (6) is, as follows:

1 1 2 2( ) = n n
kS n C Cλ λ⋅ + ⋅

1 2

1 5 1 5
= (( ) ) (( ) ) (Eqns(54)and(55)

2 2
k n k nC C

+ −
⋅ + ⋅

1 2

1 5 1 5
= ( ) ( ) .

2 2
kn knC C

+ −
⋅ + ⋅

                                         
(56)

By Equations (7) and (8), from the Equation (56), we evaluate 
constants 1C  and 2C . We get a system of equations, as follows:

1 2 = 1;C C+
                                                                               

(57)

1 2 1 1

1 5 1 5
( ) ( ) = .

2 2
k k

k kC C F F+ −

+ −
⋅ + ⋅ +

                           
(58)

After short calculation, from Equations (57) and (58), we obtain 
that 

1

1 1 5
= ( ) ;

25

k

k

C
F

+
⋅

⋅                                                               

(59)

2

1 1 5
= ( ) .

25

k

k

C
F

− −
⋅

⋅                                                           

(60)

By using Equations (59) and (60), the Equation (56) becomes 
gradually

1 1 5 1 5 1 5 1 5
( ) = [( ) ( ) ( ) ( ) ]

2 2 2 25

k kn k kn
k

k

S n
F

+ + − −
⋅ ⋅ − ⋅

⋅

1 1 5 1 5
= [( ) ( ) ]

2 25

kn k kn k

kF
+ ++ −

⋅ −
⋅

( 1) ( 1)1 1 1 5 1 5
= ( [( ) ( ) ])

2 25

k n k n

kF
+ ++ −

⋅ ⋅ −

( 1)

1
= (theEquation (47))k n

k

F
F

+⋅

( 1)= .k n

k

F

F
+

The last equation above proves the Equation (2). This completes 
the proof of the Equation (2).
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