Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 3 Issue 3

Modeling of dynamics of manipulators with geometrical constraints as a systems with redundant coordinates

Aleksander Ya Krasinkiy,1 Esfira M Krasinkaya2

1Department 804 of Probability Theory, Moscow Aviation Institute, Russia
2Department FN-3 of Theoretical Mechanics, Bauman Moscow State Technical University, Russia

Correspondence: Aleksander Ya Krasinkiy, Department 804 of Probability Theory, Moscow Aviation Institute MAI Moscow, Russia

Received: April 24, 2017 | Published: October 20, 2017

Citation: Krasinkiy AY, Krasinkaya EM. Modeling of dynamics of manipulators with geometrical constraints as a systems with redundant coordinates. Int Rob Auto J. 2017;3(3):300-305. DOI: 10.15406/iratj.2017.03.00056

Download PDF

Abstract

Earlier, a method was developed for modeling the dynamics of systems with geometric constraints using the analytical mechanics of systems with redundant coordinates and the theory of nonlinear stability. In the present paper, the previously obtained results are applied to the construction of a mathematical model and to the solution of the stabilization problem of steady motion for the simplest manipulator with one positional, one cyclic and one dependent coordinate. The analysis is carried out taking into account the dynamics of the drives. For steady motion, the solvability of the problem of determining the stabilizing control (additional voltage on the executive motors) by solving the linearly quadratic problem by the method of NN Krasovskii is proved. Asymptotic stability in a complete nonlinear closed system follows from the previously proved theorem on asymptotic stability in the presence of zero roots of the characteristic equation corresponding to redundant coordinates. However, for the manipulator design under consideration, stable operation modes can be distinguished even with constant voltage on the drive motors. These voltages play the role of program controls, ensuring the implementation of this mode of operation. The results of numerical simulation are presented.

Keywords: stability, geometrical constrains, redundant coordinates, critical case, linear–quadratic stabilization problem

Introduction

Ensuring the stable implementation of the given mode of operation has always been the main problem determining the operability of any automatic device. One of the most widespread classes of controlled mechanical systems is manipulative mechanisms with geometric constraints.1–4 In these systems containing microcontrollers, control algorithms of almost any complexity can be implemented. There are many ways to ensure the stability of a given operating mode. The proposed method is aimed at the maximum possible use of the properties of own (in the absence of control) motions (modes of operation) of the object to determine the minimum necessary interference in its behavior, which ensures a stable implementation of the given mode of operation. This approach reduces the dimensionality of the control vector (the number of actuators involved), the amount of the measuring data (the number of measuring sensors), simplifies the structure of the control loop, thereby increasing the probability of failure–free operation (reliability) of the device. Therefore, the development of such way to ensure the stability becomes particularly topical.

The proposed method is based on the complex application of analytical mechanics, the theory of critical cases of stability theory, and the theory of mathematical control with incomplete information. The success in studying complex multidimensional systems is determined by the simplicity and rigor of the model used. This success of the investigation depends not only on the form of the equations, but also on the type of variables (Lagrange, Routh, Hamilton, pseudo–velocity or quasi–coordinate) in which these equations are written. Each type of variables has its own peculiarities, which, when using a fully defined type of variables for some tasks, can give advantages over using other types of variables, and for other problems it is completely unprofitable. The main operation of the proposed approach is the construction of a nonlinear mathematical model that best corresponds to the nature of the problem under consideration. The consideration of only the linear approximation cannot give a reasonable answer for systems with geometric constraints4–6 in general case.

The standard method for analyzing the dynamics of a controlled system is the following: for a nonlinear system, control is defined (the so–called program control,7) in which there is a specified operating mode. Further perturbations (deviations of actual behavior from the prescribed motion) are considered and nonlinear equations of disturbed motion are obtained. Further, the linear approximation is distinguished in the neighborhood of the unperturbed motion. For this linear system, a linear stabilizing control (additional to the program one) is determined, which ensures the asymptotic stability of the required motion. This linear stabilizing control ensures that the perturbations for linear approximation of non–linear equations are small. But a fair conclusion about the smallness of the perturbations can be obtained for a nonlinear closed–loop system by this stabilizing control only if the real parts of all the roots of the characteristic equation are negative.7–10 This is the simplest case of stability, but such a situation in stability problems for systems with geometric constraints is impossible.4–6,11,12 For such systems the problems of stability and stabilization are much more complicated. Here, for any control method, the number of zero roots of the characteristic equation of the first approximation system is not less than the number of geometric constraints imposed on the system. Stability of steady motions of systems with geometric constraints is possible only in critical8–10 cases. Consideration of problems of this kind is always very difficult, it must be based on the theory of critical cases and requires the use of nonlinear models obtained by rigorous methods. Therefore, the problem considered in this paper is relevant both from the point of view of abstract theoretical research and from the engineering point of view. It belongs to those complex problems that are NOT still fully explored theoretically, but, due to the rapid development of controlled devices and information technologies have already become the tasks of modern technical practice. Complex for such systems.

Overview of previous results

For the investigations of dynamics of mechanical systems is used traditionally the most universal formalism, that on the introduction of generalized coordinates is based. The generalized coordinates are independent parameters in minimal number, which the system configuration uniquely defines. The procedure for introducing such coordinates is by no means a simple problem. In practice, it is necessary to consider mechanical systems that are constrained by certain constraints (they can be Holonomic or non–Holonomic in the general case). This is the situation that occurs in many control tasks for multi–link manipulators under geometrical constraints. One of the principal difficulties in constructing mathematical models of manipulators is due to the need to take into account complex nonlinear geometric constraints. In this case, the coordinates describing the state of the system are not independent, which makes it impossible to use Lagrange equations of the second kind. It makes sense1,4–6,11–13 to introduce parameters to describe the system configuration with m geometrical constraints. The number of such parameters is more as minimal necessary n–number of degrees of freedom. Then m of these n+m parameters is named redundant coordinates. The analysis of various ways of constructing mathematical models of the dynamics of systems with geometric constraints shows,4–6,11–13 that it is convenient to consider such systems as systems with redundant coordinates. The using of redundant coordinates for modeling the dynamics of systems with geometric constraints was developed in detail by the authors of this work.4–6,11,12 The results of these studies are based on the systematic application of nonlinear vector–matrix equations of perturbed motion. The vector–matrix equations of disturbed motion used widely14–22 in the stability and stabilization problems of motions of complex Holonomic and nonholonomic mechanical systems. It should be noted, that the systematic application of such a form of equations to study the dynamics of nonholonomic systems has already begun15–18 (compare14,19–21 with a far incomplete list of bibliographic references).

In the method developed by the authors of this work, in contrast to,14,19–21 the equations have a form that allows one to analyze in detail the structure of the linear and nonlinear terms of the perturbed equations of motion after replacing the theory of critical cases. The use of vector–matrix equations obtained by the authors in the Shulgin form gave an essential development of the method22 with respect to systems with geometric constraints. It should be noted that equations in the Shulgin form can be considered as the equations of motion of nonholonomic systems in the Voronetz form in the case of integrable constraints. Therefore, systems with geometric constraints, when viewed as systems with redundant coordinates, occupy, in a certain sense, an intermediate position between Holonomic and non–Holonomic systems. The study of the stability and stabilization of this class of systems is far from complete. Based on rigorous methods of the theory of nonlinear stability using the equations derived by the authors, sufficient conditions for the stability of equilibrium positions and steady motions of mechanical systems with geometric constraints are obtained.4,5 After this, a stabilization procedure5 was developed for the equilibrium positions of such systems. Forth stabilization problem of steady motions, a theoretical study was carried out.6,11,12 The solution of the stabilization problem for a concrete steady motion has not yet been considered. In the present paper, the previously obtained results are applied to the construction of a mathematical model and to the solution of the stabilization problem of the steady motion for simplest manipulator with one positional, one cyclic and one dependent coordinate. The consideration was made taking into account the dynamics of the actuators. The results of numerical simulation are presented.

Problem statement

The algorithm of investigation of stabilization problems steady motions is developed here for the systems with geometrical constraints. We consider the problem of stabilizing stationary motion for as simple as possible manipulator model with a geometric constraint. As is (generally) known, the Holonomic system has the steady motion, if this system has at least one cyclic coordinate. For simplicity consider the system with one positional coordinate, one cyclic coordinate and one redundant coordinate. Moreover the geometrical constraint equation has such form, which in detail5,10 previously were investigated. The manipulator (Figure 1) has two freedom and two actuator P1 and P2 Configuration of the mechanical part of this system can be determined by three parameters: a–angle of deflection of manipulator link OM from the axis OX, b–angle of rotation of the manipulator link with actuator P1 round axis KK, p–turning angle of the drive shaft. The aerograph ore one instrument such as with the mass m is held on the mechanical gripper M. As an operating duty, we select a rotation with a constant angular velocity b about the KK axis for a given angle of deflection a0 of the OM link. The masses of the link OM and of the connecting rods OC and AB are negligible for simplicity of the model. Assume the centers of masses of drive mechanisms are located on the axis KK. The equivalent moment of inertia for the axis KK is Jb. The equivalent moment of inertia for the axis actuator P2 is Jp.

Figure 1 Configuration of the mechanical part of the system.

The flat hinges are in joints A,B,O. The rigid joint is in the junction point C. Introduce the notations for the lengths D=OA, h=MA, l=AB=OC, d– radius of the drive shaft. The commutator motors of direct current with indirect excitation are brought in the actuators. The Kirchhoff’s second law for such motors can be written as (1):

I b d i b dt + R b i b + k 1 b b ˙ = e b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeada WgaaqcfasaaiaadkgaaKqbagqaamaalaaabaGaamizaiaadMgadaWg aaqcfasaaiaadkgaaKqbagqaaaqaaiaadsgacaWG0baaaiabgUcaRi aadkfadaWgaaqcfasaaiaadkgaaKqbagqaaiaadMgadaWgaaqcfasa aiaadkgaaKqbagqaaiabgUcaRiaadUgadaqhaaqcfasaaiaaigdaae aacaWGIbaaaKqbakqadkgagaGaaiabg2da9iaadwgadaWgaaqcfasa aiaadkgaaKqbagqaaaaa@4DBD@  (1)

I p d i p dt + R p i p + k 1 p B( a,p ) a ˙ = e p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeada WgaaqcfasaaiaadchaaKqbagqaamaalaaabaGaamizaiaadMgadaWg aaqcfasaaiaadchaaKqbagqaaaqaaiaadsgacaWG0baaaiabgUcaRi aadkfadaWgaaqcfasaaiaadchaaKqbagqaaiaadMgadaWgaaqcfasa aiaadchaaKqbagqaaiabgUcaRiaadUgadaqhaaqcfasaaiaaigdaae aacaWGWbaaaKqbakaadkeadaqadaqaaiaadggacaGGSaGaamiCaaGa ayjkaiaawMcaaiqadggagaGaaiabg2da9iaadwgadaWgaaqcfasaai aadchaaKqbagqaaaaa@52EB@

Where e p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada WgaaqcfasaaiaadchaaKqbagqaaaaa@3935@ , e b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada WgaaqcfasaaiaadkgaaKqbagqaaaaa@3927@  is voltage e b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwgada WgaaqcfasaaiaadkgaaKqbagqaaaaa@3927@  voltage of counter-emf, k 1 b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada qhaaqcfasaaiaaigdaaeaacaWGIbaaaaaa@395B@ , k 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada qhaaqcfasaaiaaigdaaeaacaWGWbaaaaaa@3969@ - coefficient of voltage of counter-emf, k 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada Wgaaqcfasaaiaaiodaaeqaaaaa@3875@  motor constant I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeada WgaaqcfasaaiaadkgaaKqbagqaaaaa@390B@ , I p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeada WgaaqcfasaaiaadchaaKqbagqaaaaa@3919@ - inductance, R b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqcfasaaiaadkgaaKqbagqaaaaa@3914@ , R p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqcfasaaiaadchaaKqbagqaaaaa@3922@ - resistance. The geometric constraint equation (the distance l between the points A(XA, YA) and B(XB, YB) is constant) is specified as

( X A X B ) 2 + ( Y A Y B ) 2 =  l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiwamaaBaaajuaibaGaamyqaaqabaqcfaOaeyOeI0Iaamiwamaa BaaajuaibaGaamOqaaqcfayabaaacaGLOaGaayzkaaWaaWbaaKqbGe qabaGaaGOmaaaajuaGcqGHRaWkdaqadaqaaiaadMfadaWgaaqcfasa aiaadgeaaeqaaKqbakabgkHiTiaadMfadaWgaaqcfasaaiaadkeaaK qbagqaaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfaOa eyypa0deaaaaaaaaa8qacaGGGcWdaiaadYgadaahaaqcfasabeaaca aIYaaaaaaa@4DD5@  (2)

I b d i b dt + R b i b + k 1 b b ˙ = e b I p d i p dt + R p i p + k 1 p B( a,p ) a ˙ = e p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ysamaaBaaajuaibaGaamOyaaqcfayabaWaaSaaaeaacaWGKbGaamyA amaaBaaajuaibaGaamOyaaqcfayabaaabaGaamizaiaadshaaaGaey 4kaSIaamOuamaaBaaajuaibaGaamOyaaqcfayabaGaamyAamaaBaaa juaibaGaamOyaaqcfayabaGaey4kaSIaam4AamaaDaaajuaibaGaaG ymaaqaaiaadkgaaaqcfaOabmOyayaacaGaeyypa0JaamyzamaaBaaa juaibaGaamOyaaqcfayabaaabaGaamysamaaBaaajuaibaGaamiCaa qcfayabaWaaSaaaeaacaWGKbGaamyAamaaBaaajuaibaGaamiCaaqc fayabaaabaGaamizaiaadshaaaGaey4kaSIaamOuamaaBaaajuaiba GaamiCaaqcfayabaGaamyAamaaBaaajuaibaGaamiCaaqcfayabaGa ey4kaSIaam4AamaaDaaajuaibaGaaGymaaqaaiaadchaaaqcfaOaam OqamaabmaabaGaamyyaiaacYcacaWGWbaacaGLOaGaayzkaaGabmyy ayaacaGaeyypa0JaamyzamaaBaaajuaibaGaamiCaaqcfayabaaaaa a@6A36@ (3)

( D( cosa1 )+d( 1cosp ) ) 2 + ( Dsina+ldsinp ) 2 = l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiramaabmaabaGaci4yaiaac+gacaGGZbGaamyyaiabgkHiTiaa igdaaiaawIcacaGLPaaacqGHRaWkcaWGKbWaaeWaaeaacaaIXaGaey OeI0Iaci4yaiaac+gacaGGZbGaamiCaaGaayjkaiaawMcaaaGaayjk aiaawMcaamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSYaaeWaae aacaWGebGaci4CaiaacMgacaGGUbGaamyyaiabgUcaRiaadYgacqGH sislcaWGKbGaci4CaiaacMgacaGGUbGaamiCaaGaayjkaiaawMcaam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyypa0JaamiBamaaCaaajuai beqaaiaaikdaaaaaaa@5D18@  (4)

The Lagrange function of the system is

L={ m 2 [ l+( D+h )sina ] 2 + J b 2 } b ˙ 2 + J p 2 p ˙ 2 + m ( D+h ) 2 2 a ˙ 2 mg( D+h )cosa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeacq GH9aqpdaGadaqaamaaliaabaGaamyBaaqaaiaaikdaaaWaamWaaeaa caWGSbGaey4kaSYaaeWaaeaacaWGebGaey4kaSIaamiAaaGaayjkai aawMcaaiGacohacaGGPbGaaiOBaiaadggaaiaawUfacaGLDbaadaah aaqabKqbGeaacaaIYaaaaKqbakabgUcaRmaaliaabaGaamOsamaaBa aajuaibaGaamOyaaqcfayabaaabaGaaGOmaaaaaiaawUhacaGL9baa ceWGIbGbaiaadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaala aabaGaamOsamaaBaaajuaibaGaamiCaaqcfayabaaabaGaaGOmaaaa ceWGWbGbaiaadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRmaali aabaGaamyBamaabmaabaGaamiraiabgUcaRiaadIgaaiaawIcacaGL PaaadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaaikdaaaGabmyyay aacaWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaWGTbGaam4z amaabmaabaGaamiraiabgUcaRiaadIgaaiaawIcacaGLPaaaciGGJb Gaai4BaiaacohacaWGHbaaaa@6CBE@  (5)

The system is acted on by the no potential force

Q ˜ p = f p p ˙ + k 2 p i p ; Q ˜ b = f b b ˙ + k 2 b i b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgfaga acamaaBaaajuaibaGaamiCaaqcfayabaGaeyypa0JaeyOeI0IaamOz amaaBaaajuaibaGaamiCaaqcfayabaGabmiCayaacaGaey4kaSIaam 4AamaaDaaajuaibaGaaGOmaaqaaiaadchaaaqcfaOaamyAamaaBaaa juaibaGaamiCaaqabaqcfaOaai4oaiqadgfagaacamaaBaaajuaiba GaamOyaaqcfayabaGaeyypa0JaeyOeI0IaamOzamaaBaaajuaibaGa amOyaaqcfayabaGabmOyayaacaGaey4kaSIaam4AamaaDaaajuaiba GaaGOmaaqaaiaadkgaaaqcfaOaamyAamaaBaaajuaibaGaamOyaaqc fayabaaaaa@55FE@ (6)

Where    k2- electromechanical constants of the electric drives, fp ,fb coefficients of rotation resistant. The redundant coordinate velocity can be expressed as a function of all variables and independent velocities after differentiating (5) with respect to time.

p ˙ = D[ dsin( ap )+( Dd )sina+lcosa ] d[ Dsin( ap )+( Dd )sinp+lcosp ] a ˙ =B( a,p ) a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga Gaaiabg2da9maalaaabaGaamiramaadmaabaGaamizaiGacohacaGG PbGaaiOBamaabmaabaGaamyyaiabgkHiTiaadchaaiaawIcacaGLPa aacqGHRaWkdaqadaqaaiaadseacqGHsislcaWGKbaacaGLOaGaayzk aaGaci4CaiaacMgacaGGUbGaamyyaiabgUcaRiaadYgaciGGJbGaai 4BaiaacohacaWGHbaacaGLBbGaayzxaaaabaGaamizamaadmaabaGa amiraiGacohacaGGPbGaaiOBamaabmaabaGaamyyaiabgkHiTiaadc haaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadseacqGHsislcaWG KbaacaGLOaGaayzkaaGaci4CaiaacMgacaGGUbGaamiCaiabgUcaRi aadYgaciGGJbGaai4BaiaacohacaWGWbaacaGLBbGaayzxaaaaaiqa dggagaGaaiabg2da9iaadkeadaqadaqaaiaadggacaGGSaGaamiCaa GaayjkaiaawMcaaiqadggagaGaaaaa@72AC@  (7)

If the depended velocities were eliminated taking (7) into consideration, then

L * = 1 2 { m [ l+( D+h )sina ] 2 + J b } b 2 + 1 2 { m ( D+h ) 2 + J p B 2 ( a,p ) } a ˙ 2 mg( D+h )cosa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada ahaaqabeaacaGGQaaaaiabg2da9maaliaabaGaaGymaaqaaiaaikda aaWaaiWaaeaacaWGTbWaamWaaeaacaWGSbGaey4kaSYaaeWaaeaaca WGebGaey4kaSIaamiAaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOB aiaadggaaiaawUfacaGLDbaadaahaaqcfasabeaacaaIYaaaaKqbak abgUcaRiaadQeadaWgaaqaaiaadkgaaeqaaaGaay5Eaiaaw2haaiaa dkgadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRmaaliaabaGaaG ymaaqaaiaaikdaaaWaaiWaaeaacaWGTbWaaeWaaeaacaWGebGaey4k aSIaamiAaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfa Oaey4kaSIaamOsamaaBaaabaGaamiCaaqabaGaamOqamaaCaaajuai beqaaiaaikdaaaqcfa4aaeWaaeaacaWGHbGaaiilaiaadchaaiaawI cacaGLPaaaaiaawUhacaGL9baaceWGHbGbaiaadaahaaqcfasabeaa caaIYaaaaKqbakabgkHiTiaad2gacaWGNbWaaeWaaeaacaWGebGaey 4kaSIaamiAaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Caiaadgga aaa@71F7@

The prescribed steady motion can be defined by

a a 0 =const; b ˙ = b ˙ 0 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggacq GHsislcaWGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaWG JbGaam4Baiaad6gacaWGZbGaamiDaiaacUdaceWGIbGbaiaacqGH9a qpceWGIbGbaiaadaWgaaqcfasaaiaaicdaaeqaaKqbakabg2da9iaa dogacaWGVbGaamOBaiaadohacaWG0baaaa@4B91@ (8)

Using systems (3) and (4) it is possible to calculate values of systems at the prescribed steady motion (8): p= p 0 =const; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchacq GH9aqpcaWGWbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaWG JbGaam4Baiaad6gacaWGZbGaamiDaiaacUdaaaa@4185@

c 1 sin p 0 + c 2 cos p 0 c 3 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogada WgaaqcfasaaiaaigdaaeqaaKqbakGacohacaGGPbGaaiOBaiaadcha daWgaaqcfasaaiaaicdaaKqbagqaaiabgUcaRiaadogadaWgaaqcfa saaiaaikdaaKqbagqaaiGacogacaGGVbGaai4CaiaadchadaWgaaqc fasaaiaaicdaaKqbagqaaiabgkHiTiaadogadaWgaaqcfasaaiaaio daaKqbagqaaiaacUdaaaa@4B4D@

c 1 =dcos a 0 d+ d 2 D ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9iaadsgaciGGJbGaai4B aiaacohacaWGHbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHsislca WGKbGaey4kaSYaaSGaaeaacaWGKbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagaacaWGebaaaiaacUdaaaa@470D@

c 3 =D+ d 2 D cos a 0 ( Dd )d+lsin a 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogada WgaaqcfasaaiaaiodaaKqbagqaaiabg2da9iaadseacqGHRaWkdaWc caqaaiaadsgadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadseaaa GaeyOeI0Iaci4yaiaac+gacaGGZbGaamyyamaaBaaajuaibaGaaGim aaqcfayabaWaaeWaaeaacaWGebGaeyOeI0IaamizaaGaayjkaiaawM caaiabgkHiTiaadsgacqGHRaWkcaWGSbGaci4CaiaacMgacaGGUbGa amyyamaaBaaajuaibaGaaGimaaqcfayabaGaai4oaaaa@532C@

c 2 = dsin a 0 + dl D ;  i b i b0  =  f b b ˙ 0 k 2 b = const; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadogada WgaaqcfasaaiaaikdaaKqbagqaaiabg2da9abaaaaaaaaapeGaaiiO a8aacaWGKbGaci4CaiaacMgacaGGUbGaamyyamaaBaaajuaibaGaaG imaaqabaqcfaOaey4kaSYaaSGaaeaacaWGKbGaamiBaaqaaiaadsea aaGaai4oa8qacaGGGcWdaiaadMgadaWgaaqcfasaaiaadkgaaKqbag qaaiabgkHiTiaadMgadaWgaaqcfasaaiaadkgacaaIWaaajuaGbeaa peGaaiiOa8aacqGH9aqppeGaaiiOa8aadaWccaqaaiaadAgadaWgaa qcfasaaiaadkgaaKqbagqaaiqadkgagaGaamaaBaaajuaibaGaaGim aaqabaaajuaGbaGaam4AamaaDaaajuaibaGaaGOmaaqaaiaadkgaaa aaaKqbakabg2da98qacaGGGcWdaiaadogacaWGVbGaamOBaiaadoha caWG0bGaai4oaaaa@6242@  (9)

i p = i p0 = 1 B( a 0 , P 0 ) { mg( D+h )sin a 0 + b 0 2 m[ l+( D+h )sin a 0 ]( D+h )cos a 0 }=const; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacMgada WgaaqcfasaaiaadchaaeqaaKqbakabg2da9iaadMgadaWgaaqcfasa aiaadchacaaIWaaajuaGbeaacqGH9aqpcqGHsisldaWccaqaaiaaig daaeaacaWGcbWaaeWaaeaacaWGHbWaaSbaaKqbGeaacaaIWaaabeaa juaGcaGGSaGaamiuamaaBaaajuaibaGaaGimaaqcfayabaaacaGLOa GaayzkaaaaamaacmaabaGaamyBaiaadEgadaqadaqaaiaadseacqGH RaWkcaWGObaacaGLOaGaayzkaaGaci4CaiaacMgacaGGUbGaamyyam aaBaaajuaibaGaaGimaaqabaqcfaOaey4kaSIaamOyamaaDaaajuai baGaaGimaaqaaiaaikdaaaqcfaOaamyBamaadmaabaGaamiBaiabgU caRmaabmaabaGaamiraiabgUcaRiaadIgaaiaawIcacaGLPaaaciGG ZbGaaiyAaiaac6gacaWGHbWaaSbaaKqbGeaacaaIWaaabeaaaKqbak aawUfacaGLDbaadaqadaqaaiaadseacqGHRaWkcaWGObaacaGLOaGa ayzkaaGaci4yaiaac+gacaGGZbGaamyyamaaBaaajuaibaGaaGimaa qabaaajuaGcaGL7bGaayzFaaGaeyypa0Jaam4yaiaad+gacaWGUbGa am4CaiaadshacaGG7aaaaa@7826@

e p = e p0 = R p i p0 ; e b = e bo = R b i bo + k 1 b b ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacwgada WgaaqcfasaaiaadchaaeqaaKqbakabg2da9iaadwgadaWgaaqcfasa aiaadchacaaIWaaabeaajuaGcqGH9aqpcaWGsbWaaSbaaKqbGeaaca WGWbaajuaGbeaacaWGPbWaaSbaaKqbGeaacaWGWbGaaGimaaqcfaya baGaai4oaiaadwgadaWgaaqaaiaadkgaaeqaaiabg2da9iaadwgada WgaaqcfasaaiaadkgacaWGVbaajuaGbeaacqGH9aqpcaWGsbWaaSba aKqbGeaacaWGIbaabeaajuaGcaWGPbWaaSbaaKqbGeaacaWGIbGaam 4BaaqabaqcfaOaey4kaSIaam4AamaaDaaajuaibaGaaGymaaqaaiaa dkgaaaqcfaOabmOyayaacaWaaSbaaKqbGeaacaaIWaaabeaaaaa@59C4@

The next step is analyzing perturbed motion equations in the form (3), Give the coordination:

a= a 0 + x 1 ;  a ˙ = x 2 ;  b ˙ = b 0 + x 3 ;  i b = x 4 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaBaaaba Gaamyyaiabg2da9iaadggadaWgaaqcfasaaiaaicdaaeqaaKqbakab gUcaRiaadIhadaWgaaqcfasaaiaaigdaaeqaaaqcfayabaGaai4oaa baaaaaaaaapeGaaiiOa8aaceWGHbGbaiaacqGH9aqpcaWG4bWaaSba aKqbGeaacaaIYaaajuaGbeaacaGG7aWdbiaacckapaGabmOyayaaca Gaeyypa0JaamOyamaaBaaajuaibaGaaGimaaqabaqcfaOaey4kaSIa amiEamaaBaaajuaibaGaaG4maaqabaqcfaOaai4oa8qacaGGGcWdai aacMgadaWgaaqcfasaaiaadkgaaeqaaKqbakabg2da9iaadIhadaWg aaqcfasaaiaaisdaaeqaaKqbakaacUdaaaa@5816@

i p = i p0 + x 5 ;p= p 0 + x 6 ; e p = e p0 +u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacMgada WgaaqcfasaaiaadchaaeqaaKqbakabg2da9iaadMgadaWgaaqcfasa aiaadchacaaIWaaajuaGbeaacqGHRaWkcaWG4bWaaSbaaKqbGeaaca aI1aaabeaajuaGcaGG7aGaamiCaiabg2da9iaadchadaWgaaqcfasa aiaaicdaaKqbagqaaiabgUcaRiaadIhadaWgaaqcfasaaiaaiAdaae qaaKqbakaacUdacaWGLbWaaSbaaeaacaWGWbaabeaacqGH9aqpcaWG LbWaaSbaaKqbGeaacaWGWbGaaGimaaqabaqcfaOaey4kaSIaamyDaa aa@530C@

There are two actuators in the considered system and both motors can be enabled. In the system under consideration, only a constant voltage is applied to the motor armature of the actuator P2, at which stationary motion8,9 takes place in the device. The voltage of the counter-emf plays the role of a dissipative force of a special structure11 and has a stabilizing effect. The first approximation is separated and the equations are transformed to the normal form (We pay attention to the terms ( B a ) 0 , ( B p ) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba WaaSGaaeaacqGHciITcaWGcbaabaGaeyOaIyRaamyyaaaaaiaawIca caGLPaaadaWgaaqcfasaaiaaicdaaeqaaKqbakaacYcadaqadaqaam aaliaabaGaeyOaIyRaamOqaaqaaiabgkGi2kaadchaaaaacaGLOaGa ayzkaaWaaSbaaKqbGeaacaaIWaaabeaaaaa@4600@ in the expansion of the coefficients in the differentiated geometric constraint):

y 1 =( x 1 , x 2 , x 3 , x 4 , x 5 ,z ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada ahaaqabKqbGeaacaaIXaaaaKqbakabg2da9maabmaabaGaamiEamaa BaaajuaibaGaaGymaaqabaqcfaOaaiilaiaadIhadaWgaaqcfasaai aaikdaaeqaaKqbakaacYcacaWG4bWaaSbaaKqbGeaacaaIZaaajuaG beaacaGGSaGaamiEamaaBaaajuaibaGaaGinaaqabaqcfaOaaiilai aadIhadaWgaaqcfasaaiaaiwdaaKqbagqaaiaacYcacaWG6baacaGL OaGaayzkaaGaai4oaaaa@4DC0@

y ˙ = M 1 y+ N 1 u; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga Gaaiabg2da9iaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadMha cqGHRaWkcaWGobWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWG1bGaai 4oaaaa@40F4@

y =( x 1 , x 2 , x 3 , x 4 , x 5 ,z ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga qbaiabg2da9maabmaabaGaamiEamaaBaaajuaibaGaaGymaaqabaqc faOaaiilaiaadIhadaWgaaqcfasaaiaaikdaaKqbagqaaiaacYcaca WG4bWaaSbaaKqbGeaacaaIZaaabeaajuaGcaGGSaGaamiEamaaBaaa juaibaGaaGinaaqabaqcfaOaaiilaiaadIhadaWgaaqcfasaaiaaiw daaeqaaKqbakaacYcacaWG6baacaGLOaGaayzkaaGaai4oaaaa@4C33@

y ˙ = M 1 y+ N 1 u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMhaga Gaaiabg2da9iaad2eadaWgaaqcfasaaiaaigdaaeqaaKqbakaadMha cqGHRaWkcaWGobWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWG1baaaa@4035@  (10)

M 1 =[ 0 1 0 0 0 0 m 1 m 2 m 3 0 m 4 k 0 m 5 m 6 m 7 0 0 0 0 m 8 m 9 0 0 0 m 10 0 0 m 11 0 0 B( a 0 . p 0 ) 0 0 0 0 0 ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eada WgaaqcfasaaiaaigdaaKqbagqaaiabg2da9maadmaabaqbaeqabyGb aaaaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaWGTbWaaSbaaKqbGeaacaaIXaaabeaaaKqb agaacaWGTbWaaSbaaKqbGeaacaaIYaaabeaaaKqbagaacaWGTbWaaS baaKqbGeaacaaIZaaabeaaaKqbagaacaaIWaaabaGaamyBamaaBaaa juaibaGaaGinaaqabaaajuaGbaGaam4AaaqaaiaaicdaaeaacaWGTb WaaSbaaKqbGeaacaaI1aaabeaaaKqbagaacaWGTbWaaSbaaKqbGeaa caaI2aaabeaaaKqbagaacaWGTbWaaSbaaKqbGeaacaaI3aaabeaaaK qbagaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyB amaaBaaajuaibaGaaGioaaqabaaajuaGbaGaamyBamaaBaaajuaiba GaaGyoaaqabaaajuaGbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa amyBamaaBaaajuaibaGaaGymaiaaicdaaeqaaaqcfayaaiaaicdaae aacaaIWaaabaGaamyBamaaBaaajuaibaGaaGymaiaaigdaaeqaaaqc fayaaiaaicdaaeaacaaIWaaabaGaamOqamaabmaabaGaamyyamaaBa aajuaibaGaaGimaaqcfayabaGaaiOlaiaadchadaWgaaqcfasaaiaa icdaaKqbagqaaaGaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaaGaaGimaaGaay5waiaaw2faaiaacUdaaaa@74C5@

N 1 =( 0,0,0,0,n,0 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqac6eaga qbamaaBaaajuaibaGaaGymaaqabaGaeyypa0tcfa4aaeWaaeaacaaI WaGaaiilaiaaicdacaGGSaGaaGimaiaacYcacaaIWaGaaiilaiaad6 gacaGGSaGaaGimaaGaayjkaiaawMcaaiaacUdaaaa@4442@

w 1 =m ( D+h ) 2 + J p B 2 ( a 0 , p 0 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9iaad2gadaqadaqaaiaa dseacqGHRaWkcaWGObaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG OmaaaajuaGcqGHRaWkcaWGkbWaaSbaaKqbGeaacaWGWbaabeaajuaG caWGcbWaaWbaaeqajuaibaGaaGOmaaaajuaGdaqadaqaaiaadggada WgaaqcfasaaiaaicdaaeqaaKqbakaacYcacaWGWbWaaSbaaKqbGeaa caaIWaaabeaaaKqbakaawIcacaGLPaaacaGG7aaaaa@4EA5@

w 2 =m[ l+( D+h )sin a 0 ]( D+h )cos a 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaikdaaeqaaKqbakabg2da9iaad2gadaWadaqaaiaa dYgacqGHRaWkdaqadaqaaiaadseacqGHRaWkcaWGObaacaGLOaGaay zkaaGaci4CaiaacMgacaGGUbGaamyyamaaBaaajuaibaGaaGimaaqa baaajuaGcaGLBbGaayzxaaaeaaaaaaaaa8qadaqadaqaaiaadseacq GHRaWkcaWGObaacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbWdaiaa dggadaWgaaqcfasaaiaaicdaaeqaaKqbakaacUdaaaa@52A0@

w 3 =mg( D+h )sin a 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaiodaaeqaaKqbakabg2da9iaad2gacaWGNbWaaeWa aeaacaWGebGaey4kaSIaamiAaaGaayjkaiaawMcaaiGacohacaGGPb GaaiOBaiaadggadaWgaaqcfasaaiaaicdaaeqaaKqbakaacUdaaaa@4628@

w 4 = J p B( a 0 , p 0 )[ ( B a )+B( a 0 , p 0 )( B p ) ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaisdaaeqaaKqbakabg2da9iaadQeadaWgaaqcfasa aiaadchaaeqaaKqbakaadkeadaqadaqaaiaadggadaWgaaqcfasaai aaicdaaeqaaKqbakaacYcacaWGWbWaaSbaaKqbGeaacaaIWaaabeaa aKqbakaawIcacaGLPaaadaWadaqaamaabmaabaWaaSaaaeaacqGHci ITcaWGcbaabaGaeyOaIyRaamyyaaaaaiaawIcacaGLPaaacqGHRaWk caWGcbWaaeWaaeaacaWGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGca GGSaGaamiCamaaBaaajuaibaGaaGimaaqabaaajuaGcaGLOaGaayzk aaWaaeWaaeaadaWcaaqaaiabgkGi2kaadkeaaeaacqGHciITcaWGWb aaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaacUdaaaa@5C8F@

w 5 =m [ l+( D+h )sin a 0 ] 2 + J b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaiwdaaeqaaKqbakabg2da9iaad2gadaWadaqaaiaa dYgacqGHRaWkdaqadaqaaiaadseacqGHRaWkcaWGObaacaGLOaGaay zkaaGaci4CaiaacMgacaGGUbGaamyyamaaBaaajuaibaGaaGimaaqc fayabaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaaGOmaaaajuaGcq GHRaWkcaWGkbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaaa@4D53@

w 6 =2m[ l+( D+h )sin a 0 ]( D+h ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada WgaaqcfasaaiaaiAdaaeqaaKqbakabg2da9iaaikdacaWGTbWaamWa aeaacaWGSbGaey4kaSYaaeWaaeaacaWGebGaey4kaSIaamiAaaGaay jkaiaawMcaaiGacohacaGGPbGaaiOBaiaadggadaWgaaqcfasaaiaa icdaaKqbagqaaaGaay5waiaaw2faamaabmaabaGaamiraiabgUcaRi aadIgaaiaawIcacaGLPaaacaGG7aaaaa@4DE1@

m 1 = 1 w 1 { b 0 2 m[ ( D+h )sin a 0 + ( D+h ) 2 cos2 a 0 ]+mg( D+h )cos a 0 + k 2 p i p0 ( B a ) 0 }; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaigdaaeqaaKqbakabg2da9maaliaabaGaaGymaaqa aiaadEhadaWgaaqcfasaaiaaigdaaeqaaaaajuaGdaGadaqaaiaadk gadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakaad2gadaWadaqa aiabgkHiTmaabmaabaGaamiraiabgUcaRiaadIgaaiaawIcacaGLPa aaciGGZbGaaiyAaiaac6gacaWGHbWaaSbaaKqbGeaacaaIWaaajuaG beaacqGHRaWkdaqadaqaaiaadseacqGHRaWkcaWGObaacaGLOaGaay zkaaWaaWbaaeqajuaibaGaaGOmaaaajuaGciGGJbGaai4Baiaacoha caaIYaGaamyyamaaBaaajuaibaGaaGimaaqcfayabaaacaGLBbGaay zxaaGaey4kaSIaamyBaiaadEgadaqadaqaaiaadseacqGHRaWkcaWG ObaacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaamyyamaaBaaaju aibaGaaGimaaqcfayabaGaey4kaSIaam4AamaaDaaajuaibaGaaGOm aaqaaiaadchaaaqcfaOaamyAamaaBaaajuaibaGaamiCaiaaicdaae qaaKqbaoaabmaabaWaaSGaaeaacqGHciITcaWGcbaabaGaeyOaIyRa amyyaaaaaiaawIcacaGLPaaadaWgaaqcfasaaiaaicdaaeqaaaqcfa Oaay5Eaiaaw2haaiaacUdaaaa@793C@

m 2 = B 2 ( a 0 , p 0 ) f p w 1 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaikdaaeqaaKqbakabg2da9iabgkHiTiaadkeadaah aaqabKqbGeaacaaIYaaaaKqbaoaabmaabaGaamyyamaaBaaajuaiba GaaGimaaqabaqcfaOaaiilaiaadchadaWgaaqcfasaaiaaicdaaeqa aaqcfaOaayjkaiaawMcaamaaliaabaGaamOzamaaBaaajuaibaGaam iCaaqcfayabaaabaGaam4DamaaBaaajuaibaGaaGymaaqabaaaaKqb akaacUdaaaa@4ABC@

m 3 = 2 b ˙ 0 w 2 w 1 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiodaaeqaaKqbakabg2da9maaliaabiqaaaU=caaI YaGabmOyayaacaWaaSbaaKqbGeaacaaIWaaabeaajuaGcaWG3bWaaS baaKqbGeaacaaIYaaabeaaaKqbagaacaWG3bWaaSbaaKqbGeaacaaI XaaabeaaaaqcfaOaai4oaaaa@4529@

m 4 = 1 w 5 B( a 0 , p 0 ) k 2 p ;k= 1 w 5 k 2 p i p0 ( B a ) 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaisdaaeqaaKqbakabg2da9maaliaabiqaaaU=caaI XaaabaGaam4DamaaBaaabaqcfaIaaGynaaqcfayabaaaaiaackeada qadaqaaiaadggadaWgaaqcfasaaiaaicdaaeqaaKqbakaacYcacaWG WbWaaSbaaKqbGeaacaaIWaaabeaaaKqbakaawIcacaGLPaaacaWGRb Waa0baaKqbGeaacaaIYaaabaGaamiCaaaajuaGcaGG7aGaai4Aaiab g2da9maaliaabiqaaaU=caaIXaaabaGaam4DamaaBaaabaqcfaIaaG ynaaqcfayabaaaaiaadUgadaqhaaqcfasaaiaaikdaaeaacaWGWbaa aKqbakaadMgadaWgaaqcfasaaiaadchacaaIWaaabeaajuaGdaqada qaamaaliaabaGaeyOaIyRaamOqaaqaaiabgkGi2kaadggaaaaacaGL OaGaayzkaaWaaSbaaKqbGeaacaaIWaaabeaajuaGcaGG7aaaaa@6236@

m 5 = 1 w 5 2 b ˙ 0 w 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiwdaaeqaaKqbakabg2da9maaliaabiqaaaU=caaI XaaabaGaam4DamaaBaaabaqcfaIaaGynaaqcfayabaaaaiaaikdace WGIbGbaiaadaWgaaqcfasaaiaaicdaaeqaaKqbakaadEhadaWgaaqc fasaaiaaikdaaeqaaKqbakaacUdaaaa@45EA@

m 6 = f b w 5 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiAdaaeqaaKqbakabg2da9iabgkHiTmaaliaabaGa amOzamaaBaaajuaibaGaamOyaaqcfayabaaabaGaam4DamaaBaaaju aibaGaaGynaaqabaaaaKqbakaacUdaaaa@4113@

m 7 = k 2 b w 5 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiEdaaeqaaKqbakabg2da9maaliaabiqaaaU=caWG RbWaa0baaKqbGeaacaaIYaaabaGaamOyaaaaaKqbagaacaWG3bWaaS baaeaajuaicaaI1aaajuaGbeaaaaGaai4oaaaa@42CA@

m 8 = k 1 b I b ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiIdaaeqaaKqbakabg2da9iabgkHiTmaaliaabiqa aaU=caWGRbWaa0baaKqbGeaacaaIXaaabaGaamOyaaaaaKqbagaaca WGjbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaaGaai4oaaaa@43B1@

m 9 = R b I b ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaiMdaaeqaaKqbakabg2da9iabgkHiTmaaliaabiqa aaU=caWGsbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaeaacaWGjbWaaS baaKqbGeaacaWGIbaajuaGbeaaaaGaai4oaaaa@42DD@

m 10 = k 1 p B( a 0 , p 0 ) I b ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaigdacaaIWaaabeaajuaGcqGH9aqpcqGHsislcaWG RbWaa0baaKqbGeaacaaIXaaabaGaamiCaaaajuaGdaWccaqaaiaack eadaqadaqaaiaadggadaWgaaqcfasaaiaaicdaaeqaaKqbakaacYca caWGWbWaaSbaaKqbGeaacaaIWaaabeaaaKqbakaawIcacaGLPaaaae aacaWGjbWaaSbaaKqbGeaacaWGIbaajuaGbeaaaaGaai4oaaaa@4A99@

m 11 = R p I p ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2gada WgaaqcfasaaiaaigdacaaIXaaabeaajuaGcqGH9aqpcqGHsisldaWc caqaceaaG7VaamOuamaaBaaajuaibaGaamiCaaqcfayabaaabaGaam ysamaaBaaajuaibaGaamiCaaqcfayabaaaaiaacUdaaaa@43AC@

To determine the variable corresponding to the zero root of the characteristic equation, we use the linear non singular substitution1,2,5,6

x 6 =z+B( a 0 , p 0 ) x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaiAdaaeqaaKqbakabg2da9iaadQhacqGHRaWkcaWG cbWaaeWaaeaacaWGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaGGSa GaamiCamaaBaaajuaibaGaaGimaaqabaaajuaGcaGLOaGaayzkaaGa amiEamaaBaaajuaibaGaaGymaaqabaaaaa@460A@  (11)

The matrix M in (10) results the from after (11)

M ˜ 1 =[ 0 1 0 0 0 0 m ˜ 1 m 2 m 3 0 m 4 k 0 m 5 m 6 m 7 0 0 0 0 m 8 m 9 0 0 0 m 10 0 0 m 11 0 0 0 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad2eaga acamaaBaaajuaibaGaaGymaaqabaGaeyypa0tcfa4aamWaaeaafaqa beGbgaaaaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiqad2gagaacamaaBaaajuaibaGaaGym aaqabaaajuaGbaGaamyBamaaBaaajuaibaGaaGOmaaqabaaajuaGba GaamyBamaaBaaajuaibaGaaG4maaqabaaajuaGbaGaaGimaaqaaiaa d2gadaWgaaqcfasaaiaaisdaaeqaaaqcfayaaiaadUgaaeaacaaIWa aabaGaamyBamaaBaaajuaibaGaaGynaaqabaaajuaGbaGaamyBamaa BaaajuaibaGaaGOnaaqabaaajuaGbaGaamyBamaaBaaajuaibaGaaG 4naaqabaaajuaGbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaad2gadaWgaaqcfasaaiaaiIdaaeqaaaqcfayaaiaad2gada WgaaqcfasaaiaaiMdaaeqaaaqcfayaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaad2gadaWgaaqcfasaaiaaigdacaaIWaaabeaaaKqbag aacaaIWaaabaGaaGimaaqaaiaad2gadaWgaaqcfasaaiaaigdacaaI XaaabeaaaKqbagaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa @6C19@

m ˜ 1 = m 1 +kB( a 0 , p 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad2gaga acamaaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaamyBamaaBaaa juaibaGaaGymaaqabaqcfaOaey4kaSIaam4Aaiaadkeadaqadaqaai aadggadaWgaaqcfasaaiaaicdaaeqaaKqbakaacYcacaWGWbWaaSba aKqbGeaacaaIWaaabeaaaKqbakaawIcacaGLPaaaaaa@467D@ and the system (11) will take so-called special form of the theory of critical cases.7-8 It gives the possibility to separate controlled subsystem,1,2,6,9 which can be written as

x ˙ =Mx+Nu; x =( x 1 , x 2 , x 3 , x 4 , x 5 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga Gaaiabg2da9iaad2eacaWG4bGaey4kaSIaamOtaiaadwhacaGG7aGa bmiEayaafaGaeyypa0ZaaeWaaeaacaWG4bWaaSbaaKqbGeaacaaIXa aabeaajuaGcaGGSaGaamiEamaaBaaajuaibaGaaGOmaaqcfayabaGa aiilaiaadIhadaWgaaqcfasaaiaaiodaaeqaaKqbakaacYcacaWG4b WaaSbaaKqbGeaacaaI0aaabeaajuaGcaGGSaGaamiEamaaBaaajuai baGaaGynaaqabaaajuaGcaGLOaGaayzkaaGaai4oaaaa@51CC@  (12)

M=[ 0 1 0 0 0 m ˜ 1 m 2 m 3 0 m 4 0 m 5 m 6 m 7 0 0 0 m 8 m 9 0 0 m 10 0 0 m 11 ];  N=[ n 0 0 0 0 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eacq GH9aqpdaWadaqaauaabeqafuaaaaaabaGaaGimaaqaaiaaigdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaaceWGTbGbaGaadaWgaaqcfa saaiaaigdaaeqaaaqcfayaaiaad2gadaWgaaqcfasaaiaaikdaaeqa aaqcfayaaiaad2gadaWgaaqcfasaaiaaiodaaeqaaaqcfayaaiaaic daaeaacaWGTbWaaSbaaKqbGeaacaaI0aaabeaaaKqbagaacaaIWaaa baGaamyBamaaBaaajuaibaGaaGynaaqabaaajuaGbaGaamyBamaaBa aajuaibaGaaGOnaaqabaaajuaGbaGaamyBamaaBaaajuaibaGaaG4n aaqabaaajuaGbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaamyBam aaBaaajuaibaGaaGioaaqabaaajuaGbaGaamyBamaaBaaajuaibaGa aGyoaaqabaaajuaGbaGaaGimaaqaaiaaicdaaeaacaWGTbWaaSbaaK qbGeaacaaIXaGaaGimaaqabaaajuaGbaGaaGimaaqaaiaaicdaaeaa caWGTbWaaSbaaKqbGeaacaaIXaGaaGymaaqabaaaaaqcfaOaay5wai aaw2faaiaacUdaqaaaaaaaaaWdbiaacckacaGGGcWdaiaad6eacqGH 9aqpdaWadaqaaiaad6gafaqabeqbbaaaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaaaaaGaay5waiaaw2faaiaac6caaaa@6DD2@

The controllability condition is satisfied for the system (12);

rank( N MN M 2 N M 3 N M 4 N )=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaackhaca GGHbGaaiOBaiaacUgadaqadaqaauaabeqabuaaaaqaaiaad6eaaeaa caWGnbGaamOtaaqaaiaad2eadaahaaqcfasabeaacaaIYaaaaKqbak aad6eaaeaacaWGnbWaaWbaaeqajuaibaGaaG4maaaajuaGcaWGobaa baGaamytamaaCaaajuaibeqaaiaaisdaaaqcfaOaamOtaaaaaiaawI cacaGLPaaacqGH9aqpcaaI1aaaaa@49CE@ .

For the unique determination of the coefficients of the stabilizing control

u= l 1 x 1 + l 2 x 2 + l 3 x 3 + l 4 x 4 + l 5 x 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcaWGSbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaWG4bWaaSba aKqbGeaacaaIXaaajuaGbeaacqGHRaWkcaWGSbWaaSbaaKqbGeaaca aIYaaabeaajuaGcaWG4bWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH RaWkcaWGSbWaaSbaaKqbGeaacaaIZaaabeaajuaGcaWG4bWaaSbaaK qbGeaacaaIZaaajuaGbeaacqGHRaWkcaWGSbWaaSbaaKqbGeaacaaI 0aaabeaajuaGcaWG4bWaaSbaaKqbGeaacaaI0aaajuaGbeaacqGHRa WkcaWGSbWaaSbaaKqbGeaacaaI1aaabeaajuaGcaWG4bWaaSbaaKqb GeaacaaI1aaajuaGbeaaaaa@55AB@

Optimal criterion is introduced

I= t 0 ( x 1 2 + x 2 2 + x 3 2 + x 4 2 + x 5 2 + u 2 ) dtmin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMeacq GH9aqpdaWdXbqaamaabmaabaGaamiEamaaDaaajuaibaGaaGymaaqa aiaaikdaaaGaey4kaSscfaOaamiEamaaDaaajuaibaGaaGOmaaqaai aaikdaaaqcfaOaey4kaSIaamiEamaaDaaajuaibaGaaG4maaqaaiaa ikdaaaqcfaOaey4kaSIaamiEamaaDaaajuaibaGaaGinaaqaaiaaik daaaqcfaOaey4kaSIaamiEamaaDaaajuaibaGaaGynaaqaaiaaikda aaqcfaOaey4kaSIaamyDamaaCaaajuaibeqaaiaaikdaaaaajuaGca GLOaGaayzkaaaabaGaamiDamaaBaaajuaibaGaaGimaaqabaaajuaG baGaeyOhIukacqGHRiI8aiaadsgacaWG0bGaeyOKH4QaciyBaiaacM gacaGGUbaaaa@5E6B@

The coefficients of the control laws can be found by solving linear-quadratic problems using N.N. Krasovsky8 method. Computational solution can be found by Repin-Tretyakov8 procedure.

Computer simulation of dynamics of the manipulator

This approach allows stabilizing any steady motion of this manipulator. However, for the manipulator design under consideration it is possible to distinguish stable operating modes even at constant voltages on drive motors. They here play the role of program controls, ensuring the implementation of a given mode of operation. Numerical modeling was carried out in this problem. With the following parameters, the following graphs of transient processes were obtained (Figures 2–11). As follows from these graphs, the system returns to the given motion in over time. At the same time, in Figures 2–6, on which the dynamics are simulated for 50seconds, oscillations near a given operating mode are clearly noticeable, but not all reversible ones show the return of the disturbances to zero. Therefore, for the same initial disturbance, Figures 7–11 show that within 1000seconds the perturbations in all variables have practically returned to zero. Numerical results were obtained with the following parameters: x=[0.01 0 0 0 0] – Initial perturbation D= 0.6; d= 0.2;l=0.3; a=0.1; m=1; g=9.8; h=0.3; Jp=0.5; Jb=0.5; b0=10; k1p=0.2; k2p=0.2; k1b=0.02; k2b=0.02; fp=0.02; fb=0.02; Ib=0.002; Ip=0.002; Rb=10; Rp=10;

Figure 2 x1(t).

Figure 3 x2(t).

Figure 4 x3(t).

Figure 5 x4(t).

Figure 6 x5(t).

Figure 7 x1(t).

Figure 8 x2(t).

Figure 9 x3(t).

Figure 10 x4(t).

Figure 11 x5(t).

Conclusion

In the work the stabilization problem of steady motions for the mechanical systems with the geometrical constraints is investigated. The general method for mathematical modeling of dynamics for these class systems is obtained by the consideration such systems as Holonomic systems with redundant coordinates. The accurate nonlinear mathematical model was constructed, using the motion equations in Shul’gin’s13 form. Using rigorous methods of analytical mechanics,13,23,24 nonlinear stability theory,8–10 Krasovsky7 method and previously obtained results4–6,11,12,22 is developed the procedure for the unique determination of the coefficients of the stabilizing control. For the practical calculation of the coefficients can be applied Repin–Tretyakov procedure.7 The proposed method is used for stabilization problem of steady motion of the manipulator with geometrical constraints. In conclusion, the authors thank Rukavishnikova A.S. for carrying out a computational experiment.

Acknowledgments

No financial exists.

Conflict of interest

No conflict of interest exists.

References

  1. Zenkevich SL, Yushchenko AS. Fundamentals of control of manipulation robots. Publishing house of Bauman Moscow State Technical University. 2004.
  2. Vukobratovich M, Stokich D, Kirchansky N. Nonadaptive and adaptive control of manipulative robots. Scientific Fundamentals of Robotics. 1989.
  3. Matyukhin VI. Control of mechanical systems FIZMATLIT. 2009.
  4. Krasinskiy AYa, Krasinskaya Ye M. Modeling of GBB 1005 BALL AND BEAM System Dynamics as a Mechanical System with Redundant Coordinates. Science and Education. 2014;1:282–297.
  5. Krasinskaya YeM, Krasinskiy Aya. Stability and stabilization of equilibrium state of mechanical systems with redundant coordinates. Science and Education. 2013;3:347–376.
  6. Alexandr KY, Krasinkaya EM, Ilyina AN. About Mathematical Models of System Dynamics with Geometric Constraints in Problems of Stability and Stabilization by Incomplete State Information. Int Rob Auto J. 2017;2(1):00007.
  7. Krasovskiy NN. Problems of stabilization of controlled motions. Malkin IG, editor. Theory of stability of motion. 1967. p. 475–514.
  8. Lyapunov AM. The general problem of the stability of motion–Kharkov: Kharkov Math. Scientific research. 1892.
  9. Malkin IG. The theory of stability of motion. 1966.
  10. Kamenkov GV. Selected works Science. b1972. 214 p.
  11. Krasinskii AY, Krasinskaya EMA. Stabilization method for steady motions with zero roots in the closed system. Autom Remote Control. 2016;77(8):1386–1398.
  12. Krasinskiy AYa, Krasinskaya YeM. On method of investigation of some class stabilization problems with incomplete state information. Proceedings of International Conference dedicated to the 90th Anniversary of Academicain. 1977. p. 228–235.
  13. Shul'gin MFO. On some differential equations of analytical dynamics and their integration. SASU. 1958. p. 183.
  14. KalenovaVI, Karapetjan AV, Morozov VM, et al. Nonholonomic mechanical systems and stabilization of motion. Journal of Mathematical Sciences. 2005;146(3):5877–5905.
  15. Krasinskaya Tyumeneva EM, Krasinsky A Ya. On the influence of the structure Forces on the stability of equilibrium positions of non–holonomic systems. Computational and Appl Mathematics. 1977;45:172–186.
  16. Krasinskaya EM. To the stabilization of stationary motions of mechanical systems. PMM. 1983;47(2):302–309.
  17. Krasinsky Aya. On the stability and stabilization of equilibrium positions of nonholonomic systems. PMM. 1988;52(2):194–202.
  18. Atazhanov B, Krasinskaya EM. On the stabilization of stationary motions of non–holonomic systems. PMM. 1988;52(6):902–908.
  19. Kalenova, Morozov VM, Sheveleva Ye N. Controllability and observability in the problem of stabilization of steady–state motions of non–Holonomic mechanical systems. PMMV. 2001;65(2):915–924.
  20. Martynenko YuG. On the matrix form of the nonholonomic Mechanics. Scientific and methodical articles on theoretical mechanics. 2000;23:9–21.
  21. Martynenko YUG, Zatsepin MF. Application of matrix methods For the formulation of the Magee and Euler–Lagrange equations of non–Holonomic systems. Scientific and methodical articles on theoretical mechanics. 2004;25:86–90.
  22. Krasinskii A Ia. Certain method of investigation of stability and stabilization of nonisolated steady motions of mechanical systems. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences. 2004. p. 97–103.
Creative Commons Attribution License

©2017 Krasinkiy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.