Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 8 Issue 2

Physics and mathematical model for boomerang flight

Ryspek Usubamatov

Kyrgyz State Technical University after I. Razzakov, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Kyrgyz State Technical University after I. Razzakov, Kyrgyzstan

Received: February 23, 2022 | Published: March 17, 2022

Citation: Usubamatov R. Physics and mathematical model for boomerang flight. Int Rob Auto J. 2022;8(2):34-38 DOI: 10.15406/iratj.2022.08.00241

Download PDF

Abstract

The boomerang flight is presented in the known publications by the action of aerodynamic forces and gyroscopic precession torque. This solution does not give a true answer because gyroscopic effects are expressed by the action of the eight interrelated inertial torques generated by the rotating objects. The publications with numerical modeling do not describe the physics of the boomerang flight. Today, the solution of this problem is presented by the mathematical model with the action of the lift forces and inertial torques generated by the rotating boomerang. The boomerang flight is described by the methods of theories of aerodynamics and gyroscopic effects that express the kinetic energy of the boomerang motion and rotation. The mathematical model for the boomerang flight contains multifunctional and interrelated expressions of two theories, which manual solution is sophisticated, but solved by computer software without numerical modeling. The analytical solution for the boomerang flight describes its physics and presents a good example for the educational process of engineering mechanics and aerodynamics.

Keywords: aerodynamics; boomerang; gyroscopic effects; inertial torque, kinetic energy

Introduction

The boomerang is the hunting tool of specific designs was one of the oldest flying inventions of ancient civilizations. Hunters threw the boomerangs to bludgeon a target and, in case of a miss, they returned to them by the curvilinear trajectory of their flights. In such a situation, hunters did not lose time for the search of the flown-away boomerang. This specific effect of a throwing object by hand attracted scientists to describe the physics of flight and properties of the boomerang.1–3 Analysis of the return boomerang designs, starting from ancient to modern sport one, shows most of them contain from two to four airfoiled blades. Figure 1 shows some typical designs of the boomerang.

Figure 1 Typical boomerang designs.

The two blade's boomerangs are designed with curved forms, other ones have rectilinear. All blades have aerofoil cross-sections that produce aerodynamic lift forces. Any boomerang designs of airfoiled blades will manifest the curvilinear trajectory of flights. The studies of the specificity of boomerang flight show the combined action of its aerodynamic forces and gyroscopic inertial torques. The known publications contain this conclusion but with action only gyroscopic precession inertial torque that does not describe the full picture of the boomerang flight. 4,5

The aerodynamics component of the boomerang flight is based on well-developed aerodynamic theory. The flight of the boomerang is going on by the action of the lift force generated by the rotation of airfoiled blades.6–8 The gyroscopic effects express the action of the eight interrelated inertial torques on the rotating boomerang. These two components are described separately and presented in several publications.9–11 The curvilinear flight of the rotating boomerang and the turn of its plane around the diametral line is the result of the combined action of gyroscopic effects and the action of the aerodynamic thrust force.

The new theory of the gyroscopic effects for rotating objects enables supplementing and describing the physics of boomerang flight completely. Gyroscopic effects are formulated by mathematical models, and their physics is described by the principle of classical mechanics.12–14 The spinning object is subjected to the action of the system of torques generated by the centrifugal and Coriolis forces of the distributed mass of the rotating object and the torque of the change in the angular momentum.15,16 The expressions of inertial torques depend on the geometry of the rotating object that has many designs. The mathematical models of gyroscope motions include the interrelation of all torques about two axes by the principle of mechanical energy conservation and are represented for the boomerang with three blades in Table 1.15

Inertial torques generated by

Action

Equation

Centrifugal forces

Resistance

Precession

T ct.i =0,933πJω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzadGaam4yaiaadshacaGGUaGaamyAaaWcbeaa jugibiabg2da9iaaicdacaGGSaGaaGyoaiaaiodacaaIZaGaeqiWda NaamOsaiabeM8a3jabeM8a3TWaaSbaaeaajugWaiaadMgaaSqabaaa aa@4A87@

average

Coriolis forces

Resistance

T cr.i =1,866Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzadGaam4yaiaadkhacaGGUaGaamyAaaWcbeaa jugibiabg2da9iaaigdacaGGSaGaaGioaiaaiAdacaaI2aGaamOsai abeM8a3jabeM8a3TWaaSbaaeaajugWaiaadMgaaSqabaaaaa@48CE@

average

Change in angular momentum

Precession

T am.i =3Jω ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzadGaamyyaiaad2gacaGGUaGaamyAaaWcbeaa jugibiabg2da9iaaiodacaWGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaK qzadGaamyAaaWcbeaaaaa@45D7@

Dependency of angular velocities of the boomerang about axes of rotation: ω y =1,645(π+2,608) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaeyypa0JaeyOe I0IaaGymaiaacYcacaaI2aGaaGinaiaaiwdacaGGOaGaeqiWdaNaey 4kaSIaaeOmaiaabYcacaqG2aGaaeimaiaabIdacaqGPaGaeqyYdCxc fa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaaa@4DAC@

Table 1 Inertial torques of the boomerang with three blades of vertical disposition
Where ωi is the angular velocity about axis i; ω is the angular velocity about axis oz; J is the moment of inertia of the spinning boomerang (propeller).

The physics of gyroscope inertial torques and motions are explained in detail and confirmed by practice. The unique designs of the boomerang will produce different gyroscopic inertial torques, the aerodynamic thrust force, and the trajectory of its flight. This work presents a detailed description of the physics of the curvilinear flight of returning boomerangs based on two theories of aerodynamics and gyroscopic effects. The known publications do not contain the action of the system of the interrelated inertial torque generated by the rotating boomerang. The mathematical model for the boomerang flight is considered after the action of the initial impulse force that gives the rotation to the boomerang and its linear velocity in space. The mathematical model for the motions around three axes of the Cartesian 3D coordinate system is presented in the Euler differential equations. The analytical solution for the boomerang flight presents a good example for the educational process of engineering mechanics and aerodynamics.

Methodology

The known publications dedicated to the boomerang flight contain the mathematical models based on the action of aerodynamic forces and gyroscopic precession torque generated by the rotating boomerang. This solution does not give a true answer because gyroscopic effects are the manifestation of the action of the system of interrelated inertial torques of the rotating object. The boomerang flight is described by the aerodynamic lift forces of its blades and the system of interrelated inertial torques of the rotating boomerang that is presented below. The forces and torques produced by the boomerang blades are variable, which action generates a fluctuated flight around two axes that is described by the theory of vibration. Naturally, a fluctuated flight produces additional forces acting on the boomerang and changes its curvilinear motion in space. The mathematical model of the boomerang flight with the action of all physical components will be very sophisticated and difficult to solve. Analysis of the vibratory forces shows their action depends on the speed of the boomerang rotation. The amplitude of vibration is relatively high, the time of the action of the forces is short that does not change too much the boomerang flight. This section does not consider the aspect of the boomerang vibratory flight and is limited by the action of two initial components that are aerodynamic lift forces and the system of interrelated inertial torques.

The physical model for the boomerang flight is considered for the three blades design. This design is similar to an aircraft propeller with known expressions of inertial torques generated by the mass of its blades.15 The boomerang launches horizontally for the vertical disposition of its plane with linear velocity V of its center mass and rotates with the angular velocity ω of counterclockwise. The spinning boomerang acts like a simple propeller and produces the thrust force that pushes the boomerang to the side that is perpendicular to the line of the linear velocity V of its center mass. The linear velocity of the boomerang and its rotation manifests more thrust force in the upper part F u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaeaajugWaiaadwhaaKqbagqaaaaa@3AB5@  than in the down part F d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaeaajugWaiaadsgaaKqbagqaaaaa@3AA4@ of the blades because of a difference in the resultant linear velocities V u = V +  V b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadwhaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGwbGaaeiiaiabgUcaRiaabccaca WGwbqcfa4damaaBaaaleaajugWa8qacaWGIbaal8aabeaaaaa@43C9@ and V d =  V b   V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadsgaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGwbqcfa4damaaBaaaleaajugWa8 qacaWGIbaal8aabeaajugib8qacaGGGcGaeyOeI0IaaeiiaiaadAfa aaa@44E3@ , respectively. Where V u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadwhaaSWdaeqa aaaa@3A9B@ , V d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadsgaaSWdaeqa aaaa@3A8A@  and V b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadkgaaSWdaeqa aaaa@3A88@  are the linear velocity of the upper part, the down part, and the blades, respectively. This difference in the forces shifts the aerodynamic resultant force F a =  F u +  F d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGgbqcfa4damaaBaaaleaajugWa8 qacaWG1baal8aabeaajugib8qacqGHRaWkcaqGGaGaamOraKqba+aa daWgaaWcbaqcLbmapeGaamizaaWcpaqabaaaaa@469E@ upwards above the center of gravity and created the aerodynamic torque T =( F u   F d )k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacaqGGaGaeyypa0tcfa4damaabmaakeaajugib8qa caWGgbqcfa4damaaBaaaleaajugWa8qacaWG1baal8aabeaajugib8 qacaGGtaIaaeiiaiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadsga aSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaam4Aaaaa@4743@  (k is the centroid) that turns the boomerang about axis ox (Figure 2). The value of the aerodynamic torque T is fluctuated and changed by sine law because of the rotation of the blades. The known equation presented in publications of aerodynamic expresses the value of aerodynamic force.3–6 The action of the torque T on the spinning boomerang produces the system of the inertial torques generated by its rotating mass that manifest gyroscopic effects. As described above, motions, velocities, forces, and torques of the spinning boomerang are demonstrated in Figure 2 at the Cartesian 3D system coordinates Σoxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo6atjaad+gacaWG4bGaamyEaiaadQhaaaa@3C17@ .

Figure 2 The thrust forces and inertial torques act on the vertical disposition of the boomerang and its motions.

The boomerang motion is considered for the actions of its weight W, the aerodynamic torque T that produces gyroscopic effects, and the linear velocity V about axes ox and oy. The action of the gyroscopic torques on rotating objects and the dependency of the angular velocity of their rotation around axes are well described in publications and will not be repeated for the boomerang rotation.15,16

Inertial torques generated the boomerang with three blades and the dependency of angular velocities about axes of rotation are presented in Table 1.15 The spin of the boomerang is variable because of the drag force acting on the three blades. The mathematical model for the boomerang flight with its variable angular velocity of rotation is not a critical engineering problem. For solution is accepted the aerodynamic components of the boomerang flight with its constant spin that presented by the strip theory. The aerodynamic lift force is normal to the relative velocity of the boomerang blades aerofoil. The drag force is in the direction of the relative velocity of the aerofoil. The pitching moment is due to offsetting between the center of pressure and the aerodynamic center of the airfoil. This moment creates the internal stress of the boomerang blades, does not change its flight, and is omitted from consideration.

The motions of the boomerang about axis ox and oy are presented by the known equations for the spinning objects.14 The action of resistance force of the air on the boomerang turn around axes oy and ox is omitted because of the small value of the high order.

J x d ω x dt =T T ct.x T cr.x T am.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajuaGdaWcaaGcbaqcLbsa caWGKbGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaK qzGeGaamizaiaadshaaaGaeyypa0JaamivaiabgkHiTiaadsfajuaG daWgaaWcbaqcLbmacaWGJbGaamiDaiaac6cacaWG4baaleqaaKqzGe GaeyOeI0IaamivaKqbaoaaBaaaleaajugWaiaadogacaWGYbGaaiOl aiaadIhaaSqabaqcLbsacqGHsislcaWGubqcfa4aaSbaaSqaaKqzad Gaamyyaiaad2gacaGGUaGaamyEaaWcbeaaaaa@5C6A@   (1)

J y d ω y dt = T ct.x + T am.x T cr.y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaajuaGdaWcaaGcbaqcLbsa caWGKbGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaaaOqaaK qzGeGaamizaiaadshaaaGaeyypa0JaamivaKqbaoaaBaaaleaajugW aiaadogacaWG0bGaaiOlaiaadIhaaSqabaqcLbsacqGHRaWkcaWGub qcfa4aaSbaaSqaaKqzadGaamyyaiaad2gacaGGUaGaamiEaaWcbeaa jugibiabgkHiTiaadsfajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCai aac6cacaWG5baaleqaaaaa@5A9C@   (2)

ω y =1,645(π+2,608) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaeyypa0JaeyOe I0IaaGymaiaacYcacaaI2aGaaGinaiaaiwdacaGGOaGaeqiWdaNaey 4kaSIaaeOmaiaabYcacaqG2aGaaeimaiaabIdacaqGPaGaeqyYdCxc fa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaaa@4DAC@   (3)

where ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqa baaaaa@3B90@  and ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3LqbaoaaBaaabaqcLbmacaWG5baajuaGbeaaaaa@3BDB@  is the angular velocity of the boomerang about axes ox and oy, respectively; T ct.x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWG0bGa aiOlaiaadIhaaSWdaeqaaaaa@3D2F@ , T cr.x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWGYbGa aiOlaiaadIhaaSWdaeqaaaaa@3D2D@ , T cr.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWGYbGa aiOlaiaadMhaaSWdaeqaaaaa@3D2E@ , T am.x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadggacaWGTbGa aiOlaiaadIhaaSWdaeqaaaaa@3D26@  and T am.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadggacaWGTbGa aiOlaiaadMhaaSWdaeqaaaaa@3D27@ are inertial torques generated by the centrifugal, Coriolis, and the change in the angular momentum acting about axes ox and oy, respectively; J x = J y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqa aKqzGeWdbiabg2da9iaadQeajuaGpaWaaSbaaSqaaKqzadWdbiaadM haaSWdaeqaaaaa@4025@  is the moment of inertia of the boomerang about axes ox and oy, respectively. The inertial torques T ct.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWG0bGa aiOlaiaadMhaaSWdaeqaaaaa@3D30@ acting about axes ox and oy are removed because of mutual subtraction.16

The combined action of the weight, gyroscopic inertial torques, and motion of the boomerang produce dynamical changes of its flight that are traced by the following steps presented below.

  1. The vertically rotating boomerang begins to move along the axis ox (Figure 3, position 1). The action of the resulting load torque, T r = T T ct.x   T cr.x T am.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadkhaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGubGaeyOeI0IaamivaKqba+aada WgaaWcbaqcLbmapeGaam4yaiaadshacaGGUaGaamiEaaWcpaqabaqc LbsapeGaeyOeI0IaaeiiaiaadsfajuaGpaWaaSbaaSqaaKqzadWdbi aadogacaWGYbGaaiOlaiaadIhaaSWdaeqaaKqzGeWdbiabgkHiTiaa dsfajuaGpaWaaSbaaSqaaKqzadWdbiaadggacaWGTbGaaiOlaiaadM haaSWdaeqaaaaa@55F3@ turns the boomerang about axis oy and generates the precession torque T p =  T ct.x +  T am.x   T cr.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGubqcfa4damaaBaaaleaajugWa8 qacaWGJbGaamiDaiaac6cacaWG4baal8aabeaajugib8qacqGHRaWk caqGGaGaamivaKqba+aadaWgaaWcbaqcLbmapeGaamyyaiaad2gaca GGUaGaamiEaaWcpaqabaqcLbsapeGaai4eGiaabccacaWGubqcfa4d amaaBaaaleaajugWa8qacaWGJbGaamOCaiaac6cacaWG5baal8aabe aaaaa@548D@ that turns the boomerang about axis oy in a counter-clockwise direction.
  2. The boomerang begins to move curvilinearly to the left side on the plane xoz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacaWGVbGaamOEaaaa@3995@ under the action of the thrust force F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aaaa@3A77@ . The intensive turn of boomerang about axis oy (Eq. (4)) under the action of the precession torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aaaa@3A94@  produces new resulting resistance torque T r *> T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadkhaaSWdaeqa aKqzGeWdbiaacQcacqGH+aGpcaWGubqcfa4damaaBaaaleaajugWa8 qacaWGYbaal8aabeaaaaa@40DC@  that bigger the initial load torque. (Figure 3, position 2).
  3. The intensive turn of the boomerang about axis ox in a clockwise direction changes the direction of the thrust force F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aaaa@3A77@  and lifts it. At this condition, the boomerang moves by a line of small radius of curvature. The value of the precession torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aaaa@3A94@  decreases because the value of the resulting load torque T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadkhaaSWdaeqa aaaa@3A96@  decreases (Figure 3, positions 4 - 5).
  4. The intensive turn of the boomerang about axis ox inclines it from the vertical to the horizon. The value of the aerodynamic torque T is counterbalanced to the value of the resistance gyroscopic inertial torques. The value of the precession torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aaaa@3A94@ decreases, T p =( T ct.x +  T am.x )cosφ  T cr.y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aKqzGeWdbiabg2da9Kqba+aadaqadaGcbaqcLbsapeGaamivaKqba+ aadaWgaaWcbaqcLbmapeGaam4yaiaadshacaGGUaGaamiEaaWcpaqa baqcLbsapeGaey4kaSIaaeiiaiaadsfajuaGpaWaaSbaaSqaaKqzad WdbiaadggacaWGTbGaaiOlaiaadIhaaSWdaeqaaaGccaGLOaGaayzk aaqcLbsapeGaam4yaiaad+gacaWGZbGaeqOXdOMaai4eGiaabccaca WGubqcfa4damaaBaaaleaajugWa8qacaWGJbGaamOCaiaac6cacaWG 5baal8aabeaaaaa@5B54@ and the value of resulting resistance torque T r *= T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadkhaaSWdaeqa aKqzGeWdbiaacQcacqGH9aqpcaWGubqcfa4damaaBaaaleaajugWa8 qacaWGYbaal8aabeaaaaa@40DA@ comes to the dynamic balance with the initial load torque. The boomerang flies by the line of the increased radius of curvature motion. The angular velocity ω of the boomerang decreases and decreases the value of the thrust force F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aaaa@3A77@ . The plane of the spinning boomerang is almost horizontal and its flight is going by gliding curve (Figure 3, positions 6 - 7).

The trajectory of the typical flight of the boomerang under the action of the forces and torques described in paragraphs a) – d) is demonstrated in Figure 3.

Figure 3 Change in the curvilinear flight and the disposition of the plane of the spinning boomerang.

The acting forces and inertial torques on the horizontal disposition of the boomerang and its motions are demonstrated in Figure 4.

Figure 4 The thrust forces and inertial torques act on the horizontal disposition of the boomerang and its motions.

The curvilinear aerodynamic flight of the spinning boomerang in space is going on under the action of the starting impulse force, its weight, thrust force, and gyroscopic inertial torques. At the process of flight, the vertically disposed boomerang begins to change its orientation in space. The mathematical model for the flight of the spinning boomerang is presented by the system of equations at the permanent system of the Cartesian 3D coordinates, but its gyroscopic motions at the movable one (Figure 5).

Figure 5 The common disposition of the boomerang at the 3D coordinate system.

The differential equations of the boomerang linear velocities along the coordinates are presented by the Euler form:

-  along with the axes ox, oz, and oy:

m d V x dt =( F x F dr.b )cosβ F a sinβcosφ= [ F x ( 1/2 )ρ V b 2 c C d A c ]cos( ω y t)( 1/2 )ρ V b 2 c C L sin( ω y t)cos( ω x t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbaaaaaaaaxxo8TVF6a8qacaWGTbqcfa4aaSaaaOqaaKqzGeGaamiz aiaadAfajuaGdaWgaaWcbaqcLbmacaWG4baaleqaaaGcbaqcLbsaca WGKbGaamiDaaaacqGH9aqpcaGGOaGaamOraKqbaoaaBaaaleaajugW aiaadIhaaSqabaqcLbsacqGHsislcaWGgbqcfa4aaSbaaSqaaKqzad GaamizaiaadkhacaGGUaGaamOyaaWcbeaajugibiaacMcaciGGJbGa ai4BaiaacohacqaHYoGycqGHsislcaWGgbqcfa4aaSbaaSqaaKqzad GaamyyaaWcbeaajugibiGacohacaGGPbGaaiOBaiabek7aIjGacoga caGGVbGaai4CaiabeA8aQjabg2da9aGcbaqcLbsacaGGBbGaamOraK qbaoaaBaaaleaajugWaiaadIhaaSqabaqcLbsacqGHsisljuaGdaqa daGcbaqcLbsaqaaaaaaaaaWdciaaigdacaGGVaGaaGOmaaGcpeGaay jkaiaawMcaaKqzGeWdciabeg8aYjaadAfajuaGdaqhaaWcbaqcLbma caWGIbaaleaajugWaiaaikdaaaqcLbsacaWGJbGaam4qaKqba+qada WgaaWcbaqcLbmapiGaamizaaWcpeqabaqcLbsapiGaamyqaKqbaoaa BaaaleaajugWaiaadogaaSqabaqcLbsacaGGDbWdbiGacogacaGGVb Gaai4CaiaacIcacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG5baaleqa aKqzGeGaamiDaiaacMcapiGaeyOeI0scfa4dbmaabmaakeaajugib8 GacaaIXaGaai4laiaaikdaaOWdbiaawIcacaGLPaaajugib8GacqaH bpGCcaWGwbqcfa4aa0baaSqaaKqzadGaamOyaaWcbaqcLbmacaaIYa aaaKqzGeGaam4yaiaadoeajuaGpeWaaSbaaSqaaKqzadWdciaadYea aSWdbeqaaKqzGeGaci4CaiaacMgacaGGUbGaaiikaiabeM8a3Lqbao aaBaaaleaajugWaiaadMhaaSqabaqcLbsacaWG0bGaaiykaiGacoga caGGVbGaai4CaiaacIcacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4b aaleqaaKqzGeGaamiDaiaacMcaaaaa@B985@   (4)

m d V y dt =W F dr.b cosφ+ F a sinφ= W( 1/2 )ρ V b 2 c C d cos( ω x t)+( 1/2 )ρ V b 2 c C L sin( ω x t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbaaaaaaaaxxo8TVF6a8qacaWGTbqcfa4aaSaaaOqaaKqzGeGaamiz aiaadAfajuaGdaWgaaWcbaqcLbmacaWG5baaleqaaaGcbaqcLbsaca WGKbGaamiDaaaacqGH9aqpcqGHsislcaWGxbGaeyOeI0IaamOraKqb aoaaBaaaleaajugWaiaadsgacaWGYbGaaiOlaiaadkgaaSqabaqcLb saciGGJbGaai4BaiaacohacqaHgpGAcqGHRaWkcaWGgbqcfa4aaSba aSqaaKqzadGaamyyaaWcbeaajugibiGacohacaGGPbGaaiOBaiabeA 8aQjabg2da9aGcbaqcLbsacqGHsislcaWGxbGaeyOeI0scfa4aaeWa aOqaaKqzGeaeaaaaaaaaa8GacaaIXaGaai4laiaaikdaaOWdbiaawI cacaGLPaaajugib8GacqaHbpGCcaWGwbqcfa4aa0baaSqaaKqzadGa amOyaaWcbaqcLbmacaaIYaaaaKqzGeGaam4yaiaadoeajuaGpeWaaS baaSqaaKqzadGaamizaaWcbeaajugibiGacogacaGGVbGaai4Caiaa cIcacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaam iDaiaacMcacqGHRaWkjuaGdaqadaGcbaqcLbsapiGaaGymaiaac+ca caaIYaaak8qacaGLOaGaayzkaaqcLbsapiGaeqyWdiNaamOvaKqbao aaDaaaleaajugWaiaadkgaaSqaaKqzadGaaGOmaaaajugibiaadoga caWGdbqcfa4aaSbaaSqaaKqzadGaamitaaWcbeaajugibiGacohaca GGPbGaaiOBa8qacaGGOaGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiE aaWcbeaajugibiaadshacaGGPaaaaaa@9DD6@   (5)

m d V z dt = F a cosφcosβ=( 1/2 )ρ V b 2 c C L cos( ω x t)cos( ω y t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaaaW1LdF77NoapeGaamyBaKqbaoaalaaakeaajugibiaadsgacaWG wbqcfa4aaSbaaSqaaKqzadGaamOEaaWcbeaaaOqaaKqzGeGaamizai aadshaaaGaeyypa0JaamOraKqbaoaaBaaaleaajugWaiaadggaaSqa baqcLbsaciGGJbGaai4BaiaacohacqaHgpGAciGGJbGaai4Baiaaco hacqaHYoGycqGH9aqpjuaGdaqadaGcbaqcLbsaqaaaaaaaaaWdciaa igdacaGGVaGaaGOmaaGcpeGaayjkaiaawMcaaKqzGeWdciabeg8aYj aadAfajuaGdaqhaaWcbaqcLbmacaWGIbaaleaajugWaiaaikdaaaqc LbsacaWGJbGaam4qaKqba+qadaWgaaWcbaqcLbmapiGaamitaaWcpe qabaqcLbsaciGGJbGaai4BaiaacohacaGGOaGaeqyYdCxcfa4aaSba aSqaaKqzadGaamiEaaWcbeaajugibiaadshacaGGPaGaci4yaiaac+ gacaGGZbGaaiikaiabeM8a3LqbaoaaBaaaleaajugWaiaadMhaaSqa baqcLbsacaWG0bGaaiykaaaa@7C7E@   (6)

where m is the mass of the boomerang; V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqa aaaa@3A9E@ , V z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaiaadQhaaeqaaaaa@3948@ , and V y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaiaadMhaaeqaaaaa@3947@ , are the linear velocity along with the axis ox, oz, and oy respectively; F x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaaa@3A40@  is the impulse force of short-time action that launched the boomerang; F a   =( 1/2 )ρ V b 2 c C L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aKqbaoaaBaaaleaajugib8qacaGGGcaal8aabeaajugib8qacqGH9a qpjuaGpaWaaeWaaOqaaKqzGeWdbiaaigdacaGGVaGaaGOmaaGcpaGa ayjkaiaawMcaaKqzGeWdbiabeg8aYjaadAfajuaGpaWaaSbaaSqaaK qzadWdbiaadkgaaSWdaeqaaKqbaoaaCaaaleqabaqcLbmapeGaaGOm aaaajugibiaadogacaWGdbqcfa4damaaBaaaleaajugWa8qacaWGmb aal8aabeaaaaa@51ED@  is the thrust force ( V b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadkgaaSWdaeqa aaaa@3A88@  is the tangential velocity of the blade; c is the aerodynamic aerofoil chord; C L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadoeajuaGpaWaaSbaaSqaaKqzadWdbiaadYeaaSWdaeqa aaaa@3A5F@  is the lift coefficient); F dr.b =( 1/2 )ρ V b 2 C d. A c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadsgacaWGYbGa aiOlaiaadkgaaSWdaeqaaKqzGeWdbiabg2da9Kqba+aadaqadaGcba qcLbsapeGaaGymaiaac+cacaaIYaaak8aacaGLOaGaayzkaaqcLbsa peGaeqyWdiNaamOvaKqba+aadaWgaaWcbaqcLbmapeGaamOyaaWcpa qabaqcfa4aaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaam4qaKqb a+aadaWgaaWcbaqcLbmapeGaamizaiaac6caaSWdaeqaaKqzGeWdbi aadgeajuaGpaWaaSbaaSqaaKqzadWdbiaadogaaSWdaeqaaaaa@5639@  is the drag force of the air ( ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYbaa@3865@  is the mass density of air, C d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadoeajuaGdaWgaaWcbaqcLbmacaWGKbaaleqaaaaa@3A49@  is the drag coefficient for the linear motion, A c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeajuaGpaWaaSbaaSqaaKqzadWdbiaadogaaSWdaeqa aaaa@3A74@  is the integer cross-section of the longitudinal area of the boomerang); φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeA8aQbaa@3862@  and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIbaa@3846@  is the angle inclination of the boomerang axle to the axis oz on the plane zoy and ox on the plane xoy, respectively; ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqa baaaaa@3B90@  and ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqa baaaaa@3B90@  is the angular velocity of the boomerang about axis ox ad oy, respectively; t is the time; W is the boomerang weight, other parameters are as specified above.

Separating variables of Eqs. (4) – (6) and presentation by the integral forms gives:

V in V x d V x = 1 m 0 t [ F x ( 1/2 )ρ V b 2 c C d A c ]cos( ω y t)( 1/2 )ρ V b 2 c C L sin( ω y t)cos( ω x t)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieeaaaaa aaaCD5W3++PdWdbmaapehakeaajugibiaadsgacaWGwbqcfa4aaSba aSqaaKqzadGaamiEaaWcbeaaaeaajugibiaadAfajuaGdaWgaaadba qcLbmacaWGPbGaamOBaaadbeaaaSqaaKqzGeGaamOvaKqbaoaaBaaa meaajugWaiaadIhaaWqabaaajugibiabgUIiYdGaeyypa0tcfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGTbaaaKqbaoaapehakeaa jugibiaacUfacaWGgbqcfa4aaSbaaSqaaKqzGeGaamiEaaWcbeaaju gibiabgkHiTKqbaoaabmaakeaajugibabaaaaaaaaapiGaaGymaiaa c+cacaaIYaaak8qacaGLOaGaayzkaaqcLbsapiGaeqyWdiNaamOvaK qbaoaaDaaaleaajugWaiaadkgaaSqaaKqzadGaaGOmaaaajugibiaa dogacaWGdbqcfa4dbmaaBaaaleaajugWa8GacaWGKbaal8qabeaaju gib8GacaWGbbqcfa4aaSbaaSqaaKqzadGaam4yaaWcbeaajugibiaa c2fapeGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3LqbaoaaBaaale aajugWaiaadMhaaSqabaqcLbsacaWG0bGaaiyka8GacqGHsisljuaG peWaaeWaaOqaaKqzGeWdciaaigdacaGGVaGaaGOmaaGcpeGaayjkai aawMcaaKqzGeWdciabeg8aYjaadAfajuaGdaqhaaWcbaqcLbmacaWG IbaaleaajugWaiaaikdaaaqcLbsacaWGJbGaam4qaKqba+qadaWgaa WcbaqcLbmapiGaamitaaWcpeqabaqcLbsaciGGZbGaaiyAaiaac6ga caGGOaGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaajugibi aadshacaGGPaGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3Lqbaoaa BaaaleaajugWaiaadIhaaSqabaqcLbsacaWG0bGaaiykaiaadsgaca WG0baaleaajugWaiaaicdaaSqaaKqzadGaamiDaaqcLbsacqGHRiI8 aaaa@AD53@   (7)

0 V y. d V y = 1 m 0 t [W( 1/2 )ρ V b 2 c C d cos( ω x t)+( 1/2 )ρ V b 2 c C L sin( ω x t)]dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieeaaaaa aaaCD5W3++PdWdbmaapehakeaajugibiaadsgacaWGwbqcfa4aaSba aSqaaKqzadGaamyEaaWcbeaaaeaajugWaiaaicdaaSqaaKqzGeGaam OvaKqbaoaaBaaameaajugWaiaadMhacaGGUaaameqaaaqcLbsacqGH RiI8aiabg2da9KqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaam yBaaaajuaGdaWdXbGcbaqcLbsacaGGBbGaeyOeI0Iaam4vaiabgkHi TKqbaoaabmaakeaajugibabaaaaaaaaapiGaaGymaiaac+cacaaIYa aak8qacaGLOaGaayzkaaqcLbsapiGaeqyWdiNaamOvaKqbaoaaDaaa leaajugWaiaadkgaaSqaaKqzadGaaGOmaaaajugibiaadogacaWGdb qcfa4dbmaaBaaaleaajugWa8GacaWGKbaal8qabeaajugibiGacoga caGGVbGaai4CaiaacIcacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4b aaleqaaKqzGeGaamiDaiaacMcacqGHRaWkjuaGdaqadaGcbaqcLbsa piGaaGymaiaac+cacaaIYaaak8qacaGLOaGaayzkaaqcLbsapiGaeq yWdiNaamOvaKqbaoaaDaaaleaajugWaiaadkgaaSqaaKqzadGaaGOm aaaajugibiaadogacaWGdbqcfa4aaSbaaSqaaKqzadGaamitaaWcbe aajugibiGacohacaGGPbGaaiOBa8qacaGGOaGaeqyYdCxcfa4aaSba aSqaaKqzadGaamiEaaWcbeaajugibiaadshacaGGPaGaaiyxaiaads gacaWG0baaleaajugWaiaaicdaaSqaaKqzadGaamiDaaqcLbsacqGH RiI8aaaa@99BC@   (8)

0 V z d V z = 1 m 0 t ( 1/2 )ρ V b 2 c C L cos( ω x t)cos( ω y t)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieeaaaaa aaaCD5W3++PdWdbmaapehakeaajugibiaadsgacaWGwbqcfa4aaSba aSqaaKqzadGaamOEaaWcbeaaaeaajugWaiaaicdaaSqaaKqzGeGaam OvaKqbaoaaBaaameaajugWaiaadQhaaWqabaaajugibiabgUIiYdGa eyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGTbaaaK qbaoaapehakeaajuaGdaqadaGcbaqcLbsaqaaaaaaaaaWdciaaigda caGGVaGaaGOmaaGcpeGaayjkaiaawMcaaKqzGeWdciabeg8aYjaadA fajuaGdaqhaaWcbaqcLbmacaWGIbaaleaajugWaiaaikdaaaqcLbsa caWGJbGaam4qaKqba+qadaWgaaWcbaqcLbmapiGaamitaaWcpeqaba qcLbsaciGGJbGaai4BaiaacohacaGGOaGaeqyYdCxcfa4aaSbaaSqa aKqzadGaamiEaaWcbeaajugibiaadshacaGGPaGaci4yaiaac+gaca GGZbGaaiikaiabeM8a3LqbaoaaBaaaleaajugWaiaadMhaaSqabaqc LbsacaWG0bGaaiykaiaadsgacaWG0baaleaajugWaiaaicdaaSqaaK qzadGaamiDaaqcLbsacqGHRiI8aaaa@8062@   (9)

The solutions of the integral Eqs. (7) – (9) are tabulated and presented by the following:

V x. V in = 1 m { [ F x t 1 2 ω y ρ V b 2 c C d A c ]sin( ω y t)+ 1 2 ρ V b 2 c C L [ cos( ω y + ω x )t 2( ω y + ω x ) + cos( ω y ω x )t 2( ω y ω x ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaaaW1LdF77NoapeGaamOvaKqbaoaaBaaaleaajugWaiaadIhacaGG UaaaleqaaKqzGeGaeyOeI0IaamOvaKqbaoaaBaaaleaajugWaiaadM gacaWGUbaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaWGTbaaaKqbaoaacmaakeaajugibiaacUfacaWGgb qcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiaadshacqGHsisl juaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdacqaHjpWDju aGdaWgaaWcbaqcLbmacaWG5baaleqaaaaajugibabaaaaaaaaapiGa eqyWdiNaamOvaKqbaoaaDaaaleaajugWaiaadkgaaSqaaKqzadGaaG OmaaaajugibiaadogacaWGdbqcfa4dbmaaBaaaleaajugWa8GacaWG Kbaal8qabeaajugib8GacaWGbbqcfa4aaSbaaSqaaKqzadGaam4yaa Wcbeaajugibiaac2fapeGaci4CaiaacMgacaGGUbGaaiikaiabeM8a 3LqbaoaaBaaaleaajugWaiaadMhaaSqabaqcLbsacaWG0bGaaiykai abgUcaRKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaa piGaeqyWdiNaamOvaKqbaoaaDaaaleaajugWaiaadkgaaSqaaKqzad GaaGOmaaaajugibiaadogacaWGdbqcfa4dbmaaBaaaleaajugWa8Ga caWGmbaal8qabeaajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaci 4yaiaac+gacaGGZbGaaiikaiabeM8a3LqbaoaaBaaaleaajugWaiaa dMhaaSqabaqcLbsacqGHRaWkcqaHjpWDjuaGdaWgaaWcbaqcLbmaca WG4baaleqaaKqzGeGaaiykaiaadshaaOqaaKqzGeGaaGOmaiaacIca cqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaey4kaS IaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiaacMca aaGaey4kaSscfa4aaSaaaOqaaKqzGeGaci4yaiaac+gacaGGZbGaai ikaiabeM8a3LqbaoaaBaaaleaajugWaiaadMhaaSqabaqcLbsacqGH sislcqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaai ykaiaadshaaOqaaKqzGeGaaGOmaiaacIcacqaHjpWDjuaGdaWgaaWc baqcLbmacaWG5baaleqaaKqzGeGaeyOeI0IaeqyYdCxcfa4aaSbaaS qaaKqzadGaamiEaaWcbeaajugibiaacMcaaaaakiaawUfacaGLDbaa aiaawUhacaGL9baaaaa@D03A@   (10)

where V x.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadIhacaGGUaGa aGymaaWcpaqabaqcfa4aaSbaaSqaaaqabaaaaa@3CC5@  is the initial linear velocity

V y = 1 m [ Wt 1 2 ω x ρ V b 2 c C d sin( ω x t) 1 2 ω x ρ V b 2 c C L cos( ω x t) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaaaW1LdF77NoapeGaamOvaKqbaoaaBaaaleaajugWaiaadMhaaSqa baqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibi aad2gaaaqcfa4aamWaaOqaaKqzGeGaeyOeI0Iaam4vaiaadshacqGH sisljuaGqaaaaaaaaaWdcmaalaaakeaajugibiaaigdaaOqaaKqzGe GaaGOma8qacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaaaa jugib8GacqaHbpGCcaWGwbqcfa4aa0baaSqaaKqzadGaamOyaaWcba qcLbmacaaIYaaaaKqzGeGaam4yaiaadoeajuaGdaWgaaWcbaqcLbma caWGKbaaleqaaKqzGeGaci4CaiaacMgacaGGUbWdbiaacIcacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaamiDaiaacMca cqGHsisljuaGpiWaaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYa WdbiabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqabaaaaKqzGeWd ciabeg8aYjaadAfajuaGdaqhaaWcbaqcLbmacaWGIbaaleaajugWai aaikdaaaqcLbsacaWGJbGaam4qaKqbaoaaBaaaleaajugWaiaadYea aSqabaqcLbsaciGGJbGaai4BaiaacohapeGaaiikaiabeM8a3Lqbao aaBaaaleaajugWaiaadIhaaSqabaqcLbsacaWG0bGaaiykaaGccaGL BbGaayzxaaaaaa@8D60@   (11)

V z = 1 m [ 1 4 ρ V b 2 c C L ( sin( ω x ω y )t ω x ω y + sin( ω x + ω y )t ω x + ω y ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeeaaaaaaaaC D5W3++PdWdbiaadAfadaWgaaWcbaGaamOEaaqabaGccqGH9aqpdaWc aaqaaiaaigdaaeaacaWGTbaaamaadmaabaaeaaaaaaaaa8GadaWcaa qaaiaaigdaaeaacaaI0aaaaiabeg8aYjaadAfadaqhaaWcbaGaamOy aaqaaiaaikdaaaGccaWGJbGaam4qamaaBaaaleaacaWGmbaabeaak8 qadaqadaqaamaalaaabaGaci4CaiaacMgacaGGUbGaaiikaiabeM8a 3naaBaaaleaajugWaiaadIhaaSqabaGccqGHsislcqaHjpWDdaWgaa WcbaGaamyEaaqabaGccaGGPaGaamiDaaqaaiabeM8a3naaBaaaleaa caWG4baabeaakiabgkHiTiabeM8a3naaBaaaleaajugWaiaadMhaaS qabaaaaOGaey4kaSYaaSaaaeaaciGGZbGaaiyAaiaac6gacaGGOaGa eqyYdC3aaSbaaSqaaKqzadGaamiEaaWcbeaakiabgUcaRiabeM8a3n aaBaaaleaacaWG5baabeaakiaacMcacaWG0baabaGaeqyYdC3aaSba aSqaaKqzadGaamiEaaWcbeaakiabgUcaRiabeM8a3naaBaaaleaaca WG5baabeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@78A7@   (12)

Where the linear velocities V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqa aaaa@3A8F@  give the ability to define the distances of the boomerang motions at the system of coordinates Σoxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo6atjaad+gacaWG4bGaamyEaiaadQhaaaa@3C17@ .

The differential equation of the boomerang gyroscopic angular velocity about axis ox is presented by the Euler form. Substituting expressions of the inertial torques (Table 1), ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3baa@3872@ , and expression ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamyEaaWcpaqa baaaaa@3B91@  (Eq. (3)) into Eq. (1) yields the following:

J x d ω x dt =T0,933πJω ω x 1,866Jω ω x 1,645(π+2,608)Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajuaGdaWcaaGcbaqcLbsa caWGKbGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaK qzGeGaamizaiaadshaaaGaeyypa0JaamivaiabgkHiTiaaicdacaGG SaGaaGyoaiaaiodacaaIZaGaeqiWdaNaamOsaiabeM8a3jabeM8a3L qbaoaaBaaaleaajugibiaadIhaaSqabaqcLbsacqGHsislcaaIXaGa aiilaiaaiIdacaaI2aGaaGOnaiaadQeacqaHjpWDcqaHjpWDjuaGda WgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaeyOeI0IaaGymaiaacYca caaI2aGaaGinaiaaiwdacaGGOaGaeqiWdaNaey4kaSIaaeOmaiaabY cacaqG2aGaaeimaiaabIdacaqGPaGaamOsaiabeM8a3jabeM8a3Lqb aoaaBaaaleaajugWaiaadIhaaSqabaaaaa@7307@   (13)

were J x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqa aaaa@3A92@  is the moment of inertia of the boomerang around axis ox.

Separating variables of Eq. (13), transformation and presenting by the integral forms gives:

J x 2,578(π+1,664)Jω 0 ω x d ω x T 2,578(π+1,664)Jω ω x = 0 t dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOsaKqbaoaaBaaaleaajugWaiaadIhaaSqabaaakeaa jugibiaabkdacaqGSaGaaeynaiaabEdacaqG4aGaaeikaiabec8aWj aabUcacaqGXaGaaeilaiaabAdacaqG2aGaaeinaiaabMcaqaaaaaaa aaWdbiaadQeacqaHjpWDaaqcfa4damaapehakeaajuaGdaWcaaGcba qcLbsacaWGKbGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaa aOqaaKqbaoaalaaakeaajugibiaadsfaaOqaaKqzGeGaaeOmaiaabY cacaqG1aGaae4naiaabIdacaqGOaGaeqiWdaNaae4kaiaabgdacaqG SaGaaeOnaiaabAdacaqG0aGaaeyka8qacaWGkbGaeqyYdChaa8aacq GHsislcqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaaaaaeaa jugibiaaicdaaSqaaKqzGeGaeqyYdCxcfa4aaSbaaWqaaKqzadGaam iEaaadbeaaaKqzGeGaey4kIipacqGH9aqpjuaGdaWdXbGcbaqcLbsa caWGKbGaamiDaaWcbaqcLbsacaaIWaaaleaajugibiaadshaaiabgU IiYdaaaa@7964@   (14)

The left integral of Eq. (14) is tabulated and represented the integral dx ax =lnx+C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qaae aadaWcaaqaaKqzGeGaamizaiaadIhaaKqbagaajugibiaadggacqGH sislcaWG4baaaaqcfayabeqajugibiabgUIiYdGaeyypa0JaeyOeI0 IaciiBaiaac6gacaWG4bGaey4kaSIaam4qaaaa@4674@ . The right integral is simple. Solving of integrals yields the following equation:

that gave rise to the following

ln[ T 2,578(π+1,664)Jω ω x ]| 0 ω x = 2,578(π+1,664)Jω J x t| 0 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGSb GaaiOBaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaWGubaakeaa jugibiaabkdacaqGSaGaaeynaiaabEdacaqG4aGaaeikaiabec8aWj aabUcacaqGXaGaaeilaiaabAdacaqG2aGaaeinaiaabMcaqaaaaaaa aaWdbiaadQeacqaHjpWDaaWdaiabgkHiTiabeM8a3LqbaoaaBaaale aajugWaiaadIhaaSqabaaakiaawUfacaGLDbaajuaGdaabbaGcbaqc fa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacqaHjpWDjuaGdaWgaa adbaqcLbmacaWG4baameqaaaaaaOGaay5bSdqcLbsacqGH9aqpcqGH sisljuaGdaWcaaGcbaqcLbsacaqGYaGaaeilaiaabwdacaqG3aGaae ioaiaabIcacqaHapaCcaqGRaGaaeymaiaabYcacaqG2aGaaeOnaiaa bsdacaqGPaWdbiaadQeacqaHjpWDaOWdaeaajugibiaadQeajuaGda WgaaWcbaqcLbmacaWG4baaleqaaaaajugibiaadshajuaGdaabbaGc baqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0baaaaGcca GLhWoaaaa@778D@   (15)

ω x = T 2,578(π+1,664)Jω ( 1 e 2,578(π+1,664)Jωt J x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaamivaaGcbaqcLbsacaqGYaGaaeilaiaabwdaca qG3aGaaeioaiaabIcacqaHapaCcaqGRaGaaeymaiaabYcacaqG2aGa aeOnaiaabsdacaqGPaaeaaaaaaaaa8qacaWGkbGaeqyYdChaaKqba+ aadaqadaGcbaqcLbsacaaIXaGaeyOeI0IaamyzaKqbaoaaCaaaleqa baqcLbsacqGHsisljuaGdaWcaaWcbaqcLbsacaqGYaGaaeilaiaabw dacaqG3aGaaeioaiaabIcacqaHapaCcaqGRaGaaeymaiaabYcacaqG 2aGaaeOnaiaabsdacaqGPaWdbiaadQeacqaHjpWDcaWG0baal8aaba qcLbsacaWGkbqcfa4aaSbaaWqaaKqzadGaamiEaaadbeaaaaaaaaGc caGLOaGaayzkaaaaaa@68D3@

The angular velocity around axis oy is defined by substituting Eq. (15) into Eq. (3) and simplification yields:

ω y = 1,645(π+2,608) ω x T 2,578(π+1,664)JωJω ( 1 e 2,578(π+1,664)Jωt J x )= T Jω ( 1 e 2,578(π+1,664)Jωt J x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaaGymaiaacYcacaaI2aGaaGinaiaaiwdacaGGOa GaeqiWdaNaey4kaSIaaeOmaiaabYcacaqG2aGaaeimaiaabIdacaqG PaGaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiaads faaOqaaKqzGeGaaeOmaiaabYcacaqG1aGaae4naiaabIdacaqGOaGa eqiWdaNaae4kaiaabgdacaqGSaGaaeOnaiaabAdacaqG0aGaaeykaa baaaaaaaaapeGaamOsaiabeM8a3jaadQeacqaHjpWDaaqcfa4damaa bmaakeaajugibiaaigdacqGHsislcaWGLbqcfa4aaWbaaSqabeaaju gibiabgkHiTKqbaoaalaaaleaajugibiaabkdacaqGSaGaaeynaiaa bEdacaqG4aGaaeikaiabec8aWjaabUcacaqGXaGaaeilaiaabAdaca qG2aGaaeinaiaabMcapeGaamOsaiabeM8a3jaadshaaSWdaeaajugi biaadQeajuaGdaWgaaadbaqcLbmacaWG4baameqaaaaaaaaakiaawI cacaGLPaaajugibiabg2da9KqbaoaalaaakeaajugibiaadsfaaOqa aKqzGeWdbiaadQeacqaHjpWDaaqcfa4damaabmaakeaajugibiaaig dacqGHsislcaWGLbqcfa4aaWbaaSqabeaajugibiabgkHiTKqbaoaa laaaleaajugibiaabkdacaqGSaGaaeynaiaabEdacaqG4aGaaeikai abec8aWjaabUcacaqGXaGaaeilaiaabAdacaqG2aGaaeinaiaabMca peGaamOsaiabeM8a3jaadshaaSWdaeaajugibiaadQeajuaGdaWgaa adbaqcLbmacaWG4baameqaaaaaaaaakiaawIcacaGLPaaaaaa@9E88@   (16)

Substituting expressions ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqa baaaaa@3B90@  and ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaGaamyEaaqabaaaaa@3A39@  (Eqs. (16) and (15)) into Eqs. (10) – (12) yields the dependency from a time of the linear velocities of the boomerang at the system of coordinate Σoxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo6atjaad+gacaWG4bGaamyEaiaadQhaaaa@3C17@ . The distance of motions and disposition of the boomerang at the coordinate system Σoxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo6atjaad+gacaWG4bGaamyEaiaadQhaaaa@3C17@  is defined by the timely dependency S i =  V i t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqa aKqzGeWdbiabg2da9iaabccacaWGwbqcfa4damaaBaaaleaajugWa8 qacaWGPbaal8aabeaajugib8qacaWG0baaaa@4256@ , where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqa aaaa@3A8C@  is presented by distances X, Y, and Z. The sophisticated flight of the boomerang at the condition of its variable rotation and the resistance of air is described by the multifunctional and interrelated equations at the 3D coordinates system (Eqs. (10)- (12) and Eqs. (16) and (15)). These equations can be solved manually but it will be very labor-intensive work. The computer modeling for the boomerang flight and solution of equations is preferable.

Results and discussion

The boomerang flight is related to the most complex examples of the motions in space. The flight of the rotating objects of complex form with airfoil blades involves the combined action of the aerodynamic forces and gyroscopic effects. The known publications describe the boomerang flight by the action of the aerodynamic force and only the precession torque of the change in the angular momentum that do not give the true solution. The application of the new system of gyroscopic inertial torques generated by the spinning boomerang gives a correct solution for its flight. The sophisticated flight of the boomerang at the condition of its variable rotation and the resistance of air is described by the multifunctional and interrelated equations at the 3D coordinates system. These equations can be solved manually but it will be very labor-intensive work. The computer modeling for the boomerang flight and solution of equations is preferable.

Conclusion

The new theory of gyroscopic effects for rotating objects enables solving many problems related to the dynamics of their motions. The boomerang flight presents an example of the combined physical process of the action of the aerodynamic force and gyroscopic effects that are described by these two analytical approaches. The computer mathematical models can implement the solution of the complex analytical models for boomerang flight. Today practically, the boomerang flight presents an interest for researchers in entertaining games and presents a good example for the educational process. The numerical modeling of the curvilinear boomerang flight can be removed from consideration because there is a mathematical model.

Notation

A, A c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaSqaaKqzadGaam4yaaWcbeaaaaa@3A26@  – cross-section of the longitudinal area of the boomerang three blades and an integer

c d.b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogajuaGpaWaaSbaaSqaaKqzadWdbiaadsgacaGGUaGa amOyaaWcpaqabaaaaa@3C30@  - drag coefficient for the boomerang rotation

c d.r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogajuaGpaWaaSbaaSqaaKqzadWdbiaadsgacaGGUaGa amOCaaWcpaqabaaaaa@3C40@  - drag coefficient for the boomerang rotation

c l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogajuaGpaWaaSbaaSqaaKqzadWdbiaadYgaaSWdaeqa aaaa@3A9F@  - drag coefficient for the boomerang thrust force

F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadggaaSWdaeqa aaaa@3A77@ , F u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaiaadwhaaeqaaaaa@3933@ , F d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaiaadsgaaeqaaaaa@3922@  - thrust force of the center, the upper and the down part of the boomerang, respectively

F dr . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeal8aadaWgaaqaaKqzadWdbiaadsgacaWGYbaal8aa beaadaWgaaqaaKqzadWdbiaac6caaSWdaeqaaaaa@3D0E@  – drag force of the rotating boomerang

F dr.b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeal8aadaWgaaqaaKqzadWdbiaadsgacaWGYbGaaiOl aiaadkgaaSWdaeqaamaaBaaabaaabeaaaaa@3C9D@  - drag force of the boomerang blades

F x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqa aaaa@3A8E@  - impulse force of short-time action

J, J x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGdaWgaaqaceaaGLqcLbmacaWG4baajuaGbeaa aaa@3B48@  –moment of inertia the boomerang about the axle and axis ox, respectively

m – mass of the boomerang

r - radius of the drag force action

S - boomerang blades planform area

T – load torque of the boomerang about axis ox

T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGdaWgaaqaaKqzadGaamOCaaqcfayabaaaaa@3AE0@ , T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadchaaSWdaeqa aaaa@3A94@  – resulting and precession torques, respectively

T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWG0baa l8aabeaaaaa@3B80@ , T cr. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadogacaWGYbGa aiOlaaWcpaqabaaaaa@3C30@ , T am MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaiaadggacaWGTbaabeaaaaa@3A1F@  – torque generated by centrifugal, Coriolis, and a change in the angular momentum, respectively

t – time

V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqa aaaa@3A9E@ , V y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaKqzadWdbiaadMhaaSWdaeqa aaaa@3A9F@ V z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaiaadQhaaeqaaaaa@3948@   - linear velocity of the boomerang by coordinate axes ox, oy, and oz, respectively

V, V u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaiaadwhaaeqaaaaa@3943@ V d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaaSbaaSqaaiaadsgaaeqaaaaa@3932@   - linear velocity of the center, the upper and the down part of the boomerang

v b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaaaaa@3A5A@  – tangential velocity of the boomerang blade

W - boomerang weight

β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIbaa@3846@ ,  φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacqaHgpGAaaa@3986@  - angle of the boomerang inclination to axes ox ad oz, respectively

ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYbaa@3865@  - mass density of air

ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3baa@3872@ , ω in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamyAaiaad6ga aSWdaeqaaaaa@3C74@ , ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamiEaaWcpaqa baaaaa@3B90@ , ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamyEaaWcpaqa baaaaa@3B91@ , ω z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamOEaaWcpaqa baaaaa@3B92@  – angular velocity of the boomerang about its axle general and initial, and about axes ox, oy, ad oz, respectively

Acknowledgments

The manuscript was prepared for publication without financial support and recommended by the Kyrgyz State Technical University after I. Razzakov.

Conflicts of interest

The authors declare there are no conflicts of interest.

Funding

None.

References

  1. Barceló G. Theory of Dynamic Interactions: The Flight of the Boomerang II. Journal of Applied Mathematics and Physics. 2015;3:545–555.
  2. Azuma A, Beppu G, Ishikawa H, et al. Flight Dynamics of the Boomerang, Part 1: Fundamental Analysis. Journal of Guidance, Control, and Dynamics. 2004;27(4):545–554.
  3. Vassberg J. Boomerang flight dynamics. IEEE American Institute of Aeronautics and Astronautics. 2012;1:1–43.
  4. Pakalnis S. Aerodynamics of Boomerang. Research Support Technologies. 2006.
  5. Cross J. Performance Boomerangs. 2nd edition. In: Michael Siems, editor. New Ultimate Boomerang Book. 2012.
  6. Collicott SH, Valentine DT, Houghton EL, et al. Aerodynamics for Engineering Students. 7th ed. London: Elsevier; 2015.
  7. Burgers P. A thrust equation treats propellers and rotors as aerodynamic cycles and calculates their thrust without resorting to the blade element method. International Journal of Aviation, Aeronautics, and Aerospace. 2019;6(5):1–22.
  8. Wright JR, Cooper JE. Introduction to Aircraft Aeroelasticity and Loads. John Wiley & Sons, Ltd., 2007.
  9. Cordeiro FJB. The Gyroscope, CreateSpace. NV, USA. 2015.
  10. Greenhill G. Report on Gyroscopic Theory. CA, USA: Relink Books, Fallbrook; 2015.
  11. Scarborough JB. The Gyroscope Theory and Applications. London: Nabu Press; 2014.
  12. Gregory DR. Classical Mechanics. New York: Cambridge University Press; 2006.
  13. Taylor JR. Classical Mechanics. California, USA: University Science Books; 2005.
  14. Aardema MD. Analytical Dynamics. Theory and Application. New York: Academic/Plenum Publishers; 2005:340.
  15. Usubamatov R. Inertial Forces Acting on Gyroscope. Journal of Mechanical Science and Technology. 218;32(1):101–108.
  16. Usubamatov R. Theory of gyroscope effects for rotating objects. Singapore: Springer; 2020.
Creative Commons Attribution License

©2022 Usubamatov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.