Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Submit manuscript...
Journal of
eISSN: 2377-4282

Nanomedicine Research

Research Article Volume 4 Issue 3

A New Nonrelativistic Investigation for Interactions in One-Electron Atoms With Modified Inverse-Square Potential: Noncommutative Two and Three Dimensional Space Phase Solutions at Planck’s and Nano-Scales

Abdelmadjid Maireche

Department of Physics, University of M'sila M'sila, Algeria

Correspondence: Abdelmadjid Maireche, Laboratory of Physics and Material Chemistry, Physics department, University of M'sila-M’sila Algeria, Tel +213664834317

Received: May 30, 2016 | Published: November 28, 2016

Citation: Maireche A (2016) A New Nonrelativistic Investigation for Interactions in One-Electron Atoms With Modified Inverse-Square Potential: Noncommutative Two and Three Dimensional Space Phase Solutions at Planck’s and Nano-Scales. J Nanomed Res 4(3): 00090. DOI: . DOI: 10.15406/jnmr.2016.04.00090

Download PDF

Abstract

In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of non–relativistic quantum spectrum systems for modified inverse–square potential (m.i.s.) potential is discussed by means Boopp’s shift method instead to solving deformed Schrödinger equations with star product, in the framework of both noncommutativity (two –three) dimensional real space and phase (NC: 2D–RSP) and (NC: 3D–RSP). The exact corrections for excited states are found straightforwardly for interactions in one–electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimals parameters ( , ) and ( , ), which are induced by position–position and momentum–momentum noncommutativity, (NC: 2D–RSP) and (NC: 3D–RSP), respectively, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number) and we have also shown that, the usual states in ordinary two and three dimensional spaces are cancelled and has been replaced by new degenerated sub–states in the new quantum symmetries of (NC: 2D–RSP) and (NC: 3D–RSP).

Keywords: the inverse–square potential, noncommutative space, phase, star product, boopp’s shift method.

Abbreviations

MIS: Modified Inverse Square potential; NC: 2D–3D–RSP: Noncommutativity (two–three) Dimensional Real Space Phase; CCRs: Canonical Commutations Relations; NNCCRs: New Noncommutative Canonical Commutations Relations; MSE: Modified Schrödinger Equations.

Introduction

It is well–known, that, the modern quantum mechanics, satisfied a big successful in the last few years, for describing atoms, nuclei, and molecules and their spectral behaviors based on three fundamental equations: Schrödinger, Klein–Gordon and Dirac. Schrödinger equation rest the first and the latest in terms of interest, it is playing a crucial role in devising well–behaved physical models in different fields of physics and chemists, many potentials are treated within the framework of nonrelativistic quantum mechanics based on this equation in two, three and D generalized spaces.1–32 the quantum structure based to the ordinary canonical commutations relations (CCRs) in both Schrödinger and Heisenberg (the operators are depended on time) pictures (CCRs), respectively, as:

[xi,pj]=iδij                 and    [xi,xj] = [pi,pj] = 0   .…(1.1)

[xi(t),pj(t)] = iδij           and    [xi(t),xj(t)] = [pi(t),pj(t)] = 0 … (1.2)

Where the two operators (xi(t),pi(t)) in Heisenberg picture are related to the corresponding two operators (xi,pi)  in Schrödinger picture from the two projections relations:

xi(t)=exp(iH(tt0))xiexp(iH(tt0))    and    pi(t)=exp(iH(tt0))piexp(iH(tt0))   …(1.3)

Here denote to the ordinary quantum Hamiltonian operator, recently, much considerable effort has been expanded on the solutions of Schrödinger, Dirac and Klein–Gordon equations to noncommutative quantum mechanics, the present paper investigates first the present new quantum structure which based to new noncommutative canonical commutations relations (NNCCRs) in both Schrödinger and Heisenberg pictures, respectively, as follows.33–60

[ˆxi,ˆpj]=iδij,[ˆxi,ˆxj]=iθij          and     [ˆpi,ˆpj]=iˉθij[ˆxi(t),ˆpj(t)]=iδij,[ˆxi(t),ˆxj(t)]=iθij and [ˆpi(t),ˆpj(t)]=iˉθij …. (1.4)

Where the two new operators (ˆxi(t),ˆpi(t)) in Heisenberg picture are related to the corresponding two new operators (ˆxi,ˆpi)  in Schrödinger picture from the two projections relations:

ˆxi(t)=exp(iHnc(tt0))*ˆxi*exp(iHnc(tt0))    and   ˆpi(t)=exp(iHnc(tt0))*ˆpi*exp(iHnc(tt0))   (1.5)

 Here Hnc  denote to the new quantum Hamiltonian operator in the symmetries of (NC: 2D–RSP) and (NC: 3D–RSP). The very small two parameters θμν  and ˉθμν  (compared to the energy) are elements of two ant symmetric real matrixes and ()  denote to the new star product, which is generalized between two arbitrary functions f(x,p)  and g(x,p)  to (fg)(x,p)  instead of the usual product (fg)(x,p)  in ordinary (two–three) dimensional spaces.39–63

(fg)(x,p)  exp(i2θμνxμxν+i2ˉθμνpμpν)(fg)(x,p) = (fgi2θμνxμfxνgi2ˉθμνpμfpνg)(x,p)|(xμ=xν,pμ=pν)+O(θ2,ˉθ2)   .(2)

Where the two covariant derivatives (xμf(x,p),pμf(x,p))  are denotes to the (f(x,p)xμ,f(x,p)pμ) , respectively, and the two following terms [i2θμνxμf(x,p)xνg(x,p) , i2ˉθμνpμf(x,p)pνg(x,p) ] are induced by (space–space) and (phase–phase) noncommutativity properties, respectively, a Boopp's shift method can be used, instead of solving any quantum systems by using directly star product procedure.39–66

[ˆxi,ˆxj]=iθijand[ˆpi,ˆpj]=iˉθij ...(3.1)

The, four generalized positions and momentum coordinates in the noncommutative quantum mechanics (ˆx,ˆy)  and (ˆpx,ˆpy)  are depended with corresponding four usual generalized positions and momentum coordinates in the usual quantum mechanics (x,y)  and (px,py)  by the following four relations.32–55

{ˆx=xθ2py,ˆy=y+θ2pxˆpx=px+ˉθ2y andˆpy=pxˉθ2x  …(3.2)

{ˆx=xθ122pyθ132pz,ˆy=yθ212pxθ232pzand   ˆz=zθ312pxθ322py …(3.3)

 and

{ˆpx=pxˉθ122yˉθ132z,ˆpy=pyˉθ212xˉθ232zand    ˆpz=pzˉθ312xˉθ322y …(3.4)

 The non–vanish 9–commutators in (NC–2D: RSP) and (NC–3D: RSP) can be determined as follows:

[ˆx,ˆpx]=[ˆy,ˆpy]=i,[ˆx,ˆy]=iθ12             and                    [ˆpx,ˆpy]=iˉθ12 …(3.5)

and

[ˆx,ˆpx]=[ˆy,ˆpy]=[ˆz,ˆpz]=i,[ˆx,ˆy]=iθ12,[ˆx,ˆz]=iθ13,[ˆy,ˆz]=iθ23[ˆpx,ˆpy]=iˉθ12,[ˆpy,ˆpz]=iˉθ23,[ˆpx,ˆpz]=iˉθ13 ….(3.6)

Which allow us to getting the two operators ˆr2  and ˆp2  on a noncommutative two dimensional space–phase as follows.32–48

ˆr2=r2θLz    and    ˆp2=p2+ˉθLz  …(4.1)

ˆr2=r2LΘ       and                ˆp22μ = p22μ + Lˉθ2μ  …(4.2)

Where the two couplings LΘ  and  are given by, respectively:

LΘLxΘ12+LyΘ23+LzΘ13    and    LˉθLxˉθ12+Lyˉθ23+Lzˉθ13 … (5.1)

It is–well known, that, in quantum mechanics, the three components (Lx Ly  , Lz  and ) are determined, in Cartesian coordinates:

Lx=ypzzpy,Ly =zpx-xpz      and     Lz=xpyypx … (5.2)

The study of inverse–square potential has now become a very interest field due to their applications in different fields.1 this work is aimed at obtaining an analytic expression for the eigenenergies of a inverse–square potential in (NC: 2D–RSP) and (NC: 3D–RSP) using the generalization Boopp’s shift method based on mentioned formalisms on above equations to discover the new symmetries and a possibility to obtain another applications to this potential in different fields, it is important to notice that, this potential was studied, in ordinary two dimensional spaces, by authors Shi–Hai Dong and Guo–Hua Sun of the Ref. the Schrödinger equation with a Coulomb plus inverse–square potential in D dimensions.1 The organization scheme of the study is given as follows: In next section, we briefly review the Schrödinger equation with inverse–square potential on based to Ref.1 The Section 3, devoted to studying the (two–three) deformed Schrödinger equation by applying both Boopp's shift method to the inverse–square potential. In the fourth section and by applying standard perturbation theory we find the quantum spectrum of the excited states in (NC–2D: RSP) and (NC–3D: RSP) for spin–orbital interaction. In the next section, we derive the magnetic spectrum for studied potential. In the sixth section, we resume the global spectrum and corresponding noncommutative Hamiltonian for inverse–square potential. Finally, the important results and the conclusions are discussed in last section.

Review the eignenfunctions and the energy eigenvalues for inverse–square potential in ordinary two dimensional spaces

Here we will firstly describe the essential steps, which gives the solutions of time independent Schrödinger equation for a fermionic particle like electron of rest mass and its energy moving in inverse–square potential.1

V(r)=Ar2Br … (6)

Where A and B are two positive constant coefficients. The above potential is the sum of Colombian (Br)  and inverse–square potential (Ar2) , if we insert this potential into the non–relativistic Schrödinger equation; we obtain the following equation, in two and three dimensional spaces, respectively, as follows:

{22m0[1rr(rr)+1r22ϕ2]Ar2+Br}Ψ(r,ϕ)=Ε2dΨ(r,ϕ) … (7.1)

{22m0[1r2r(r2r)+1r2sinθθ(sinθθ)+1r2(sinθ)22ϕ2]Ar2+Br}Ψ(r,θ,ϕ)=Ε3dΨ(r,θ,ϕ) …. (7.2)

Here Ψ(r,ϕ)  and Ψ(r,θ,ϕ)  is the solution in the (2–3) dimensional in (polar and spherical) coordinates, the complete wave function ( Ψ(r,ϕ)  and Ψ(r,θ,ϕ) separated as follows:

Ψ(r,ϕ)=Rl(r)e±iϕ ...(8.1)

and

Ψ(x)=Rl(r)Yll(θ,ϕ)  … (8.2)

Substituting eq. (8.1) and (8.2) into eq. (7.1) and (7.2), we obtain the radial function  satisfied the following equation, in (two–three) dimensional spaces.1

d2Rl(ρ)dρ2+2ρdRl(ρ)dρ+(14+τρ2A+l2ρ2)Rl(r) = 0 …(9.1)

1r2r(r2r)Rl(r)+[2(ΕV(r))l(l+1)r2]Rl(r) = 0 … (9.2)

Hereρ=r8E  and τ=B12E .

The proposed solutions of eqs. (9.1) and (9.2) are determined from the unifed relation:

R1(ρ)=ρλeρ2F(ρ)    (10)

where λ=2D+2A+k22  and k=2l+D2 . We Companie between eqs. (9.1), (9.2) and (10) to obtains.1

ρd2F(ρ)dρ2+(2λ+D1ρ)+dF(ρ)dρ+(τλD12)F(ρ)=0  …(11)

The confluent hypergeometric functions φ(λτ+1/2,2λ+1;ρ)  are present the solutions of eq. (11).1

R(ρ)=Νρλeρ2φ(λτ+(D1)/2,2λ+D1;ρ)  …(12)

The constraint conditions on the potential parameters are determined from relations.1

τλ(D1)/2=n=0,1,2,.......n=n+κ2D/2+2=n+l+1τ=Β12Ε=nl1+λ+(D1)/2  … (13)

The normalized wave functions Ψ(ρ,ϕ)  expressed in terms of the radial functions and spherical harmonic functions read as.1

Ψ(ρ,ϕ)=(4Β2n2m+2s21)((nm1)!(2n2m+2s21)(nm+2s21)!)1/2ρs2eρ2L2s2nm1(ρ)exp(±imϕ) ..(14.1)

Ψ(ρ)=(2Bn)32[(nl1)!2n(n+l)!]12ρleρ2L2l+1nl1(ρ)Yll(θ,ϕ) …(14.2)

And the corresponding eigenvalues Ε(n,l,D)  is determined from relation.1

Ε(n,l,D)=2Β(2n2l1+8Α+κ2)={2Β2(2n2m1+2A+m2)2     forD=22B2{(2n)28Aκ(2n)3+16A2κ3(2n)3+48A2κ2(2n)4...} forD=3   (15)

 The rest of this section is devoted to the reapply of some essential properties of generalized Laguerre polynomials L(β)n(ρ)  which are given by:

L(β)n(ρ)12iexp(ρt1t)(1t)β+1tn+1dt  …(16)

Where  is integer, this can be taking the exciplicitly mathematically forms.1,65,66,67

L(β)n(ρ)=β(β+n+1)n!β(β+1)F11(n,β+1;ρ)  …(17)

The Laguerre polynomials may be defined in terms of hypergeometric functions 1F1(n,β+1;ρ) , specifically the confluent hyper geometric functions, as:

F11(n,β+1;ρ)=n=0a(n)ρnb(n)n! … (18.1)

Where a(n) is the Pochhammer symbol, which can be takes the particulars values a(0)=0 and a(n)=a(a+1).....(a+n1) , it is important to notice that, the hypergeometric functions have another common notation Φ(a,b,ρ)  which considered as a function of a, b=0,1,2,... , and the variable ρ . The generalized Laguerre polynomial can also be defined by the following equation:

L(β)n(ρ)=ni=0(1)i(n+βni)(i)!ρi …(18.2)

Deformed schrödinger equations and modified inverse–square (m.i.s.) potential in both (nc–2d: rsp) and (nc–3d: rsp):

 This section is devoted to constructing of non relativistic modified Schrödinger equations (m.s.e) in both (NC–2D: RSP) and (NC–3D: RSP) for (m.i.s.) potential; to achieve this subject, we apply the essentials following steps.32–48

  1. Ordinary two dimensional Hamiltonian operators ( ˆHis2(pi,xi) , ˆHis3(pi,xi) ) will be replaced by new two dimensional Hamiltonian operators (ˆHnc2is(ˆpi,ˆxi)  , ˆHnc3is(ˆpi,ˆxi) ),
  2. Ordinary complex wave function Ψ(r) will be replacing by new complex wave function Ψ(r) ,
  3. Ordinary energies E(n,l,2) and E(n,l,3)  will be replaced by new values Enc2is(n,l,2,...) and Enc3is(n,l,3,...) , respectively.

And the last step corresponds to replace the ordinary old product by new star product () , which allow us to constructing the modified two dimensional Schrödinger equation in both (NC–2D: RSP) and (NC–3D: RSP) as for (m.i.s.) potential:

ˆHnc2is(ˆpi,ˆxi)Ψ(r)=Enc2is(n,l,2,...)Ψ(r) …. (19.1)

and

ˆHnc3is(ˆpi,ˆxi)Ψ(r)=Enc3is(n,l,3,...)Ψ(r) …(19.2)

In order to use the ordinary product without star product, with new vision, as mentioned before, we apply the Boopp’s shift method on the above eqs. (19.1) and (19.2) to obtain two reduced Schrödinger in both (NC–2D: RSP) and (NC–3D: RSP) for (m.i.s.) potential:

Hnc2is(ˆpi,ˆxi)ψ(r)=Enc2is(n,l,2,...)ψ(r) .... (20.1)

and

Hnc3is(ˆpi,ˆxi)ψ(r)=Enc3is(n,l,3,...)ψ(r) ....(20.2)

Where the new operators of Hamiltonian Hnc2is(pi,xi)  and Hnc3is(ˆpi,ˆxi)  can be expressed in three general varieties: both noncommutative space and noncommutative phase (NC–2D: RSP, NC–3D: RSP), only noncommutative space (NC–2D: RS, NC–3D: RS) and only noncommutative phase (NC: 2D–RP, NC: 3D–RP) as, respectively:

Hnc(23)is(ˆpi,ˆxi)H(px+ˉθ2y,pyˉθ2x,xθ2py,y+θ2px)for NC-2D: RSP and NC-3D: RSP ...(21.1)

Hnc(23)is(ˆpi,ˆxi)H(px,py,xθ2py,y+θ2px) for NC-2D: RS and NC-3D: RS ...(22.2)

Hnc(23)is(ˆpi,ˆxi)H(px+ˉθ2y,pxˉθ2x,x,y) for NC-2D: RP and NC-3D: RP ...(22.3)

In recently work, we are interest with the first variety (21.1), after straightforward calculations, we can obtain the five important terms, which will be use to determine the (m.i.s.) potential in (NC: 2D– RSP) and (NC: 3D–RSP), respectively, as:

Aˆr2=Ar4+AθLzr4,   Bˆr=BrBθLz2r3    and     ˆp22m0=p22m0+Lˉθ2m0 …(23)

and

Aˆr2=Ar4+ALΘr4,   Bˆr=BrBLΘ2r3    and    ˆp22m0=p22m0+ˉθLz2m0 …(24)

Which allow us to obtaining the global potential operator Hnc2is(ˆpi,ˆxi)  and Hnc3is(ˆpi,ˆxi)  for (m.i.s) potential in both (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

Hnc2is(ˆpi,ˆxi)=Ar2Br+p22m0+ˉθLz2m0+(Ar4B2r3)θLz …(25.1)

and

Hnc3is(ˆpi,ˆxi)=Ar2Br+p22m0+Lˉθ2m0+(Ar4B2r3)LΘ …(25.2)

It’s clearly, that the four first terms are given the ordinary inverse–square potential and kinetic energy in (2D–3D) spaces, while the rest terms are proportional’s with infinitesimals parameters (θ , ˉθ ) and (Θ , ˉθ ), thus, we can considered as a perturbations terms, we noted by ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  for (NC: 2D–RSP) and (NC: 3D–RSP) symmetries, respectively, as:

ˆH2pert(r,A,B,θ,ˉθ)=Lzˉθ2m0+(Ar4B2r3)θLz …(26.1)

and

ˆH3pert(r,A,B,Θ,ˉθ)=Lˉθ2m0+(Ar4B2r3)LΘ …(26.2)

The Exact Spin–Orbital Hamiltonian and the Corresponding Spectrum for (m.i.s.) Potential in both (NC: 2D– RSP) and (NC: 3D– RSP) Symmetries for Excited States for One–Electron Atoms

The exact spin–orbital hamiltonian for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for one–electron atoms

 Again, the perturbative two terms ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  can be rewritten to the equivalent physical form for (m.i.p.) potential:

ˆH2pert(r,A,B,θ,ˉθ)={ˉθ2m0+θ(Ar4B2r3)}SL … (26.3)

ˆH3pert(r,A,B,Θ,ˉθ)={ˉθ2m0+Θ(Ar4B2r3)}SL … (26.4)

Furthermore, the above perturbative terms ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  can be rewritten to the following new equivalent form for (m.i.p.) potential:

H2pert(r,A,B,θ,θ)=12{θ2m0+θ(Ar4B2r3)}(J2L2S2)   (27.1)

ˆH3pert(r,A,B,Θ,ˉθ)=12{ˉθ2m0+Θ(Ar4B2r3)}(J2L2S2) … (27.2)

To the best of our knowledge, we just replace the coupling spin–orbital SL  by the expression 12(J2L2S2) , in quantum mechanics. The set ( Hnc(23)is(ˆpi,ˆxi) ,J2 , L2 , S2 and Jz)  forms a complete of conserved physics quantities and the eigenvalues of the spin orbital coupling operator are:

p±(j=l±1/2,l,s=1/2)12{(l+12)(l+12+1)+l(l+1)34  p+  forj= l+12polarizationup(l12)(l12+1)+l(l+1)34  p   forj= l+12polarizationdown … (27.3)

Which allows us to form a diagonal (2×2)  and (3×3) two matrixes, with non null elements are [(ˆHsois)11 and (ˆHsois)22 ] and [(ˆHsois)11 ,(ˆHsois)22 , (ˆHsois)33 ] for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

(Hsoip)11=p+(ˉθ2m0+θ(Ar4B2r3))if j=l+12 spin -up(Hsoip)22=p(ˉθ2m0+θ(Ar4B2r3)) if j=l12 spin -down ....(28.1)

and

(ˆHsois)11=p+{ˉθ2m0+Θ(Ar4B2r3)}if j=l+12 spin up(ˆHsois)22= p{ˉθ2m0+Θ(Ar4B2r3)} ifj = l12 spin down(ˆHsois)33=0  …(28.2)

Substituting two equations (26.1) and (26.2) into two equations (20.1) and (20.12), respectively and then, the radial parts of the modified Schrödinger equations, satisfying the following important two equations:

d2Rl(ρ)dρ2+2ρdRl(ρ)dρ+(14+τρ2A+l2ρ2{ˉθ2m0+θ(Ar4B2r3)}SL)Rl(r) = 0 … (29.1)

and

1r2r(r2r)Rl(r)+[2(Enc3is(n,l,3,...)V(r))l(l+1)r2{ˉθ2m0+Θ(Ar4B2r3)}SL]Rl(r)=0 …(29.2)

for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP), ii is clearly that the above equations including equations (26.1) and (26.2), the perturbative terms of Hamiltonian operator, which we are subject of discussion in next sub–section.

The exact spin–orbital spectrum for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for states for one–electron atoms

 In this sub section, we are going to study the modifications to the energy levels (Encper:u(θ,ˉθ)  ,Encper:D(θ,ˉθ) ) and (Encper:u(Θ,ˉθ) , Encper:D(Θ,ˉθ) ) for spin up and spin down, respectively, at first order of parameters (θ ,ˉθ ) and ( Θ , ˉθ ), for excited states nth , obtained by applying the standard perturbation theory, using eqs. (14.1) (14.2), (27.1) and (27.2) corresponding (NC–2D: RSP) and (NC–3D: RSP), respectively, as:

Encper:u(θ,ˉθ)2p+R*(r)[θ(Ar4B2r3)+ˉθ2m0]R(r)rdr       Sij=l+12Encper:D(θ,ˉθ)2pR*(r)[θ(Ar4B2r3)+ˉθ2m0]R(r)rdr       Sij=l12 … (30.1)

and

Encper:u(Θ,ˉθ)αp+(8E)3/2(2Bn)3(nl1)!2n(n+l)!ρ2l+2eρ[L2l+1nl1(ρ)]2[Θ(A' ….(30.2)

A direct simplification gives:

E ncper:u ( θ, θ ¯ ) 2 p + ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ i=1 2 T i2 + θ ¯ 2 m 0 T 32 ) E ncper:D ( θ, θ ¯ ) 2 p ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ i=1 2 T i2 + θ ¯ 2 m 0 T 32 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqabaqcfa4aaeWaaeaacqaH4oqCcaGGSaGafq iUdeNbaebaaiaawIcacaGLPaaacqGHHjIUdaWcaaqaaiaaikdacqGH pis1caWGWbWaaSbaaeaacqGHRaWkaeqaaaqaamaabmaabaGaeyOeI0 IaaGioaiaadweaaiaawIcacaGLPaaaaaWaaeWaaeaadaWcaaqaaiaa isdacqqHsoGqaeaacaaIYaGaamOBaiabgkHiTiaaikdacaWGTbGaey 4kaSIaaGOmaiaadohadaWgaaqaaiaaikdaaeqaaiabgkHiTiaaigda aaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGOmaaaajuaGdaqada qaamaalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaamyBaiabgkHiTiaa igdaaiaawIcacaGLPaaacaGGHaaabaWaaeWaaeaacaaIYaGaamOBai abgkHiTiaaikdacaWGTbGaey4kaSIaaGOmaiaadohadaWgaaqcfasa aiaaikdaaKqbagqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaqada qaaiaad6gacqGHsislcaWGTbGaey4kaSIaaGOmaiaadohadaWgaaqc fasaaiaaikdaaKqbagqaaiabgkHiTiaaigdaaiaawIcacaGLPaaaca GGHaaaaaGaayjkaiaawMcaamaabmaabaGaeqiUde3aaabCaeaacaWG ubWaaSbaaeaacaWGPbGaeyOeI0IaaGOmaaqabaaajuaibaGaamyAai abg2da9iaaigdaaeaacaaIYaaajuaGcqGHris5aiabgUcaRmaalaaa baGafqiUdeNbaebaaeaacaaIYaWaaubeaeqajuaibaGaaGimaaqcfa yabeaacaWGTbaaaaaacaWGubWaaSbaaKqbGeaacaaIZaGaeyOeI0Ia aGOmaaqcfayabaaacaGLOaGaayzkaaaakeaajuaGcaWGfbWaaSbaaK qbGeaacaWGUbGaam4yaiabgkHiTiaadchacaWGLbGaamOCaiaacQda caWGebaajuaGbeaadaqadaqaaiabeI7aXjaacYcacuaH4oqCgaqeaa GaayjkaiaawMcaaiabggMi6oaalaaabaGaaGOmaiabg+Givlaadcha daWgaaqaaiabgkHiTaqabaaabaWaaeWaaeaacqGHsislcaaI4aGaam yraaGaayjkaiaawMcaaaaadaqadaqaamaalaaabaGaaGinaiabfk5a cbqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaad2gacqGHRaWkcaaIYa Gaam4CamaaBaaajuaibaGaaGOmaaqcfayabaGaeyOeI0IaaGymaaaa aiaawIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaKqbaoaabmaaba WaaSaaaeaadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaGym aaGaayjkaiaawMcaaiaacgcaaeaadaqadaqaaiaaikdacaWGUbGaey OeI0IaaGOmaiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGa aGOmaaqabaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaaba GaamOBaiabgkHiTiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuai baGaaGOmaaqabaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacg caaaaacaGLOaGaayzkaaWaaeWaaeaacqaH4oqCdaaeWbqaaiaadsfa daWgaaqcfasaaiaadMgacqGHsislcaaIYaaabeaaaeaacaWGPbGaey ypa0JaaGymaaqaaiaaikdaaKqbakabggHiLdGaey4kaSYaaSaaaeaa cuaH4oqCgaqeaaqaaiaaikdadaqfqaqabKqbGeaacaaIWaaajuaGbe qaaiaad2gaaaaaaiaadsfadaWgaaqcfasaaiaaiodacqGHsislcaaI YaaajuaGbeaaaiaawIcacaGLPaaaaaaa@F2F6@ ...(31.1)

and

E ncper:u ( Θ, θ ¯ ) α p + ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ i=1 2 T i3 + θ ¯ 2 m 0 T 33 ) E ncper:D ( Θ, θ ¯ ) α p ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ i=1 2 T i3 + θ ¯ 2 m 0 T 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqabaqcfa4aaeWaaeaacqqHyoqucaGGSaGafq iUdeNbaebaaiaawIcacaGLPaaacqGHHjIUcqGHsisldaWcaaqaaiab eg7aHjaadchadaWgaaqaaiabgUcaRaqabaaabaWaaeWaaeaacqGHsi slcaaI4aGaamyraaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaioda caGGVaGaaGOmaaaaaaqcfa4aaeWaaeaadaWcaaqaaiaaikdacaWGcb aabaGaamOBaaaaaiaawIcacaGLPaaadaahaaqcfasabeaacaaIZaaa aKqbaoaalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaamiBaiabgkHiTi aaigdaaiaawIcacaGLPaaacaGGHaaabaGaaGOmaiaad6gadaqadaqa aiaad6gacqGHRaWkcaWGSbaacaGLOaGaayzkaaGaaiyiaaaadaqada qaaiabfI5arnaaqahabaGaamivamaaBaaajuaibaGaamyAaiabgkHi TiaaiodaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaaGOmaaqcfa OaeyyeIuoacqGHRaWkdaWcaaqaaiqbeI7aXzaaraaabaGaaGOmamaa vababeqcfasaaiaaicdaaKqbagqabaGaamyBaaaaaaGaamivamaaBa aajuaibaGaaG4maiabgkHiTiaaiodaaeqaaaqcfaOaayjkaiaawMca aaGcbaqcfaOaamyramaaBaaajuaibaGaamOBaiaadogacqGHsislca WGWbGaamyzaiaadkhacaGG6aGaamiraaqabaqcfa4aaeWaaeaacqqH yoqucaGGSaGafqiUdeNbaebaaiaawIcacaGLPaaacqGHHjIUcqGHsi sldaWcaaqaaiabeg7aHjaadchadaWgaaqaaiabgkHiTaqabaaabaWa aeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaawMcaamaaCaaabe qcfasaaiaaiodacaGGVaGaaGOmaaaaaaqcfa4aaeWaaeaadaWcaaqa aiaaikdacaWGcbaabaGaamOBaaaaaiaawIcacaGLPaaadaahaaqcfa sabeaacaaIZaaaaKqbaoaalaaabaWaaeWaaeaacaWGUbGaeyOeI0Ia amiBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaabaGaaGOmai aad6gadaqadaqaaiaad6gacqGHRaWkcaWGSbaacaGLOaGaayzkaaGa aiyiaaaadaqadaqaaiabfI5arnaaqahabaGaamivamaaBaaajuaiba GaamyAaiabgkHiTiaaiodaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaaGOmaaqcfaOaeyyeIuoacqGHRaWkdaWcaaqaaiqbeI7aXzaara aabaGaaGOmamaavababeqcfasaaiaaicdaaKqbagqabaGaamyBaaaa aaGaamivamaaBaaajuaibaGaaG4maiabgkHiTiaaiodaaKqbagqaaa GaayjkaiaawMcaaaaaaa@C2E6@ …(32.2)

Where, the 6– terms: ( T i2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadMgacqGHsislcaaIYaaabeaaaaa@3A38@ , T i3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadMgacqGHsislcaaIZaaajuaGbeaaaaa@3AC7@   i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdaaaa@3A94@ ), T 32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaiodacqGHsislcaaIYaaajuaGbeaaaaa@3A95@  and T 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaiodacqGHsislcaaIZaaajuaGbeaaaaa@3A96@  are given by:

T 12 =A' 0 + e ρ ρ 2 s 2 3 [ L nm1 2 s 2 ( ρ ) ] 2 dρ T 22 = B' 2 0 + e ρ ρ 2 s 2 2 [ L nm1 2 s 2 ( ρ ) ] 2 dρ T 32 = 0 + e ρ ρ 2 s 2 +1 [ L nm1 2 s 2 ( ρ ) ] 2 dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaBaaajuaibaGaaGymaiabgkHiTiaaikdaaKqbagqaaiabg2da 9iaadgeacaGGNaWaaCbiaeaadaWfqaqaamaavadabeqabeqacqGHRi I8aaqcfasaaiaaicdaaKqbagqaaaqabKqbGeaacqGHRaWkcqGHEisP aaqcfa4aaubiaeqabeqaaiabgkHiTiabeg8aYbqaaiaadwgaaaWaau biaeqabeqaaKqbGiaaikdajuaGcaWGZbWaaSbaaKqbGeaacaaIYaaa beaacqGHsislcaaIZaaajuaGbaGaeqyWdihaamaadmaabaWaaubmae qajqwba+Faaiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaqcfaya aKqbGiaaikdajuaGcaWGZbWaaSbaaKazfa4=baGaaGOmaaqcfayaba aabaGaamitaaaadaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5w aiaaw2faamaaCaaabeqcfasaaiaaikdaaaqcfaOaamizaiabeg8aYb qaaiaadsfadaWgaaqcfasaaiaaikdacqGHsislcaaIYaaabeaajuaG cqGH9aqpcqGHsisldaWcaaqaaiaadkeacaGGNaaabaGaaGOmaaaada WfGaqaamaaxababaWaaubmaeqabeqabiabgUIiYdaajuaibaGaaGim aaqcfayabaaabeqcfasaaiabgUcaRiabg6HiLcaajuaGdaqfGaqabe qabaGaeyOeI0IaeqyWdihabaGaamyzaaaadaqfGaqabeqabaqcfaIa aGOmaKqbakaadohadaWgaaqcfasaaiaaikdaaeqaaiabgkHiTiaaik daaKqbagaacqaHbpGCaaWaamWaaeaadaqfWaqabKqbGeaacaWGUbGa eyOeI0IaamyBaiabgkHiTiaaigdaaKqbagaajuaicaaIYaqcfaOaam 4CamaaBaaajuaibaGaaGOmaaqabaaajuaGbaGaamitaaaadaqadaqa aiabeg8aYbGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaajuaibe qaaiaaikdaaaqcfaOaamizaiabeg8aYbGcbaqcfaOaamivamaaBaaa juaibaGaaG4maiabgkHiTiaaikdaaeqaaKqbakabg2da9maaxacaba WaaCbeaeaadaqfWaqabeqabeGaey4kIipaaKqbGeaacaaIWaaajuaG beaaaeqajuaibaGaey4kaSIaeyOhIukaaKqbaoaavacabeqabeaacq GHsislcqaHbpGCaeaacaWGLbaaamaavacabeqabeaajuaicaaIYaqc faOaam4CamaaBaaajuaibaGaaGOmaaqabaGaey4kaSIaaGymaaqcfa yaaiabeg8aYbaadaWadaqaamaavadabeqcfasaaiaad6gacqGHsisl caWGTbGaeyOeI0IaaGymaaqcfayaaKqbGiaaikdajuaGcaWGZbWaaS baaKqbGeaacaaIYaaabeaaaKqbagaacaWGmbaaamaabmaabaGaeqyW dihacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaaG OmaaaajuaGcaWGKbGaeqyWdihaaaa@C1D1@ ….(33.1)

and

T 13 =A' 0 + ρ 2l2 e ρ [ L nl1 2l+1 ( ρ ) ] 2 dρ T 23 = B' 2 0 + ρ 2l1 e ρ [ L nl1 2l+1 ( ρ ) ] 2 dρ T 33 = 0 + ρ 2l+2 e ρ [ L nl1 2l+1 ( ρ ) ] 2 dρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaBaaajuaibaGaaGymaiabgkHiTiaaiodaaeqaaKqbakabg2da 9iaadgeacaGGNaWaaCbiaeaadaWfqaqaamaavadabeqabeqacqGHRi I8aaqcfasaaiaaicdaaKqbagqaaaqabKqbGeaacqGHRaWkcqGHEisP aaqcfa4aaubiaeqabeqcfasaaiaaikdacaWGSbGaeyOeI0IaaGOmaa qcfayaaiabeg8aYbaadaqfGaqabeqajuaibaGaeyOeI0IaeqyWdiha juaGbaGaamyzaaaadaWadaqaamaavadajuaibeqaaiaad6gacqGHsi slcaWGSbGaeyOeI0IaaGymaaqaaiaaikdacaWGSbGaey4kaSIaaGym aaqcfayaaiaadYeaaaWaaeWaaeaacqaHbpGCaiaawIcacaGLPaaaai aawUfacaGLDbaadaahaaqabKqbGeaacaaIYaaaaKqbakaadsgacqaH bpGCaeaacaWGubWaaSbaaKqbGeaacaaIYaGaeyOeI0IaaG4maaqaba qcfaOaeyypa0JaeyOeI0YaaSaaaeaacaWGcbGaai4jaaqaaiaaikda aaWaaCbiaeaadaWfqaqaamaavadabeqabeqacqGHRiI8aaqcfasaai aaicdaaKqbagqaaaqabKqbGeaacqGHRaWkcqGHEisPaaqcfa4aaubi aeqabeqcfasaaiaaikdacaWGSbGaeyOeI0IaaGymaaqcfayaaiabeg 8aYbaadaqfGaqabeqajuaibaGaeyOeI0IaeqyWdihajuaGbaGaamyz aaaadaWadaqaamaavadajuaibeqaaiaad6gacqGHsislcaWGSbGaey OeI0IaaGymaaqaaiaaikdacaWGSbGaey4kaSIaaGymaaqcfayaaiaa dYeaaaWaaeWaaeaacqaHbpGCaiaawIcacaGLPaaaaiaawUfacaGLDb aadaahaaqcfasabeaacaaIYaaaaKqbakaadsgacqaHbpGCaOqaaKqb akaadsfadaWgaaqcfasaaiaaiodacqGHsislcaaIZaaabeaajuaGcq GH9aqpdaWfGaqaamaaxababaWaaubmaeqabeqabiabgUIiYdaajuai baGaaGimaaqcfayabaaabeqcfasaaiabgUcaRiabg6HiLcaajuaGda qfGaqabeqajuaibaGaaGOmaiaadYgacqGHRaWkcaaIYaaajuaGbaGa eqyWdihaamaavacabeqabKqbGeaacqGHsislcqaHbpGCaKqbagaaca WGLbaaamaadmaabaWaaubmaeqajuaibaGaamOBaiabgkHiTiaadYga cqGHsislcaaIXaaabaGaaGOmaiaadYgacqGHRaWkcaaIXaaajuaGba Gaamitaaaadaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5waiaa w2faamaaCaaabeqcfasaaiaaikdaaaqcfaOaamizaiabeg8aYbaaaa@B961@ ….(33.2)

With new notation A'= ( 8E ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca GGNaGaeyypa0ZaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaa wMcaamaaCaaabeqcfasaaiaaikdaaaaaaa@3DFE@  and B'= ( 8E ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca GGNaGaeyypa0ZaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaa wMcaamaaCaaabeqcfasaaiaaiodacaGGVaGaaGOmaaaaaaa@3F6F@ , know we apply the special integral.1, 61

J n,α ( γ ) = 0 e x x α+γ [ L n α ( x ) ] 2 dx= ( α+n )! n! k=0 n (1)k Γ( n+κ+γ ) Γ( κγ ) ( α+k+γ )! ( α+k )! 1 κ!( nκ )! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavadabe qaaKqbGiaad6gajuaGcaGGSaGaeqySdegajuaibaqcfa4aaeWaaKqb GeaacqaHZoWzaiaawIcacaGLPaaaaKqbagaacaWGkbaaaiabg2da9m aapehabaWaaubiaeqabeqcfasaaiabgkHiTiaadIhaaKqbagaacaWG LbaaaaqcfasaaiaaicdaaeaacqGHEisPaKqbakabgUIiYdWaaubiae qabeqcfasaaiabeg7aHjabgUcaRiabeo7aNbqcfayaaiaadIhaaaWa aubiaeqabeqcfasaaiaaikdaaKqbagaadaWadaqaamaavadabeqcfa saaiaad6gaaeaacqaHXoqyaKqbagaacaWGmbaaamaabmaabaGaamiE aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacaWGKbGaamiEaiabg2 da9maalaaabaWaaeWaaeaacqaHXoqycqGHRaWkcaWGUbaacaGLOaGa ayzkaaGaaiyiaaqaaiaad6gacaGGHaaaamaaqahabaGaaiikaiabgk HiTiaaigdacaGGPaGaam4AamaalaaabaGaeu4KdC0aaeWaaeaacaWG UbGaey4kaSIaeqOUdSMaey4kaSIaeq4SdCgacaGLOaGaayzkaaaaba Gaeu4KdC0aaeWaaeaacqGHsislcqaH6oWAcqGHsislcqaHZoWzaiaa wIcacaGLPaaaaaaajuaibaGaam4Aaiabg2da9iaaicdaaeaacaWGUb aajuaGcqGHris5amaalaaabaWaaeWaaeaacqaHXoqycqGHRaWkcaWG RbGaey4kaSIaeq4SdCgacaGLOaGaayzkaaGaaiyiaaqaamaabmaaba GaeqySdeMaey4kaSIaam4AaaGaayjkaiaawMcaaiaacgcaaaWaaSaa aeaacaaIXaaabaGaeqOUdSMaaiyiamaabmaabaGaamOBaiabgkHiTi abeQ7aRbGaayjkaiaawMcaaiaacgcaaaGaaiilaaaa@984E@  …(34)

Re( α+γ+1 )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGackfaca GGLbWaaeWaaeaacqaHXoqycqGHRaWkcqaHZoWzcqGHRaWkcaaIXaaa caGLOaGaayzkaaGaeyOkJeVaaGimaaaa@420C@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb aa@3820@  can be takes: ( -3, –2 and +1), α=2 s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj abg2da9iaaikdacaWGZbWaaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@3C6B@  and nnm1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gacq GHsgIRcaWGUbGaeyOeI0IaamyBaiabgkHiTiaaigdaaaa@3DD3@ , which allow us to obtaining in (NC: 2D–RSP):

T 12 =A' J nm1,2l+1 ( 3 ) = ( 2 s 2 +nm1 )! ( nm1 )! k=0 n (1)k Γ( nm+κ4 ) Γ( κ+3 ) ( 2 s 2 +k3 )! ( 2 s 2 +k )! 1 κ!( nm1κ )! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaigdacqGHsislcaaIYaaajuaGbeaacqGH9aqpcaWG bbGaai4jamaavadajuaibeqaaiaad6gacqGHsislcaWGTbGaeyOeI0 IaaGymaiaacYcacaaIYaGaamiBaiabgUcaRiaaigdaaeaajuaGdaqa daqcfasaaiabgkHiTiaaiodaaiaawIcacaGLPaaaaKqbagaacaWGkb aaaiabg2da9maalaaabaWaaeWaaeaacaaIYaGaam4CamaaBaaabaGa aGOmaaqabaGaey4kaSIaamOBaiabgkHiTiaad2gacqGHsislcaaIXa aacaGLOaGaayzkaaGaaiyiaaqaamaabmaabaGaamOBaiabgkHiTiaa d2gacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaadaaeWbqaai aacIcacqGHsislcaaIXaGaaiykaiaadUgadaWcaaqaaiabfo5ahnaa bmaabaGaamOBaiabgkHiTiaad2gacqGHRaWkcqaH6oWAcqGHsislca aI0aaacaGLOaGaayzkaaaabaGaeu4KdC0aaeWaaeaacqGHsislcqaH 6oWAcqGHRaWkcaaIZaaacaGLOaGaayzkaaaaaaqcfasaaiaadUgacq GH9aqpcaaIWaaabaGaamOBaaqcfaOaeyyeIuoadaWcaaqaamaabmaa baGaaGOmaiaadohadaWgaaqcfasaaiaaikdaaKqbagqaaiabgUcaRi aadUgacqGHsislcaaIZaaacaGLOaGaayzkaaGaaiyiaaqaamaabmaa baGaaGOmaiaadohadaWgaaqcfasaaiaaikdaaKqbagqaaiabgUcaRi aadUgaaiaawIcacaGLPaaacaGGHaaaamaalaaabaGaaGymaaqaaiab eQ7aRjaacgcadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaG ymaiabgkHiTiabeQ7aRbGaayjkaiaawMcaaiaacgcaaaGaaiilaaaa @9646@ ....(35.1)

T 22 = B' 2 J nl1,2l+1 ( 2 ) = ( 2 s 2 +nm1 )! ( nm1 )! k=0 n (1)k Γ( nm+κ3 ) Γ( κ+2 ) ( 2 s 2 +k2 )! ( 2 s 2 +k )! 1 κ!( nm1κ )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaikdacqGHsislcaaIYaaabeaajuaGcqGH9aqpcqGH sisldaWcaaqaaiaadkeacaGGNaaabaGaaGOmaaaadaqfWaqcfasabe aacaWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacaGGSaGaaGOmaiaa dYgacqGHRaWkcaaIXaaabaqcfa4aaeWaaKqbGeaacqGHsislcaaIYa aacaGLOaGaayzkaaaajuaGbaGaamOsaaaacqGH9aqpdaWcaaqaamaa bmaabaGaaGOmaiaadohadaWgaaqcfasaaiaaikdaaKqbagqaaiabgU caRiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaGaayjkaiaawMca aiaacgcaaeaadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiaacgcaaaWaaabCaeaacaGGOaGaeyOeI0Ia aGymaiaacMcacaWGRbWaaSaaaeaacqqHtoWrdaqadaqaaiaad6gacq GHsislcaWGTbGaey4kaSIaeqOUdSMaeyOeI0IaaG4maaGaayjkaiaa wMcaaaqaaiabfo5ahnaabmaabaGaeyOeI0IaeqOUdSMaey4kaSIaaG OmaaGaayjkaiaawMcaaaaaaKqbGeaacaWGRbGaeyypa0JaaGimaaqa aiaad6gaaKqbakabggHiLdWaaSaaaeaadaqadaqaaiaaikdacaWGZb WaaSbaaKqbGeaacaaIYaaabeaajuaGcqGHRaWkcaWGRbGaeyOeI0Ia aGOmaaGaayjkaiaawMcaaiaacgcaaeaadaqadaqaaiaaikdacaWGZb WaaSbaaKqbGeaacaaIYaaajuaGbeaacqGHRaWkcaWGRbaacaGLOaGa ayzkaaGaaiyiaaaadaWcaaqaaiaaigdaaeaacqaH6oWAcaGGHaWaae WaaeaacaWGUbGaeyOeI0IaamyBaiabgkHiTiaaigdacqGHsislcqaH 6oWAaiaawIcacaGLPaaacaGGHaaaaaaa@9808@ ...(35.2)

T 32 = J nl1,2l+1 ( +1 ) = ( 2 s 2 +nm1 )! ( nm1 )! k=0 n (1)k Γ( nm+κ ) Γ( κ1 ) ( 2 s 2 +k+1 )! ( 2 s 2 +k )! 1 κ!( nm1κ )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaiodacqGHsislcaaIYaaajuaGbeaacqGH9aqpdaqf WaqabKqbGeaacaWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacaGGSa GaaGOmaiaadYgacqGHRaWkcaaIXaaabaqcfa4aaeWaaKqbGeaacqGH RaWkcaaIXaaacaGLOaGaayzkaaaajuaGbaGaamOsaaaacqGH9aqpda WcaaqaamaabmaabaGaaGOmaiaadohadaWgaaqcfasaaiaaikdaaKqb agqaaiabgUcaRiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaeaadaqadaqaaiaad6gacqGHsislcaWGTbGa eyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaWaaabCaeaacaGGOa GaeyOeI0IaaGymaiaacMcacaWGRbWaaSaaaeaacqqHtoWrdaqadaqa aiaad6gacqGHsislcaWGTbGaey4kaSIaeqOUdSgacaGLOaGaayzkaa aabaGaeu4KdC0aaeWaaeaacqGHsislcqaH6oWAcqGHsislcaaIXaaa caGLOaGaayzkaaaaaaqcfasaaiaadUgacqGH9aqpcaaIWaaabaGaam OBaaqcfaOaeyyeIuoadaWcaaqaamaabmaabaGaaGOmaiaadohadaWg aaqcfasaaiaaikdaaeqaaKqbakabgUcaRiaadUgacqGHRaWkcaaIXa aacaGLOaGaayzkaaGaaiyiaaqaamaabmaabaGaaGOmaiaadohadaWg aaqcfasaaiaaikdaaeqaaKqbakabgUcaRiaadUgaaiaawIcacaGLPa aacaGGHaaaamaalaaabaGaaGymaaqaaiabeQ7aRjaacgcadaqadaqa aiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaiabgkHiTiabeQ7aRb GaayjkaiaawMcaaiaacgcaaaaaaa@9326@ ....(35.3)

For (NC: 3D–RSP) symmetries, we have:

T 13 =A' J nl1,2l+1 ( 3 ) = ( 2l+1+nl1 )! ( nl1 )! k=0 n (1)k Γ( nl1+κ3 ) Γ( κ+3 ) ( 2l+1+k3 )! ( 2l+1+k )! 1 κ!( nl1κ )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaigdacqGHsislcaaIZaaajuaGbeaacqGH9aqpcaWG bbGaai4jamaavadabeqcfasaaiaad6gacqGHsislcaWGSbGaeyOeI0 IaaGymaiaacYcacaaIYaGaamiBaiabgUcaRiaaigdaaeaajuaGdaqa daqcfasaaiabgkHiTiaaiodaaiaawIcacaGLPaaaaKqbagaacaWGkb aaaiabg2da9maalaaabaWaaeWaaeaacaaIYaGaamiBaiabgUcaRiaa igdacqGHRaWkcaWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdaaiaawI cacaGLPaaacaGGHaaabaWaaeWaaeaacaWGUbGaeyOeI0IaamiBaiab gkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaaamaaqahabaGaaiikai abgkHiTiaaigdacaGGPaGaam4AamaalaaabaGaeu4KdC0aaeWaaeaa caWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacqGHRaWkcqaH6oWAcq GHsislcaaIZaaacaGLOaGaayzkaaaabaGaeu4KdC0aaeWaaeaacqGH sislcqaH6oWAcqGHRaWkcaaIZaaacaGLOaGaayzkaaaaaaqcfasaai aadUgacqGH9aqpcaaIWaaabaGaamOBaaqcfaOaeyyeIuoadaWcaaqa amaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaGaey4kaSIaam4Aai abgkHiTiaaiodaaiaawIcacaGLPaaacaGGHaaabaWaaeWaaeaacaaI YaGaamiBaiabgUcaRiaaigdacqGHRaWkcaWGRbaacaGLOaGaayzkaa GaaiyiaaaadaWcaaqaaiaaigdaaeaacqaH6oWAcaGGHaWaaeWaaeaa caWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacqGHsislcqaH6oWAai aawIcacaGLPaaacaGGHaaaaaaa@97EC@ ...(36.1)

T 31 = B' 2 J nl1,2l+1 ( 2 ) = ( 2l+1+nl1 )! ( nl1 )! k=0 n (1)k Γ( nl1+κ2 ) Γ( κ+2 ) ( 2l+1+k2 )! ( 2l+1+k )! 1 κ!( nl1κ )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiabgkHiTiaaiodacaaIXaaajuaGbeaacqGH9aqpcqGH sisldaWcaaqaaiaadkeacaGGNaaabaGaaGOmaaaadaqfWaqabKqbGe aacaWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacaGGSaGaaGOmaiaa dYgacqGHRaWkcaaIXaaabaqcfa4aaeWaaKqbGeaacqGHsislcaaIYa aacaGLOaGaayzkaaaajuaGbaGaamOsaaaacqGH9aqpdaWcaaqaamaa bmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaGaey4kaSIaamOBaiabgk HiTiaadYgacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaqaamaa bmaabaGaamOBaiabgkHiTiaadYgacqGHsislcaaIXaaacaGLOaGaay zkaaGaaiyiaaaadaaeWbqaaiaacIcacqGHsislcaaIXaGaaiykaiaa dUgadaWcaaqaaiabfo5ahnaabmaabaGaamOBaiabgkHiTiaadYgacq GHsislcaaIXaGaey4kaSIaeqOUdSMaeyOeI0IaaGOmaaGaayjkaiaa wMcaaaqaaiabfo5ahnaabmaabaGaeyOeI0IaeqOUdSMaey4kaSIaaG OmaaGaayjkaiaawMcaaaaaaKqbGeaacaWGRbGaeyypa0JaaGimaaqa aiaad6gaaKqbakabggHiLdWaaSaaaeaadaqadaqaaiaaikdacaWGSb Gaey4kaSIaaGymaiabgUcaRiaadUgacqGHsislcaaIYaaacaGLOaGa ayzkaaGaaiyiaaqaamaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXa Gaey4kaSIaam4AaaGaayjkaiaawMcaaiaacgcaaaWaaSaaaeaacaaI XaaabaGaeqOUdSMaaiyiamaabmaabaGaamOBaiabgkHiTiaadYgacq GHsislcaaIXaGaeyOeI0IaeqOUdSgacaGLOaGaayzkaaGaaiyiaaaa aaa@99A2@ ...(36.2)

T 13 = J nl1,2l+1 ( +1 ) = ( 2l+1+nl1 )! ( nl1 )! k=0 n (1)k Γ( nl1+κ+1 ) Γ( κ1 ) ( 2l+1+k+1 )! ( 2l+1+k )! 1 κ!( nl1κ )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaaigdacqGHsislcaaIZaaajuaGbeaacqGH9aqpdaqf WaqabKqbGeaacaWGUbGaeyOeI0IaamiBaiabgkHiTiaaigdacaGGSa GaaGOmaiaadYgacqGHRaWkcaaIXaaabaqcfa4aaeWaaKqbGeaacqGH RaWkcaaIXaaacaGLOaGaayzkaaaajuaGbaGaamOsaaaacqGH9aqpda WcaaqaamaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaGaey4kaSIa amOBaiabgkHiTiaadYgacqGHsislcaaIXaaacaGLOaGaayzkaaGaai yiaaqaamaabmaabaGaamOBaiabgkHiTiaadYgacqGHsislcaaIXaaa caGLOaGaayzkaaGaaiyiaaaadaaeWbqaaiaacIcacqGHsislcaaIXa GaaiykaiaadUgadaWcaaqaaiabfo5ahnaabmaabaGaamOBaiabgkHi TiaadYgacqGHsislcaaIXaGaey4kaSIaeqOUdSMaey4kaSIaaGymaa GaayjkaiaawMcaaaqaaiabfo5ahnaabmaabaGaeyOeI0IaeqOUdSMa eyOeI0IaaGymaaGaayjkaiaawMcaaaaaaKqbGeaacaWGRbGaeyypa0 JaaGimaaqaaiaad6gaaKqbakabggHiLdWaaSaaaeaadaqadaqaaiaa ikdacaWGSbGaey4kaSIaaGymaiabgUcaRiaadUgacqGHRaWkcaaIXa aacaGLOaGaayzkaaGaaiyiaaqaamaabmaabaGaaGOmaiaadYgacqGH RaWkcaaIXaGaey4kaSIaam4AaaGaayjkaiaawMcaaiaacgcaaaWaaS aaaeaacaaIXaaabaGaeqOUdSMaaiyiamaabmaabaGaamOBaiabgkHi TiaadYgacqGHsislcaaIXaGaeyOeI0IaeqOUdSgacaGLOaGaayzkaa Gaaiyiaaaaaaa@965D@ ...(36.3)

 Which allow us to obtaining the exact modifications of fundamental states ( E ncper:u ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeqiUdeNaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@4533@  , E ncper:D ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadseaaKqbagqaamaabmaabaGaeqiUdeNaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@4502@ ) and ( E ncper:u ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@44F4@ , E ncper:D ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadseaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@44C3@ ) produced by spin–orbital effect:

E ncper:u ( θ, θ ¯ ) 2 p + ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ T s2is ( A,B,n,l )+ θ ¯ 2 m 0 T 32 ) E ncper:D ( θ, θ ¯ ) 2 p + ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ T s2is ( A,B,n,l )+ θ ¯ 2 m 0 T 32 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqabaqcfa4aaeWaaeaacqaH4oqCcaGGSaGafq iUdeNbaebaaiaawIcacaGLPaaacqGHHjIUdaWcaaqaaiaaikdacqGH pis1caWGWbWaaSbaaeaacqGHRaWkaeqaaaqaamaabmaabaGaeyOeI0 IaaGioaiaadweaaiaawIcacaGLPaaaaaWaaeWaaeaadaWcaaqaaiaa isdacqqHsoGqaeaacaaIYaGaamOBaiabgkHiTiaaikdacaWGTbGaey 4kaSIaaGOmaiaadohadaWgaaqcfasaaiaaikdaaKqbagqaaiabgkHi TiaaigdaaaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGOmaaaaaO qaaKqbaoaabmaabaWaaSaaaeaadaqadaqaaiaad6gacqGHsislcaWG TbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaeaadaqadaqaai aaikdacaWGUbGaeyOeI0IaaGOmaiaad2gacqGHRaWkcaaIYaGaam4C amaaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0IaaGymaaGaayjkai aawMcaamaabmaabaGaamOBaiabgkHiTiaad2gacqGHRaWkcaaIYaGa am4CamaaBaaajuaibaGaaGOmaaqabaqcfaOaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaaaacaGLOaGaayzkaaWaaeWaaeaacqaH4oqC caWGubWaaSbaaeaacaWGZbqcfaIaaGOmaKqbakabgkHiTiaadMgaca WGZbaabeaadaqadaqaaiaadgeacaGGSaGaamOqaiaacYcacaWGUbGa aiilaiaadYgaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiqbeI7aXz aaraaabaGaaGOmamaavababeqcfasaaiaaicdaaKqbagqabaGaamyB aaaaaaGaamivamaaBaaajuaibaGaaG4maiabgkHiTiaaikdaaKqbag qaaaGaayjkaiaawMcaaaGcbaqcfaOaamyramaaBaaajuaibaGaamOB aiaadogacqGHsislcaWGWbGaamyzaiaadkhacaGG6aGaamiraaqcfa yabaWaaeWaaeaacqaH4oqCcaGGSaGafqiUdeNbaebaaiaawIcacaGL PaaacqGHHjIUdaWcaaqaaiaaikdacqGHpis1caWGWbWaaSbaaeaacq GHRaWkaeqaaaqaamaabmaabaGaeyOeI0IaaGioaiaadweaaiaawIca caGLPaaaaaWaaeWaaeaadaWcaaqaaiaaisdacqqHsoGqaeaacaaIYa GaamOBaiabgkHiTiaaikdacaWGTbGaey4kaSIaaGOmaiaadohadaWg aaqcfasaaiaaikdaaKqbagqaaiabgkHiTiaaigdaaaaacaGLOaGaay zkaaWaaWbaaKqbGeqabaGaaGOmaaaaaOqaaKqbaoaabmaabaWaaSaa aeaadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaeaadaqadaqaaiaaikdacaWGUbGaeyOeI0Ia aGOmaiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGaaGOmaa qabaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaabaGaamOB aiabgkHiTiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajqwba+Faai aaikdaaKqbagqaaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaa aaGaayjkaiaawMcaamaabmaabaGaeqiUdeNaamivamaaBaaabaGaam 4CaKqbGiaaikdajuaGcqGHsislcaWGPbGaam4CaaqabaWaaeWaaeaa caWGbbGaaiilaiaadkeacaGGSaGaamOBaiaacYcacaWGSbaacaGLOa GaayzkaaGaey4kaSYaaSaaaeaacuaH4oqCgaqeaaqaaiaaikdadaqf qaqabKqbGeaacaaIWaaajuaGbeqaaiaad2gaaaaaaiaadsfadaWgaa qcfasaaiaaiodacqGHsislcaaIYaaabeaajuaGdaWgaaqcfasaaiaa iodaaeqaaaqcfaOaayjkaiaawMcaaaaaaa@FDE4@  …(37.1)

and

E ncper:u ( Θ, θ ¯ ) α p + ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ T s3is ( A,B,n,l )+ θ ¯ 2 m 0 T 33 ) E ncper:D ( Θ, θ ¯ ) α p ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ T s3is ( A,B,n,l )+ θ ¯ 2 m 0 T 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqcfayabaWaaeWaaeaacqqHyoqucaGGSaGafq iUdeNbaebaaiaawIcacaGLPaaacqGHHjIUcqGHsisldaWcaaqaaiab eg7aHjaadchadaWgaaqaaiabgUcaRaqabaaabaWaaeWaaeaacqGHsi slcaaI4aGaamyraaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaioda caGGVaGaaGOmaaaaaaqcfa4aaeWaaeaadaWcaaqaaiaaikdacaWGcb aabaGaamOBaaaaaiaawIcacaGLPaaadaahaaqcfasabeaacaaIZaaa aKqbaoaalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaamiBaiabgkHiTi aaigdaaiaawIcacaGLPaaacaGGHaaabaGaaGOmaiaad6gadaqadaqa aiaad6gacqGHRaWkcaWGSbaacaGLOaGaayzkaaGaaiyiaaaadaqada qaaiabfI5arjaadsfadaWgaaqcfasaaiaadohacaaIZaGaeyOeI0Ia amyAaiaadohaaeqaaKqbaoaabmaabaGaamyqaiaacYcacaWGcbGaai ilaiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaiabgUcaRmaalaaa baGafqiUdeNbaebaaeaacaaIYaWaaubeaeqajuaibaGaaGimaaqcfa yabeaacaWGTbaaaaaacaWGubWaaSbaaKqbGeaacaaIZaGaeyOeI0Ia aG4maaqabaaajuaGcaGLOaGaayzkaaaakeaajuaGcaWGfbWaaSbaaK qbGeaacaWGUbGaam4yaiabgkHiTiaadchacaWGLbGaamOCaiaacQda caWGebaajuaGbeaadaqadaqaaiabfI5arjaacYcacuaH4oqCgaqeaa GaayjkaiaawMcaaiabggMi6kabgkHiTmaalaaabaGaeqySdeMaamiC amaaBaaabaGaeyOeI0cabeaaaeaadaqadaqaaiabgkHiTiaaiIdaca WGfbaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaG4maiaac+cacaaI YaaaaaaajuaGdaqadaqaamaalaaabaGaaGOmaiaadkeaaeaacaWGUb aaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaiodaaaqcfa4aaSaa aeaadaqadaqaaiaad6gacqGHsislcaWGSbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaeaacaaIYaGaamOBamaabmaabaGaamOBaiab gUcaRiaadYgaaiaawIcacaGLPaaacaGGHaaaamaabmaabaGaeuiMde LaamivamaaBaaajuaibaGaam4CaiaaiodacqGHsislcaWGPbGaam4C aaqabaqcfa4aaeWaaeaacaWGbbGaaiilaiaadkeacaGGSaGaamOBai aacYcacaWGSbaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacuaH4oqC gaqeaaqaaiaaikdadaqfqaqabKqbGeaacaaIWaaajuaGbeqaaiaad2 gaaaaaaiaadsfadaWgaaqcfasaaiaaiodacqGHsislcaaIZaaabeaa aKqbakaawIcacaGLPaaaaaaa@C9B0@ ....(37.2)

Where, the two factors T s2is ( A,B,n,l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadohacaaIYaGaeyOeI0IaamyAaiaadohaaeqaaKqb aoaabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaam iBaaGaayjkaiaawMcaaaaa@43C0@  and T s3is ( A,B,n,l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadohacaaIZaGaeyOeI0IaamyAaiaadohaaeqaaKqb aoaabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaam iBaaGaayjkaiaawMcaaaaa@43C1@  are given by, respectively:

T s2is ( A,B,n,l )= i=1 2 T i2 T s3is ( A,B,n,l )= i=1 2 T i3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaBaaajuaibaGaam4CaiaaikdacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGbbGaaiilaiaadkeacaGGSaGaamOBaiaacY cacaWGSbaacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacaWGubWaaSba aKqbGeaacaWGPbGaeyOeI0IaaGOmaaqcfayabaaajuaqbaGaamyAai abg2da9iaaigdaaKqbGeaacaaIYaaajuaGcqGHris5aaGcbaqcfaOa amivamaaBaaajuaibaGaam4CaiaaiodacqGHsislcaWGPbGaam4Caa qabaqcfa4aaeWaaeaacaWGbbGaaiilaiaadkeacaGGSaGaamOBaiaa cYcacaWGSbaacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacaWGubWaaS baaKqbGeaacaWGPbGaeyOeI0IaaG4maaqcfayabaaajuaibaGaamyA aiabg2da9iaaigdaaeaacaaIYaaajuaGcqGHris5aaaaaa@693E@ ...(38)

The exact magnetic spectrum for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for excited states for one–electron atoms

 Having obtained the exact modifications to the energy levels ( E ncper:u ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeqiUdeNaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@4533@ , E ncper:D ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadseaaKqbagqaamaabmaabaGaeqiUdeNaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@4502@ ) and ( E ncper:u ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@44F4@ , E ncper:D ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadseaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiqbeI7aXz aaraaacaGLOaGaayzkaaaaaa@44C3@ ), for exited n th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada ahaaqcfasabeaacaWG0bGaamiAaaaaaaa@39A2@  states, produced with spin–orbital induced Hamiltonians operators, we now consider interested physically meaningful phenomena, which produced from the perturbative terms of inverse–square potential related to the influence of an external uniform magnetic field, it’s sufficient to apply the following three replacements to describing these phenomena:

L z θ ¯ 2 m 0 +( A r 4 B 2 r 3 )θ L z { σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamitamaaBaaajuaibaGaamOEaaqabaqcfa4aa0aaaeaacqaH4oqC aaaabaGaaGOmaiaad2gadaWgaaqcfasaaiaaicdaaeqaaaaajuaGcq GHRaWkdaqadaqaamaalaaabaGaamyqaaqaaiaadkhadaahaaqabKqb GeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqaaiaadkeaaeaacaaIYa GaamOCamaaCaaajuaibeqaaiaaiodaaaaaaaqcfaOaayjkaiaawMca aiabeI7aXjaadYeadaWgaaqcfasaaiaadQhaaKqbagqaaiabgkziUo aacmaabaWaaSaaaeaadaqdaaqaaiabeo8aZbaaaeaacaaIYaGaamyB amaaBaaajuaibaGaaGimaaqcfayabaaaaiabgUcaRiabeE8aJnaabm aabaWaaSaaaeaacaWGbbaabaGaamOCamaaCaaabeqcfasaaiaaisda aaaaaKqbakabgkHiTmaalaaabaGaamOqaaqaaiaaikdacaWGYbWaaW baaKqbGeqabaGaaG4maaaaaaaajuaGcaGLOaGaayzkaaaacaGL7bGa ayzFaaGaaGPaVpaaFiaabaGaamisaaGaay51GaWaa8HaaeaacaWGmb aacaGLxdcaaaa@6A00@ .....(39.1)

L θ ¯ 2 m 0 +( A r 4 B 2 r 3 ) L Θ { σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbeGab8htayaalaWaa8HaaeaadaqdaaqaaGGabiab+H7aXbaaaiaa wEniaaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaa Gaey4kaSYaaeWaaeaadaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaeqa juaibaGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaaG OmaiaadkhadaahaaqcfasabeaacaaIZaaaaaaaaKqbakaawIcacaGL PaaaceWFmbGbaSaacuqHyoqugaWcaiabgkziUoaacmaabaWaaSaaae aadaqdaaqaaiabeo8aZbaaaeaacaaIYaGaamyBamaaBaaajuaibaGa aGimaaqabaaaaKqbakabgUcaRiabeE8aJnaabmaabaWaaSaaaeaaca WGbbaabaGaamOCamaaCaaabeqcfasaaiaaisdaaaaaaKqbakabgkHi TmaalaaabaGaamOqaaqaaiaaikdacaWGYbWaaWbaaKqbGeqabaGaaG 4maaaaaaaajuaGcaGLOaGaayzkaaaacaGL7bGaayzFaaWaa8Haaeaa caWGibaacaGLxdcadaWhcaqaaiaadYeaaiaawEniaaaa@666F@ ..(39.2)

θχH,ΘχH    and  θ ¯ σ ¯ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXj abgkziUkabeE8aJLqbGiaadIeajuaGcaGGSaGaeuiMdeLaeyOKH4Qa eq4XdmwcfaIaamisaKqbakaabccacaqGGaGaaeiiaiaabccacaqGHb GaaeOBaiaabsgacaqGGaGafqiUdeNbaebacqGHsgIRdaqdaaqaaiab eo8aZbaacaWGibaaaa@50F7@ ....(39.3)

Here χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJb aa@3830@  and σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaanaaaba Gaeq4Wdmhaaaaa@384D@  are infinitesimal real proportional’s constants, and we choose the magnetic field  H =H k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaFmaaba GaaeiiaiaadIeaaiaawgoiaiabg2da9iaadIeadaWhdaqaaiaadUga aiaawgoiaaaa@3E2A@ , which allow us to introduce the modified new magnetic Hamiltonians H ^ m2is ( r,A,B,χ, σ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaikdacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaaa aa@470C@  and H ^ m3is ( r,A,B,χ, σ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaiodacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaaa aa@470D@  in (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

H ^ m2is ( r,A,B,χ, σ ¯ )=( χ( A r 4 B 2 r 3 )+ σ ¯ 2 m 0 )( H J S H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaikdacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacqaHhpWydaqadaqaamaalaaabaGaamyqaaqaai aadkhadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqa aiaadkeaaeaacaaIYaGaamOCamaaCaaabeqcfasaaiaaiodaaaaaaa qcfaOaayjkaiaawMcaaiaaykW7cqGHRaWkdaWcaaqaamaanaaabaGa eq4WdmhaaaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbe aaaaaacaGLOaGaayzkaaWaaeWaaeaadaWhcaqaaiaadIeaaiaawEni amaaFiaabaGaamOsaaGaay51GaGaeyOeI0Yaa8XaaeaacaWGtbaaca GLHdcadaWhdaqaaiaadIeaaiaawgoiaaGaayjkaiaawMcaaaaa@6989@ ....(40.1)

and

H ^ m3is ( r,A,B,χ, σ ¯ )=( χ( A r 4 B 2 r 3 )+ σ ¯ 2 m 0 )( H J S H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaiodacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacqaHhpWydaqadaqaamaalaaabaGaamyqaaqaai aadkhadaahaaqabKqbGeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqa aiaadkeaaeaacaaIYaGaamOCamaaCaaabeqcfasaaiaaiodaaaaaaa qcfaOaayjkaiaawMcaaiaaykW7cqGHRaWkdaWcaaqaamaanaaabaGa eq4WdmhaaaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbe aaaaaacaGLOaGaayzkaaWaaeWaaeaadaWhcaqaaiaadIeaaiaawEni amaaFiaabaGaamOsaaGaay51GaGaeyOeI0Yaa8XaaeaacaWGtbaaca GLHdcadaWhdaqaaiaadIeaaiaawgoiaaGaayjkaiaawMcaaaaa@698A@ ....(40.2)

Here ( S H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeyOeI0Yaa8XaaeaacaWGtbaacaGLHdcadaWhdaqaaiaadIeaaiaa wgoiaaGaayjkaiaawMcaaaaa@3E12@  denote to the ordinary Hamiltonian of Zeeman Effect. To obtain the exact noncommutative magnetic modifications of energy ( E mag2-is ( θ, θ ¯ ,n,m,A,B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaabkdacaqGTaGaaeyAaiaa bohaaKqbagqaamaabmaabaGaeqiUdeNaaiilaiqbeI7aXzaaraGaai ilaiaad6gacaGGSaGaamyBaiaacYcacaWGbbGaaiilaiaadkeaaiaa wIcacaGLPaaaaaa@4A14@ , E mag-3is ( Θ, θ ¯ ,n,l,A,B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGZaGaaeyAaiaa bohaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiqbeI7aXzaaraGaai ilaiaad6gacaGGSaGaamiBaiaacYcacaWGbbGaaiilaiaadkeaaiaa wIcacaGLPaaaaaa@49D5@ ) for modified inverse–square potential, which produced automatically by the effect of H ^ m2is ( r,A,B,χ, σ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaikdacqGHsislcaWGPbGaam4Caaqc fayabaWaaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaaa aa@470C@  and H ^ m3is ( r,A,B,χ, σ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaaiodacqGHsislcaWGPbGaam4Caaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiaadgeacaGGSaGaamOqaiaacY cacqaHhpWycaGGSaWaa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaaa aa@470D@ , we make the following three simultaneously replacements:

p + m,( θ,Θ )( χ,χ )    and      θ ¯ σ ¯ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada WgaaqaaiabgUcaRaqabaGaeyOKH4QaaeyBaiaabYcadaqadaqaaiab eI7aXjaacYcacqqHyoquaiaawIcacaGLPaaacqGHsgIRdaqadaqaai abeE8aJjaacYcacqaHhpWyaiaawIcacaGLPaaacaqGGaGaaeiiaiaa bccacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaae iiaiaabccadaqdaaqaaiabeI7aXbaacqGHsgIRdaqdaaqaaiabeo8a ZbaacaWGibaaaa@57C3@ ....(41)

In two Eqs. (37.1) and (37.2) to obtain the two values E mag2-is ( θ, θ ¯ ,n,m,A,B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaabkdacaqGTaGaaeyAaiaa bohaaeqaaKqbaoaabmaabaGaeqiUdeNaaiilaiqbeI7aXzaaraGaai ilaiaad6gacaGGSaGaamyBaiaacYcacaWGbbGaaiilaiaadkeaaiaa wIcacaGLPaaaaaa@4A14@  and E mag-3is ( Θ, θ ¯ ,n,l,A,B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGZaGaaeyAaiaa bohaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiqbeI7aXzaaraGaai ilaiaad6gacaGGSaGaamiBaiaacYcacaWGbbGaaiilaiaadkeaaiaa wIcacaGLPaaaaaa@49D5@ for the exact magnetic modifications of spectrum corresponding n th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada ahaaqcfasabeaacaWG0bGaamiAaaaaaaa@39A2@  excited states, in (NC–2D: RSP) and (NC–3D: RSP), respectively, as:

E mag2-is ( θ, θ ¯ ,n,m,A,B ) 2mH ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( χ T s2is ( A,B,n,l )+ σ ¯ 2 m 0 T 32 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaaeyBaiaabggacaqGNbGaaeOmaiaab2cacaqG PbGaae4CaaqcfayabaWaaeWaaeaacqaH4oqCcaGGSaGafqiUdeNbae bacaGGSaGaamOBaiaacYcacaWGTbGaaiilaiaadgeacaGGSaGaamOq aaGaayjkaiaawMcaaiabggMi6oaalaaabaGaaGOmaiabg+Givlaad2 gacaWGibaabaWaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaa wMcaaaaadaqadaqaamaalaaabaGaaGinaiabfk5acbqaaiaaikdaca WGUbGaeyOeI0IaaGOmaiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaa juaibaGaaGOmaaqcfayabaGaeyOeI0IaaGymaaaaaiaawIcacaGLPa aadaahaaqcfasabeaacaaIYaaaaaGcbaqcfa4aaeWaaeaadaWcaaqa amaabmaabaGaamOBaiabgkHiTiaad2gacqGHsislcaaIXaaacaGLOa GaayzkaaGaaiyiaaqaamaabmaabaGaaGOmaiaad6gacqGHsislcaaI YaGaamyBaiabgUcaRiaaikdacaWGZbWaaSbaaKqbGeaacaaIYaaabe aajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGUbGa eyOeI0IaamyBaiabgUcaRiaaikdacaWGZbWaaSbaaKqbGeaacaaIYa aabeaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaaaiaa wIcacaGLPaaadaqadaqaaiabeE8aJjaadsfadaWgaaqcfasaaiaado hacaaIYaGaeyOeI0IaamyAaiaadohaaeqaaKqbaoaabmaabaGaamyq aiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawM caaiabgUcaRmaalaaabaWaa0aaaeaacqaHdpWCaaaabaGaaGOmamaa vababeqcfasaaiaaicdaaKqbagqabaGaamyBaaaaaaGaamivamaaBa aajuaibaGaaG4maiabgkHiTiaaikdaaeqaaKqbaoaabmaabaGaamyq aiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaaykW7aaaa@A593@ ...(42.1)

and

E mag-3is ( Θ, θ ¯ ,n,l,A,B )= mH ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( χ T s3is ( A,B,n,l )+ σ ¯ 2 m 0 T 33 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGZaGaaeyAaiaa bohaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiqbeI7aXzaaraGaai ilaiaad6gacaGGSaGaamiBaiaacYcacaWGbbGaaiilaiaadkeaaiaa wIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaad2gacaWGibaaba WaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaawMcaamaaCaaa beqcfasaaiaaiodacaGGVaGaaGOmaaaaaaqcfa4aaeWaaeaadaWcaa qaaiaaikdacaWGcbaabaGaamOBaaaaaiaawIcacaGLPaaadaahaaqc fasabeaacaaIZaaaaKqbaoaalaaabaWaaeWaaeaacaWGUbGaeyOeI0 IaamiBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaabaGaaGOm aiaad6gadaqadaqaaiaad6gacqGHRaWkcaWGSbaacaGLOaGaayzkaa GaaiyiaaaadaqadaqaaiabeE8aJjaadsfadaWgaaqcfasaaiaadoha caaIZaGaeyOeI0IaamyAaiaadohaaKqbagqaamaabmaabaGaamyqai aacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawMca aiabgUcaRmaalaaabaWaa0aaaeaacqaHdpWCaaaabaGaaGOmamaava babeqcfasaaiaaicdaaKqbagqabaGaamyBaaaaaaGaamivamaaBaaa juaibaGaaG4maiabgkHiTiaaiodaaeqaaKqbaoaabmaabaGaamyqai aacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawMca aaGaayjkaiaawMcaaiaaykW7aaa@8AF9@ ....(42.2)

Where m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gaaa a@376B@  denote to the angular momentum quantum number, lm+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadYgacqGHKjYOcaWGTbGaeyizImQaey4kaSIaamiBaaaa@3E86@ , which allow us to fixing ( 2l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGSbGaey4kaSIaaGymaaaa@39C3@ ) values for the orbital angular momentum quantum numbers.

Results of exact modified global spectrum of the lowest excitations states for (m.i.s.) potential in both (nc:2d– rsp) and (nc:3d– rsp) symmetries for one–electron atoms

 Let us now resume the eigenenergies of the modified Schrödinger equations obtained in this paper, the total modified energies ( E ncu ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqcfa4aaeWa aeaacqaH4oqCcaGGSaGafqiUdeNbaebaaiaawIcacaGLPaaaaaa@419F@ , E ncD ( θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamiraaqabaqcfa4aaeWa aeaacqaH4oqCcaGGSaGafqiUdeNbaebaaiaawIcacaGLPaaaaaa@416E@ ) and ( E ncu ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqcfa4aaeWa aeaacqqHyoqucaGGSaGafqiUdeNbaebaaiaawIcacaGLPaaaaaa@4160@ , E ncD ( Θ, θ ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamiraaqabaqcfa4aaeWa aeaacqqHyoqucaGGSaGafqiUdeNbaebaaiaawIcacaGLPaaaaaa@412F@ ) of a particle fermionic with spin up and spin down are determined corresponding  excited states, respectively, for modified inverse–square potential in (NC: 2D–RSP) and (NC: 3D–RSP), on based to the obtained new results (10.a), (37.1), (37.2), (41.1), (41.2) and (37.b), in addition to the original results (17) of energies we obtain the four new values of global energies:

E ncu ( θ, θ ¯ ) 2Β 2 ( 2n2m1+ 2A+ m 2 ) 2 + 2 p + ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ T sis ( A,B,n,l )+ θ ¯ 2 m 0 T 3 ) + 2mH ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( χ T s2is ( A,B,n,l )+ σ ¯ 2 m 0 T 32 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWG1baabeaajuaG daqadaqaaiabeI7aXjaacYcacuaH4oqCgaqeaaGaayjkaiaawMcaai abggMi6kabgkHiTmaalaaabaWaaubiaeqabeqcfasaaiaaikdaaKqb agaacaaIYaGaeuOKdieaaaqaamaavacabeqabKqbGeaacaaIYaaaju aGbaWaaeWaaeaacaaIYaGaamOBaiabgkHiTiaaikdacaWGTbGaeyOe I0IaaGymaiabgUcaRmaakaaabaGaaGOmaiaadgeacqGHRaWkcaWGTb WaaWbaaeqabaGaaGOmaaaaaeqaaaGaayjkaiaawMcaaaaaaaaakeaa juaGcqGHRaWkdaWcaaqaaiaaikdacqGHpis1caWGWbWaaSbaaeaacq GHRaWkaeqaaaqaamaabmaabaGaeyOeI0IaaGioaiaadweaaiaawIca caGLPaaaaaWaaeWaaeaadaWcaaqaaiaaisdacqqHsoGqaeaacaaIYa GaamOBaiabgkHiTiaaikdacaWGTbGaey4kaSIaaGOmaiaadohadaWg aaqcfasaaiaaikdaaeqaaKqbakabgkHiTiaaigdaaaaacaGLOaGaay zkaaWaaWbaaKqbGeqabaGaaGOmaaaaaOqaaKqbaoaabmaabaWaaSaa aeaadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaeaadaqadaqaaiaaikdacaWGUbGaeyOeI0Ia aGOmaiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGaaGOmaa qabaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaabaGaamOB aiabgkHiTiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGaaG OmaaqcfayabaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaaa caGLOaGaayzkaaWaaeWaaeaacqaH4oqCcaWGubWaaSbaaKqbGeaaca WGZbGaeyOeI0IaamyAaiaadohaaKqbagqaamaabmaabaGaamyqaiaa cYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaai abgUcaRmaalaaabaGafqiUdeNbaebaaeaacaaIYaWaaubeaeqajuai baGaaGimaaqcfayabeaacaWGTbaaaaaacaWGubWaaSbaaKqbGeaaca aIZaaajuaGbeaaaiaawIcacaGLPaaaaOqaaKqbakabgUcaRmaalaaa baGaaGOmaiabg+Givlaad2gacaWGibaabaWaaeWaaeaacqGHsislca aI4aGaamyraaGaayjkaiaawMcaaaaadaqadaqaamaalaaabaGaaGin aiabfk5acbqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaad2gacqGHRa WkcaaIYaGaam4CamaaBaaajuaibaGaaGOmaaqcfayabaGaeyOeI0Ia aGymaaaaaiaawIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaaGcba qcfa4aaeWaaeaadaWcaaqaamaabmaabaGaamOBaiabgkHiTiaad2ga cqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaqaamaabmaabaGaaG Omaiaad6gacqGHsislcaaIYaGaamyBaiabgUcaRiaaikdacaWGZbWa aSbaaKqbGeaacaaIYaaabeaajuaGcqGHsislcaaIXaaacaGLOaGaay zkaaWaaeWaaeaacaWGUbGaeyOeI0IaamyBaiabgUcaRiaaikdacaWG ZbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqGHsislcaaIXaaacaGLOa GaayzkaaGaaiyiaaaaaiaawIcacaGLPaaadaqadaqaaiabeE8aJjaa dsfadaWgaaqaaiaadohajuaicaaIYaqcfaOaeyOeI0IaamyAaiaado haaeqaamaabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGG SaGaamiBaaGaayjkaiaawMcaaiabgUcaRmaalaaabaWaa0aaaeaacq aHdpWCaaaabaGaaGOmamaavababeqcfasaaiaaicdaaKqbagqabaGa amyBaaaaaaGaamivamaaBaaajuaibaGaaG4maiabgkHiTiaaikdaaK qbagqaamaabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGG SaGaamiBaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaa@0099@ .....(43.1)

E ncD ( Θ, θ ¯ ) 2Β 2 ( 2n2m1+ 2A+ m 2 ) 2 + 2 p ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( θ T sis ( A,B,n,l )+ θ ¯ 2 m 0 T 3 ) + 2mH ( 8E ) ( 4Β 2n2m+2 s 2 1 ) 2 ( ( nm1 )! ( 2n2m+2 s 2 1 )( nm+2 s 2 1 )! )( χ T s2is ( A,B,n,l )+ σ ¯ 2 m 0 T 32 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGebaajuaGbeaa daqadaqaaiabfI5arjaacYcacuaH4oqCgaqeaaGaayjkaiaawMcaai abggMi6kabgkHiTmaalaaabaWaaubiaeqabeqcfasaaiaaikdaaKqb agaacaaIYaGaeuOKdieaaaqaamaavacabeqabKqbGeaacaaIYaaaju aGbaWaaeWaaeaacaaIYaGaamOBaiabgkHiTiaaikdacaWGTbGaeyOe I0IaaGymaiabgUcaRmaakaaabaGaaGOmaiaadgeacqGHRaWkcaWGTb WaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaaGaayjkaiaawMcaaaaa aaaakeaajuaGcqGHRaWkdaWcaaqaaiaaikdacqGHpis1caWGWbWaaS baaeaacqGHsislaeqaaaqaamaabmaabaGaeyOeI0IaaGioaiaadwea aiaawIcacaGLPaaaaaWaaeWaaeaadaWcaaqaaiaaisdacqqHsoGqae aacaaIYaGaamOBaiabgkHiTiaaikdacaWGTbGaey4kaSIaaGOmaiaa dohadaWgaaqaaiaaikdaaeqaaiabgkHiTiaaigdaaaaacaGLOaGaay zkaaWaaWbaaKqbGeqabaGaaGOmaaaaaOqaaKqbaoaabmaabaWaaSaa aeaadaqadaqaaiaad6gacqGHsislcaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaacgcaaeaadaqadaqaaiaaikdacaWGUbGaeyOeI0Ia aGOmaiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGaaGOmaa qabaqcfaOaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaabaGaamOB aiabgkHiTiaad2gacqGHRaWkcaaIYaGaam4CamaaBaaajuaibaGaaG OmaaqcfayabaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaaa caGLOaGaayzkaaWaaeWaaeaacqaH4oqCcaWGubWaaSbaaKqbGeaaca WGZbGaeyOeI0IaamyAaiaadohaaeqaaKqbaoaabmaabaGaamyqaiaa cYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaai abgUcaRmaalaaabaGafqiUdeNbaebaaeaacaaIYaWaaubeaeqajuai baGaaGimaaqcfayabeaacaWGTbaaaaaacaWGubWaaSbaaKqbGeaaca aIZaaajuaGbeaaaiaawIcacaGLPaaaaOqaaKqbakabgUcaRmaalaaa baGaaGOmaiabg+Givlaad2gacaWGibaabaWaaeWaaeaacqGHsislca aI4aGaamyraaGaayjkaiaawMcaaaaadaqadaqaamaalaaabaGaaGin aiabfk5acbqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaad2gacqGHRa WkcaaIYaGaam4CamaaBaaajuaibaGaaGOmaaqcfayabaGaeyOeI0Ia aGymaaaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaaGcba qcfa4aaeWaaeaadaWcaaqaamaabmaabaGaamOBaiabgkHiTiaad2ga cqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaqaamaabmaabaGaaG Omaiaad6gacqGHsislcaaIYaGaamyBaiabgUcaRiaaikdacaWGZbWa aSbaaKqbGeaacaaIYaaabeaajuaGcqGHsislcaaIXaaacaGLOaGaay zkaaWaaeWaaeaacaWGUbGaeyOeI0IaamyBaiabgUcaRiaaikdacaWG ZbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGHsislcaaIXaaacaGLOa GaayzkaaGaaiyiaaaaaiaawIcacaGLPaaadaqadaqaaiabeE8aJjaa dsfadaWgaaqaaiaadohajuaicaaIYaqcfaOaeyOeI0IaamyAaiaado haaeqaamaabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGG SaGaamiBaaGaayjkaiaawMcaaiabgUcaRmaalaaabaWaa0aaaeaacq aHdpWCaaaabaGaaGOmamaavababeqaaiaaicdaaeqabaGaamyBaaaa aaGaamivamaaBaaajuaibaGaaG4maiabgkHiTiaaikdaaKqbagqaam aabmaabaGaamyqaiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiB aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaa@FF78@ ...(43.2)

E ncu ( Θ, θ ¯ )2 B 2 { ( 2n ) 2 8A κ ( 2n ) 3 + 16 A 2 κ 3 ( 2n ) 3 + 48 A 2 κ 2 ( 2n ) 4 ... } α p + ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ T sis ( A,B,n,l )+ θ ¯ 2 m 0 T 3 ) mH ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( χ T s3is ( A,B,n,l )+ σ ¯ 2 m 0 T 33 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajqwba+Faaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqc fa4aaeWaaeaacqqHyoqucaGGSaGafqiUdeNbaebaaiaawIcacaGLPa aacqGHHjIUcqGHsislcaaIYaWaaubiaeqabeqcfasaaiaaikdaaKqb agaacaWGcbaaamaacmaabaWaaubiaeqabeqcfasaaiabgkHiTiaaik daaKqbagaadaqadaqaaiaaikdacaWGUbaacaGLOaGaayzkaaaaaiab gkHiTmaalaaabaGaaGioaiaadgeaaeaacqaH6oWAaaWaaubiaeqabe qcfasaaiabgkHiTiaaiodaaKqbagaadaqadaqaaiaaikdacaWGUbaa caGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaaGymaiaaiAdadaqfGa qabeqajuaibaGaaGOmaaqcfayaaiaadgeaaaaabaWaaubiaeqabeqc fasaaiaaiodaaKqbagaacqaH6oWAaaaaamaavacabeqabKqbGeaacq GHsislcaaIZaaajuaGbaWaaeWaaeaacaaIYaGaamOBaaGaayjkaiaa wMcaaaaacqGHRaWkdaWcaaqaaiaaisdacaaI4aWaaubiaeqabeqcfa saaiaaikdaaKqbagaacaWGbbaaaaqaamaavacabeqabKqbGeaacaaI YaaajuaGbaGaeqOUdSgaaaaadaqfGaqabeqajuaibaGaeyOeI0IaaG inaaqcfayaamaabmaabaGaaGOmaiaad6gaaiaawIcacaGLPaaaaaGa eyOeI0IaaiOlaiaac6cacaGGUaaacaGL7bGaayzFaaaakeaajuaGcq GHsisldaWcaaqaaiabeg7aHjaadchadaWgaaqaaiabgUcaRaqabaaa baWaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaawMcaamaaCa aajuaibeqaaiaaiodacaGGVaGaaGOmaaaaaaqcfa4aaeWaaeaadaWc aaqaaiaaikdacaWGcbaabaGaamOBaaaaaiaawIcacaGLPaaadaahaa qcfasabeaacaaIZaaaaKqbaoaalaaabaWaaeWaaeaacaWGUbGaeyOe I0IaamiBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaabaGaaG Omaiaad6gadaqadaqaaiaad6gacqGHRaWkcaWGSbaacaGLOaGaayzk aaGaaiyiaaaadaqadaqaaiabfI5arjaadsfadaWgaaqcfasaaiaado hacqGHsislcaWGPbGaam4Caaqabaqcfa4aaeWaaeaacaWGbbGaaiil aiaadkeacaGGSaGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaGaey 4kaSYaaSaaaeaacuaH4oqCgaqeaaqaaiaaikdadaqfqaqabKqbGeaa caaIWaaajuaGbeqaaiaad2gaaaaaaiaadsfadaWgaaqcfasaaiaaio daaKqbagqaaaGaayjkaiaawMcaaaGcbaqcfaOaeyOeI0YaaSaaaeaa caWGTbGaamisaaqaamaabmaabaGaeyOeI0IaaGioaiaadweaaiaawI cacaGLPaaadaahaaqabKqbGeaacaaIZaGaai4laiaaikdaaaaaaKqb aoaabmaabaWaaSaaaeaacaaIYaGaamOqaaqaaiaad6gaaaaacaGLOa GaayzkaaWaaWbaaeqajuaibaGaaG4maaaajuaGdaWcaaqaamaabmaa baGaamOBaiabgkHiTiaadYgacqGHsislcaaIXaaacaGLOaGaayzkaa GaaiyiaaqaaiaaikdacaWGUbWaaeWaaeaacaWGUbGaey4kaSIaamiB aaGaayjkaiaawMcaaiaacgcaaaWaaeWaaeaacqaHhpWycaWGubWaaS baaeaacaWGZbqcfaIaaG4maiabgkHiTiaadMgacaWGZbaajuaGbeaa daqadaqaaiaadgeacaGGSaGaamOqaiaacYcacaWGUbGaaiilaiaadY gaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaamaanaaabaGaeq4Wdmha aaqaaiaaikdadaqfqaqabKqbGeaacaaIWaaajuaGbeqaaiaad2gaaa aaaiaadsfadaWgaaqcfasaaiaaiodacqGHsislcaaIZaaajuaGbeaa daqadaqaaiaadgeacaGGSaGaamOqaiaacYcacaWGUbGaaiilaiaadY gaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaaa@F114@ .....(43.3)

E ncD ( Θ, θ ¯ )2 B 2 { ( 2n ) 2 8A κ ( 2n ) 3 + 16 A 2 κ 3 ( 2n ) 3 + 48 A 2 κ 2 ( 2n ) 4 ... } p ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( Θ T sis ( A,B,n,l )+ θ ¯ 2 m 0 T 3 ) mH ( 8E ) 3/2 ( 2B n ) 3 ( nl1 )! 2n( n+l )! ( χ T s3is ( A,B,n,l )+ σ ¯ 2 m 0 T 33 ( A,B,n,l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGebaabeaajuaG daqadaqaaiabfI5arjaacYcacuaH4oqCgaqeaaGaayjkaiaawMcaai abggMi6kabgkHiTiaaikdadaqfGaqabeqajuaibaGaaGOmaaqcfaya aiaadkeaaaWaaiWaaeaadaqfGaqabeqajuaibaGaeyOeI0IaaGOmaa qcfayaamaabmaabaGaaGOmaiaad6gaaiaawIcacaGLPaaaaaGaeyOe I0YaaSaaaeaacaaI4aGaamyqaaqaaiabeQ7aRbaadaqfGaqabeqaju aibaGaeyOeI0IaaG4maaqcfayaamaabmaabaGaaGOmaiaad6gaaiaa wIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaaIXaGaaGOnamaavacabe qabKqbGeaacaaIYaaajuaGbaGaamyqaaaaaeaadaqfGaqabeqajuai baGaaG4maaqcfayaaiabeQ7aRbaaaaWaaubiaeqabeqcfasaaiabgk HiTiaaiodaaKqbagaadaqadaqaaiaaikdacaWGUbaacaGLOaGaayzk aaaaaiabgUcaRmaalaaabaGaaGinaiaaiIdadaqfGaqabeqajuaiba GaaGOmaaqcfayaaiaadgeaaaaabaWaaubiaeqabeqcfasaaiaaikda aKqbagaacqaH6oWAaaaaamaavacabeqabKqbGeaacqGHsislcaaI0a aajuaGbaWaaeWaaeaacaaIYaGaamOBaaGaayjkaiaawMcaaaaacqGH sislcaGGUaGaaiOlaiaac6caaiaawUhacaGL9baaaOqaaKqbakabgk HiTmaalaaabaGaamiCamaaBaaabaGaeyOeI0cabeaaaeaadaqadaqa aiabgkHiTiaaiIdacaWGfbaacaGLOaGaayzkaaWaaWbaaeqajuaiba GaaG4maiaac+cacaaIYaaaaaaajuaGdaqadaqaamaalaaabaGaaGOm aiaadkeaaeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaajuaibeqaai aaiodaaaqcfa4aaSaaaeaadaqadaqaaiaad6gacqGHsislcaWGSbGa eyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaeaacaaIYaGaamOBam aabmaabaGaamOBaiabgUcaRiaadYgaaiaawIcacaGLPaaacaGGHaaa amaabmaabaGaeuiMdeLaamivamaaBaaajuaibaGaam4CaiabgkHiTi aadMgacaWGZbaabeaajuaGdaqadaqaaiaadgeacaGGSaGaamOqaiaa cYcacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiqbeI7aXzaaraaabaGaaGOmamaavababeqcfasaaiaaicdaaKqb agqabaGaamyBaaaaaaGaamivamaaBaaajuaibaGaaG4maaqabaaaju aGcaGLOaGaayzkaaaakeaajuaGcqGHsisldaWcaaqaaiaad2gacaWG ibaabaWaaeWaaeaacqGHsislcaaI4aGaamyraaGaayjkaiaawMcaam aaCaaajuaibeqaaiaaiodacaGGVaGaaGOmaaaaaaqcfa4aaeWaaeaa daWcaaqaaiaaikdacaWGcbaabaGaamOBaaaaaiaawIcacaGLPaaada ahaaqcfasabeaacaaIZaaaaKqbaoaalaaabaWaaeWaaeaacaWGUbGa eyOeI0IaamiBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaaba GaaGOmaiaad6gadaqadaqaaiaad6gacqGHRaWkcaWGSbaacaGLOaGa ayzkaaGaaiyiaaaadaqadaqaaiabeE8aJjaadsfadaWgaaqcfasaai aadohacaaIZaGaeyOeI0IaamyAaiaadohaaeqaaKqbaoaabmaabaGa amyqaiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkai aawMcaaiabgUcaRmaalaaabaWaa0aaaeaacqaHdpWCaaaabaGaaGOm amaavababeqcfasaaiaaicdaaKqbagqabaGaamyBaaaaaaGaamivam aaBaaajuaibaGaaG4maiabgkHiTiaaiodaaeqaaKqbaoaabmaabaGa amyqaiaacYcacaWGcbGaaiilaiaad6gacaGGSaGaamiBaaGaayjkai aawMcaaaGaayjkaiaawMcaaaaaaa@ED8C@ ....(43.3)

In this way, one can obtain the complete energy spectra for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries. Know the following accompanying constraint relations:

  1. The original spectrum contain two possible values of energies in ordinary two–three dimensional space which presented by equation (15),
  2. The quantum number m satisfied the interval: lm+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadYgacqGHKjYOcaWGTbGaeyizImQaey4kaSIaamiBaaaa@3E86@ , thus we have ( 2l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGSbGaey4kaSIaaGymaaaa@39C3@ ) values for this quantum number,
  3. We have also two values for j=l+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3BC8@ and j=l 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3BD3@ .

Allow us to deduce the important original results: every state in usually (two–three) dimensional space will be replace by 2( 2l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdada qadaqaaiaaikdacaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa @3C08@ sub–states and then the degenerated state can be take 2 i=0 n1 ( 2l+1 ) 2 n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdada aeWbqaamaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaaacaGLOaGa ayzkaaaajuaibaGaamyAaiabg2da9iaaicdaaeaacaWGUbGaeyOeI0 IaaGymaaqcfaOaeyyeIuoacqGHHjIUcaaIYaGaamOBamaaCaaajuai beqaaiaaikdaaaaaaa@48BB@ values in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries. It’s clearly, that the obtained eigenvalues of energies are real and then the noncommutative diagonal Hamiltonian operators H ^ nc2ip MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIYaGaeyOeI0IaamyAaiaa dchaaeqaaaaa@3D0C@  and H ^ nc3ip MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0IaamyAaiaa dchaaeqaaaaa@3D0D@  are Hermitian, furthermore it’s possible to writing the two elements [ ( H ^ nc2is ) 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmisayaajaWaaSbaaKqbGeaacaWGUbGaam4yaiaaikdacqGHsisl caWGPbGaam4CaaqabaaajuaGcaGLOaGaayzkaaWaaSbaaKqbGeaaca aIXaGaaGymaaqabaaaaa@40EB@ ,   ( H ^ nc2is ) 22 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmisayaajaWaaSbaaKqbGeaacaWGUbGaam4yaiaaikdacqGHsisl caWGPbGaam4CaaqabaaajuaGcaGLOaGaayzkaaWaaSbaaKqbGeaaca aIYaGaaGOmaaqabaaaaa@40ED@ ] and [ ( H ^ nc3is ) 11 , ( H ^ nc3is ) 22 ,, ( H ^ nc3is ) 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaeWaaeaaceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbGaaG4m aiabgkHiTiaadMgacaWGZbaajuaGbeaaaiaawIcacaGLPaaadaWgaa qcfasaaiaaigdacaaIXaaabeaajuaGcaGGSaWaaeWaaeaaceWGibGb aKaadaWgaaqcfasaaiaad6gacaWGJbGaaG4maiabgkHiTiaadMgaca WGZbaajuaGbeaaaiaawIcacaGLPaaadaWgaaqcfasaaiaaikdacaaI YaaajuaGbeaacaGGSaGaaiilamaabmaabaGabmisayaajaWaaSbaaK qbGeaacaWGUbGaam4yaiaaiodacqGHsislcaWGPbGaam4Caaqcfaya baaacaGLOaGaayzkaaWaaSbaaKqbGeaacaaIZaGaaG4maaqcfayaba aacaGLBbGaayzxaaaaaa@5B84@ , as follows, respectively:

( H ^ nc2is ) 11 = 1 2 m 0 ( 1 r r ( r r )+ 1 r 2 2 ϕ 2 )+ A r 2 B r + p + { θ ¯ 2 m 0 +( A r 4 B 2 r 3 )θ }+{ σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L      ( H ^ nc2is ) 22 = 1 2 m 0 ( 1 r r ( r r )+ 1 r 2 2 ϕ 2 )+ A r 2 B r + p { θ ¯ 2 m 0 +( A r 4 B 2 r 3 )θ }+{ σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaeaaceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbGaaGOmaiab gkHiTiaadMgacaWGZbaabeaaaKqbakaawIcacaGLPaaadaWgaaqcfa saaiaaigdacaaIXaaabeaajuaGcqGH9aqpcqGHsisldaWcaaqaaiaa igdaaeaacaaIYaGaamyBamaaBaaajuaibaGaaGimaaqcfayabaaaam aabmaabaWaaSqaaeaacaaIXaaabaGaamOCaaaadaWcbaqaaiabgkGi 2cqaaiabgkGi2kaadkhaaaWaaeWaaeaacaWGYbWaaSqaaeaacqGHci ITaeaacqGHciITcaWGYbaaaaGaayjkaiaawMcaaiabgUcaRmaaleaa baGaaGymaaqaaiaadkhadaahaaqcfasabeaacaaIYaaaaaaajuaGda WcbaqaaiabgkGi2oaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaeyOa IyRaeqy1dy2aaWbaaeqajuaibaGaaGOmaaaaaaaajuaGcaGLOaGaay zkaaGaey4kaSYaaSaaaeaacaWGbbaabaGaamOCamaaCaaajuaibeqa aiaaikdaaaaaaKqbakabgkHiTmaalaaabaGaamOqaaqaaiaadkhaaa aakeaajuaGcqGHRaWkcaWGWbWaaSbaaeaacqGHRaWkaeqaamaacmaa baWaaSaaaeaadaqdaaqaaiabeI7aXbaaaeaacaaIYaGaamyBamaaBa aajuaibaGaaGimaaqcfayabaaaaiabgUcaRmaabmaabaWaaSaaaeaa caWGbbaabaGaamOCamaaCaaajuaibeqaaiaaisdaaaaaaKqbakabgk HiTmaalaaabaGaamOqaaqaaiaaikdacaWGYbWaaWbaaKqbGeqabaGa aG4maaaaaaaajuaGcaGLOaGaayzkaaGaeqiUdehacaGL7bGaayzFaa Gaey4kaSYaaiWaaeaadaWcaaqaamaanaaabaGaeq4Wdmhaaaqaaiaa ikdacaWGTbWaaSbaaKqbGeaacaaIWaaabeaaaaqcfaOaey4kaSIaeq 4Xdm2aaeWaaeaadaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaKqbGeqa baGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaaGOmai aadkhadaahaaqcfasabeaacaaIZaaaaaaaaKqbakaawIcacaGLPaaa aiaawUhacaGL9baacaaMc8+aa8HaaeaacaWGibaacaGLxdcadaWhca qaaiaadYeaaiaawEniaiaabccacaqGGaGaaeiiaiaabccaaOqaaKqb aoaabmaabaGabmisayaajaWaaSbaaKqbGeaacaWGUbGaam4yaiaaik dacqGHsislcaWGPbGaam4CaaqabaaajuaGcaGLOaGaayzkaaWaaSba aKqbGeaacaaIYaGaaGOmaaqcfayabaGaeyypa0JaeyOeI0YaaSaaae aacaaIXaaabaGaaGOmaiaad2gadaWgaaqcfasaaiaaicdaaeqaaaaa juaGdaqadaqaamaaleaabaGaaGymaaqaaiaadkhaaaWaaSqaaeaacq GHciITaeaacqGHciITcaWGYbaaamaabmaabaGaamOCamaaleaabaGa eyOaIylabaGaeyOaIyRaamOCaaaaaiaawIcacaGLPaaacqGHRaWkda WcbaqaaiaaigdaaeaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaaaaqc fa4aaSqaaeaacqGHciITdaahaaqcfasabeaacaaIYaaaaaqcfayaai abgkGi2kabew9aMnaaCaaajuaibeqaaiaaikdaaaaaaaqcfaOaayjk aiaawMcaaiabgUcaRmaalaaabaGaamyqaaqaaiaadkhadaahaaqcfa sabeaacaaIYaaaaaaajuaGcqGHsisldaWcaaqaaiaadkeaaeaacaWG YbaaaaGcbaqcfaOaey4kaSIaamiCamaaBaaabaGaeyOeI0cabeaada GadaqaamaalaaabaWaa0aaaeaacqaH4oqCaaaabaGaaGOmaiaad2ga daWgaaqcfasaaiaaicdaaKqbagqaaaaacqGHRaWkdaqadaqaamaala aabaGaamyqaaqaaiaadkhadaahaaqcfasabeaacaaI0aaaaaaajuaG cqGHsisldaWcaaqaaiaadkeaaeaacaaIYaGaamOCamaaCaaajuaibe qaaiaaiodaaaaaaaqcfaOaayjkaiaawMcaaiabeI7aXbGaay5Eaiaa w2haaiabgUcaRmaacmaabaWaaSaaaeaadaqdaaqaaiabeo8aZbaaae aacaaIYaGaamyBamaaBaaajuaibaGaaGimaaqabaaaaKqbakabgUca RiabeE8aJnaabmaabaWaaSaaaeaacaWGbbaabaGaamOCamaaCaaaju aibeqaaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGaamOqaaqaaiaa ikdacaWGYbWaaWbaaKqbGeqabaGaaG4maaaaaaaajuaGcaGLOaGaay zkaaaacaGL7bGaayzFaaGaaGPaVpaaFiaabaGaamisaaGaay51GaWa a8HaaeaacaWGmbaacaGLxdcacaqGGaGaaeiiaiaabccacaqGGaaaaa a@04EF@ ....(44.1)

and

{ ( H ^ nc3is ) 11 = 1 2 m 0 [ 1 r 2 r ( r 2 r )+ 1 r 2 sinθ θ ( sinθ θ )+ 1 r 2 ( sinθ ) 2 2 ϕ 2 ]+ A r 2 B r + p + [ Θ( A r 4 B 2 r 3 )+ θ ¯ 2 m 0 ]+{ σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L     for  j=l+1/2  spin up  ( H ^ nc3is ) 22 = 1 2 m 0 [ 1 r 2 r ( r 2 r )+ 1 r < sinθ θ ( sinθ θ )+ 1 r 2 ( sinθ ) 2 2 ϕ 2 ]+ A r 2 B r p [ Θ( A r 4 B 2 r 3 )+ θ ¯ 2 m 0 ]+{ σ ¯ 2 m 0 +χ( A r 4 B 2 r 3 ) } H L     for  j=l1/2  spin down  ( H ^ nc3is ) 33 = 1 2 m 0 [ 1 r 2 r ( r 2 r )+ 1 r 2 sinθ θ ( sinθ θ )+ 1 r 2 ( sinθ ) 2 2 ϕ 2 ]+ A r 2 B r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaadaqadaqaaiqadIeagaqcamaaBaaajuaibaGaamOBaiaadoga caaIZaGaeyOeI0IaamyAaiaadohaaKqbagqaaaGaayjkaiaawMcaam aaBaaajuaibaGaaGymaiaaigdaaeqaaKqbakabg2da9iabgkHiTmaa laaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaaju aGbeaaaaWaamWaaeaadaWcaaqaaiaaigdaaeaadaqfGaqabeqajuai baGaaGOmaaqcfayaaiaadkhaaaaaamaalaaabaGaeyOaIylabaGaey OaIyRaamOCaaaadaqadaqaamaavacabeqabKqbGeaacaaIYaaajuaG baGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaaaca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaWaaubiaeqabeqc fasaaiaaikdaaKqbagaacaWGYbaaaiGacohacaGGPbGaaiOBaiabeI 7aXbaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaqadaqa aiGacohacaGGPbGaaiOBaiabeI7aXnaalaaabaGaeyOaIylabaGaey OaIyRaeqiUdehaaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGym aaqaamaavacabeqabKqbGeaacaaIYaaajuaGbaGaamOCaaaadaqfGa qabeqajuaibaGaaGOmaaqcfayaamaabmaabaGaci4CaiaacMgacaGG UbGaeqiUdehacaGLOaGaayzkaaaaaaaadaWcaaqaamaavacabeqabK qbGeaacaaIYaaajuaGbaGaeyOaIylaaaqaaiabgkGi2oaavacabeqa bKqbGeaacaaIYaaajuaGbaGaeqy1dygaaaaaaiaawUfacaGLDbaacq GHRaWkdaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaKqbGeqabaGaaGOm aaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaamOCaaaacqGHRa WkaeaadaqfqaqabeaacqGHRaWkaeqabaGaaeiCaaaadaWadaqaaiab fI5arnaabmaabaWaaSaaaeaacaWGbbaabaWaaubiaeqabeqcfasaai aaisdaaKqbagaacaWGYbaaaaaacqGHsisldaWcaaqaaiaadkeaaeaa caaIYaWaaubiaeqabeqcfasaaiaaiodaaKqbagaacaWGYbaaaaaaai aawIcacaGLPaaacqGHRaWkdaWcaaqaaiqbeI7aXzaaraaabaGaaGOm amaavababeqcfasaaiaaicdaaKqbagqabaGaamyBaaaaaaaacaGLBb GaayzxaaGaey4kaSYaaiWaaeaadaWcaaqaamaanaaabaGaeq4Wdmha aaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaGaey 4kaSIaeq4Xdm2aaeWaaeaadaWcaaqaaiaadgeaaeaacaWGYbWaaWba aeqajuaibaGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGcbaaba GaaGOmaiaadkhadaahaaqabKqbGeaacaaIZaaaaaaaaKqbakaawIca caGLPaaaaiaawUhacaGL9baacaaMc8+aa8HaaeaacaWGibaacaGLxd cadaWhcaqaaiaadYeaaiaawEniaiaabccacaqGGaGaaeiiaiaabcca caqGMbGaae4BaiaabkhacaqGGaGaaeiiaiaabQgacqGH9aqpcqWIte cBcqGHRaWkcaqGXaGaae4laiaabkdacaqGGaGaaeiiaiabgkDiElaa bohacaqGWbGaaeyAaiaab6gacaqGGaGaaeyDaiaabchacaqGGaaaba WaaeWaaeaaceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbGaaG4m aiabgkHiTiaadMgacaWGZbaajuaGbeaaaiaawIcacaGLPaaadaWgaa qcfasaaiaaikdacaaIYaaajuaGbeaacqGH9aqpcqGHsisldaWcaaqa aiaaigdaaeaacaaIYaGaamyBamaaBaaajuaibaGaaGimaaqabaaaaK qbaoaadmaabaWaaSaaaeaacaaIXaaabaWaaubiaeqabeqcfasaaiaa ikdaaKqbagaacaWGYbaaaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadkhaaaWaaeWaaeaadaqfGaqabeqajuaibaGaaGOmaaqcfayaaiaa dkhaaaWaaSaaaeaacqGHciITaeaacqGHciITcaWGYbaaaaGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGymaaqaamaavacabeqabKqbafaa cqGH8aapaKqbagaacaWGYbaaaiGacohacaGGPbGaaiOBaiabeI7aXb aadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaqadaqaaiGa cohacaGGPbGaaiOBaiabeI7aXnaalaaabaGaeyOaIylabaGaeyOaIy RaeqiUdehaaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqa amaavacabeqabKqbGeaacaaIYaaajuaGbaGaamOCaaaadaqfGaqabe qajuaibaGaaGOmaaqcfayaamaabmaabaGaci4CaiaacMgacaGGUbGa eqiUdehacaGLOaGaayzkaaaaaaaadaWcaaqaamaavacabeqabKqbGe aacaaIYaaajuaGbaGaeyOaIylaaaqaaiabgkGi2oaavacabeqabKqb GeaacaaIYaaajuaGbaGaeqy1dygaaaaaaiaawUfacaGLDbaacqGHRa WkdaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaa aaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaamOCaaaaaeaadaqfqa qabeaacqGHsislaeqabaGaaeiCaaaadaWadaqaaiabfI5arnaabmaa baWaaSaaaeaacaWGbbaabaWaaubiaeqabeqcfasaaiaaisdaaKqbag aacaWGYbaaaaaacqGHsisldaWcaaqaaiaadkeaaeaacaaIYaWaaubi aeqabeqcfasaaiaaiodaaKqbagaacaWGYbaaaaaaaiaawIcacaGLPa aacqGHRaWkdaWcaaqaaiqbeI7aXzaaraaabaGaaGOmamaavababeqc fasaaiaaicdaaKqbagqabaGaamyBaaaaaaaacaGLBbGaayzxaaGaey 4kaSYaaiWaaeaadaWcaaqaamaanaaabaGaeq4Wdmhaaaqaaiaaikda caWGTbWaaSbaaKqbGeaacaaIWaaabeaaaaqcfaOaey4kaSIaeq4Xdm 2aaeWaaeaadaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaKqbGeqabaGa aGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaaGOmaiaadk hadaahaaqcfasabeaacaaIZaaaaaaaaKqbakaawIcacaGLPaaaaiaa wUhacaGL9baacaaMc8+aa8HaaeaacaWGibaacaGLxdcadaWhcaqaai aadYeaaiaawEniaiaabccacaqGGaGaaeiiaiaabccacaqGMbGaae4B aiaabkhacaqGGaGaaeiiaiaabQgacqGH9aqpcqWItecBcqGHsislca qGXaGaae4laiaabkdacaqGGaGaaeiiaiabgkDiElaabohacaqGWbGa aeyAaiaab6gacaqGGaGaaeizaiaab+gacaqG3bGaaeOBaiaabccaae aadaqadaqaaiqadIeagaqcamaaBaaajuaibaGaamOBaiaadogacaaI ZaGaeyOeI0IaamyAaiaadohaaKqbagqaaaGaayjkaiaawMcaamaaBa aajuaibaGaaG4maiaaiodaaeqaaKqbakabg2da9iabgkHiTmaalaaa baGaaGymaaqaaiaaikdacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbe aaaaWaamWaaeaadaWcaaqaaiaaigdaaeaadaqfGaqabeqajuaibaGa aGOmaaqcfayaaiaadkhaaaaaamaalaaabaGaeyOaIylabaGaeyOaIy RaamOCaaaadaqadaqaamaavacabeqabKqbGeaacaaIYaaajuaGbaGa amOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaaacaGLOa GaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaWaaubiaeqabeqcfasa aiaaikdaaKqbagaacaWGYbaaaiGacohacaGGPbGaaiOBaiabeI7aXb aadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaqadaqaaiGa cohacaGGPbGaaiOBaiabeI7aXnaalaaabaGaeyOaIylabaGaeyOaIy RaeqiUdehaaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqa amaavacabeqabKqbGeaacaaIYaaajuaGbaGaamOCaaaadaqfGaqabe qajuaibaGaaGOmaaqcfayaamaabmaabaGaci4CaiaacMgacaGGUbGa eqiUdehacaGLOaGaayzkaaaaaaaadaWcaaqaamaavacabeqabKqbGe aacaaIYaaajuaGbaGaeyOaIylaaaqaaiabgkGi2oaavacabeqabKqb GeaacaaIYaaajuaGbaGaeqy1dygaaaaaaiaawUfacaGLDbaacqGHRa WkdaWcaaqaaiaadgeaaeaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaa aaqcfaOaeyOeI0YaaSaaaeaacaWGcbaabaGaamOCaaaaaaGaay5Eaa aaaa@CCD6@ ....(44.2)

 On the other hand, the above obtain results (44.1) and (44.2) allow us to constructing the diagonal anisotropic matrixes [ ( H ^ nc2is ) 11 ( H ^ nc2is ) 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaeWaaeaaceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbGaaGOm aiabgkHiTiaadMgacaWGZbaajuaGbeaaaiaawIcacaGLPaaadaWgaa qcfasaaiaaigdacaaIXaaabeaajuaGcqGHGjsUdaqadaqaaiqadIea gaqcamaaBaaajuaibaGaamOBaiaadogacaaIYaGaeyOeI0IaamyAai aadohaaeqaaaqcfaOaayjkaiaawMcaamaaBaaajuaibaGaaGOmaiaa ikdaaeqaaaqcfaOaay5waiaaw2faaaaa@5034@  and [ ( H ^ nc3is ) 11 ( H ^ nc3is ) 22 ] ( H ^ nc3is ) 22 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaeWaaeaaceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbGaaG4m aiabgkHiTiaadMgacaWGZbaabeaaaKqbakaawIcacaGLPaaadaWgaa qcfasaaiaaigdacaaIXaaabeaajuaGcqGHGjsUdaqadaqaaiqadIea gaqcamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0IaamyAai aadohaaKqbagqaaaGaayjkaiaawMcaamaaBaaajuaibaGaaGOmaiaa ikdaaKqbagqaaaGaay5waiaaw2faaiabgcMi5oaabmaabaGabmisay aajaWaaSbaaKqbGeaacaWGUbGaam4yaiaaiodacqGHsislcaWGPbGa am4CaaqcfayabaaacaGLOaGaayzkaaWaaSbaaKqbGeaacaaIYaGaaG Omaaqabaaaaa@5C72@ of the Hamiltonian operators H ^ nc2ip MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIYaGaeyOeI0IaamyAaiaa dchaaKqbagqaaaaa@3D9A@  and H ^ nc3ip MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0IaamyAaiaa dchaaeqaaaaa@3D0D@  for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries respectively, as:

H ^ nc2ip =( ( H ^ nc2is ) 11 0 0 ( H nc2is ) 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIYaGaeyOeI0IaamyAaiaa dchaaeqaaKqbakabg2da9maabmaabaqbaeqabiGaaaqaamaabmaaba GabmisayaajaWaaSbaaKqbGeaacaWGUbGaam4yaiaaikdacqGHsisl caWGPbGaam4CaaqabaaajuaGcaGLOaGaayzkaaWaaSbaaKqbGeaaca aIXaGaaGymaaqcfayabaaabaGaaGimaaqaaiaaicdaaeaadaqadaqa aiaadIeadaWgaaqcfasaaiaad6gacaWGJbGaaGOmaiabgkHiTiaadM gacaWGZbaabeaaaKqbakaawIcacaGLPaaadaWgaaqcfasaaiaaikda caaIYaaajuaGbeaaaaaacaGLOaGaayzkaaaaaa@579F@ ...(45.1)

and

H ^ nc3is =( ( H nc3is ) 11 0 0 0 ( H nc3is ) 22 0 0 0 ( H nc3is ) 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0IaamyAaiaa dohaaKqbagqaaiabg2da9maabmaabaqbaeqabmWaaaqaamaabmaaba GaamisamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0IaamyA aiaadohaaKqbagqaaaGaayjkaiaawMcaamaaBaaajuaibaGaaGymai aaigdaaeqaaaqcfayaaiaaicdaaeaacaaIWaaabaGaaGimaaqaamaa bmaabaGaamisamaaBaaajuaibaGaamOBaiaadogacaaIZaGaeyOeI0 IaamyAaiaadohaaKqbagqaaaGaayjkaiaawMcaamaaBaaajuaibaGa aGOmaiaaikdaaKqbagqaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaamaabmaabaGaamisamaaBaaajuaibaGaamOBaiaadogacaaIZaGa eyOeI0IaamyAaiaadohaaeqaaaqcfaOaayjkaiaawMcaamaaBaaaju aibaGaaG4maiaaiodaaKqbagqaaaaaaiaawIcacaGLPaaaaaa@6579@ ...(45.2)

 Which allows us to obtain the original results for this investigation: the obtained Hamiltonian operators (45.1) and (45.2) can be describing atom which has two permanent dipoles: the first is electric dipole moment and the second is magnetic moment in external stationary electromagnetic field. It is important to notice that, the appearance of the polarization states of a fermionic particle for (m.i.s.) potential indicate to the validity of obtained results at very high energy where the two relativistic equations: Klein–Gordon and Dirac will be applied, which allowing to apply these results of various Nano–particles at Nano scales.

Conclusion

In this study we have performed the exact analytical bound state solutions: the energy spectra and the corresponding noncommutative Hamiltonians for the two and three dimensional Schrödinger equations in polar and spherical coordinates for modified inverse–squire potential by using generalization Boopp’s Shift method and standard perturbation theory. It is found that the energy eigenvalues depend on the dimensionality of the problem and new atomic quantum numbers ( j=l±1/1,s=±1/2,l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaeyySaeRaaGymaiaac+cacaaIXaGaaiilaiaadoha cqGH9aqpcqGHXcqScaaIXaGaai4laiaaikdacaGGSaGaamiBaaaa@45DD@  and the angular momentum quantum number in addition to two infinitesimals parameters ( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXb aa@382F@ , θ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeI7aXz aaraaaaa@3847@ ) and ( Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI5arb aa@37F0@ , θ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbeI7aXz aaraaaaa@3847@ ) in the symmetries of (NC: 2D–RSP) and (NC: 3D–RSP). And we also showed that the obtained energy spectra degenerate and every old state will be replaced by 2( 2l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdada qadaqaaiaaikdacaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa @3C08@ sub–states. Finally, we expect that the results of our research are valid in the high energies, thus the (m.s.e) can gives the same results of Dirac and Klein–Gordon equations.

Acknowledgments

This work was supported with search laboratory of: Physique et Chimie des matériaux, in university of M'sila, Algeria.

Conflicts of interest

None.

References

  1. Shi Hai Dong, Guo–Hua Sun. The Schrödinger equation with a Coulomb plus inverse–square potential in D dimensions. Physica Scripta. 2004;70(2–3):94–97.
  2. J J Pena, G Ovando, J Morales. D–dimensional Eckart+deformed Hylleraas potential: Bound state solutions. Journal of Physics: Conference Series. 2015;574:012089.
  3. L Buragohain, SAS Ahmed. Exactly solvable quantum mechanical systems generated from the anharmonic potentials. Lat Am J Phys Educ. 2010;4(1):79–83.
  4. A Niknam, AA Rajab, M Solaimani. Solutions of D–dimensional Schrödinger equation for Woods–Saxon potential with spin–orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov–Uvarov method. J Theor App Phys. 2015;10(1):53–59.
  5. Sameer M, Ikhdair, Ramazan. Sever Exact solutions of the radial Schrödinger equation for some physical potentials. CEJP. 2007;5(4):516–527.
  6. MM Nieto. Hydrogen atom and relativistic pi–mesic atom in N–space dimension. Am J Phys. 1979;47:1067–1072.  
  7. SM Ikhdai, R Sever. Exact polynomial eigensolutions of the Schrödinger equation for the pseudo harmonic potential. J Mol Struc Theochem. 2007;806:155–158.
  8. Ahmed AS, Buragohain L. Generation of new classes of exactly solvable potentials from the trigonometric Rosen–Morse potential. Phys Scr. 2010;84(6):741–746.
  9. Bose SK, Gupta N. Exact solution of non–relativistic Schrödinger equation for certain central physical potentials. Nouvo Cimento. 1996;113B(3):299– 328.  
  10. Flesses GP, Watt A. An exact solution of the Schrödinger equation for a multiterm potential. J Phys A: Math Gen. 1981;14(9):L315–L318.
  11. M Ikhdair, R Sever. Exact solution of the Klein–Gordon equation for the PT symmetri generalized Woods–Saxon potential by the Nikiforov–Uvarov method. Ann Phys. 2007;16:218–232.
  12. SH Dong. Schrödinger equation with the potential V(r) =Ar*−4+Br*−3+Cr*−2+Dr*−1 Physica Scripta. 2001;64:273–276.  
  13. SH Dong, ZQ Ma. Exact solutions to the Schrödinger equation for the potential V(r) = ar2+br−4+cr6 in two dimensions. Journal of Physics. 1998;31(49):9855–9859.
  14. SH Dong A. new approach to the relativistic Schrödinger equation with central potential: Ansatz method. International Journal of Theoretical Physics. 2001;40(2):559–567.
  15. Ali Akder A. new Coulomb ring–shaped potential via generalized parametetric Nikivforov–Uvarov method. Journal of Theoretical and Applied Physics. 2013;7:17.
  16. Sameer M. Ikhdair, Ramazan Sever Relativistic Two–Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields. Advances in High Energy Physics. 2013;11.
  17. Shi Hai Dong, Guo Hua San. Quantum Spectrum of Some An harmonic Central Potentials: Wave Functions Ansatz. Foundations of Physics Letters. 2003;16(4):357–367.
  18. SM Ikhdair. Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states. Journal of Modern Physics. 2012;3(2):170–179.
  19. H Hassanabadi, S Zarrinkamar. Exact solution Dirac equation for an energy–depended potential. Tur Phys J Plus. 2012;127:120.
  20. H Hassanabadi, M Hamzavi, S Zarrinkamar, et al. Exact solutions of N–Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms. International Journal of the Physical Sciences. 2011;6(3):583–586.
  21. Shi Hai Dong, Zhoung Qi Ma, Giampieero Esposito. Exact solutions of the Schrödinger equation with inverse–power potential. Foundations’ of Physics Letters. 1999;12(5):465–474.
  22. D Agboola. A Complete Analytical Solutions of the Mie–Type Potentials in N–Dimensions. Acta Physica Polonica A. 2011;120:371–377.
  23. D Shi Hai Exact solutions of the two–dimensional Schrödinger equation with certain central potentials. Int J Theor Phys. 2000;39(4):1119–1128.
  24. H Snyder. The Quantization of space time. Phys Rev. 1947;71:38–41.
  25. BI Ita. Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie–type potential using Nikiforov–Uvarov Method. International Journal of Recent advances in Physics. 2013;2:4.
  26. BI Ita AI. Ikeuda Solutions of the Schrödinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov–Uvarov Method. Journal of Atomic and Molecular Physics. 4 2013.
  27. BI Ita AI. Ikeuba AN. Ikot Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential. Commun Theor Phys. 2014;61:149.
  28. A Ghoshal YK. Ho Ground states of helium in exponential–cosine–screened Coulomb potentials. J Phys B: At Mol Opt Phys. 2009;42(7):075002.
  29. SM Kuchin, NV Maksimenko. Theoretical Estimations of the Spin–Averaged Mass Spectra of Heavy Quarkonia and Bc Mesons. Universal Journal of Physics and Applications. 2013;1(3):295–298.
  30. Shi–Hai Dong. Schrödinger Equation with the Potential V(r) =Ar–4+Br–3+Cr–2+Dr–1; Physica Scripta. 2001;64:273–276.
  31. Abdelmadjid Maireche Spectrum of Schrödinger Equation with HLC Potential in Non–Commutative Two–dimensional Real Space. The African Rev Phys. 2014;9(0060):479–483.
  32. Abdelmadjid Maireche Deformed Quantum Energy Spectra with Mixed Harmonic Potential for Nonrelativistic Schrödinger equation. J Nano– Electron Phys. 2015;7(2):02003–1–02003–6.
  33. Abdelmadjid Maireche A. Study of Schrödinger Equation with Inverse Sextic Potential in 2–dimensional Non–commutative Space. The African Rev Phys. 2014;9(0025):185–193.
  34. Abdelmadjid Maireche. Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation. The African Rev Phys. 2015;10(0014):97–103.
  35. Abdelmadjid Maireche. Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC–2D: RSP. International Letters of Chemistry, Physics and Astronomy. 2015;56:1–9.
  36. Abdelmadjid Maireche. Atomic Spectrum for Schrödinger Equation with Rational Spherical Type Potential in Non–commutative Space and Phase. The African Review of Physics. 2015;10(0046):373–381.
  37. Abdelmadjid Maireche. New exact bound states solutions for (CFPS) potential in the case of Non–commutative three dimensional non relativistic quantum mechanics. Med J Model Simul. 2015;04:060–072.
  38. Abdelmadjid Maireche. New Exact Solution of the Bound States for the Potential Family V(r) =A/r2–B/r+Crk (k=0,–1,–2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics. International Letters of Chemistry, Physics and Astronomy. 2015;58:164–176.
  39. Abdelmadjid Maireche. New Quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases. Lat Am J Phys Educ. 2015;09:1301–1–1301–8.
  40. Abdelmadjid Maireche. A New Approach to the Non Relativistic Schrödinger equation for an Energy–Depended Potential V(r,En,l)=V0(1+ηEn,l)r2 in Both Noncommutative three Dimensional spaces and phases. International Letters of Chemistry, Physics and Astronomy. 2015;60:11–19.
  41. Abdelmadjid Maireche. A Recent Study of Quantum Atomic Spectrum of the Lowest Excitations for Schrödinger Equation with Typical Rational Spherical Potential at Planck's and Nanoscales. J Nano Electron Phys. 2015;7(3):3047–3051.
  42. Abdelmadjid Maireche. A New Study to the Schrödinger Equation for Modified Potential V(r)= ar2+br–4+cr–6 in Nonrelativistic Three Dimensional Real Spaces and Phases. International Letters of Chemistry, Physics and Astronomy. 2015;61:38–48.
  43. Abdelmadjid Maireche. Quantum Hamiltonian and Spectrum of Schrödinger Equation with companied Harmonic Oscillator Potential and its Inverse in three Dimensional Noncommutative Real Space and Phase. J Nano Electron Phys. 2015;7(4):1–7.
  44. Abdelmadjid Maireche. Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation. The African Rev Phys. 2015;10:177–183.
  45. Abdelmadjid Maireche. New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank’s Scales. Nano World J. 2016;1(4):120–127.
  46. Abdelmadjid Maireche. New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales. J Nano Electron Phys. 2016;8(1):01020.
  47. Abdelmadjid Maireche. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quadratic Terms in Non–commutative Two Dimensional Real Spaces and Phases. J Nano Electron Phys. 2016;8(1):01021.
  48. Abdelmadjid Maireche. New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ) Potential in Noncommutative Spaces and Phases Symmetries at Plan’s and Nanoscales. J Nano Electron Phys. 2016;8(2):02027–1–02027–10
  49. Abdelmadjid Maireche. A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries. J Nano Electron Phys. 2016;8(2):02046–1–02046–6.
  50. Abdelmadjid Maireche, Djenaoui Imane. A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three Dimensional Space and Phase Space Solutions. J Nano Electron Phys. 2016;8(3):03024.
  51. Abdelmadjid Maireche. A Complete Analytical Solution of the Mie–Type Potentials in Non–commutative 3–Dimensional Spaces and Phases Symmetries. Afr Rev Phys. 2016;11:111–117.
  52. Abdelmadjid Maireche. New Exact Energy Eigen–values for (MIQYH) and (MIQHM) Central Potentials: Non–relativistic Solutions. Afr Rev Phys. 2016;11(0023):175–185.
  53. Abdelmadjid Maireche. A New Relativistic Study for Interactions in One–electron atoms (Spin ½ Particles) with Modified Mie–type Potential. J Nano Electron Phys. 2016;8(4):04027–1–04027–9
  54. Shaohong Cai, Tao Jing, Guangjie Guo, et al. Dirac Oscillator in Noncommutative Phase Space. International Journal of Theoretical Physics. 2010;49(8):1699–1705.
  55. Joohan Lee. Star Products and the Landau Problem. Journal of the Korean Physical Society. 2005;47(4):571–576.
  56. Jahan Noncommutative harmonic oscillator at finite temperature: a path integral approach. Brazilian Journal of Physics. 2008;38(4):144–146.
  57. Anselme F Dossa, Gabriel YH. Avossevou Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields. Journal of Modern Physics. 2013;4(10):1400–1411.
  58. Yang Zu–Hua, Chao Yun Long, Shuei Jie Qin, et al. Long DKP Oscillator with spin–0 in Three dimensional Noncommutaive Phase–Space. Int J Theor Phys. 2010;49:644–657.
  59. Y Yuan, Li Kang, Wang, et al. Spin ½ relativistic particle in a magnetic field in NC Phase space. Chinese Physics C. 2010;34(5):543–547.
  60. Jumakari–Mamat, Sayipjamal Dulat, Hekim Mamatabdulla. Landau–like Atomic Proplem on a Non–commutative Phase Space. Int J Theor Phys. 2016;55(6):2913–2918.
  61. Behrouz Mirza, Rasoul Narimani, Somayeh Zare. Relativistic Oscillators in a Noncommutative space in a Magnetic field. Commun Theor Phys. 2011;55:405–409.
  62. Yongjun Xia, Zhengwen Long, Shaohong Cai, et al. Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field. Int J Theor Phys. 2011;50:3105–3111.
  63. AEF Djemaï, H Smail. On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor Phys. 2004;41(6):837–844.
  64. Al Jamel. Heavy quarkonia with Cornell potential on noncommutative space. Journal of Theoretical and Applied Physics. 2011;5(1):21–24.
  65. Nieto MM, Simmons LM. Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys Rev A. 1979;19:438–444.
  66. Wen Kai Shao, Yuan Heb, Jing Pan. Some identities for the generalized Laguerre polynomials. J Nonlinear Sci Appl. 2016;9:3388–3396.
  67. Teresa E, Pe_rez, Miguel A. Pinnar On Sobolev Orthogonality for the Generalized Laguerre Polynomials. Journal of approximation theory. 1996;86(3):278–285.
Creative Commons Attribution License

©2016 Maireche. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.