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The boomerang flight is presented in the known publications by the action of aecrodynamic
forces and gyroscopic precession torque. This solution does not give a true answer
because gyroscopic effects are expressed by the action of the eight interrelated inertial
torques generated by the rotating objects. The publications with numerical modeling do
not describe the physics of the boomerang flight. Today, the solution of this problem is
presented by the mathematical model with the action of the lift forces and inertial torques
generated by the rotating boomerang. The boomerang flight is described by the methods
of theories of aerodynamics and gyroscopic effects that express the kinetic energy of the
boomerang motion and rotation. The mathematical model for the boomerang flight contains
multifunctional and interrelated expressions of two theories, which manual solution is
sophisticated, but solved by computer software without numerical modeling. The analytical
solution for the boomerang flight describes its physics and presents a good example for the
educational process of engineering mechanics and aerodynamics.
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Introduction

The boomerang is the hunting tool of specific designs was one
of the oldest flying inventions of ancient civilizations. Hunters
threw the boomerangs to bludgeon a target and, in case of a miss,
they returned to them by the curvilinear trajectory of their flights. In
such a situation, hunters did not lose time for the search of the flown-
away boomerang. This specific effect of a throwing object by hand
attracted scientists to describe the physics of flight and properties of
the boomerang.' Analysis of the return boomerang designs, starting
from ancient to modern sport one, shows most of them contain from
two to four airfoiled blades. Figure 1 shows some typical designs of
the boomerang.

Figure | Typical boomerang designs.

The two blade’s boomerangs are designed with curved forms,
other ones have rectilinear. All blades have aerofoil cross-sections that
produce aerodynamic lift forces. Any boomerang designs of airfoiled
blades will manifest the curvilinear trajectory of flights. The studies
of the specificity of boomerang flight show the combined action of
its aerodynamic forces and gyroscopic inertial torques. The known
publications contain this conclusion but with action only gyroscopic
precession inertial torque that does not describe the full picture of the
boomerang flight. +°

The aerodynamics component of the boomerang flight is based on
well-developed aerodynamic theory. The flight of the boomerang is
going on by the action of the lift force generated by the rotation of
airfoiled blades.®®* The gyroscopic effects express the action of the
eight interrelated inertial torques on the rotating boomerang. These
two components are described separately and presented in several
publications.”!" The curvilinear flight of the rotating boomerang

and the turn of its plane around the diametral line is the result
of the combined action of gyroscopic effects and the action of the
aerodynamic thrust force.

The new theory of the gyroscopic effects for rotating objects
enables supplementing and describing the physics of boomerang
flight completely. Gyroscopic effects are formulated by mathematical
models, and their physics is described by the principle of classical
mechanics.'>* The spinning object is subjected to the action of the
system of torques generated by the centrifugal and Coriolis forces of the
distributed mass of the rotating object and the torque of the change in
the angular momentum.'>!® The expressions of inertial torques depend
on the geometry of the rotating object that has many designs. The
mathematical models of gyroscope motions include the interrelation
of all torques about two axes by the principle of mechanical energy
conservation and are represented for the boomerang with three blades
in Table 1.7

The physics of gyroscope inertial torques and motions are
explained in detail and confirmed by practice. The unique designs of
the boomerang will produce different gyroscopic inertial torques, the
aerodynamic thrust force, and the trajectory of its flight. This work
presents a detailed description of the physics of the curvilinear flight
of returning boomerangs based on two theories of aerodynamics
and gyroscopic effects. The known publications do not contain the
action of the system of the interrelated inertial torque generated by
the rotating boomerang. The mathematical model for the boomerang
flight is considered after the action of the initial impulse force that
gives the rotation to the boomerang and its linear velocity in space.
The mathematical model for the motions around three axes of the
Cartesian 3D coordinate system is presented in the Euler differential
equations. The analytical solution for the boomerang flight presents a
good example for the educational process of engineering mechanics
and aerodynamics.

Methodology

The known publications dedicated to the boomerang flight
contain the mathematical models based on the action of acrodynamic
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Physics and mathematical model for boomerang flight

forces and gyroscopic precession torque generated by the rotating
boomerang. This solution does not give a true answer because
gyroscopic effects are the manifestation of the action of the system
of interrelated inertial torques of the rotating object. The boomerang
flight is described by the aecrodynamic lift forces of its blades and the
system of interrelated inertial torques of the rotating boomerang that is
presented below. The forces and torques produced by the boomerang
blades are variable, which action generates a fluctuated flight around
two axes that is described by the theory of vibration. Naturally, a
fluctuated flight produces additional forces acting on the boomerang
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and changes its curvilinear motion in space. The mathematical model
of the boomerang flight with the action of all physical components
will be very sophisticated and difficult to solve. Analysis of the
vibratory forces shows their action depends on the speed of the
boomerang rotation. The amplitude of vibration is relatively high,
the time of the action of the forces is short that does not change too
much the boomerang flight. This section does not consider the aspect
of the boomerang vibratory flight and is limited by the action of two
initial components that are aecrodynamic lift forces and the system of
interrelated inertial torques.

Table | Inertial torques of the boomerang with three blades of vertical disposition

Inertial torques generated by Action Equation
Centrifugal forces Re5|star.1ce T, = 0, 93371'-]0)0)1-
Precession

average

T, =1,866Jwo,
Coriolis forces Resistance ’

average
Change in angular momentum Precession T  =3J]oo.

am.1 1

Dependency of angular velocities of the boomerang about axes of rotation: @ = —1,645(7 +2,608) 0,

Where @, is the angular velocity about axis i; @ is the angular velocity about axis 0z ; J is the moment of inertia of the spinning boomerang (propeller).

The physical model for the boomerang flight is considered for
the three blades design. This design is similar to an aircraft propeller
with known expressions of inertial torques generated by the mass of
its blades.”> The boomerang launches horizontally for the vertical
disposition of its plane with linear velocity ¥ of its center mass and
rotates with the angular velocity o of counterclockwise. The spinning
boomerang acts like a simple propeller and produces the thrust force
that pushes the boomerang to the side that is perpendicular to the line
of the linear velocity ¥ of its center mass. The linear velocity of the
boomerang and its rotation manifests more thrust force in the upper
part }1 than in the down part Fd of the blades because of a difference

in the resultant linear velocities V, = V + Vyand V, = V, -V

, respectively. Where ¥V, V, and V, are the linear velocity of the

upper part, the down part, and the blades, respectively. This difference

in the forces shifts the aerodynamic resultant force F, = F + F,
upwards above the center of gravity and created the aerodynamic

torque 7 = (Fu - F, ) k (k is the centroid) that turns the boomerang

about axis ox (Figure 2). The value of the aerodynamic torque T

is fluctuated and changed by sine law because of the rotation of the
blades. The known equation presented in publications of acrodynamic
expresses the value of aerodynamic force.>® The action of the torque
T on the spinning boomerang produces the system of the inertial
torques generated by its rotating mass that manifest gyroscopic
effects. As described above, motions, velocities, forces, and torques of
the spinning boomerang are demonstrated in Figure 2 at the Cartesian
3D system coordinates Xoxyz .

The boomerang motion is considered for the actions of its weight
W, the aerodynamic torque 7 that produces gyroscopic effects,
and the linear velocity 7 about axes ox and oy . The action of the
gyroscopic torques on rotating objects and the dependency of the
angular velocity of their rotation around axes are well described in
publications and will not be repeated for the boomerang rotation.!>!¢
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Figure 2 The thrust forces and inertial torques act on the vertical disposition
of the boomerang and its motions.

Inertial torques generated the boomerang with three blades and the
dependency of angular velocities about axes of rotation are presented
in Table 1." The spin of the boomerang is variable because of the
drag force acting on the three blades. The mathematical model for
the boomerang flight with its variable angular velocity of rotation
is not a critical engineering problem. For solution is accepted the
aerodynamic components of the boomerang flight with its constant
spin that presented by the strip theory. The aecrodynamic lift force is
normal to the relative velocity of the boomerang blades acrofoil. The
drag force is in the direction of the relative velocity of the aerofoil. The
pitching moment is due to offsetting between the center of pressure
and the aerodynamic center of the airfoil. This moment creates the
internal stress of the boomerang blades, does not change its flight, and
is omitted from consideration.

Citation: Usubamatov R. Physics and mathematical model for boomerang flight. Int Rob Auto J. 2022;8(2):34-38. DOI: 10.15406/iratj.2022.08.0024 |


https://doi.org/10.15406/iratj.2022.08.00241

Physics and mathematical model for boomerang flight

The motions of the boomerang about axis ox and oy are presented

by the known equations for the spinning objects.'* The action of

resistance force of the air on the boomerang turn around axes oy and
ox is omitted because of the small value of the high order.

dw
Jx x:T_T;tr_Tcrx_];my (1)
dt i ’ ’
da)y
Jy dt = Tct.x * T;zm.x - Tcr.y (2)
w, = ~1,645(7 +2,608) 3)

where @_and @ is the angular velocity of the boomerang about
- y
T T T

cr.x? “ery? Tam.x
inertial torques generated by the centrifugal, Coriolis, and the change
in the angular momentum acting about axes ox and oy , respectively;

and T are

am.y

axes ox and oy , respectively; T, ,

J.o=J, is the moment of inertia of the boomerang about axes ox
and oy , respectively. The inertial torques 7,  acting about axes ox

and oy are removed because of mutual subtraction.'®

The combined action of the weight, gyroscopic inertial torques,
and motion of the boomerang produce dynamical changes of its flight
that are traced by the following steps presented below.

a. The vertically rotating boomerang begins to move along the axis
ox (Figure 3, position 1). The action of the resulting load torque,

L=T-T,,- I

cr.x

—T turns the boomerang about axis oy
y

and generates the precession torque T,=1T, +T

ct.x am.x cr.y
that turns the boomerang about axis oy in a counter-clockwise
direction.

b. The boomerang begins to move curvilinearly to the left side on the
plane xoz under the action of the thrust force F, . The intensive
turn of boomerang about axis oy (Eq. (4)) under the action of the
precession torque T, produces new resulting resistance torque

T *> T that bigger the initial load torque. (Figure 3, position 2).

c. The intensive turn of the boomerang about axis ox in a clockwise

direction changes the direction of the thrust force F, and lifts it.
At this condition, the boomerang moves by a line of small radius

of curvature. The value of the precession torque T, decreases

because the value of the resulting load torque 7 decreases
(Figure 3, positions 4 - 5).

d. The intensive turn of the boomerang about axis ox inclines it
from the vertical to the horizon. The value of the aerodynamic
torque 7 is counterbalanced to the value of the resistance

gyroscopic inertial torques. The value of the precession torque

T decreases, T :(T
P P

ct.x

+ Tamx)cosw— T, and the value
. r.y

of resulting resistance torque 7 * =T comes to the dynamic

balance with the initial load torque. The boomerang flies by the
line of the increased radius of curvature motion. The angular
velocity o of the boomerang decreases and decreases the value
of the thrust force F . The plane of the spinning boomerang is
almost horizontal and its flight is going by gliding curve (Figure
3, positions 6 - 7).

The trajectory of the typical flight of the boomerang under the
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action of the forces and torques described in paragraphs a) — d) is
demonstrated in Figure 3.

The acting forces and inertial torques on the horizontal disposition
of the boomerang and its motions are demonstrated in Figure 4.

The curvilinear aerodynamic flight of the spinning boomerang in
space is going on under the action of the starting impulse force, its
weight, thrust force, and gyroscopic inertial torques. At the process
of flight, the vertically disposed boomerang begins to change its
orientation in space. The mathematical model for the flight of the
spinning boomerang is presented by the system of equations at the
permanent system of the Cartesian 3D coordinates, but its gyroscopic
motions at the movable one (Figure 5).

Figure 3 Change in the curvilinear flight and the disposition of the plane of
the spinning boomerang.

Tnm.x
cl.x

Figure 4 The thrust forces and inertial torques act on the horizontal
disposition of the boomerang and its motions.

Y

Figure 5 The common disposition of the boomerang at the 3D coordinate
system.
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The differential equations of the boomerang linear velocities along
the coordinates are presented by the Euler form:

- along with the axes ox, oz, and oy :

dv.
m—= = (F,

P —F, ,)cos B—F, sin fcosp =

“4)

[F, —(1/2) p¥,’eC, 4 Jeos(e 1)~ (1/ 2) pl;cC, sin(e 1) cos(w,1)

dv,
m——=-W-F

" COSQ+F sing =
dt (5)
W —(112) p¥ieC, cos(w,1) +(1/2) p¥eC, sin(w,1)
dv. )

mT; =F, cospcos f = (1 / Z)pVh cC, cos(w,1) cos(a)yt) (6)
where m is the mass of the boomerang; V , V., and Vy, are the
linear velocity along with the axis ox, oz, and oy respectively; F.
is the impulse force of short-time action that launched the boomerang;
F = (1 / 2) pVchCL is the thrust force (V] is the tangential velocity
of the blade; c is the aerodynzamic aerofoil chord; C, is the lift
coefficient); F, , = (1 / 2) pV,"C, A, is the drag force of the air (
p is the mass density of air, C, is the drag coefficient for the linear
motion, 4, is the integer cross-section of the longitudinal area of the
boomerang); ¢ and S is the angle inclination of the boomerang
axle to the axis oz on the plane zoy and ox on the plane xoy,
respectively; @_and @ is the angular velocity of the boomerang
about axis ox ad oy , respectively; t is the time; W is the boomerang

weight, other parameters are as specified above.

Separating variables of Eqs. (4) — (6) and presentation by the
integral forms gives:

=

1¢
v, =—|[F, - (l / 2) pthchA(,]cos(a)vt) - (1 / 2) pVbchL sin(w 1) cos(w, t)dt (7)

mo

N

z

V. 1 2 2 .
[ av, =—[1-w-(172) p¥;}cC, cos(w,t) +(1/2) pV; cC, sin(w ldt (8)
0 mo

¥y

V. 1¢ )
[av.=—] (1 / 2) pV, cC, cos(a 1) cos(w t)dt )
0 mo

The solutions of the integral Eqs. (7) — (9) are tabulated and
presented by the following:

1 1 1 N cos(w, +w )t cos(w, — o )t
2 . 2 y x v £3
V.-V, =— [ﬁt_?p% LCdA[]sm(wyt)-*—EpVh cC, + (10)

m o, 2(@), + ) Ao, ~o,)

where V| is the initial linear velocity

1 1 ) . 1 2
Vy =—| -Wt———pV, cC,sin(wt) ——— pV, cC, cos(@, 1) (11
m 20, 20

x

vo-L 1prch[
m| 4

sin(o, — o, )t N sin(w, + a)y)t] (12)
o, —, o, +o,
Where the linear velocities ¥, give the ability to define the
distances of the boomerang motions at the system of coordinates
Xoxyz .

The differential equation of the boomerang gyroscopic angular
velocity about axis ox is presented by the Euler form. Substituting
expressions of the inertial torques (Table 1), @, and expression o,
(Eq. (3)) into Eq. (1) yields the following:
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do, 13
J, =T -0,933n 0w, —1,866J00, —1,645(x + 2,608 0o (13)

Yoar

were J  is the moment of inertia of the boomerang around axis
0x.

Separating variables of Eq. (13), transformation and presenting by
the integral forms gives:
(o t
J, | Ta?(uK T
2,578(2+1,664) @ 0 o, 0 (14)
2,578(7+1,664)J

The left integral of Eq. (14) is tabulated and represented the

integral | . = —In x + C. The right integral is simple. Solving of
a-x
integrals yields the following equation:
that gave rise to the following

(15)

T
Inf ———-0 || =
2,578(r+1,664)J 0 J,

2,578(x+1,664)J ot
T J,
o =———|1l-¢ *

Y 2,578(x+1,664) @

o, 2578(r+L664) @ t| ‘
SR

The angular velocity around axis oy is defined by substituting Eq.
(15) into Eq. (3) and simplification yields:

2.578(z+1.664) ot 2,578(7+1,664) ot
1,645(7 + 2,608)0, T — 7 T - J
o =———"—|1-¢ * =—1l-e -
Jo (16)

T 2,578(n+H 664w

Substituting expressions @ and o, (Egs. (16) and (15)) into Eqs.
(10) — (12) yields the dependency from a time of the linear velocities
of the boomerang at the system of coordinate Xoxyz . The distance of
motions and disposition of the boomerang at the coordinate system
Zoxyz is defined by the timely dependency S, = V¢, where S, is
presented by distances X , Y , and Z . The sophisticated flight of the
boomerang at the condition of its variable rotation and the resistance
of air is described by the multifunctional and interrelated equations at
the 3D coordinates system (Eqs. (10)- (12) and Egs. (16) and (15)).
These equations can be solved manually but it will be very labor-
intensive work. The computer modeling for the boomerang flight and
solution of equations is preferable.

Results and discussion

The boomerang flight is related to the most complex examples of
the motions in space. The flight of the rotating objects of complex form
with airfoil blades involves the combined action of the aerodynamic
forces and gyroscopic effects. The known publications describe the
boomerang flight by the action of the aerodynamic force and only
the precession torque of the change in the angular momentum that
do not give the true solution. The application of the new system of
gyroscopic inertial torques generated by the spinning boomerang
gives a correct solution for its flight. The sophisticated flight of the
boomerang at the condition of its variable rotation and the resistance
of air is described by the multifunctional and interrelated equations at
the 3D coordinates system. These equations can be solved manually
but it will be very labor-intensive work. The computer modeling for
the boomerang flight and solution of equations is preferable.

Conclusion

The new theory of gyroscopic effects for rotating objects enables
solving many problems related to the dynamics of their motions.
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The boomerang flight presents an example of the combined physical
process of the action of the aerodynamic force and gyroscopic effects
that are described by these two analytical approaches. The computer
mathematical models can implement the solution of the complex
analytical models for boomerang flight. Today practically, the
boomerang flight presents an interest for researchers in entertaining
games and presents a good example for the educational process.
The numerical modeling of the curvilinear boomerang flight can be
removed from consideration because there is a mathematical model.

Notation

A, A, — cross-section of the longitudinal area of the boomerang
three blades and an integer

¢, , - drag coefficient for the boomerang rotation

¢, , - drag coefficient for the boomerang rotation

d.

¢, - drag coefficient for the boomerang thrust force

F , F,, F, - thrust force of the center, the upper and the down
part of the boomerang, respectively

F, — drag force of the rotating boomerang
F, , - drag force of the boomerang blades

F_ - impulse force of short-time action

J , J —moment of inertia the boomerang about the axle and axis
X .
0X, respectively

m —mass of the boomerang

r -radius of the drag force action

S - boomerang blades planform area

T —load torque of the boomerang about axis ox

Tr T, - resulting and precession torques, respectively

T ,T_ ,T - torque generated by centrifugal, Coriolis, and a

ct’ “er.? Tam
change in the angular momentum, respectively

t —time

V., v, V. - linear velocity of the boomerang by coordinate axes
0X, oy, and oz, respectively

V., V, V,; - linear velocity of the center, the upper and the down

part of the boomerang
v, — tangential velocity of the boomerang blade
W - boomerang weight

B, @ - angle of the boomerang inclination to axes ox ad oz,
respectively

p - mass density of air

w0, o

in >

its axle general and initial, and about axes ox, oy ,ad oz ,respectively.

o, o , o - angular velocity of the boomerang about
¥y z
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