Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Research Article Volume 4 Issue 3

Rayleigh waves in thermo elastic medium with double porosity

Rajneesh Kumar,1 Richa Vohra,2 Abo Dahab SM3,4

1Department of Mathematics, Kurukshetra University, India
2Department of Mathematics & Statistics, Himachal Pradesh University, India
3Department of Mathematics, Faculty of Science, SVU, Qena, Egypt
4Department of Mathematics, Faculty of Science, Taif University, Saudi Arabia

Correspondence: Richa Vohra, Department of Mathematics & Statistics, Himachal Pradesh University, Shimla, India

Received: March 25, 2018 | Published: June 15, 2018

Citation: Kumar R, Vohra R, Abo–Dahab SM. Rayleigh waves in thermo elastic medium with double porosity. MOJ Civil Eng. 2018;4(3):143-148. DOI: 10.15406/mojce.2018.04.00112

Download PDF

Abstract

The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous thermoelastic half–space with double porosity whose surface is subjected to stress–free, thermally insulated/isothermal boundary conditions. The compact secular equations for thermoelastic solid half–space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of determinant of Rayleigh wave secular equation, Rayleigh wave velocity and attenuation coefficient have been presented graphically for different values of phase velocity.

Keywords:rayleigh waves, double porosity, thermoelastic, secular equation

Introduction

Porous media theories play an important role in many branches of engineering including material science, the petroleum industry, chemical engineering, biomechanics and other such fields of engineering. Biot1 proposed a general theory of three–dimensional deformation of fluid saturated porous salts. Biot1 theory is based on the assumption of compressible constituents and till recently, some of his results have been taken as standard references and basis for subsequent analysis in acoustic, geophysics and other such fields. One important generalization of Biot’s1 theory of poroelasticity that has been studied extensively started with the works by Barenblatt et al.,2 where the double porosity model was first proposed to express the fluid flow in hydrocarbon reservoirs and aquifers. The double porosity model represents a new possibility for the study of important problems concerning the civil engineering. It is well–known that, under super– saturation conditions due to water of other fluid effects, the so called neutral pressures generate unbearable stress states on the solid matrix and on the fracture faces, with severe (sometimes disastrous) instability effects like landslides, rock fall or soil fluidization (typical phenomenon connected with propagation of seismic waves). In such a context it seems possible, acting suitably on the boundary pressure state, to regulate the internal pressures in order to deactivate the noxious effects related to neutral pressures; finally, a further but connected positive effect could be lightening of the solid matrix/fluid system.

Wilson and Aifanits3 presented the theory of consolidation with the double porosity. Khaled et al.,4 employed a finite element method to consider the numerical solutions of the differential equation of the theory of consolidation with double porosity developed by Aifantis.3 Wilson et al.,5 discussed the propagation of acoustics waves in a fluid saturated porous medium. Beskos et al.,6 presented the theory of consolidation with double porosity–II and obtained the analytical solutions to two boundary value problems. Aifantis7–10 introduced a multi–porous system and studied the mechanics of diffusion in solids. Khalili et al.,11 presented a fully coupled constitutive model for thermo–hydro –mechanical analysis in elastic media with double porosity structure. Straughan12 studied the stability and uniqueness in double porous elastic media. Svanadze13–17 investigated some problems on elastic solids, viscoelastic solids and thermoelastic solids with double porosity. Rayleigh waves are always generated when a free surface exists in a continuous body. Rayleigh firstly introduced them as solution of the free vibration problem for an elastic half–space (on waves propagated along the plane surface of an elastic solid). Rayleigh wave play an important role in the study of earthquakes, seismology, geophysics and geodynamics. During earthquake, Rayleigh waves play more drastic role than other seismic waves because these waves are responsible for destruction of buildings, plants and loss of human lives etc. Geophysical and thermal problems consist of the study of propagation of progressive elastic and thermoelastic waves and hence the effect of voids on the surface waves propagating in the thermoelastic media has got its due importance where the situation so demands. The cooling and heating of the medium also results in the expansion and contraction of the voids along with the core material which contributes towards thermal stress and vibration developments in solids. In coating or casting applications, the voids that are not detected and removed, can result in defects that compromise the adhesion, electric properties, surface finish and durability of the product.

Rayleigh L,18 investigated the propagation of waves along the plane surface of an elastic solid. Lockett19 studied the effect of thermal properties on Rayleigh wave’s velocity. Propagation of Rayleigh waves along with isothermal and insulated boundaries discussed by Chadwick et al.,20 Kumar et al.,21,22 presented the problem of Rayleigh waves in an isotropic generalized thermoelastic with diffusive half–space medium. Sharma et al.,23 presented the problem of Rayleigh waves in rotating thermoelastic with voids. Kumar et al.24 discussed the problem of Rayleigh waves in isotropic micro stretch thermoelastic diffusion solid half–space .Kumar and Gupta25 discussed the problem of Rayleigh waves in generalized thermoelastic medium with mass diffusion. Abd–Alla et al.,26–33 investigated the propagation of Rayleigh waves in different theories. Singh et al.34 examined the propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magneto–thermoelastic half space. Kumar et al.,35 studied the propagation of Rayleigh waves in generalized thermoelastic medium with mass diffusion. Biswas et al.,36 investigated the Rayleigh surface wave propagation in orthotropic thermoelastic solids under three–phase lag model. Singh et al.,37 examined the propagation of Rayleigh wave in two–temperature dual–phase–lag thermo elasticity. Biswas et al.,38 studied the effect of phase–lags on Rayleigh wave propagation in initially stresses magneto–thermoelastic orthotropic medium. Hussien et al.,39 investigated the effect of rotation on Rayleigh waves in a fiber–reinforced solid anisotropic magneto–thermo–viscoelastic media. In the present paper, we investigate the propagation of Rayleigh waves in homogeneous isotropic elastic material with double porosity structure .Secular equations are derived mathematically for the boundary conditions. The values of determinant of Rayleigh wave secular equation, Rayleigh wave velocity and attenuation coefficient with respect to wave number are computed numerically and depicted graphically.

Basic equations

Following Iesan et al.,40 the constitutive relations and field equations for homogeneous elastic material with double porosity structure without body forces, extrinsic equilibrated body forces and without heat sources can be written as:

Constitutive Relations

  t ij =λ e rr δ ij +2μ e ij +bδ6φ+d δ ij ψβ δ ij T,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bWcpaWaaSbaaKqaGfaajugWa8qacaWGPbGaamOAaaqc ba2daeqaaKqzGeWdbiabg2da9iabeU7aSjaadwgajuaGpaWaaSbaaK qaGfaajugWa8qacaWGYbGaamOCaaqcba2daeqaaKqzGeWdbiabes7a KTWdamaaBaaajeaybaqcLbmapeGaamyAaiaadQgaaKqaG9aabeaaju gib8qacqGHRaWkcaaIYaGaeqiVd0MaamyzaSWdamaaBaaajeaybaqc LbmapeGaamyAaiaadQgaaKqaG9aabeaajugib8qacqGHRaWkcaWGIb GaeqiTdqMaaGOnaiabeA8aQjabgUcaRiaadsgacqaH0oazjuaGpaWa aSbaaKqaGfaajugWa8qacaWGPbGaamOAaaqcba2daeqaaKqzGeWdbi abeI8a5jabgkHiTiabek7aIjabes7aKLqba+aadaWgaaqcbawaaKqz adWdbiaadMgacaWGQbaajeaypaqabaqcLbsapeGaamivaiaacYcaja aycaGGGcaaaa@7236@ (1)

σ i =α φ ,i + b 1 ψ ,i  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHdpWCl8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9iabeg7aHjabeA8aQLqba+aadaWgaaWcbaqcLbsape GaaiilaKqzadGaamyAaaWcpaqabaqcLbsapeGaey4kaSIaamOyaSWd amaaBaaabaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaeqiYdKxcfa 4damaaBaaaleaajugib8qacaGGSaqcLbmacaWGPbaal8aabeaajugi b8qacaGGGcGaaiilaaaa@5212@  (2)

τ i = b 1 φ ,i +γ ψ ,i  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq xcfa4aaSbaaSqaaKqzadaeaaaaaaaaa8qacaWGPbaal8aabeaajugi b8qacqGH9aqpcaWGIbqcfa4damaaBaaaleaajugWa8qacaaIXaaal8 aabeaajugib8qacqaHgpGAjuaGpaWaaSbaaSqaaKqzGeWdbiaacYca jugWaiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiabeo7aNjabeI8a5L qba+aadaWgaaWcbaqcLbsapeGaaiilaKqzadGaamyAaaWcpaqabaqc LbsapeGaaiiOaiaacYcaaaa@5319@   (3)

Equation of motion

  μ 2 u +( λ+μ ) u +bφ+dψβT=ρ 2 u t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH8oqBcqGHhis0lmaaCaaabeqaaKqzadGaaGOmaaaajugi biqadwhagaWcaiabgUcaRKqbaoaabmaak8aabaqcLbsapeGaeq4UdW Maey4kaSIaeqiVd0gakiaawIcacaGLPaaajugibiabgEGirlabgEGi rlabgwSixlqadwhagaWcaiabgUcaRiaadkgacqGHhis0cqaHgpGAcq GHRaWkcaWGKbGaey4bIeTaeqiYdKNaeyOeI0IaeqOSdiMaaGPaVlab gEGirlaadsfacqGH9aqpcqaHbpGCjuaGdaWcaaGcbaqcLbsacqGHci ITjuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaadwhaaOqaaKqz GeGaeyOaIyRaamiDaSWaaWbaaeqabaqcLbmacaaIYaaaaaaaaaa@6BC3@ (4)

Equilibrated Stress Equations of motion

α 2 φ+ b 1 2 ψb u α 1 φ α 3 ψ+ γ 1 T= κ 1 2 φ t 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKlrcLbsaqa aaaaaaaaWdbiabeg7aHjabgEGirVWaaWbaaeqabaqcLbmacaaIYaaa aKqzGeGaeqOXdOMaey4kaSIaamOyaSWdamaaBaaabaqcLbmapeGaaG ymaaWcpaqabaqcLbsacqGHhis0lmaaCaaabeqaaKqzadGaaGOmaaaa jugib8qacqaHipqEcqGHsislcaWGIbGaey4bIeTaeyyXICTabmyDay aalaGaeyOeI0IaeqySde2cpaWaaSbaaeaajugWa8qacaaIXaaal8aa beaajugib8qacqaHgpGAcqGHsislcqaHXoqyl8aadaWgaaqaaKqzad WdbiaaiodaaSWdaeqaaKqzGeWdbiabeI8a5jabgUcaRiabeo7aNTWd amaaBaaabaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaamivaiabg2 da9iabeQ7aRTWdamaaBaaajeaybaqcLbmapeGaaGymaaqcba2daeqa aKqbaoaalaaakeaajugibiabgkGi2UWaaWbaaeqabaqcLbmacaaIYa aaaKqzGeGaeqOXdOgakeaajugibiabgkGi2kaadshalmaaCaaabeqa aKqzadGaaGOmaaaaaaqcLbsapeGaaiilaaaa@7876@  (5)

b 1 2 φ+γ 2 ψd u α 3 φ α 2 ψ+ γ 2 T= κ 2 2 ψ t 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGIbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugi biabgEGirVWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeWdbiabeA8aQj abgUcaRiabeo7aNjabgEGirVWaaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaeqiYdKNaeyOeI0IaamizaiabgEGirlabgwSixlqadwhagaWcai abgkHiTiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaG4maaWcpaqa baqcLbsapeGaeqOXdOMaeyOeI0IaeqySdewcfa4damaaBaaaleaaju gWa8qacaaIYaaal8aabeaajugib8qacqaHipqEcqGHRaWkcqaHZoWz juaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaads facqGH9aqpcqaH6oWAl8aadaWgaaqaaKqzadWdbiaaikdaaSWdaeqa aKqbaoaalaaakeaajugibiabgkGi2MqbaoaaCaaaleqabaqcLbmaca aIYaaaaKqzGeGaeqiYdKhakeaajugibiabgkGi2kaadshajuaGdaah aaWcbeqaaKqzadGaaGOmaaaaaaqcLbsapeGaaiilaaaa@7998@   (6)

Equation of Heat conduction

K * 2 Tβ T 0 . u ˙ γ 1 T 0 φ ˙ γ 2 T 0 ψ ˙ ρ C * T ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGlbWcdaahaaqabeaajugWaiaacQcaaaqcLbsacqGHhis0 juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaadsfacqGHsislcq aHYoGycaWGubWcpaWaaSbaaeaajugWa8qacaaIWaaal8aabeaajugi biabgEGirlaac6caceWG1bGbaSGbaiaapeGaeyOeI0Iaeq4SdCwcfa 4damaaBaaaleaajugib8qacaaIXaaal8aabeaajugib8qacaWGubWc paWaaSbaaeaajugWa8qacaaIWaaal8aabeaajugib8qacuaHgpGApa GbaiaapeGaeyOeI0Iaeq4SdC2cpaWaaSbaaeaajugWa8qacaaIYaaa l8aabeaajugib8qacaWGubqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaajugib8qacuaHipqEpaGbaiaapeGaeyOeI0IaeqyWdiNa am4qaSWdamaaCaaabeqaaKqzadWdbiaacQcaaaqcLbsaceWGubWday aacaWdbiabg2da9iaaicdaaaa@6907@   (7)

where u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aalaaaaa@3787@  is the displacement vector ; t ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bWcpaWaaSbaaeaajugWa8qacaWGPbGaamOAaaWcpaqa baaaaa@3B04@ is the stress tensor; κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH6oWAl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaaa @3A9B@ and κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH6oWAl8aadaWgaaqaaKqzadWdbiaaikdaaSWdaeqaaaaa @3A9C@  are coefficients of equilibrated inertia; φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHgpGAaaa@3858@  and ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHipqEaaa@3869@  are the volume fraction fields corresponding to pores and fissures respectively ; σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHdpWCl8aadaWgaaqaaKqzadGaamyAaaWcbeaaaaa@3ABF@  is the equilibrated stress corresponding to pores; τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHepaDl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaaa @3AAE@  is the equilibrated stress corresponding to fissures; K * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGlbqcfa4aaWbaaSqabeaajugWaiaacQcaaaaaaa@3A02@  is the coefficient of thermal conductivity; C * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGdbqcfa4damaaCaaaleqabaqcLbmapeGaaiOkaaaaaaa@3A19@ is the specific heat at constant strain, ρ  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHbpGCcaGGGcaaaa@397F@  is the mass density; β=( 3λ+2μ ) α   t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGycqGH9aqpjuaGdaqadaGcpaqaaKqzGeWdbiaaioda cqaH7oaBcqGHRaWkcaaIYaGaeqiVd0gakiaawIcacaGLPaaajugibi abeg7aHLqba+aadaWgaaWcbaqcLbsapeGaaiiOaaWcpaqabaWaaSba aeaajugWaiaadshaaSqabaaaaa@4907@ ; α t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHXoqylmaaBaaabaqcLbmacaWG0baaleqaaaaa@3A98@  is the linear thermal expansion; λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH7oaBaaa@384F@  and μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH8oqBaaa@3851@  are Lame’s constants and b,d,  b 1 ,γ, γ 1 , γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGIbGaaiilaiaadsgacaGGSaGaaiiOaiaadkgajuaGpaWa aSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaacYcacqaHZo WzcaGGSaGaeq4SdCwcfa4damaaBaaaleaajugWa8qacaaIXaaal8aa beaajugib8qacaGGSaGaeq4SdC2cpaWaaSbaaeaajugWa8qacaaIYa aal8aabeaaaaa@4C20@  are constitutive coefficients; δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH0oazl8aadaWgaaqaaKqzadWdbiaadMgacaWGQbaal8aa beaaaaa@3BB0@  is the Kronecker’s delta; T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGubaaaa@3774@  is the temperature change measured form the absolute temperature T 0 ( T 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGubWcpaWaaSbaaeaajugWa8qacaaIWaaal8aabeaajuaG peWaaeWaaOWdaeaajugib8qacaWGubWcpaWaaSbaaeaajugWa8qaca aIWaaal8aabeaajugib8qacqGHGjsUcaaIWaaakiaawIcacaGLPaaa aaa@42EF@ ; a superposed dot represents differentiation with respect to time variable t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b aaaa@377F@ .

= i ^ x 1 + j ^ x 2 + k ^ x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGHhis0cqGH9aqpceWGPbWdayaajaqcfa4dbmaalaaak8aa baqcLbsapeGaeyOaIylak8aabaqcLbsapeGaeyOaIyRaamiEaSWdam aaBaaabaqcLbmapeGaaGymaaWcpaqabaaaaKqzGeWdbiabgUcaRiqa dQgapaGbaKaajuaGpeWaaSaaaOWdaeaajugib8qacqGHciITaOWdae aajugib8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8qacaaI Yaaal8aabeaaaaqcLbsapeGaey4kaSIabm4Aa8aagaqcaKqba+qada WcaaGcpaqaaKqzGeWdbiabgkGi2cGcpaqaaKqzGeWdbiabgkGi2kaa dIhal8aadaWgaaqaaKqzadWdbiaaiodaaSWdaeqaaaaaaaa@5883@ , 2 = 2 x 1 2 + 2 x 2 2 + 2 x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGHhis0lmaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da 9Kqbaoaalaaak8aabaqcLbsapeGaeyOaIy7cpaWaaWbaaeqabaqcLb mapeGaaGOmaaaaaOWdaeaajugib8qacqGHciITcaWG4bWcpaWaa0ba aeaajugWa8qacaaIXaaal8aabaqcLbmapeGaaGOmaaaaaaqcLbsacq GHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2UWdamaaCaaabeqa aKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaeyOaIyRaamiEaSWdam aaDaaabaqcLbmapeGaaGOmaaWcpaqaaKqzadWdbiaaikdaaaaaaKqz GeGaey4kaSscfa4aaSaaaOWdaeaajugib8qacqGHciITl8aadaahaa qabeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiabgkGi2kaadIha l8aadaqhaaqaaKqzadWdbiaaiodaaSWdaeaajugWa8qacaaIYaaaaa aaaaa@63B3@

Are the gradient and Laplacian operators, respectively.

Formulation of the problem

We consider homogeneous isotropic thermoelastic with double porous half space .We take the origin of the coordinate system ( x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamiEaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGSaGaamiE aSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaGGSaGaamiEaKqbao aaBaaaleaajugWaiaaiodaaSqabaqcLbsacaGGPaaaaa@44D3@  at any point plane on the horizontal surface and x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgkHiTaaa@38D2@ axis in the direction of the wave propagation and x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiabgkHiTaaa@3B21@  axis pointing vertically downward to the half–space so that all particles on line parallel to x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabgkHiTaaa@3BAE@ axis are equally displaced. Therefore, all the field quantities will be independent of x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaakiabgkHiTaaa@38D3@ coordinate.

For the two–dimensional problem, we take

u 1 = u 1 ( x 1 , x 3 ,t ), u 2 =0, u 3 = u 3 ( x 1 , x 3 ,t ),φ=φ( x 1 , x 3 ,t ),ψ=ψ( x 1 , x 3 ,t ),T=T( x 1 , x 3 ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG1bWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugi biabg2da98qacaWG1bWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabe aajuaGpeWaaeWaaOWdaeaajugib8qacaWG4bWcdaWgaaqaaKqzadGa aGymaaWcbeaajugibiaacYcacaWG4bWcdaWgaaqaaKqzadGaaG4maa WcbeaajugibiaacYcacaGG0baakiaawIcacaGLPaaajugibiaacYca caWG1bqcfa4damaaBaaaleaajugWaiaaikdaaSqabaqcLbsacqGH9a qpcaaIWaGaaiila8qacaWG1bqcfa4damaaBaaaleaajugWaiaaioda aSqabaqcLbsacqGH9aqppeGaamyDaKqba+aadaWgaaWcbaqcLbmaca aIZaaaleqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadIhalmaaBaaa baqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadIhalmaaBaaabaqcLb macaaIZaaaleqaaKqzGeGaaiilaiaacshaaOGaayjkaiaawMcaaKqz GeGaaiilaiabeA8aQ9aacqGH9aqpcqaHgpGAjuaGpeWaaeWaaOWdae aajugib8qacaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaa cYcacaWG4bqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaacY cacaGG0baakiaawIcacaGLPaaajugibiaacYcacqaHipqEpaGaeyyp a0JaeqiYdKxcfa4dbmaabmaak8aabaqcLbsapeGaamiEaSWaaSbaae aajugWaiaaigdaaSqabaqcLbsacaGGSaGaamiEaSWaaSbaaeaajugW aiaaiodaaSqabaqcLbsacaGGSaGaaiiDaaGccaGLOaGaayzkaaqcLb sacaGGSaWdaiaadsfacqGH9aqpcaWGubqcfa4dbmaabmaak8aabaqc LbsapeGaamiEaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGSa GaamiEaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacaGGSaGaaiiD aaGccaGLOaGaayzkaaaaaa@9F45@   (8)

We define the following non–dimensional quantities:

x 1 ' = ω 1 c 1 x 1 ,    x 3 ' = ω 1 c 1 x 3 ,  u 1 ' = ω 1 c 1 u 1  , u 3 ' = ω 1 c 1 u 3 , t ij ' = t ij β T 0 , T ' = T T 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bWcdaqhaaqaaKqzadGaaGymaaWcbaqcLbmacaGGNaaa aKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqaHjpWDlmaaBa aabaqcLbmacaaIXaaaleqaaaGcpaqaaKqzGeWdbiaadogajuaGpaWa aSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaaajugib8qacaWG4bWcda WgaaqaaKqzadGaaGymaaWcbeaajugibiaacYcacaGGGcGaaiiOaiaa cckacaWG4bWcdaqhaaqaaKqzadGaaG4maaWcbaqcLbmacaGGNaaaaK qzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqaHjpWDlmaaBaaa baqcLbmacaaIXaaaleqaaaGcpaqaaKqzGeWdbiaadogajuaGpaWaaS baaSqaaKqzadWdbiaaigdaaSWdaeqaaaaajugib8qacaWG4bWcdaWg aaqaaKqzadGaaG4maaWcbeaajugibiaacYcacaGGGcGaamyDaSWdam aaDaaabaqcLbmapeGaaGymaaWcpaqaaKqzadWdbiaacEcaaaqcLbsa cqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabeM8a3TWaaSbaaeaaju gWaiaaigdaaSqabaaak8aabaqcLbsapeGaam4yaSWdamaaBaaabaqc LbmapeGaaGymaaWcpaqabaaaaKqzGeWdbiaadwhal8aadaWgaaqaaK qzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaacckacaGGSaGaamyDaSWd amaaDaaabaqcLbmapeGaaG4maaWcpaqaaKqzadWdbiaacEcaaaqcLb sacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabeM8a3TWaaSbaaeaa jugWaiaaigdaaSqabaaak8aabaqcLbsapeGaam4yaSWdamaaBaaaba qcLbmapeGaaGymaaWcpaqabaaaaKqzGeWdbiaadwhajuaGpaWaaSba aSqaaKqzadWdbiaaiodaaSWdaeqaaKqzGeWdbiaacYcacaWG0bWcpa Waa0baaeaajugWa8qacaWGPbGaamOAaaWcpaqaaKqzadWdbiaacEca aaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadshal8aada WgaaqaaKqzadWdbiaadMgacaWGQbaal8aabeaaaOqaaKqzGeGaeqOS di2dbiaadsfal8aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaaaaju gib8qacaGGSaGaamivaSWdamaaCaaabeqaaKqzadWdbiaacEcaaaqc LbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadsfaaOWdaeaaju gib8qacaWGubWcpaWaaSbaaeaajugWa8qacaaIWaaal8aabeaaaaqc LbsapeGaaiilaaaa@B222@
φ ' = κ 1 ω 1 2 α 1 φ,   ψ = κ 1 ω 1 2 α 1 ,  t = ω 1 t, σ 1 ' =( c 1 α ω 1 ) σ 1 ,  τ 1 ' =( c 1 α ω 1 ) τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHgpGAl8aadaahaaqabeaajugWa8qacaGGNaaaaKqzGeGa eyypa0tcfa4aaSaaaOWdaeaajugib8qacqaH6oWAlmaaBaaabaqcLb macaaIXaaaleqaaKqzGeGaeqyYdC3cdaWgaaqaaKqzadGaaGymaaWc beaapaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacq aHXoqyjuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaaajugi b8qacqaHgpGAcaGGSaGaaiiOaiaacckacuaHipqEpaGbauaapeGaey ypa0tcfa4aaSaaaOWdaeaajugib8qacqaH6oWAlmaaBaaabaqcLbma caaIXaaaleqaaKqzGeGaeqyYdC3cdaWgaaqaaKqzadGaaGymaaWcbe aapaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqaH Xoqyl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaaajugib8qaca GGSaGaaiiOaiqadshapaGbauaapeGaeyypa0JaeqyYdC3cdaWgaaqa aKqzadGaaGymaaWcbeaajugibiaadshacaGGSaGaeq4Wdm3cpaWaa0 baaeaajugWa8qacaaIXaaal8aabaqcLbmapeGaai4jaaaajugibiab g2da9Kqbaoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaam 4yaSWdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaaakeaajugib8qa cqaHXoqycqaHjpWDl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaa aaaOWdbiaawIcacaGLPaaajugibiabeo8aZTWdamaaBaaabaqcLbma peGaaGymaaWcpaqabaqcLbsapeGaaiilaiaacckacqaHepaDl8aada qhaaqaaKqzadWdbiaaigdaaSWdaeaajugWa8qacaGGNaaaaKqzGeGa eyypa0tcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qaca WGJbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaaaOqaaKqzGeWd biabeg7aHjabeM8a3TWdamaaBaaabaqcLbmapeGaaGymaaWcpaqaba aaaaGcpeGaayjkaiaawMcaaKqzGeGaeqiXdq3cpaWaaSbaaeaajugW a8qacaaIXaaal8aabeaaaaa@A605@   (9)

Where c 1 2 = λ+2μ ρ , ω 1 = ρ C * c 1 2 K * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGJbWcpaWaa0baaeaajugWa8qacaaIXaaal8aabaqcLbma peGaaGOmaaaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaeq 4UdWMaey4kaSIaaGOmaKqzadGaeqiVd0gak8aabaqcLbsapeGaeqyW dihaaiaacYcacqaHjpWDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGe Gaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqaHbpGCcaWGdbWcpaWa aWbaaeqabaqcLbmapeGaaiOkaaaajugibiaadogal8aadaqhaaqaaK qzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWd biaadUeajuaGpaWaaWbaaSqabeaajugWa8qacaGGQaaaaaaaaaa@5D9B@

Here ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHjpWDaaa@3868@  and c 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGJbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaaaaa@39D1@ are the constants having the dimension of frequency and velocity in the medium respectively.

Using (8) in Eqs. (4)–(7) and with the aid of (9), after suppressing the primes, we obtain

( λ+μ ρ c 1 2 ) e x 1 + μ ρ c 1 2 2 u 1 + a 1 φ x 1 + a 2 ψ x 1 a 3 T x 1 = 2 u 1 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiabeU7a SjabgUcaRiabeY7aTbGcpaqaaKqzGeWdbiabeg8aYjaadogal8aada qhaaqaaKqzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaaaaaOGa ayjkaiaawMcaaKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaamyzaa GcpaqaaKqzGeWdbiabgkGi2kaadIhal8aadaWgaaqaaKqzadWdbiaa igdaaSWdaeqaaaaajugib8qacqGHRaWkjuaGdaWcaaGcpaqaaKqzGe WdbiabeY7aTbGcpaqaaKqzGeWdbiabeg8aYjaadogal8aadaqhaaqa aKqzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaaaajugibiabgE GirVWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcLbsacaWG1bWcpaWa aSbaaeaajugWa8qacaaIXaaal8aabeaajugib8qacqGHRaWkcaWGHb WcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajuaGpeWaaSaaaOWd aeaajugib8qacqGHciITcqaHgpGAaOWdaeaajugib8qacqGHciITca WG4bWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaaaaqcLbsapeGa ey4kaSIaamyyaSWdamaaBaaabaqcLbmapeGaaGOmaaWcpaqabaqcfa 4dbmaalaaak8aabaqcLbsapeGaeyOaIyRaeqiYdKhak8aabaqcLbsa peGaeyOaIyRaamiEaSWdamaaBaaabaqcLbmapeGaaGymaaWcpaqaba aaaKqzGeWdbiabgkHiTiaadggal8aadaWgaaqaaKqzadGaaG4maaWc beaajuaGpeWaaSaaaOWdaeaajugib8qacqGHciITcaWGubaak8aaba qcLbsapeGaeyOaIyRaamiEaKqba+aadaWgaaWcbaqcLbmapeGaaGym aaWcpaqabaaaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsape GaeyOaIy7cpaWaaWbaaeqabaqcLbmapeGaaGOmaaaajugibiaadwha l8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaGcbaqcLbsapeGaey OaIyRaamiDaSWdamaaCaaabeqaaKqzadWdbiaaikdaaaaaaaaa@9E5D@  (10)

( λ+μ ρ c 1 2 ) e x 3 + μ ρ c 1 2 2 u 3 + a 1 φ x 3 + a 2 ψ x 3 a 3 T x 3 = 2 u 3 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiabeU7a SjabgUcaRiabeY7aTbGcpaqaaKqzGeWdbiabeg8aYjaadogal8aada qhaaqaaKqzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaaaaaOGa ayjkaiaawMcaaKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaamyzaa GcpaqaaKqzGeWdbiabgkGi2kaadIhal8aadaWgaaqaaKqzadWdbiaa iodaaSWdaeqaaaaajugib8qacqGHRaWkjuaGdaWcaaGcpaqaaKqzGe WdbiabeY7aTbGcpaqaaKqzGeWdbiabeg8aYjaadogal8aadaqhaaqa aKqzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaaaajugibiabgE GirNqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacaWG1bqc fa4damaaBaaaleaajugWa8qacaaIZaaal8aabeaajugib8qacqGHRa WkcaWGHbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajuaGpeWa aSaaaOWdaeaajugib8qacqGHciITcqaHgpGAaOWdaeaajugib8qacq GHciITcaWG4bWcpaWaaSbaaeaajugWa8qacaaIZaaal8aabeaaaaqc LbsapeGaey4kaSIaamyyaSWdamaaBaaabaqcLbmapeGaaGOmaaWcpa qabaqcfa4dbmaalaaak8aabaqcLbsapeGaeyOaIyRaeqiYdKhak8aa baqcLbsapeGaeyOaIyRaamiEaSWdamaaBaaabaqcLbmapeGaaG4maa WcpaqabaaaaKqzGeWdbiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqz adGaaG4maaWcbeaajuaGpeWaaSaaaOWdaeaajugib8qacqGHciITca WGubaak8aabaqcLbsapeGaeyOaIyRaamiEaSWdamaaBaaabaqcLbma caaIZaaaleqaaaaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGe WdbiabgkGi2UWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcLbsacaWG 1bqcfa4damaaBaaaleaajugWa8qacaaIZaaal8aabeaaaOqaaKqzGe WdbiabgkGi2kaadshal8aadaahaaqabeaajugWa8qacaaIYaaaaaaa aaa@9FF4@   (11)

a 4 2 ϕ+ a 5 2 ψ a 6 e a 7 φ a 8 ψ a 9 T= 2 φ t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadGaaGinaaWcbeaajugib8qa cqGHhis0l8aadaahaaqabeaajugWa8qacaaIYaaaaKqzGeGaeqy1dy Maey4kaSIaamyyaKqba+aadaWgaaWcbaqcLbmacaaI1aaaleqaaKqz GeWdbiabgEGirVWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcLbsacq aHipqEcqGHsislcaWGHbWcpaWaaSbaaeaajugWaiaaiAdaaSqabaqc LbsacaWGLbWdbiabgkHiTiaadggal8aadaWgaaqaaKqzadGaaG4naa WcbeaajugibiabeA8aQ9qacqGHsislcaWGHbqcfa4damaaBaaaleaa jugWaiaaiIdaaSqabaqcLbsapeGaeqiYdKNaeyOeI0IaamyyaSWdam aaBaaabaqcLbmacaaI5aaaleqaaKqzGeGaamiva8qacqGH9aqpjuaG daWcaaGcpaqaaKqzGeWdbiabgkGi2UWdamaaCaaabeqaaKqzadWdbi aaikdaaaqcLbsacqaHgpGAaOWdaeaajugib8qacqGHciITcaWG0bWc paWaaWbaaeqabaqcLbmapeGaaGOmaaaaaaaaaa@71BB@     (12)

a 10 2 ϕ+ a 11 2 ψ a 12 e a 13 φ a 14 ψ a 15 T= 2 ψ t 2 a 16 e t a 17 φ t a 18 ψ t + a 19 2 T T t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadGaaGymaiaaicdaaSqabaqc LbsapeGaey4bIeDcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaaju gibiabew9aMjabgUcaRiaadggal8aadaWgaaqaaKqzadGaaGymaiaa igdaaSqabaqcLbsapeGaey4bIeDcfa4damaaCaaaleqabaqcLbmape GaaGOmaaaajugibiabeI8a5jabgkHiTiaadggajuaGpaWaaSbaaSqa aKqzadWdbiaaigdacaaIYaaal8aabeaajugibiaadwgapeGaeyOeI0 IaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaGymaiaaiodaaSWdaeqa aKqzGeGaeqOXdO2dbiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqzad WdbiaaigdacaaI0aaal8aabeaajugib8qacqaHipqEcqGHsislcaWG Hbqcfa4damaaBaaaleaajugWaiaaigdacaaI1aaaleqaaKqzGeGaam iva8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2UWdamaa CaaabeqaaKqzadWdbiaaikdaaaqcLbsacqaHipqEaOWdaeaajugib8 qacqGHciITcaWG0bqcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaa aaqcLbsacqGHsislcaWGHbWcdaWgaaqaaKqzadGaaGymaiaaiAdaaS qabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyzaaGcbaqcLbsacqGH ciITcaWG0baaaiabgkHiTiaadggalmaaBaaabaqcLbmacaaIXaGaaG 4naaWcbeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHgpGAaOqaaKqz GeGaeyOaIyRaamiDaaaacqGHsislcaWGHbWcdaWgaaqaaKqzadGaaG ymaiaaiIdaaSqabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaeqiYdKha keaajugibiabgkGi2kaadshaaaGaey4kaSIaamyyaSWaaSbaaeaaju gWaiaaigdacaaI5aaaleqaaKqzGeGaey4bIe9cdaahaaqabeaajugW aiaaikdaaaqcLbsacaWGubGaeyOeI0scfa4aaSaaaOqaaKqzGeGaey OaIyRaamivaaGcbaqcLbsacqGHciITcaWG0baaaiabg2da9iaaicda aaa@B072@   (13)

Where
a 10 2 ϕ+ a 11 2 ψ a 12 e a 13 φ a 14 ψ a 15 T= 2 ψ t 2 a 16 e t a 17 φ t a 18 ψ t + a 19 2 T T t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadGaaGymaiaaicdaaSqabaqc LbsapeGaey4bIeDcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaaju gibiabew9aMjabgUcaRiaadggal8aadaWgaaqaaKqzadGaaGymaiaa igdaaSqabaqcLbsapeGaey4bIeDcfa4damaaCaaaleqabaqcLbmape GaaGOmaaaajugibiabeI8a5jabgkHiTiaadggajuaGpaWaaSbaaSqa aKqzadWdbiaaigdacaaIYaaal8aabeaajugibiaadwgapeGaeyOeI0 IaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaGymaiaaiodaaSWdaeqa aKqzGeGaeqOXdO2dbiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqzad WdbiaaigdacaaI0aaal8aabeaajugib8qacqaHipqEcqGHsislcaWG Hbqcfa4damaaBaaaleaajugWaiaaigdacaaI1aaaleqaaKqzGeGaam iva8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2UWdamaa CaaabeqaaKqzadWdbiaaikdaaaqcLbsacqaHipqEaOWdaeaajugib8 qacqGHciITcaWG0bqcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaa aaqcLbsacqGHsislcaWGHbWcdaWgaaqaaKqzadGaaGymaiaaiAdaaS qabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyzaaGcbaqcLbsacqGH ciITcaWG0baaaiabgkHiTiaadggalmaaBaaabaqcLbmacaaIXaGaaG 4naaWcbeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHgpGAaOqaaKqz GeGaeyOaIyRaamiDaaaacqGHsislcaWGHbWcdaWgaaqaaKqzadGaaG ymaiaaiIdaaSqabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaeqiYdKha keaajugibiabgkGi2kaadshaaaGaey4kaSIaamyyaSWaaSbaaeaaju gWaiaaigdacaaI5aaaleqaaKqzGeGaey4bIe9cdaahaaqabeaajugW aiaaikdaaaqcLbsacaWGubGaeyOeI0scfa4aaSaaaOqaaKqzGeGaey OaIyRaamivaaGcbaqcLbsacqGHciITcaWG0baaaiabg2da9iaaicda aaa@B072@

Here 2 = 2 x 1 2 + 2 x 3 2 ,e= u 1 x 1 + u 3 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGHhis0juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiab g2da9Kqbaoaalaaak8aabaqcLbsapeGaeyOaIy7cpaWaaWbaaeqaba qcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqGHciITcaWG4bWcpaWa a0baaeaajugWa8qacaaIXaaal8aabaqcLbmapeGaaGOmaaaaaaqcLb sacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2Mqba+aadaah aaWcbeqaaKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaeyOaIyRaam iEaSWdamaaDaaabaqcLbmapeGaaG4maaWcpaqaaKqzadWdbiaaikda aaaaaKqzGeGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadwgacqGH9aqpjuaGdaWcaaGcbaqcLbsacqGHciITcaWG1bWc daWgaaqaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaS WaaSbaaeaajugWaiaaigdaaSqabaaaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaeyOaIyRaamyDaSWaaSbaaeaajugWaiaaiodaaSqaba aakeaajugibiabgkGi2kaadIhalmaaBaaabaqcLbmacaaIZaaaleqa aaaaaaa@7A93@

The displacement components u 1   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGGcaaaa@3959@ and u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaa@381D@  are related by potential functions φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@38DE@ and ψ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3damaaBaaaleaapeGaaGymaaWdaeqaaaaa@38EF@  as

u 1 = φ 1 x 1 ψ 1 x 3 ,              u 3 = φ 1 x 3 + ψ 1 x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG1bWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugi b8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kabeA8aQT WdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaaakeaajugib8qacqGH ciITcaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaaaaqcLbsacqGHsi sljuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kabeI8a5TWdamaaBaaa baqcLbmapeGaaGymaaWcpaqabaaakeaajugib8qacqGHciITcaWG4b qcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaqcLbsacaGGSaGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaadwhal8aadaWgaaqaaKqzadWd biaaiodaaSWdaeqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLb sapeGaeyOaIyRaeqOXdO2cpaWaaSbaaeaajugWa8qacaaIXaaal8aa beaaaOqaaKqzGeWdbiabgkGi2kaadIhalmaaBaaabaqcLbmacaaIZa aaleqaaaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaeyOa IyRaeqiYdK3cpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaaaOqaaK qzGeWdbiabgkGi2kaadIhalmaaBaaabaqcLbmacaaIXaaaleqaaaaa aaa@83F7@  (15)

Making use of (15) in equations (10)–(14), we obtain

( 2 2 t 2 ) φ 1 + a 1 φ+ a 2 ψ a 3 T=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHhis0juaGdaahaaWcbeqaaKqzadGa aGOmaaaajugibiabgkHiTKqbaoaalaaak8aabaqcLbsapeGaeyOaIy 7cpaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqGH ciITcaWG0bqcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaaaaaak8 aacaGLOaGaayzkaaqcLbsacqaHgpGAlmaaBaaabaqcLbmacaaIXaaa leqaaKqzGeWdbiabgUcaRiaadggal8aadaWgaaqaaKqzadGaaGymaa WcbeaajugibiabeA8aQ9qacqGHRaWkcaWGHbWcpaWaaSbaaeaajugW a8qacaaIYaaal8aabeaajugibiabeI8a5jabgkHiT8qacaWGHbWcpa WaaSbaaeaajugWaiaaiodaaSqabaqcLbsacaWGubWdbiabg2da98aa caaIWaaaaa@6280@   (16)

a 6 2 φ 1 +( a 4 2 a 7 2 t 2 )φ+( a 5 2 a 8 )ψ+ a 9 T=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkHiTiaadggal8aadaWgaaqaaKqzadGaaGOnaaWcbeaa jugibiabgEGirVWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqOXdO 2cdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRKqbaoaabmaa keaajugib8qacaWGHbWcpaWaaSbaaeaajugWaiaaisdaaSqabaqcLb sapeGaey4bIe9cpaWaaWbaaeqabaqcLbmapeGaaGOmaaaajugib8aa cqGHsislpeGaamyyaKqba+aadaWgaaWcbaqcLbmacaaI3aaaleqaaK qzGeGaeyOeI0scfa4dbmaalaaak8aabaqcLbsapeGaeyOaIy7cpaWa aWbaaeqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqGHciITca WG0bWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaaaak8aacaGLOaGa ayzkaaqcLbsapeGaeqOXdOMaey4kaSscfa4damaabmaakeaajugib8 qacaWGHbqcfa4damaaBaaaleaajugWaiaaiwdaaSqabaqcLbsapeGa ey4bIeDcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiabgk HiTiaadggajuaGpaWaaSbaaSqaaKqzadGaaGioaaWcbeaaaOGaayjk aiaawMcaaKqzGeWdbiabeI8a5jabgUcaRiaadggajuaGpaWaaSbaaS qaaKqzadGaaGyoaaWcbeaajugibiaadsfapeGaeyypa0JaaGimaaaa @7E0F@ (17)

a 12 2 φ 1 +( a 10 2 a 13 )φ+( a 11 2 a 14 2 t 2 )ψ+ a 15 T=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkHiTiaadggal8aadaWgaaqaaKqzadGaaGymaiaaikda aSqabaqcLbsacqGHhis0juaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiabeA8aQTWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHRaWk juaGdaqadaGcbaqcLbsapeGaamyyaKqba+aadaWgaaWcbaqcLbmaca aIXaGaaGimaaWcbeaajugib8qacqGHhis0l8aadaahaaqabeaajugW a8qacaaIYaaaaKqzGeGaeyOeI0IaamyyaSWdamaaBaaabaqcLbmaca aIXaGaaG4maaWcbeaaaOGaayjkaiaawMcaaKqzGeWdbiabeA8aQjab gUcaRKqba+aadaqadaGcbaqcLbsapeGaamyyaSWdamaaBaaabaqcLb macaaIXaGaaGymaaWcbeaajugib8qacqGHhis0juaGpaWaaWbaaSqa beaajugWa8qacaaIYaaaaKqzGeWdaiabgkHiT8qacaWGHbWcpaWaaS baaeaajugWaiaaigdacaaI0aaaleqaaKqzGeGaeyOeI0scfa4dbmaa laaak8aabaqcLbsapeGaeyOaIy7cpaWaaWbaaeqabaqcLbmapeGaaG OmaaaaaOWdaeaajugib8qacqGHciITcaWG0bWcpaWaaWbaaeqabaqc LbmapeGaaGOmaaaaaaaak8aacaGLOaGaayzkaaqcLbsapeGaeqiYdK Naey4kaSIaamyyaSWdamaaBaaabaqcLbmacaaIXaGaaGynaaWcbeaa jugibiaadsfapeGaeyypa0JaaGimaaaa@813D@   (18)

a 16 t ( 2 φ 1 ) a 17 φ t a 18 ψ t +( a 19 2 t )T=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkHiTiaadggal8aadaWgaaqaaKqzadGaaGymaiaaiAda aSqabaqcfa4aaSaaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2k aadshaaaGaaiikaiabgEGirVWaaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaeqOXdO2cdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaacMcape GaeyOeI0IaamyyaSWdamaaBaaabaqcLbmacaaIXaGaaG4naaWcbeaa juaGdaWcaaGcbaqcLbsacqGHciITcqaHgpGAaOqaaKqzGeGaeyOaIy RaamiDaaaapeGaeyOeI0IaamyyaSWdamaaBaaabaqcLbmacaaIXaGa aGioaaWcbeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHipqEaOqaaK qzGeGaeyOaIyRaamiDaaaapeGaey4kaSscfa4damaabmaakeaajugi b8qacaWGHbWcpaWaaSbaaeaajugWaiaaigdacaaI5aaaleqaaKqzGe Gaey4bIeDcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsisl juaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaamiDaa aaaOGaayjkaiaawMcaaKqzGeGaamiva8qacqGH9aqpcaaIWaaaaa@79EF@  (19)

and

( a 20 2 2 t 2 ) ψ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGHbqcfa4damaaBaaaleaajugWaiaa ikdacaaIWaaaleqaaKqzGeWdbiabgEGirVWdamaaCaaabeqaaKqzad WdbiaaikdaaaqcLbsapaGaeyOeI0scfa4dbmaalaaak8aabaqcLbsa peGaeyOaIy7cpaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaOWdaeaaju gib8qacqGHciITcaWG0bWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaa aaaak8aacaGLOaGaayzkaaqcLbsapeGaeqiYdK3cdaWgaaqaaKqzad GaaGymaaWcbeaajugibiabg2da9iaaicdaaaa@544E@   (20)

Here

a 20 = μ ρ c 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb WcdaWgaaqaaKqzadGaaGOmaiaaicdaaSqabaqcLbsacqGH9aqpjuaG qaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeqiVd0gak8aabaqcLb sapeGaeqyWdiNaam4yaSWdamaaDaaabaqcLbmapeGaaGymaaWcpaqa aKqzadWdbiaaikdaaaaaaaaa@46B1@

Solution of the problem

We assume the solution of the form

( φ 1 ,φ,ψ,T, ψ 1 )=( φ 1 * , φ * , ψ * , T * , ψ 1 * ) e iξ( x 1 -ct) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqOXdOwcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaacYca cqaHgpGAcaGGSaGaeqiYdKNaaiilaiaadsfacaGGSaGaeqiYdKxcfa 4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaacMcacqGH9aqpcaGG OaGaeqOXdO2cdaqhaaqaaKqzadGaaGymaaWcbaqcLbmacaGGQaaaaK qzGeGaaiilaiabeA8aQTWaaWbaaeqabaqcLbmacaGGQaaaaKqzGeGa aiilaiabeI8a5TWaaWbaaeqabaqcLbmacaGGQaaaaKqzGeGaaiilai aadsfalmaaCaaabeqaaKqzadGaaiOkaaaajugibiaacYcacqaHipqE lmaaDaaabaqcLbmacaaIXaaaleaajugWaiaacQcaaaqcLbsacaGGPa GaaiyzaSWaaWbaaeqabaqcLbmacaWGPbGaeqOVdGNaaiikaiaadIha lmaaBaaameaajugWaiaaigdaaWqabaqcLbmacaGGTaGaam4yaiaads hacaGGPaaaaaaa@742D@    (21)

Where ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3849@  is the wave number, ω=ξc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcqGH9aqpcqaH+oaEcaWGJbaaaa@3C04@  is the angular frequency and c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ is the phase velocity of the wave.

Making use of (21) in Eqs.(16)–(20) ,we obtain four homogeneous equations in four unknowns and these equations have non–trivial solutions if the determinant of the coefficient φ 1 * , φ * , ψ * and T * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAlmaaDaaabaqcLbmacaaIXaaaleaajugWaiaacQcaaaqcLbsacaGG SaGaeqOXdO2cdaahaaqabeaajugWaiaacQcaaaqcLbsacaGGSaGaaG PaVlabeI8a5TWaaWbaaeqabaqcLbmacaGGQaaaaKqzGeGaaGPaVlaa bggacaqGUbGaaeizaiaaykW7caWGubWcdaahaaqabeaajugWaiaacQ caaaaaaa@5128@ vanishes, which yield to the following characteristics equation:

E 1 d 8 d z 8 + E 2 d 6 d z 6 + E 3 d 4 d z 4 + E 4 d 2 d z 2 + E 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajuaG peWaaSaaaOWdaeaajugib8qacaWGKbqcfa4damaaCaaaleqabaqcLb macaaI4aaaaaGcbaqcLbsapeGaamizaiaadQhalmaaCaaabeqaaKqz adGaaGioaaaaaaqcLbsacqGHRaWkcaWGfbqcfa4damaaBaaaleaaju gWa8qacaaIYaaal8aabeaajuaGpeWaaSaaaOWdaeaajugib8qacaWG Kbqcfa4damaaCaaaleqabaqcLbmacaaI2aaaaaGcbaqcLbsapeGaam izaiaadQhajuaGdaahaaWcbeqaaKqzadGaaGOnaaaaaaqcLbsacqGH RaWkcaWGfbWcpaWaaSbaaeaajugWa8qacaaIZaaal8aabeaajuaGpe WaaSaaaOWdaeaajugib8qacaWGKbWcpaWaaWbaaeqabaqcLbmacaaI 0aaaaaGcbaqcLbsapeGaamizaiaadQhalmaaCaaabeqaaKqzadGaaG inaaaaaaqcLbsacqGHRaWkcaWGfbqcfa4damaaBaaaleaajugWa8qa caaI0aaal8aabeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGKbWcpa WaaWbaaeqabaqcLbmacaaIYaaaaaGcbaqcLbsapeGaamizaiaadQha lmaaCaaabeqaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkcaWGfbWcpa WaaSbaaeaajugWaiaaiwdaaSqabaqcLbsapeGaeyypa0JaaGimaaaa @7573@   (22)

Where E 1 , E 2 , E 3 , E 4 and E 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugi biaacYcapeGaamyraSWdamaaBaaabaqcLbmacaaIYaaaleqaaKqzGe Gaaiila8qacaWGfbWcpaWaaSbaaeaajugWaiaaiodaaSqabaqcLbsa caGGSaWdbiaadweal8aadaWgaaqaaKqzadGaaGinaaWcbeaajugibi aaykW7caqGHbGaaeOBaiaabsgacaaMc8+dbiaadweal8aadaWgaaqa aKqzadGaaGynaaWcbeaaaaa@4FFF@  are given in the appendix and

( d 2 d x 3 2 ζ 5 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaadaWcaaWdaeaapeGaamiza8aadaahaaWcbeqaaiaaikda aaaakeaapeGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaikdaaa aaaOGaeyOeI0IaeqOTdO3damaaDaaaleaacaaI1aaabaWdbiaaikda aaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@438F@ (23)

Where

ζ 5 2 = ξ 2 + ξ 2 c 2 a 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6naaDa aaleaacaaI1aaabaaeaaaaaaaaa8qacaaIYaaaaOGaeyypa0JaeqOV dG3damaaCaaaleqabaWdbiaaikdaaaGcpaGaey4kaSYaaSaaaeaape GaeqOVdG3damaaCaaaleqabaWdbiaaikdaaaGcpaGaam4yamaaCaaa leqabaGaaGOmaaaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaicdaae qaaaaaaaa@45AD@

Since we are interested in surface waves only, it is essential that the motion is confined to the free surface x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiabg2da9iaaicdaaaa@39A7@  of the half–space. Therefore, to satisfy the radiation conditions, φ 1 ,φ,ψ,T, ψ 1 0as x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH gpGAcaGGSaGaeqiYdKNaaiilaiaadsfacaGGSaGaeqiYdK3aaSbaaS qaaiaaigdaaeqaaOGaeyOKH4QaaGimaiaaykW7caaMc8UaaGPaVlaa bggacaqGZbGaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiodaaeqaaO GaeyOKH4QaeyOhIukaaa@5460@  are given by

( φ 1 ,φ,ψ,T )= i=1 4 (1, r i , s i , h i ) B i e m i x 3 e iξ( x 1 ct) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaamHqcfaieaa aaaaaaa8qadaqadaGcpaqaaKqzGeWdbiabeA8aQTWdamaaBaaabaqc LbmapeGaaGymaaWcpaqabaqcLbsapeGaaiilaiabeA8aQjaacYcacq aHipqEcaGGSaGaamivaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaG daGfWbGcbeWcpaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaal8aaba qcLbmacaaI0aaaneaajugib8qacqGHris5aaGaaiikaiaaigdacaGG SaGaamOCaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLbsape Gaaiilaiaadohal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeGaaiilaiaadIgalmaaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLb sapeGaaiykaiaadkeal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqa aKqzGeWdbiaadwgajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislca WGTbWcpaWaaSbaaWqaaKqzadWdbiaadMgaaWWdaeqaaKqzadGaamiE aSWaaSbaaWqaaKqzadGaaG4maaadbeaaaaqcLbsacaWGLbWcdaahaa qabeaajugWaiaadMgacqaH+oaEcaGGOaGaamiEaSWaaSbaaWqaaKqz adGaaGymaaadbeaajugWaiabgkHiTiaadogacaWG0bGaaiykaaaaaa a@7D56@    (24)

and from (21), we get

ψ 1 = B 5 e m 5 x 3 e iξ( x 1 ct) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHipqEl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqz GeWdbiabg2da9iaadkeajuaGpaWaaSbaaSqaaKqzadGaaGynaaWcbe aajugib8qacaWGLbWcpaWaaWbaaeqabaqcLbmapeGaeyOeI0IaamyB aSWdamaaBaaameaajugWaiaaiwdaaWqabaqcLbmacaWG4bWcdaWgaa adbaqcLbmacaaIZaaameqaaaaajugibiaadwgajuaGdaahaaWcbeqa aKqzadGaamyAaiabe67a4jaacIcacaWG4bWcdaWgaaadbaqcLbmaca aIXaaameqaaKqzadGaeyOeI0Iaam4yaiaadshacaGGPaaaaaaa@59F2@   (25)

where m i (i=1,2,3,4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGPbaabeaakiaacIcacaWGPbGaeyypa0JaaGymaiaacYca caaIYaGaaiilaiaaiodacaGGSaGaaGinaiaacMcaaaa@405C@  are roots of the equation (22) and m 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaGaaGynaaqabaaaaa@37F8@  is root of equation (23). B i  ( i=1,2,3,4,5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGcbWcdaWgaaqaaKqzadGaamyAaaWcbeaajugWaiaaccka juaGdaqadaGcpaqaaKqzGeWdbiaadMgacqGH9aqpcaaIXaGaaiilai aaikdacaGGSaGaaG4maiaacYcacaaI0aGaaiilaiaaiwdaaOGaayjk aiaawMcaaaaa@4745@  are arbitrary constants in equation(21) and (22) .

Here the coupling constants are r i = D 1i D 0i ,  s i = D 2i D 0i  , h i = D 3i D 0i  ; i=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugi b8qacqGH9aqpcqGHsisljuaGdaWcaaGcpaqaaKqzGeWdbiaadseal8 aadaWgaaqaaKqzadWdbiaaigdacaWGPbaal8aabeaaaOqaaKqzGeWd biaadseal8aadaWgaaqaaKqzadWdbiaaicdacaWGPbaal8aabeaaaa qcLbsapeGaaiilaiaacckacaWGZbqcfa4damaaBaaaleaajugib8qa caWGPbaal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGe WdbiaadseajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaWGPbaal8aa beaaaOqaaKqzGeWdbiaadseal8aadaWgaaqaaKqzadWdbiaaicdaca WGPbaal8aabeaaaaqcLbsapeGaaiiOaiaacYcacaWGObWcpaWaaSba aeaajugWa8qacaWGPbaal8aabeaajugib8qacqGH9aqpcqGHsislju aGdaWcaaGcpaqaaKqzGeWdbiaadseal8aadaWgaaqaaKqzadWdbiaa iodacaWGPbaal8aabeaaaOqaaKqzGeWdbiaadseal8aadaWgaaqaaK qzadWdbiaaicdacaWGPbaal8aabeaaaaqcLbsapeGaaiiOaiaacUda caGGGcGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZa Gaaiilaiaaisdaaaa@75DD@

  D 0i , D 1i , D 2i , D 3i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebqcfa4damaaBaaaleaajugWa8qacaaIWaGaamyAaaWc paqabaqcLbsapeGaaiilaiaadseal8aadaWgaaqaaKqzadWdbiaaig dacaWGPbaal8aabeaajugib8qacaGGSaGaamiraKqba+aadaWgaaWc baqcLbmapeGaaGOmaiaadMgaaSWdaeqaaKqzGeGaaiila8qacaWGeb WcpaWaaSbaaeaajugWa8qacaaIZaGaamyAaaWcpaqabaaaaa@4BBA@  are given in the Appendix.

Boundary conditions

The boundary conditions at the free surface x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9iaaicdaaaa@39BC@ . Mathematically these can be written as

t 33 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bWcpaWaaSbaaeaajugWa8qacaaIZaGaaG4maaWcpaqa baqcLbsapeGaeyypa0JaaGimaaaa@3D00@   (26)

t 31 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bWcpaWaaSbaaeaajugWa8qacaaIZaGaaGymaaWcpaqa baqcLbsapeGaeyypa0JaaGimaaaa@3CFE@    (27)

σ 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHdpWCjuaGpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdaeqa aKqzGeWdbiabg2da9iaaicdaaaa@3D9B@  (28)

τ 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHepaDl8aadaWgaaqaaKqzadWdbiaaiodaaSWdaeqaaKqz GeWdbiabg2da9iaaicdaaaa@3D0F@  (29)

T x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamivaaGcbaqcLbsacqGHciITcaWG4bqcfa4a aSbaaSqaaKqzadGaaG4maaWcbeaaaaqcLbsacqGH9aqpcaaIWaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8oaaa@53EB@  (30)

Derivation of the seqular equation

Making use of (21) and (22) in the boundary conditions (26)–(30) and with the aid of (1)–(3), we obtain a system of five simultaneous homogeneous linear equations

j=1 5 Q ij B j =0fori=1,2,3,4,5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamyuaKqbaoaaBaaaleaajugWaiaadMgacaWGQbaaleqa aKqzGeGaamOqaKqbaoaaBaaaleaajugWaiaadQgaaSqabaaabaqcLb macaWGQbGaeyypa0JaaGymaaWcbaqcLbmacaaI1aaajugibiabggHi LdGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaadM gacaqG9aGaaeymaiaabYcacaqGYaGaaeilaiaabodacaqGSaGaaein aiaabYcacaqG1aaaaa@70D9@  (31)

where

Q 1j ={ p 1 m j 2 ξ 2 p 2 + p 3 r j + p 4 s j h j ,forj=1,2,3,4 ( p 1 p 2 )iξ m j ,forj=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb WcdaWgaaqaaKqzadGaaGymaiaadQgaaSqabaqcLbsacqGH9aqpjuaG daGabaqcLbsaeaqabOqaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaig daaSqabaqcLbsacaWGTbWcdaqhaaqaaKqzadGaamOAaaWcbaqcLbma caaIYaaaaKqzGeGaeyOeI0IaeqOVdGxcfa4aaWbaaSqabeaajugWai aaikdaaaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaGOmaaWcbeaajugi biabgUcaRiaadchalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaam OCaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacqGHRaWkcaWG Wbqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiaadohajuaGda WgaaWcbaqcLbmacaWGQbaaleqaaKqzGeGaeyOeI0IaamiAaSWaaSba aeaajugWaiaadQgaaSqabaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGMbGaae4Baiaabkha caaMc8UaaGPaVlaaykW7caWGQbGaeyypa0JaaGymaiaacYcacaaIYa GaaiilaiaaiodacaGGSaGaaGinaaGcbaqcLbsacaGGOaGaamiCaSWa aSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHsislcaWGWbWcdaWgaa qaaKqzadGaaGOmaaWcbeaajugibiaacMcacaWGPbGaeqOVdGNaamyB aKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabAgacaqG VbGaaeOCaiaaykW7caaMc8UaaGPaVlaadQgacqGH9aqpcaaI1aaaaO Gaay5Eaaaaaa@DE33@ (32)

Q 2j ={ 2iξ m j ,forj=1,2,3,4 ( m j 2 + ξ 2 ),forj=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb WcdaWgaaqaaKqzadGaaGOmaiaadQgaaSqabaqcLbsacqGH9aqpjuaG daGabaqcLbsaeaqabOqaaKqzGeGaaGOmaiaadMgacqaH+oaEcaWGTb WcdaWgaaqaaKqzadGaamOAaaWcbeaajugibiaaykW7caGGSaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVl aaykW7caWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaioda caGGSaGaaGinaaGcbaqcLbsacaGGOaGaamyBaSWaa0baaeaajugWai aadQgaaSqaaKqzadGaaGOmaaaajugibiabgUcaRiabe67a4Lqbaoaa CaaaleqabaqcLbmacaaIYaaaaKqzGeGaaiykaiaacYcacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaabAgacaqGVbGaaeOCaiaayk W7caaMc8UaaGPaVlaadQgacqGH9aqpcaaI1aaaaOGaay5Eaaaaaa@A39D@  (33)

Q 3j ={ m j ( p 5 r j + p 6 s j ),forj=1,2,3,4 0,forj=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb WcdaWgaaqaaKqzadGaaG4maiaadQgaaSqabaqcLbsacqGH9aqpjuaG daGabaqcLbsaeaqabOqaaKqzGeGaeyOeI0IaamyBaSWaaSbaaeaaju gWaiaadQgaaSqabaqcLbsacaGGOaGaamiCaKqbaoaaBaaaleaajugW aiaaiwdaaSqabaqcLbsacaWGYbWcdaWgaaqaaKqzadGaamOAaaWcbe aajugibiabgUcaRiaadchalmaaBaaabaqcLbmacaaI2aaaleqaaKqz GeGaam4CaSWaaSbaaeaajugWaiaadQgaaSqabaqcLbsacaGGPaGaai ilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqG MbGaae4BaiaabkhacaaMc8UaaGPaVlaaykW7caWGQbGaeyypa0JaaG ymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaGinaaGcbaqcLbsa caaMc8UaaGPaVlaaykW7caaIWaGaaiilaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaabAgacaqGVbGaaeOCaiaaykW7caaMc8UaaGPaVlaadQgacqGH 9aqpcaaI1aaaaOGaay5Eaaaaaa@B7AD@ (34)

Q 4j ={ m j ( p 6 r j + p 7 s j ),forj=1,2,3,4 0,forj=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb WcdaWgaaqaaKqzadGaaGinaiaadQgaaSqabaqcLbsacqGH9aqpjuaG daGabaqcLbsaeaqabOqaaKqzGeGaeyOeI0IaamyBaSWaaSbaaeaaju gWaiaadQgaaSqabaqcLbsacaGGOaGaamiCaKqbaoaaBaaaleaajugW aiaaiAdaaSqabaqcLbsacaWGYbqcfa4aaSbaaSqaaKqzadGaamOAaa WcbeaajugibiabgUcaRiaadchalmaaBaaabaqcLbmacaaI3aaaleqa aKqzGeGaam4CaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsaca GGPaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaaykW7caWGQbGaey ypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaGinaaGc baqcLbsacaaMc8UaaGPaVlaaykW7caaIWaGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaa ykW7caWGQbGaeyypa0JaaGynaaaakiaawUhaaaaa@BA57@   (35)

Q 5j ={ h j ,forj=1,2,3,4 0,forj=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb WcdaWgaaqaaKqzadGaaGynaiaadQgaaSqabaqcLbsacqGH9aqpjuaG daGabaqcLbsaeaqabOqaaKqzGeGaamiAaKqbaoaaBaaaleaajugWai aadQgaaSqabaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaaykW7caWG QbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaG inaaGcbaqcLbsacaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8Ua aGPaVlaaykW7caWGQbGaeyypa0JaaGynaaaakiaawUhaaaaa@8CCC@  (36)

where p 1 = λ+2μ β T 0 , p 2 = λ β T 0 , p 3 = b α 1 β T 0 κ 1 ω 1 2 , p 4 = d α 1 β T 0 κ 1 ω 1 2 , p 5 = α 1 κ 1 ω 1 2 , p 6 = b 1 α 1 α κ 1 ω 1 2 , p 7 = γ α 1 α κ 1 ω 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajugibiabeU7aSjabgUcaRiaaikdacqaH8oqBaOqaaKqzGeGaeq OSdiMaamivaSWaaSbaaeaajugWaiaaicdaaSqabaaaaKqzGeGaaiil aiaaykW7caaMc8UaaGPaVlaaykW7caWGWbqcfa4aaSbaaSqaaKqzad GaaGOmaaWcbeaajugibiabg2da9KqbaoaalaaakeaajugibiabeU7a SbGcbaqcLbsacqaHYoGycaWGubqcfa4aaSbaaSqaaKqzadGaaGimaa WcbeaaaaqcLbsacaGGSaGaaGPaVlaadchalmaaBaaabaqcLbmacaaI ZaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOyaiabeg 7aHTWaaSbaaeaajugWaiaaigdaaSqabaaakeaajugibiabek7aIjaa dsfajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaeqOUdS2cda WgaaqaaKqzadGaaGymaaWcbeaajugibiabeM8a3TWaa0baaeaajugW aiaaigdaaSqaaKqzadGaaGOmaaaaaaqcLbsacaGGSaGaaGPaVlaayk W7caaMc8UaamiCaKqbaoaaBaaaleaajugWaiaaisdaaSqabaqcLbsa cqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGKbGaeqySde2cdaWgaaqaaK qzadGaaGymaaWcbeaaaOqaaKqzGeGaeqOSdiMaamivaSWaaSbaaeaa jugWaiaaicdaaSqabaqcLbsacqaH6oWAlmaaBaaabaqcLbmacaaIXa aaleqaaKqzGeGaeqyYdC3cdaqhaaqaaKqzadGaaGymaaWcbaqcLbma caaIYaaaaaaajugibiaacYcacaaMc8UaaGPaVlaaykW7caWGWbWcda WgaaqaaKqzadGaaGynaaWcbeaajugibiabg2da9Kqbaoaalaaakeaa jugibiabeg7aHTWaaSbaaeaajugWaiaaigdaaSqabaaakeaajugibi abeQ7aRTWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqaHjpWDlmaa DaaabaqcLbmacaaIXaaaleaajugWaiaaikdaaaaaaKqzGeGaaiilai aaykW7caaMc8UaaGPaVlaadchalmaaBaaabaqcLbmacaaI2aaaleqa aKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOyaSWaaSbaaeaaju gWaiaaigdaaSqabaqcLbsacqaHXoqyjuaGdaWgaaWcbaqcLbmacaaI XaaaleqaaaGcbaqcLbsacqaHXoqycqaH6oWAlmaaBaaabaqcLbmaca aIXaaaleqaaKqzGeGaeqyYdC3cdaqhaaqaaKqzadGaaGymaaWcbaqc LbmacaaIYaaaaaaajugibiaacYcacaWGWbqcfa4aaSbaaSqaaKqzad GaaG4naaWcbeaajugibiabg2da9Kqbaoaalaaakeaajugibiabeo7a Njabeg7aHTWaaSbaaeaajugWaiaaigdaaSqabaaakeaajugibiabeg 7aHjabeQ7aRTWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqaHjpWD lmaaDaaabaqcLbmacaaIXaaaleaajugWaiaaikdaaaaaaaaa@EEB9@  

The system of Eqs.(31) has a non–trivial solution if the determinant of the unknowns B j (j=1,2,3,4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb WcdaWgaaqaaKqzadGaamOAaaWcbeaajugibiaaykW7caGGOaGaamOA aiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaais dacaGGPaaaaa@440B@  vanishes i.e.

| Q ij | 5×5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamyuaKqbaoaaBaaaleaajugibiaadMgajugWaiaadQga aSqabaaakiaawEa7caGLiWoalmaaBaaabaqcLbmacaaI1aGaey41aq RaaGynaaWcbeaajugibiabg2da9iaaicdaaaa@46C8@ (37)

Particular case

If b 1 =γ= α 3 = α 2 =d= γ 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9iabeo7aNjab g2da9iabeg7aHTWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGH9a qpcqaHXoqylmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Ja amizaiabg2da9iabeo7aNLqbaoaaBaaaleaajugWaiaaikdaaSqaba qcLbsacqGHsgIRcaaIWaaaaa@51F5@ , Eq. (37) yields the expressions for thermoelastic material with voids.

Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical data is given by Sherief et al.,41 as,

λ=7.76 × 10 10 N m 2 ,  C * =3.831× 10 3 m 2 s 2 K 1 ,μ=3.86 × 10 10 N m 2 , K * =3.86× 10 3 N s 1 K 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH7oaBcqGH9aqpcaaI3aGaaiOlaiaaiEdacaaI2aGaaiiO aiabgEna0kaaigdacaaIWaWcpaWaaWbaaeqabaqcLbmapeGaaGymai aaicdaaaqcLbsacaWGobGaamyBaSWdamaaCaaabeqaaKqzadWdbiab gkHiTiaaikdaaaqcLbsacaGGSaGaaiiOaiaacoeal8aadaahaaqabe aajugWa8qacaGGQaaaaKqzGeGaeyypa0JaaG4maiaac6cacaaI4aGa aG4maiaaigdacqGHxdaTcaaIXaGaaGimaKqba+aadaahaaWcbeqaaK qzadWdbiaaiodaaaqcLbsacaWGTbWcpaWaaWbaaeqabaqcLbmapeGa aGOmaaaajugibiaadohal8aadaahaaqabeaajugWa8qacqGHsislca aIYaaaaKqzGeGaam4saSWdamaaCaaabeqaaKqzadWdbiabgkHiTiaa igdaaaqcLbsacaGGSaGaeqiVd0Maeyypa0JaaG4maiaac6cacaaI4a GaaGOnaiaacckacqGHxdaTcaaIXaGaaGimaSWdamaaCaaabeqaaKqz adWdbiaaigdacaaIWaaaaKqzGeGaamOtaiaad2gajuaGpaWaaWbaaS qabeaajugWa8qacqGHsislcaaIYaaaaKqzGeGaaiilaiaacUeajuaG daahaaWcbeqaaKqzadGaaiOkaaaajugibiabg2da9iaaiodacaGGUa GaaGioaiaaiAdacqGHxdaTcaaIXaGaaGimaSWdamaaCaaabeqaaKqz adWdbiaaiodaaaqcLbsacaWGobGaam4CaSWdamaaCaaabeqaaKqzad WdbiabgkHiTiaaigdaaaqcLbsacaWGlbWcpaWaaWbaaeqabaqcLbma peGaeyOeI0IaaGymaaaajugibiaacYcaaaa@95DB@

ω=1× 10 11 s 1 ,  T 0 =0.293 × 10 3 K, α t =1.78× 10 5 K 1  ,t=0.1s,ρ=8.954× 10 3 Kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqGjpGaeyypa0JaaGymaiabgEna0kaaigdacaaIWaqcfa4d amaaCaaaleqabaqcLbmapeGaaGymaiaaigdaaaqcLbsacaqGZbWcpa WaaWbaaeqabaqcLbmapeGaeyOeI0IaaGymaaaajugibiaacYcacaGG GcGaamivaSWdamaaBaaabaqcLbmapeGaaGimaaWcpaqabaqcLbsape Gaeyypa0JaaGimaiaac6cacaaIYaGaaGyoaiaaiodacaGGGcGaey41 aqRaaGymaiaaicdajuaGpaWaaWbaaSqabeaajugWa8qacaaIZaaaaK qzGeGaam4saiaacYcacqaHXoqyl8aadaWgaaqaaKqzadWdbiaadsha aSWdaeqaaKqzGeWdbiabg2da9iaaigdacaGGUaGaaG4naiaaiIdacq GHxdaTcaaIXaGaaGimaKqba+aadaahaaWcbeqaaKqzadWdbiabgkHi TiaaiwdaaaqcLbsacaWGlbqcfa4damaaCaaaleqabaqcLbmapeGaey OeI0IaaGymaaaajugibiaacckacaGGSaGaamiDaiabg2da9iaaicda caGGUaGaaGymaiaadohacaGGSaGaeqyWdiNaeyypa0JaaGioaiaac6 cacaaI5aGaaGynaiaaisdacqGHxdaTcaaIXaGaaGimaSWdamaaCaaa beqaaKqzadWdbiaaiodaaaqcLbsacaWGlbGaam4zaiaad2gal8aada ahaaqabeaajugWa8qacqGHsislcaaIZaaaaaaa@8994@

Following Khalili,42 the double porous parameters are taken as,

α 2 =2.4 × 10 10 N m 2 , α 3 =2.5 × 10 10 N m 2 ,γ=1.1× 10 5 N,α=1.3× 10 5  N, γ 1 =0.16× 10 5 N m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHXoqyjuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9iaaikdacaGGUaGaaGinaiaacckacqGHxdaTca aIXaGaaGimaKqba+aadaahaaWcbeqaaKqzadWdbiaaigdacaaIWaaa aKqzGeGaamOtaiaad2gal8aadaahaaqabeaajugWa8qacqGHsislca aIYaaaaKqzGeGaaiilaiabeg7aHTWdamaaBaaabaqcLbmapeGaaG4m aaWcpaqabaqcLbsapeGaeyypa0JaaGOmaiaac6cacaaI1aGaaiiOai abgEna0kaaigdacaaIWaWcpaWaaWbaaeqabaqcLbmapeGaaGymaiaa icdaaaqcLbsacaWGobGaamyBaSWdamaaCaaabeqaaKqzadWdbiabgk HiTiaaikdaaaqcLbsacaGGSaGaeq4SdCMaeyypa0JaaGymaiaac6ca caaIXaGaey41aqRaaGymaiaaicdal8aadaahaaqabeaajugWa8qacq GHsislcaaI1aaaaKqzGeGaamOtaiaacYcacqaHXoqycqGH9aqpcaaI XaGaaiOlaiaaiodacqGHxdaTcaaIXaGaaGimaSWdamaaCaaabeqaaK qzadWdbiabgkHiTiaaiwdaaaGaaiiOaKqzGeGaamOtaiaacYcacqaH ZoWzl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabg2 da9iaaicdacaGGUaGaaGymaiaaiAdacqGHxdaTcaaIXaGaaGimaSWd amaaCaaabeqaaKqzadWdbiaaiwdaaaqcLbsacaWGobGaamyBaKqba+ aadaahaaWcbeqaaKqzadWdbiabgkHiTiaaikdaaaqcLbsacaGGSaaa aa@95BA@

b 1 =0.12× 10 5  N,d=0.1× 10 10 N m 2 , γ 2 =0.219× 10 5 N m 2 , κ 1 =0.1456× 10 12 N m 2 s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGIbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugi b8qacqGH9aqpcaaIWaGaaiOlaiaaigdacaaIYaGaey41aqRaaGymai aaicdajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislcaaI1aaaaKqz GeGaaiiOaiaad6eacaGGSaGaamizaiabg2da9iaaicdacaGGUaGaaG ymaiabgEna0kaaigdacaaIWaWcpaWaaWbaaeqabaqcLbmapeGaaGym aiaaicdaaaqcLbsacaWGobGaamyBaKqba+aadaahaaWcbeqaaKqzad WdbiabgkHiTiaaikdaaaqcLbsapaGaaiila8qacqaHZoWzl8aadaWg aaqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabg2da9iaaicdaca GGUaGaaGOmaiaaigdacaaI5aGaey41aqRaaGymaiaaicdal8aadaah aaqabeaajugWa8qacaaI1aaaaKqzGeGaamOtaiaad2gal8aadaahaa qabeaajugWa8qacqGHsislcaaIYaaaaKqzGeGaaiilaiabeQ7aRLqb a+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaeyypa0 JaaGimaiaac6cacaaIXaGaaGinaiaaiwdacaaI2aGaey41aqRaaGym aiaaicdajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislcaaIXaGaaG Omaaaajugibiaad6eacaWGTbWcpaWaaWbaaeqabaqcLbmapeGaeyOe I0IaaGOmaaaajugibiaadohal8aadaahaaqabeaajugWa8qacaaIYa aaaKqzGeGaaiilaaaa@8D80@

b=0.9× 10 10 N m 2  , α 1 =2.3× 10 10  N m 2 ,  κ 2 =0.1546× 10 12 N m 2 s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGIbGaeyypa0JaaGimaiaac6cacaaI5aGaey41aqRaaGym aiaaicdajuaGpaWaaWbaaSqabeaajugWa8qacaaIXaGaaGimaaaaju gibiaad6eacaWGTbWcpaWaaWbaaeqabaqcLbmapeGaeyOeI0IaaGOm aaaajugibiaacckacaGGSaGaeqySde2cpaWaaSbaaeaajugWa8qaca aIXaaal8aabeaajugib8qacqGH9aqpcaaIYaGaaiOlaiaaiodacqGH xdaTcaaIXaGaaGimaSWdamaaCaaabeqaaKqzadWdbiaaigdacaaIWa aaaiaacckajugibiaad6eacaWGTbqcfa4damaaCaaaleqabaqcLbma peGaeyOeI0IaaGOmaaaajugibiaacYcacaqGGcGaeqOUdS2cpaWaaS baaeaajugWa8qacaaIYaaal8aabeaajugib8qacqGH9aqpcaaIWaGa aiOlaiaaigdacaaI1aGaaGinaiaaiAdacqGHxdaTcaaIXaGaaGimaK qba+aadaahaaWcbeqaaKqzadWdbiabgkHiTiaaigdacaaIYaaaaKqz GeGaamOtaiaad2gajuaGpaWaaWbaaSqabeaajugWa8qacqGHsislca aIYaaaaKqzGeGaam4CaSWdamaaCaaabeqaaKqzadWdbiaaikdaaaaa aa@7D21@

Figure 1–3 depicts the variation of determinant of Rayleigh wave secular equation, Rayleigh wave velocity and Attenuation coefficient w.r.t ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3849@  for different values of c. In all these figs. solid line, small dashes lines and big dashes line correspond to the value of c=0.1,0.12and0.13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaeyypa0JaaGimaiaac6cacaaIXaGaaiilaiaaicdacaGGUaGaaGym aiaaikdacaaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaicdacaGGUa GaaGymaiaaiodaaaa@46E3@  respectively. From Figure 1, it is noticed that determinant of Rayleigh wave secular equation is equal to zero for the region 0ξ<0.01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaeyizImQaeqOVdGNaeyipaWJaaGimaiaac6cacaaIWaGaaGymaaaa @3E9D@ ,then it slightly increases and decreases for the region 0.01ξ<0.022 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIXaGaeyizImQaeqOVdGNaeyipaWJaaGimaiaa c6cacaaIWaGaaGOmaiaaikdaaaa@4181@ , again becomes almost zero for the region 0.022ξ<0.043 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIYaGaaGOmaiabgsMiJkabe67a4jabgYda8iaa icdacaGGUaGaaGimaiaaisdacaaIZaaaaa@4241@ and then increase for the remaining region as ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3849@ increases. It is also evident from the fig. that magnitude of the determinant of Rayleigh wave secular equation increases with the increase in the value of c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ . Figure 2 shows that Rayleigh wave velocity initially increases and decreases with very small magnitude for the region, become almost stationary near the boundary surface for the region and then increases sharply with ads .It is obvious that magnitude values of Rayleigh wave velocity also increase as value of increases. It is found from Figure 3 that value of attenuation coefficient initially decreases and increases for the region, become almost stationary near the boundary surface for the region and then start to increase sharply as. Also, it is clear that the attenuation coefficient increases monotonically with the increase in the value of.

Figure 1 Determinant of Rayleigh waves secular equation with varies values of c with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOVdG haaa@383D@ .
Figure 2 Rayleigh waves velocity with varies values of c with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOVdG haaa@383D@ .
Figure 3 Attenuation coefficient with varies values of c with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOVdG haaa@383D@ .

Conclusion

In this work, a problem of propagation of Rayleigh waves in thermoelastic material with double porosity structure has been investigated. Secular equations are derived mathematically for the boundary conditions. The values of determinant of Rayleigh wave secular equation, Rayleigh wave velocity and attenuation coefficient with respect to wave number are computed numerically and depicted graphically.

From the theoretical and numerical discussion we can draw the following concluding remarks:

  1. It is observed that porosity has a significant effect on the propagation of Rayleigh waves.
  2. It is found that values of determinant of Rayleigh wave secular equation, Rayleigh wave velocity and Attenuation coefficient, all have similar trend of variation for all the values of phase velocity.
  3. The magnitude of the determinant of Rayleigh wave secular equation, Rayleigh wave velocity and Attenuation coefficient increase with the increase in the value of phase velocity for higher values of wave number.

Acknowledgement

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Biot MA. General theory of three–dimensional consolidation. J Appl Phys. 1941;12(2):155–164.
  2. Barenblatt GI, Zheltov IP, Kochina IN. Basic Concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J Appl Math Mech. 1960;24(5):1286–1303.
  3. Wilson RK, Aifantis EC. On the theory of consolidation with double porosity. Int J Engg Sci. 1982;20(9):1009–1035.
  4. Khaled MY, Beskos DE, Aifantis EC. On the theory of consolidation with double porosity–III. Int J Numer Analy Meth Geomech. 1984;8:101–123.
  5. Wilson RK, Aifantis EC. A Double Porosity Model for Acoustic Wave propagation in fractured porous rock. Int J Engg Sci. 1984;22(8–10):1209–1227.
  6. Beskos DE, Aifantis EC. On the theory of consolidation with Double Porosity–II. Int J Engg Sci.1986;24(11):1697–1716.
  7. Aifantis EC. Introducing a multi–porous medium. Developments in Mechanics. 1977;8:209–211.
  8. Aifantis EC. On the response of fissured rocks. Developments in Mechanics. 1979;10:249–253.
  9. Aifantis EC. On the Problem of Diffusion in Solids. Acta Mechanica. 1980;37(3–4):265–296.
  10. Aifantis EC. The mechanics of diffusion in solids. TAM Report No. 440, Dept. of Theor Appl Mech, University of Illinois, Urbana, Illinois, India; 1980.
  11. Khalili N, Selvadurai APS. A Fully Coupled Constitutive Model for Thermo–hydro –mechanical Analysis in Elastic Media with Double Porosity. Geophys Res Lett. 2003;30(24):2268–2271.
  12. Straughan B. Stability and Uniqueness in Double Porosity Elasticity. Int J Eng Sci. 2013;65:1–8.
  13. Svanadze M. Fundamental solution in the theory of consolidation with double porosity. J Mech Behav Mater. 2005;16:123–130.
  14. Svanadze M. Dynamical Problems on the Theory of Elasticity for Solids with Double Porosity. Proc Appl Math Mech. 2010;10:209–310.
  15. Svanadze M. Plane Waves and Boundary Value Problems in the Theory of Elasticity for solids with Double Porosity. Acta Appl Math. 2012;122(1):461–470.
  16. Svanadze M. On the Theory of Viscoelasticity for materials with Double Porosity. Disc and Cont Dynam Syst Ser B 2014;9(7):2335–2352.
  17. Svanadze M. Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica. 2014;49(9):2099–2108.
  18. Rayleigh L. On waves propagated along the plane surface of an elastic solid. Proc London Math Soc. 1885;17(1)4–11.
  19. Lockett FJ. Effect of thermal properties of a solid on the velocity of Rayleigh waves. J of Mech Phys Solids. 1958;7(1):71–75.
  20. Chadwick P, Windle DW. Propagation of Rayleigh waves along isothermal and insulated boundaries. Proc R Soc Lond A. 1964;280(1380):47–71.
  21. Kumar R, Kansal T. Effect of rotation on Rayleigh waves in transversely isotropic generalized thermoelastic diffusive half–space. Arch Mech. 2008;60(5):421–433.
  22. Kumar R, Kansal T. Propagation of Rayleigh waves in transversely isotropic generalized thermoelastic diffusion. J Engg Phys Thermophys. 2009;82(6):1199–1210.
  23. Sharma JN, Kaur D. Rayleigh waves in rotating thermoelastic solids with voids. Int J Appl Math Mech. 2010;6(3):43–61.
  24. Kumar R, Ahuja S, Garg SK. Rayleigh waves in isotropic micro stretch thermoelastic diffusion solid half–space. L Amer J solid Struct. 2014;11:299–319.
  25. Kumar R ,Gupta V. Rayleigh waves in generalized thermoelastic medium with mass diffusion. Canadian J phys. 2015;93(10):1–11.
  26. Abd–Alla M, Hammad HS, Abo–Dahab SM. Rayleigh waves in a magnetoelastic half–space of orthotropic material under influence of initial stress and gravity field. Appl Math Comp. 2004;154(2);583–597.
  27. Abd–Alla N, Abo–Dahab SM. Rayleigh waves in magneto–thermo–viscoelastic solid with thermal relaxation times. Appl Math Comp. 2004;149(3):861–877.
  28. Abd–Alla M, Abo–Dahab SM, Hammad HA, et al. On generalized magneto–thermoelastic Rayleigh waves in a granular medium under influence of gravity field and initial stress, J Vib Control. 2011;17(1):115–128.
  29. Abd–Alla M, Hammad HA, Abo–Dahab SM. Propagation of Rayleigh waves in generalized magneto–thermoelastic orthotropic material under initial stress and gravity field. Appl Math Model. 2011;35(6):2981–3000.
  30. Abd–Alla M, Abo–Dahab SM, Bayones FS. Rayleigh waves in generalized magneto thermo–viscoelastic granular medium under the influence of rotation, gravity field, and initial stress. Math Prob Eng. 2011;1– 47.
  31. Abd–Alla M, Abo–Dahab SM, Al–Thamali TA. Propagation of Rayleigh waves in a rotating orthotropic material elastic half–space under initial stress and gravity. J Mech Sci Tech. 2012;26 (9):2815–2823.
  32. Abd–Alla M, SM Abo–Dahab SM, Bayones FS. Propagation of Rayleigh waves in magneto–thermo–elastic half–space of a homogeneous orthotropic material under the effect of the rotation, initial stress and gravity field. J Vib Control. 2013;19(9):1395–1420.
  33. Abd–Alla M, Aftab Khan, Abo–Dahab SM. Rotational effect on Rayleigh, Love and Stoneley waves in fibre–reinforced anisotropic general viscoelastic media of higher and fraction orders with voids. J of Mech Sci Tech. 2015;29(10):4289–4297.
  34. Singh S, Kumari J, Singh. Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magneto–thermoelastic half space. J of Engg phys and Thermophys. 2014;87(6):1539–1547.
  35. Kumar R, Gupta V. Rayleigh waves in generalized thermoelastic medium with mass diffusion. Canad J of Phys. 2015;93(10):1039–1049.
  36. Biswas S, Mukhopadhay B, Shaw S. Rayleigh surface wave propagation in orthotropic thermoelastic solids under three–phase lag model. J Therm Stresses. 2017;40(4):403–419.
  37. Singh S, Kumari J, Singh. Propagation of Rayleigh wave in two–temperature dual–phase–lag thermoelasticity. Mech Mechan Engg. 2017;21(1):105–116.
  38. Biswas S, Abo–Dahab SM. Effect of phase–lags on Rayleigh wave propagation in initially stressed magneto–thermoelastic orthotropic medium. Applied Mathematical Modeling. 2018;59:713–727.
  39. Hussien NS, Bayones FS. Effect of rotation on Rayleigh waves in a fiber–reinforced solid anisotropic magneto–thermo–viscoelastic media. Mechanics of Advanced materials and Structures. 2018.
  40. Iesan D, Quintanilla R. On a theory of thermoelastic materials with a double porosity structure. J Therm Stresses. 2014;37(9):1017–1036.
  41. Sherief H, Saleh H. A half space problem in the theory of generalized thermoelastic diffusion. Int J Solid and Structures. 2005;42(15):4484–4493.
  42. Khalili N. Coupling effects in double porosity media with deformable matrix. Geophys Res Lett. 2003;30(22):2153.
Creative Commons Attribution License

©2018 Kumar, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.