Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 7 Issue 3

Inertial torques acting on a spinning sphere

R Usubamatov, A Arzybaev

Automation & Robotics, Kyrgyz State Technical University, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Automation & Robotics, Kyrgyz State Technical University, Bishkek, Kyrgyzstan, Tel +996 0553 722755, Fax +996 312 545162

Received: October 23, 2021 | Published: November 16, 2021

Citation: Usubamatov R, Arzybaev A. Inertial torques acting on a spinning sphere. Int Rob Auto J. 2021;7(3):95-101 DOI: 10.15406/iratj.2021.07.00233

Download PDF

Abstract

New studies of the dynamics of rotating objects have shown the origin of their gyroscopic effects is more sophisticated than presented in publications. Their rotating mass acting on bodies generates the system of the kinetically interrelated inertial torques. The method for developing mathematical models for inertial torques of the spinning objects shows their dependencies on geometries. The inertial torques generated by the disc, ring, paraboloid, and others have confirmed this statement. The derived analytical method presents a new direction for the dynamics of classical mechanics. The several inertial torqueses acting on any movable spinning objects in space were unknown until recent times. The gyroscopic effects of rotating objects in engineering and a new method for computing their inertial torques are the challenges for researchers. The novelty of this manuscript is the mathematical models for the inertial torques generated by the rotating mass acting on the spinning solid and hollow sphere.

Keywords: inertial torques; gyroscope theory; spinning sphere

Introduction

In engineering, all spinning objects manifest gyroscopic effects manifested by the action of their inertial torques that are not well-described.1–4 Beginning with the Industrial Revolution, mathematicians and physicists studied the gyroscopic effects. Only famous L. Euler derived the mathematical foundation for the one torque that expresses the change in the angular momentum. His mathematical model did not describe all gyroscopic effects. Intensification processes in engineering forced to development of the theory of dynamics in classical mechanics. Scientists determined the gyroscopes and dynamics of rotating objects are a significant area in engineering science.5–8 The textbooks of engineering mechanics contain a chapter on the dynamics of mechanisms with simple analytical approaches in solutions to gyroscopic effects.9–11 Many publications described the original properties of the gyroscopic devices, which remain an unsolved problem and present a challenge for researchers.12–14

Recent studies in gyroscopic effects showed their physics are sophisticated than could imagine researchers of engineering mechanics. The inertial torques generated by the rotating mass of the spinning objects are kinetically interrelated .15 The mathematical models of inertial torques for the rotating bodies are different and depend on their geometries. The inertial torques of the spinning sphere at known publication contain errors in the graphical presentation and mathematical processing.16 Practitioners of engineering need the method for deriving correct inertial torques of spinning objects to design the perfect machines. The known method for deriving the inertial torques for the spinning disc enables developing the mathematical models for any rotating bodies.15,16 The novelty of this manuscript is the inertial torques generated by rotating masses of the solid and hollow spheres.

Methodology

Inertial torques of a spinning sphere

The rotating mass of the spinning solid and hollow sphere generates inertial torques of the centrifugal and Coriolis forces that are acting simultaneously about axes of motions. The mathematical modeling of the action of the inertial forces on the sphere is the same as for the spinning disc.15 The mass elements are disposed on the surface of the 2/3 radius for the solid sphere and the middle radius for the thin hollow sphere. The rotating mass elements produce the centrifugal forces that are disposed on the random plane that is parallel to its plane of the maximal diameter of the sphere Figure 1.

Figure 1 Schematic of the spinning sphere.

The inclination of the spinning sphere on the angle Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqucLbmacqaHZoWzaaa@3E17@ gives the change in the vector’s forces f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG UaGaamOEaaWcpaqabaaaaa@3FEC@ that is parallel to the sphere axis oz. The integrated product of a change in the forces f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG UaGaamOEaaWcpaqabaaaaa@3FEC@ acts about axes ox and oy by sine and cosine laws and presents the resistance torque T ct,x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG SaGaamiEaaWcpaqabaaaaa@3FD6@ and precession torque T ct,x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG SaGaamiEaaWcpaqabaaaaa@3FD6@ respectively. The scheme of acting centrifugal forces and torques of the solid sphere’s plane with rotating mass elements about axis ox (a) and axis oy (b) is presented in Figure 2. Below is considered the action of the resistance torque, which expression is the same as for precession torque. The mass element m is disposed on the radius R i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOuaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaaa aa@3D34@  of the sphere, where i indicate the solid ss and hollow hs spheres ( R ss =( 2/3 )R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGqaaaaa aaaaWdbmaabmaakeaajugibiaadkfajuaGdaWgaaWcbaqcLbmacaWG ZbGaam4CaaWcbeaajugibiabg2da9Kqbaoaabmaakeaajugibiaaik dacaGGVaGaaG4maaGccaGLOaGaayzkaaqcLbsacaWGsbaakiaawIca caGLPaaaaaa@48A2@  for the solid sphere and R hs = R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOuaKqba+aadaWgaaWcbaqcLbmapeGaamiAaiaadoha aSWdaeqaaKqzGeWdbiabg2da9iaabccacaWGsbaaaa@41D8@  for the hollow sphere). The sphere rotates with an angular velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeqyYdChaaa@3BA9@ in the counter-clockwise direction.

Figure 2 Schematic of acting centrifugal forces and torques of the sphere’s plane with rotating mass elements about axis ox (a) and axis oy (b).

The expression of the resistance torque Δ T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaa dshaaSWdaeqaaaaa@3F8F@  of the centrifugal force f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG UaGaamOEaaWcpaqabaaaaa@3FEC@ is:

Δ T ct. = f ct.z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadsfalmaaBaaabaqcLbmacaWGJbGaamiDaiaac6caaSqabaqc LbsacqGH9aqpcaWGMbWcdaWgaaqaaKqzadGaam4yaiaadshacaGGUa GaamOEaaWcbeaajugibiaadMhalmaaBaaabaqcLbmacaWGTbaaleqa aaaa@4B4E@   (1)

where y m = R i sinβsinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamyEaKqba+aadaWgaaWcbaqcLbmapeGaamyBaaWcpaqa baqcLbsapeGaeyypa0JaamOuaSWdamaaBaaabaqcLbmapeGaamyAaa WcpaqabaqcLbsapeGaam4CaiaadMgacaWGUbGaeqOSdiMaam4Caiaa dMgacaWGUbGaeqySdegaaa@4C7B@  is the normal to axis o1x1, other components are as specified above.

The change of the centrifugal force f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG UaGaamOEaaWcpaqabaaaaa@3FEC@ for arbitrarily chosen plane is:

f ct.z = f ct sinΔγ=mr ω 2 sinΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaWgaaWcbaqcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqa aKqzGeGaeyypa0JaamOzaSWaaSbaaeaajugWaiaadogacaWG0baale qaaKqzGeGaci4CaiaacMgacaGGUbGaeuiLdqKaeq4SdCMaeyypa0Ja amyBaiaadkhacqaHjpWDlmaaCaaabeqaaKqzadGaaGOmaaaajugibi GacohacaGGPbGaaiOBaiabfs5aejabeo7aNbaa@59AD@   (2)

where f ct =mr ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamiDaaWcbeaajugibiabg2da9iaa d2gacaWGYbGaeqyYdCxcfa4aaWbaaSqabeaajugWaiaaikdaaaaaaa@45DD@  is the centrifugal forceof the mass element m;, m= M 4π R i 2 Δδ R i 2 = M 4π Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2 gacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGnbaakeaajugibiaaisda cqaHapaCcaWGsbWcdaqhaaqaaKqzadGaamyAaaWcbaqcLbmacaaIYa aaaaaajugibiabfs5aejabes7aKjaadkfalmaaDaaabaqcLbmacaWG PbaaleaajugWaiaaikdaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLb sacaWGnbaakeaajugibiaaisdacqaHapaCaaGaeuiLdqKaeqiTdqga aa@5852@ ,

M is the mass of the sphere; 4π is the spherical angle; Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaeqiTdqgaaa@3CE7@ is the spherical angle of the mass element; r is the radius of the mass element rotation at the plane o1x1y1; α and β is the angle of the mass element’s disposition on the plane x oy and y oz, respectively; Δγ is the angle of turn for the sphere around axis ox ( sinΔγ= Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4CaiaadMgacaWGUbGaeuiLdqKaeq4SdCMaeyypa0Ja aeiiaiabfs5aejabeo7aNbaa@4478@ for the small values of the angle), other parameters are as specified above and in Figure 2.

The defined parameter is substituted into Eq. (1) that yields:

-for the solid sphere

f ct.z = M 4π ω 2 ΔδΔγ 2 3 Rsinβsinα= MR ω 2 6π ΔδΔγsinβsinα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaSqaaKqzadGaam4yaiaadshacaGGUaGaamOEaaWcbeaa jugibiabg2da9iabgkHiTKqbaoaalaaakeaajugibiaad2eaaOqaaK qzGeGaaGinaiabec8aWbaacqaHjpWDlmaaCaaabeqaaKqzadGaaGOm aaaajugibiabfs5aejabes7aKjabfs5aejabeo7aNLqbaoaalaaake aajugibiaaikdaaOqaaKqzGeGaaG4maaaacaWGsbGaci4CaiaacMga caGGUbGaeqOSdiMaci4CaiaacMgacaGGUbGaeqySdeMaeyypa0Jaey OeI0scfa4aaSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDjuaGdaah aaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOnaiabec8aWbaacq qHuoarcqaH0oazcqqHuoarcqaHZoWzciGGZbGaaiyAaiaac6gacqaH YoGyciGGZbGaaiyAaiaac6gacqaHXoqyaaa@7793@   (3)

-for the hollow sphere

f ct.z = M 4π ω 2 ΔδΔγ×Rsinβsinα= MR ω 2 4π ΔδΔγsinβsinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqaaKqz GeGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamytaaGcbaqcLb sacaaI0aGaeqiWdahaaiabeM8a3LqbaoaaCaaaleqabaqcLbmacaaI YaaaaKqzGeGaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdCMaey41aqRaam OuaiGacohacaGGPbGaaiOBaiabek7aIjGacohacaGGPbGaaiOBaiab eg7aHjabg2da9iabgkHiTKqbaoaalaaakeaajugibiaad2eacaWGsb GaeqyYdC3cdaahaaqabeaajugWaiaaikdaaaaakeaajugibiaaisda cqaHapaCaaGaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdCMaci4CaiaacM gacaGGUbGaeqOSdiMaci4CaiaacMgacaGGUbGaeqySdegaaa@7907@   (4)

The integrated torque is the product of the forces f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshacaGG UaGaamOEaaWcpaqabaaaaa@3FEC@  and the centroid y A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamyEaSWdamaaBaaabaqcLbmapeGaamyqaaWcpaqabaaa aa@3D33@ (point A, Figure 1). The latter one is as follows:5–7

-for the solid sphere

y A = α=0 π β=0 π f ct.z y m dαdβ α=0 π β=0 π f ct.z dαdβ = α=0 π β=0 π MR ω 2 6π ΔδΔγsinβsinα× 2 3 Rsinβsinαdαdβ α= π β=0 π MR ω 2 6π ΔδΔγsinβsinαdβdα = MR ω 2 6π ΔδΔγ× 2 3 R α=0 π β=0 π sinβsinαsinβsinαddβ MR ω 2 6π ΔδΔγ α=0 π β=0 π sinβsinαdβdα = 2 3 R α=0 π β=0 π sin 2 β sin 2 αdβdα α=0 π β=0 π sinβsinαdβdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaamyEaKqbaoaaBaaaleaajugWaiaadgeaaSqabaqcLbsacqGH9aqp juaGdaWcaaGcbaqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqaaKqz GeGaamyEaKqbaoaaBaaaleaajugWaiaad2gaaSqabaqcLbsacaWGKb GaeqySdeMaamizaiabek7aIbWcbaqcLbmacqaHYoGycqGH9aqpcaaI WaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacqaHXo qycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaGc baqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiaadAgalmaaBaaaba qcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqaaKqzGeGaamizaiab eg7aHjaadsgacqaHYoGyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaa WcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMa eyypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaGaey ypa0tcfa4aaSaaaOqaaKqbaoaapehakeaajuaGdaWdXbGcbaqcfa4a aSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDjuaGdaahaaWcbeqaaK qzadGaaGOmaaaaaOqaaKqzGeGaaGOnaiabec8aWbaacqqHuoarcqaH 0oazcqqHuoarcqaHZoWzciGGZbGaaiyAaiaac6gacqaHYoGyciGGZb GaaiyAaiaac6gacqaHXoqycqGHxdaTjuaGdaWcaaGcbaqcLbsacaaI YaaakeaajugibiaaiodaaaGaamOuaiGacohacaGGPbGaaiOBaiabek 7aIjGacohacaGGPbGaaiOBaiabeg7aHjaadsgacqaHXoqycaWGKbGa eqOSdigaleaajugWaiabek7aIjabg2da9iaaicdaaSqaaKqzadGaeq iWdahajugibiabgUIiYdaaleaajugWaiabeg7aHjabg2da9iaaicda aSqaaKqzadGaeqiWdahajugibiabgUIiYdaakeaajuaGdaWdXbGcba qcfa4aa8qCaOqaaKqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyY dC3cdaahaaqabeaajugWaiaaikdaaaaakeaajugibiaaiAdacqaHap aCaaGaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdCMaci4CaiaacMgacaGG UbGaeqOSdiMaci4CaiaacMgacaGGUbGaeqySdeMaamizaiabek7aIj aadsgacqaHXoqyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaaWcbaqc LbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMaeyypa0 daleaajugWaiabec8aWbqcLbsacqGHRiI8aaaacqGH9aqpaOqaaKqb aoaalaaakeaajuaGdaWcaaGcbaqcLbsacaWGnbGaamOuaiabeM8a3T WaaWbaaeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI2aGaeqiWdaha aiabfs5aejabes7aKjabfs5aejabeo7aNjabgEna0Mqbaoaalaaake aajugibiaaikdaaOqaaKqzGeGaaG4maaaacaWGsbqcfa4aa8qCaOqa aKqbaoaapehakeaajugibiGacohacaGGPbGaaiOBaiabek7aIjGaco hacaGGPbGaaiOBaiabeg7aHjGacohacaGGPbGaaiOBaiabek7aIjGa cohacaGGPbGaaiOBaiabeg7aHjaadsgacaWGKbGaeqOSdigaleaaju gWaiabek7aIjabg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibiab gUIiYdaaleaajugWaiaadg7acqGH9aqpcaaIWaaaleaajugWaiaadc 8aaKqzGeGaey4kIipaaOqaaKqbaoaalaaakeaajugibiaad2eacaWG sbGaeqyYdCxcfa4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibi aaiAdacqaHapaCaaGaeuiLdqKaeqiTdqMaeuiLdqKaeq4SdCwcfa4a a8qCaOqaaKqbaoaapehakeaajugibiGacohacaGGPbGaaiOBaiabek 7aIjGacohacaGGPbGaaiOBaiabeg7aHjaadsgacqaHYoGycaWGKbGa eqySdegaleaajugWaiabek7aIjabg2da9iaaicdaaSqaaKqzadGaeq iWdahajugibiabgUIiYdaaleaajugWaiabeg7aHjabg2da9iaaicda aSqaaKqzadGaeqiWdahajugibiabgUIiYdaaaiabg2da9aGcbaqcfa 4aaSaaaOqaaKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaG4m aaaacaWGsbqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiGacohaca GGPbGaaiOBaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeqOS diMaci4CaiaacMgacaGGUbWcdaahaaqabeaajugWaiaaikdaaaqcLb sacqaHXoqycaWGKbGaeqOSdiMaamizaiabeg7aHbWcbaqcLbmacqaH YoGycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aa WcbaqcLbmacaWGXoGaeyypa0JaaGimaaWcbaqcLbmacaWGapaajugi biabgUIiYdaakeaajuaGdaWdXbGcbaqcfa4aa8qCaOqaaKqzGeGaci 4CaiaacMgacaGGUbGaeqOSdiMaci4CaiaacMgacaGGUbGaeqySdeMa amizaiabek7aIjaadsgacqaHXoqyaSqaaKqzadGaeqOSdiMaeyypa0 JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGa eqySdeMaeyypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIi paaaaaaaa@CD69@   (5)

-for the hollow sphere

y A = α=0 π β=0 π f ct.z y m dαdβ α=0 π β=0 π f ct.z dαdβ = α=0 π β=0 π MR ω 2 4π ΔδΔγsinβsinα×Rsinβsinαdβdα α= π β=0 π MR ω 2 4π ΔδΔγsinβsinαdβdα = MR ω 2 4π ΔδΔγ×R α=0 π β=0 π sinβsinαsinβsinαdβdα MR ω 2 6π ΔδΔγ α=0 π β=0 π sinβsinαdβdα = R α=0 π β=0 π sin 2 β sin 2 αdβdα β=0 π sinβdβ 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaamyEaSWaaSbaaeaajugWaiaadgeaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiaadAgalm aaBaaabaqcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqaaKqzGeGa amyEaKqbaoaaBaaaleaajugWaiaad2gaaSqabaqcLbsacaWGKbGaeq ySdeMaamizaiabek7aIbWcbaqcLbmacqaHYoGycqGH9aqpcaaIWaaa leaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacqaHXoqycq GH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaGcbaqc fa4aa8qCaOqaaKqbaoaapehakeaajugibiaadAgajuaGdaWgaaWcba qcLbmacaWGJbGaamiDaiaac6cacaWG6baaleqaaKqzGeGaamizaiab eg7aHjaadsgacqaHYoGyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaa WcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMa eyypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaGaey ypa0tcfa4aaSaaaOqaaKqbaoaapehakeaajuaGdaWdXbGcbaqcfa4a aSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDlmaaCaaabeqaaKqzad GaaGOmaaaaaOqaaKqzGeGaaGinaiabec8aWbaacqqHuoarcqaH0oaz cqqHuoarcqaHZoWzciGGZbGaaiyAaiaac6gacqaHYoGyciGGZbGaai yAaiaac6gacqaHXoqycqGHxdaTcaWGsbGaci4CaiaacMgacaGGUbGa eqOSdiMaci4CaiaacMgacaGGUbGaeqySdeMaamizaiabek7aIjaads gacqaHXoqyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaaWcbaqcLbma cqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMaeyypa0JaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaOqaaKqbaoaapeha keaajuaGdaWdXbGcbaqcfa4aaSaaaOqaaKqzGeGaamytaiaadkfacq aHjpWDjuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGin aiabec8aWbaacqqHuoarcqaH0oazcqqHuoarcqaHZoWzciGGZbGaai yAaiaac6gacqaHYoGyciGGZbGaaiyAaiaac6gacqaHXoqycaWGKbGa eqOSdiMaamizaiabeg7aHbWcbaqcLbmacqaHYoGycqGH9aqpcaaIWa aaleaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacqaHXoqy jugibiabg2da9aWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaGaey ypa0dakeaajuaGdaWcaaGcbaqcfa4aaSaaaOqaaKqzGeGaamytaiaa dkfacqaHjpWDlmaaCaaabeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaG inaiabec8aWbaacqqHuoarcqaH0oazcqqHuoarcqaHZoWzcqGHxdaT caWGsbqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiGacohacaGGPb GaaiOBaiabek7aIjGacohacaGGPbGaaiOBaiabeg7aHjGacohacaGG PbGaaiOBaiabek7aIjGacohacaGGPbGaaiOBaiabeg7aHjaadsgacq aHYoGycaWGKbGaeqySdegaleaajugWaiabek7aIjabg2da9iaaicda aSqaaKqzadGaeqiWdahajugibiabgUIiYdaaleaajugWaiaadg7acq GH9aqpcaaIWaaaleaajugWaiaadc8aaKqzGeGaey4kIipaaOqaaKqb aoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCxcfa4aaWbaaSqabe aajugWaiaaikdaaaaakeaajugibiaaiAdacqaHapaCaaGaeuiLdqKa eqiTdqMaeuiLdqKaeq4SdCwcfa4aa8qCaOqaaKqbaoaapehakeaaju gibiGacohacaGGPbGaaiOBaiabek7aIjGacohacaGGPbGaaiOBaiab eg7aHjaadsgacqaHYoGycaWGKbGaeqySdegaleaajugWaiabek7aIj abg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIiYdaaleaa jugWaiabeg7aHjabg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibi abgUIiYdaaaiabg2da9aGcbaqcfa4aaSaaaOqaaKqzGeGaamOuaKqb aoaapehakeaajuaGdaWdXbGcbaqcLbsaciGGZbGaaiyAaiaac6gaju aGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabek7aIjGacohacaGG PbGaaiOBaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqySdeMaam izaiabek7aIjaadsgacqaHXoqyaSqaaKqzadGaeqOSdiMaeyypa0Ja aGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaam ySdiabg2da9iaaicdaaSqaaKqzadGaamiWdaqcLbsacqGHRiI8aaGc baqcfa4aa8qCaOqaaKqzGeGaci4CaiaacMgacaGGUbGaeqOSdiMaam izaiabek7aIbWcbaqcLbmacqaHYoGycqGH9aqpcaaIWaaaleaajugW aiabec8aWbqcLbsacqGHRiI8aKqbaoaapehakeaajugibiGacohaca GGPbGaaiOBaiabeg7aHjaadsgacqaHXoqyaSqaaKqzadGaaGimaaWc baqcLbmacqaHapaCaKqzGeGaey4kIipaaaaaaaa@C42F@   (6)

where the component MR ω 2 6π ΔδΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGnbGaamOuaiabeM8a3LqbaoaaCaaaleqabaqcLbma caaIYaaaaaGcbaqcLbsacaaI2aGaeqiWdahaaiabfs5aejabes7aKj abfs5aejabeo7aNbaa@49AD@  and MR ω 2 4π ΔδΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGnbGaamOuaiabeM8a3LqbaoaaCaaaleqabaqcLbma caaIYaaaaaGcbaqcLbsacaaI0aGaeqiWdahaaiabfs5aejabes7aKj abfs5aejabeo7aNbaa@49AB@  is accepted at this stage of computing as constant for Eqs. (5) and (6), respectively.

Defined parameter ym is substituted into Eqs. (3) and (4), where sinα= 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaiabeg7aHjabg2da9KqbaoaapehakeaajugibiGa cogacaGGVbGaai4Caiabeg7aHjaadsgacqaHXoqyaSqaaKqzadGaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaa@4F23@ , sinβ= 0 π cosβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaiabek7aIjabg2da9KqbaoaapehakeaajugibiGa cogacaGGVbGaai4Caiabek7aIjaadsgacqaHYoGyaSqaaKqzadGaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaa@4F29@ , sin 2 α= 1 2 (1cos2α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa eqySdeMaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca aIYaaaaiaacIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaGOm aiabeg7aHjaacMcaaaa@4DE3@ , sin 2 β= 1 2 (1cos2β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqOS diMaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYa aaaiaacIcacaaIXaGaeyOeI0Iaci4yaiaac+gacaGGZbGaaGOmaiab ek7aIjaacMcaaaa@4D59@  and represented by the integral forms with limits for the hemisphere., Then the following equations emerge:

-for the solid sphere

0 T ct d T ct = MR ω 2 6π 0 2π dδ 0 γ dγ 0 π cosβ dβ 0 π cosα dα× 2 3 R× 1 2 0 π (1cos2β)dβ× 1 2 0 π (1cos2α)dα 0 π sinα dα β=0 π sinβdβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqzGeGaamizaiaadsfajuaGdaWgaaadbaqcLbmacaWGJbGaamiD aaGcbeaaaWqaaKqzadGaaGimaaadbaqcLbsacaWGubqcfa4aaSbaaW qaaKqzadGaam4yaiaadshaaWqabaaajugibiabgUIiYdGaeyypa0Ja eyOeI0scfa4aaSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDlmaaCa aabeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOnaiabec8aWbaajuaG daWdXbGcbaqcLbsacaWGKbGaeqiTdqgameaajugWaiaaicdaaWqaaK qzadGaaGOmaiabec8aWbqcLbsacqGHRiI8aKqbaoaapehakeaajugi biaadsgacqaHZoWzaWqaaKqzadGaaGimaaadbaqcLbmacqaHZoWzaK qzGeGaey4kIipajuaGdaWdXbGcbaqcLbsaciGGJbGaai4Baiaacoha cqaHYoGyaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey 4kIipacaWGKbGaeqOSdiwcfa4aa8qCaOqaaKqzGeGaci4yaiaac+ga caGGZbGaeqySdegaleaajugWaiaaicdaaSqaaKqzadGaeqiWdahaju gibiabgUIiYdGaamizaiabeg7aHjabgEna0MqbaoaalaaakeaajuaG daWcaaGcbaqcLbsacaaIYaaakeaajugibiaaiodaaaGaamOuaiabgE na0MqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaG daWdXbGcbaqcLbsacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai 4CaiaaikdacqaHYoGycaGGPaGaamizaiabek7aIjabgEna0Mqbaoaa laaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaGdaWdXbGcba qcLbsacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai4Caiaaikda cqaHXoqycaGGPaGaamizaiabeg7aHbWcbaqcLbmacaaIWaaaleaaju gWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacaaIWaaaleaajugW aiabec8aWbqcLbsacqGHRiI8aaGcbaqcfa4aa8qCaOqaaKqzGeGaci 4CaiaacMgacaGGUbGaeqySdegaleaajugWaiaaicdaaSqaaKqzadGa eqiWdahajugibiabgUIiYdGaamizaiabeg7aHLqbaoaapehakeaaju gibiGacohacaGGPbGaaiOBaiabek7aIjaadsgacqaHYoGyaSqaaKqz adGaeqOSdiMaeyypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey 4kIipaaaaaaa@E59F@   (7)

-for the hollow sphere

0 T ct d T ct = MR ω 2 4π 0 2π dδ 0 γ dγ 0 π cosβ dβ 0 π cosα dα× 1 2 R 0 π (1cos2β)dβ× 1 2 0 π (1cos2α)dα 0 π sinβ dβ β=0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qCaO qaaKqzGeGaamizaiaadsfalmaaBaaameaajugWaiaadogacaWG0baa keqaaaadbaqcLbmacaaIWaaameaajugibiaadsfajuaGdaWgaaadba qcLbmacaWGJbGaamiDaaadbeaaaKqzGeGaey4kIipacqGH9aqpcqGH sisljuaGdaWcaaGcbaqcLbsacaWGnbGaamOuaiabeM8a3LqbaoaaCa aaleqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI0aGaeqiWdahaaKqb aoaapehakeaajugibiaadsgacqaH0oazaWqaaKqzadGaaGimaaadba qcLbmacaaIYaGaeqiWdahajugibiabgUIiYdqcfa4aa8qCaOqaaKqz GeGaamizaiabeo7aNbadbaqcLbmacaaIWaaameaajugWaiabeo7aNb qcLbsacqGHRiI8aKqbaoaapehakeaajugibiGacogacaGGVbGaai4C aiabek7aIbWcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqcLbsacq GHRiI8aiaadsgacqaHYoGyjuaGdaWdXbGcbaqcLbsaciGGJbGaai4B aiaacohacqaHXoqyaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaK qzGeGaey4kIipacaWGKbGaeqySdeMaey41aqBcfa4aaSaaaOqaaKqb aoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaWGsbqcfa 4aa8qCaOqaaKqzGeGaaiikaiaaigdacqGHsislciGGJbGaai4Baiaa cohacaaIYaGaeqOSdiMaaiykaiaadsgacqaHYoGycqGHxdaTjuaGda WcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4aa8qCaOqa aKqzGeGaaiikaiaaigdacqGHsislciGGJbGaai4BaiaacohacaaIYa GaeqySdeMaaiykaiaadsgacqaHXoqyaSqaaKqzadGaaGimaaWcbaqc LbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaaGimaaWcbaqcLb macqaHapaCaKqzGeGaey4kIipaaOqaaKqbaoaapehakeaajugibiGa cohacaGGPbGaaiOBaiabek7aIbWcbaqcLbmacaaIWaaaleaajugWai abec8aWbqcLbsacqGHRiI8aiaadsgacqaHYoGyjuaGdaWdXbGcbaqc LbsaciGGZbGaaiyAaiaac6gacqaHXoqycaWGKbGaeqySdegaleaaju gWaiabek7aIjabg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibiab gUIiYdaaaaaa@E048@   (8)

 Solution of integral Eqs. (7) and (8) yield:

-for the solid sphere

T ct | 0 T ct = MR ω 2 6π ×( δ| 0 2π )×( γ| 0 γ )×2sinβ| 0 π/2 ×2sinα| 0 π/2 × 1 6 ×R( β 1 2 sinβα )| 0 π ×( α 1 2 sin2α )| 0 π (cosβ)| 0 π ×(cosα)| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub WcdaWgaaqaaKqzadGaam4yaiaadshaaSqabaqcfa4aaqqaaOqaaKqb aoaaDaaaleaajugibiaaicdaaSqaaKqzGeGaamivaKqbaoaaBaaame aajugWaiaadogacaWG0baameqaaaaaaOGaay5bSdqcLbsacqGH9aqp cqGHsisljuaGdaWcaaGcbaqcLbsacaWGnbGaamOuaiabeM8a3TWaaW baaeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI2aGaeqiWdahaaiab gEna0Mqbaoaabmaakeaajugibiabes7aKLqbaoaaeeaakeaajuaGda qhaaWcbaqcLbsacaaIWaaaleaajugibiaaikdacqaHapaCaaaakiaa wEa7aaGaayjkaiaawMcaaKqzGeGaey41aqBcfa4aaeWaaOqaaKqzGe Gaeq4SdCwcfa4aaqqaaOqaaKqbaoaaDaaaleaajugibiaaicdaaSqa aKqzGeGaeq4SdCgaaaGccaGLhWoaaiaawIcacaGLPaaajugibiabgE na0kaaikdaciGGZbGaaiyAaiaac6gacqaHYoGyjuaGdaabbaGcbaqc fa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacqaHapaCcaGGVaGaaG OmaaaaaOGaay5bSdqcLbsacqGHxdaTcaaIYaGaci4CaiaacMgacaGG UbGaeqySdewcfa4aaqqaaOqaaKqbaoaaDaaaleaajugibiaaicdaaS qaaKqzGeGaeqiWdaNaai4laiaaikdaaaaakiaawEa7aKqzGeGaey41 aqBcfa4aaSaaaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaaGOnaaaacqGHxdaTcaWGsbqcfa4aaeWaaOqaaKqzGeGaeqOSdiMa eyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaai GacohacaGGPbGaaiOBaiabek7aIjabeg7aHbGccaGLOaGaayzkaaqc fa4aaqqaaOqaaKqbaoaaDaaaleaajugibiaaicdaaSqaaKqzGeGaeq iWdahaaaGccaGLhWoajugibiabgEna0Mqbaoaabmaakeaajugibiab eg7aHjabgkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaG OmaaaaciGGZbGaaiyAaiaac6gacaaIYaGaeqySdegakiaawIcacaGL PaaajuaGdaabbaGcbaqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLb sacqaHapaCaaaakiaawEa7aaqaaKqzGeGaaiikaiabgkHiTiGacoga caGGVbGaai4Caiabek7aIjaacMcajuaGdaabbaGcbaqcfa4aa0baaS qaaKqzGeGaaGimaaWcbaqcLbsacqaHapaCaaaakiaawEa7aKqzGeGa ey41aqRaaiikaiabgkHiTiGacogacaGGVbGaai4Caiabeg7aHjaacM cajuaGdaabbaGcbaqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsa cqaHapaCaaaakiaawEa7aaaaaaa@DEE8@

that giving the rise to the following

T ct = MR ω 2 6π ×(2π0)×(γ0)×2(10)×2(10)× 1 6 R[ ( π0 )0 ]×[ ( π0 )0 ] [(11)]×[(11)] = M R 2 π 2 ω 2 18 γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbmacaWGJbGaamiDaaWcbeaajugibiab g2da9iabgkHiTKqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdC xcfa4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibiaaiAdacqaH apaCaaGaey41aqRaaiikaiaaikdacqaHapaCcqGHsislcaaIWaGaai ykaiabgEna0kaacIcacqaHZoWzcqGHsislcaaIWaGaaiykaiabgEna 0kaaikdacaGGOaGaaGymaiabgkHiTiaaicdacaGGPaGaey41aqRaaG OmaiaacIcacaaIXaGaeyOeI0IaaGimaiaacMcacqGHxdaTjuaGdaWc aaGcbaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaai aadkfajuaGdaWadaGcbaqcfa4aaeWaaOqaaKqzGeGaeqiWdaNaeyOe I0IaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsislcaaIWaaakiaawU facaGLDbaajugibiabgEna0MqbaoaadmaakeaajuaGdaqadaGcbaqc LbsacqaHapaCcqGHsislcaaIWaaakiaawIcacaGLPaaajugibiabgk HiTiaaicdaaOGaay5waiaaw2faaaqaaKqzGeGaai4waiabgkHiTiaa cIcacqGHsislcaaIXaGaeyOeI0IaaGymaiaacMcacaGGDbGaey41aq Raai4waiabgkHiTiaacIcacqGHsislcaaIXaGaeyOeI0IaaGymaiaa cMcacaGGDbaaaiabg2da9aGcbaqcLbsacqGHsisljuaGdaWcaaGcba qcLbsacaWGnbGaamOuaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqz GeGaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacqaHjpWDju aGdaahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGymaiaaiIda aaGaeq4SdCgaaaa@A969@   (9)

-for the hollow sphere

T ct | 0 T ct = MR ω 2 4π ×( δ| 0 2π )×( γ| 0 γ )×2sinβ| 0 π/2 ×2sinα| 0 π/2 × R× 1 2 ( β 1 2 sin2β )| 0 π × 1 2 ( α 1 2 sin2α )| 0 π (cosβ)| 0 π ×(cosα)| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfalmaaBaaabaqcLbmacaWGJbGaamiDaaWcbeaajuaGdaabbaGc baqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacaWGubqcfa4aaS baaWqaaKqzadGaam4yaiaadshaaWqabaaaaaGccaGLhWoajugibiab g2da9iabgkHiTKqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdC xcfa4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibiaaisdacqaH apaCaaGaey41aqBcfa4aaeWaaOqaaKqzGeGaeqiTdqwcfa4aaqqaaO qaaKqbaoaaDaaaleaajugibiaaicdaaSqaaKqzGeGaaGOmaiabec8a WbaaaOGaay5bSdaacaGLOaGaayzkaaqcLbsacqGHxdaTjuaGdaqada GcbaqcLbsacqaHZoWzjuaGdaabbaGcbaqcfa4aa0baaSqaaKqzGeGa aGimaaWcbaqcLbsacqaHZoWzaaaakiaawEa7aaGaayjkaiaawMcaaK qzGeGaey41aqRaaGOmaiGacohacaGGPbGaaiOBaiabek7aILqbaoaa eeaakeaajuaGdaqhaaWcbaqcLbsacaaIWaaaleaajugibiabec8aWj aac+cacaaIYaaaaaGccaGLhWoajugibiabgEna0kaaikdaciGGZbGa aiyAaiaac6gacqaHXoqyjuaGdaabbaGcbaqcfa4aa0baaSqaaKqzGe GaaGimaaWcbaqcLbsacqaHapaCcaGGVaGaaGOmaaaaaOGaay5bSdqc LbsacqGHxdaTaOqaaKqbaoaalaaakeaajugibiaadkfacqGHxdaTju aGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4aaeWa aOqaaKqzGeGaeqOSdiMaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaa GcbaqcLbsacaaIYaaaaiGacohacaGGPbGaaiOBaiaaikdacqaHYoGy aOGaayjkaiaawMcaaKqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsaca aIWaaaleaajugibiabec8aWbaaaOGaay5bSdqcLbsacqGHxdaTjuaG daWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4aaeWaaO qaaKqzGeGaeqySdeMaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGc baqcLbsacaaIYaaaaiGacohacaGGPbGaaiOBaiaaikdacqaHXoqyaO GaayjkaiaawMcaaKqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsacaaI Waaaleaajugibiabec8aWbaaaOGaay5bSdaabaqcLbsacaGGOaGaey OeI0Iaci4yaiaac+gacaGGZbGaeqOSdiMaaiykaKqbaoaaeeaakeaa juaGdaqhaaWcbaqcLbsacaaIWaaaleaajugibiabec8aWbaaaOGaay 5bSdqcLbsacqGHxdaTcaGGOaGaeyOeI0Iaci4yaiaac+gacaGGZbGa eqySdeMaaiykaKqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsacaaIWa aaleaajugibiabec8aWbaaaOGaay5bSdaaaaaaaa@E273@

that giving the rise to the following

T ct = MR ω 2 4π ×(2π0)×(γ0)×2(10)×2(10)× R 4 [ ( π0 )0 ]×[ ( π0 )0 ] [(11)]×[(11)] = M R 2 π 2 ω 2 8 γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfalmaaBaaabaqcLbmacaWGJbGaamiDaaWcbeaajugibiabg2da 9iabgkHiTKqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCxcfa 4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibiaaisdacqaHapaC aaGaey41aqRaaiikaiaaikdacqaHapaCcqGHsislcaaIWaGaaiykai abgEna0kaacIcacqaHZoWzcqGHsislcaaIWaGaaiykaiabgEna0kaa ikdacaGGOaGaaGymaiabgkHiTiaaicdacaGGPaGaey41aqRaaGOmai aacIcacaaIXaGaeyOeI0IaaGimaiaacMcacqGHxdaTjuaGdaWcaaGc baqcfa4aaSaaaOqaaKqzGeGaamOuaaGcbaqcLbsacaaI0aaaaKqbao aadmaakeaajuaGdaqadaGcbaqcLbsacqaHapaCcqGHsislcaaIWaaa kiaawIcacaGLPaaajugibiabgkHiTiaaicdaaOGaay5waiaaw2faaK qzGeGaey41aqBcfa4aamWaaOqaaKqbaoaabmaakeaajugibiabec8a WjabgkHiTiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGimaa GccaGLBbGaayzxaaaabaqcLbsacaGGBbGaeyOeI0IaaiikaiabgkHi TiaaigdacqGHsislcaaIXaGaaiykaiaac2facqGHxdaTcaGGBbGaey OeI0IaaiikaiabgkHiTiaaigdacqGHsislcaaIXaGaaiykaiaac2fa aaGaeyypa0dakeaajugibiabgkHiTKqbaoaalaaakeaajugibiaad2 eacaWGsbWcdaahaaqabeaajugWaiaaikdaaaqcLbsacqaHapaCjuaG daahaaWcbeqaaKqzadGaaGOmaaaajugibiabeM8a3TWaaWbaaeqaba qcLbmacaaIYaaaaaGcbaqcLbsacaaI4aaaaiabeo7aNbaaaa@A6D3@   (10)

where the change of the limits is taken for half of the sphere.

The variable angle γ of Eqs. (9) and (10) depend on the angular velocity ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeqyYdC3cpaWaaSbaaeaajugWa8qacaWG4baal8aabeaa aaa@3E39@ of the sphere.

The differential equation of change in the torque T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadshaaSWd aeqaaaaa@3E29@  per time is:

-for the solid sphere 

d T ct dt = M R 2 π 2 ω 2 18 dγ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamivaKqbaoaaBaaaleaajugWaiaadogacaWG 0baaleqaaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcqGHsislju aGdaWcaaGcbaqcLbsacaWGnbGaamOuaSWaaWbaaeqabaqcLbmacaaI YaaaaKqzGeGaeqiWdaxcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLb sacqaHjpWDjuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGa aGymaiaaiIdaaaqcfa4aaSaaaOqaaKqzGeGaamizaiabeo7aNbGcba qcLbsacaWGKbGaamiDaaaaaaa@5BA9@   (11)

-for the hollow sphere

d T ct dt = M R 2 π 2 ω 2 8 dγ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamivaSWaaSbaaeaajugWaiaadogacaWG0baa leqaaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcqGHsisljuaGda WcaaGcbaqcLbsacaWGnbGaamOuaKqbaoaaCaaaleqabaqcLbmacaaI YaaaaKqzGeGaeqiWdaxcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLb sacqaHjpWDjuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGa aGioaaaajuaGdaWcaaGcbaqcLbsacaWGKbGaeq4SdCgakeaajugibi aadsgacaWG0baaaaaa@5AEE@   (12)

where t=α/ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGH9aqpcqaHXoqycaGGVaGaeqyYdChaaa@3FDA@  is the time taken relative to the angular velocity of the spinning sphere.

The differential of time and the angle is: dt= dα ω ; dγ dt = ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads gacaWG0bGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamizaiabeg7aHbGc baqcLbsacqaHjpWDaaGaai4oaKqbaoaalaaakeaajugibiaadsgacq aHZoWzaOqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeqyYdC3cdaWg aaqaaKqzadGaamiEaaWcbeaaaaa@4EFF@  is the angular velocity of the sphere about axis ox.

The defined components is substituted into Eqs. (11) and (12), separated variables, and presented by the integral forms with defined limits:

-for the solid sphere

ωd T ct dα = M R 2 π 2 ω 2 18 ω x ,d T ct = M R 2 π 2 ω ω x 18 dα, 0 T d T ct = 0 π M R 2 π 2 ω ω x 18 dα , T ct = 1 18 M R 2 π 3 ω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqbao aalaaakeaajugibiabeM8a3jaadsgacaWGubqcfa4aaSbaaSqaaKqz adGaam4yaiaadshaaSqabaaakeaajugibiaadsgacqaHXoqyaaGaey ypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamytaiaadkfajuaGdaah aaWcbeqaaKqzadGaaGOmaaaajugibiabec8aWLqbaoaaCaaaleqaba qcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaahaaqabeaajugWaiaaikda aaaakeaajugibiaaigdacaaI4aaaaiabeM8a3LqbaoaaBaaaleaaju gWaiaadIhaaSqabaqcfaOaaiilaKqzGeGaamizaiaadsfajuaGdaWg aaWcbaqcLbmacaWGJbGaamiDaaWcbeaajugibiabg2da9iabgkHiTK qbaoaalaaakeaajugibiaad2eacaWGsbWcdaahaaqabeaajugWaiaa ikdaaaqcLbsacqaHapaCjuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqabaaa keaajugibiaaigdacaaI4aaaaiaadsgacqaHXoqycaGGSaaakeaaju aGdaWdXbGcbaqcLbsacaWGKbGaamivaKqbaoaaBaaaleaajugibiaa dogacaWG0baaleqaaaqaaKqzadGaaGimaaWcbaqcLbmacaWGubWcda WgaaadbaaabeaaaKqzGeGaey4kIipacqGH9aqpcqGHsisljuaGdaWd XbGcbaqcfa4aaSaaaOqaaKqzGeGaamytaiaadkfajuaGdaahaaWcbe qaaKqzadGaaGOmaaaajugibiabec8aWTWaaWbaaeqabaqcLbmacaaI YaaaaKqzGeGaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaKqzGeGaamiEaa WcbeaaaOqaaKqzGeGaaGymaiaaiIdaaaGaamizaiabeg7aHbWcbaqc LbmacaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aKqbakaacY cajugibiaadsfalmaaBaaabaqcLbmacaWGJbGaamiDaaWcbeaajugi biabg2da9iabgkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaaGymaiaaiIdaaaGaamytaiaadkfajuaGdaahaaWcbeqaaKqzadGa aGOmaaaajugibiabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGe GaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaaaa @C5A1@   (13)

-for the hollow sphere

ωd T ct dα = M R 2 π 2 ω 2 8 ω x ,d T ct = M R 2 π 2 ω ω x 8 dα, 0 T d T ct = 0 π M R 2 π 2 ω ω x 8 dα , T ct = 1 8 M R 2 π 3 ω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqbao aalaaakeaajugibiabeM8a3jaadsgacaWGubWcdaWgaaqaaKqzadGa am4yaiaadshaaSqabaaakeaajugibiaadsgacqaHXoqyaaGaeyypa0 JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamytaiaadkfajuaGdaahaaWc beqaaKqzadGaaGOmaaaajugibiabec8aWLqbaoaaCaaaleqabaqcLb macaaIYaaaaKqzGeGaeqyYdC3cdaahaaqabeaajugWaiaaikdaaaaa keaajugibiaaiIdaaaGaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbe aacaGGSaqcLbsacaWGKbGaamivaSWaaSbaaeaajugWaiaadogacaWG 0baaleqaaKqzGeGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaam ytaiaadkfalmaaCaaabeqaaKqzadGaaGOmaaaajugibiabec8aWTWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqyYdCNaeqyYdC3cdaWgaa qaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaaGioaaaacaWGKbGaeqyS deMaaiilaaGcbaqcfa4aa8qCaOqaaKqzGeGaamizaiaadsfalmaaBa aabaqcLbmacaWGJbGaamiDaaWcbeaaaeaajugWaiaaicdaaSqaaKqz adGaamivaKqbaoaaBaaameaaaeqaaaqcLbsacqGHRiI8aiabg2da9i abgkHiTKqbaoaapehakeaajuaGdaWcaaGcbaqcLbsacaWGnbGaamOu aSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWdaxcfa4aaWbaaS qabeaajugWaiaaikdaaaqcLbsacqaHjpWDcqaHjpWDlmaaBaaabaqc LbmacaWG4baaleqaaaGcbaqcLbsacaaI4aaaaiaadsgacqaHXoqyaS qaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipajuaG caGGSaqcLbsacaWGubWcdaWgaaqaaKqzadGaam4yaiaadshaaSqaba qcLbsacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaiIdaaaGaamytaiaadkfalmaaCaaabeqaaKqzadGaaGOmaa aajugibiabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGeGaeqyY dCNaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaaaa@BF78@   (14)

The torque acts on the upper and lower sides of the sphere. Then the total resistance torque T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadshaaSWd aeqaaaaa@3E29@  of Eq. (13) and (14) is multiplied by two.

-for the solid sphere

T ct =± 2 18 M R 2 π 3 ω ω x =± 5 18 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGJbGaamiDaaWcbeaajugibiabg2da 9iabgglaXMqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaGymai aaiIdaaaGaamytaiaadkfalmaaCaaabeqaaKqzadGaaGOmaaaajugi biabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGeGaeqyYdCNaeq yYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiabg2da9iab gglaXMqbaoaalaaakeaajugibiaaiwdaaOqaaKqzGeGaaGymaiaaiI daaaGaeqiWdaxcfa4aaWbaaSqabeaajugWaiaaiodaaaqcLbsacaWG kbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaaa@687E@   (15)

-for the hollow sphere

T ct =± 2 8 M R 2 π 3 πω ω ч =± 3 8 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGJbGaamiDaaWcbeaajugibiabg2da9iab gglaXMqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaGioaaaaca WGnbGaamOuaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeqiW da3cdaahaaqabeaajugWaiaaiodaaaqcLbsacqaHapaCcqaHjpWDcq aHjpWDjuaGdaWgaaWcbaqcLbmacaWGhraaleqaaKqzGeGaeyypa0Ja eyySaeBcfa4aaSaaaOqaaKqzGeGaaG4maaGcbaqcLbsacaaI4aaaai abec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGeGaamOsaiabeM8a 3jabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqabaaaaa@6896@   (16)

where J= 2M R 2 /5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOsaiabg2da9iaabccacaaIYaGaamytaiaadkfajuaG paWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaaiwdaaa a@437E@ and J= 2M R 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOsaiabg2da9iaabccacaaIYaGaamytaiaadkfajuaG paWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaaiodaaa a@437C@  are the moment of inertia for solid and hollow spheres, respectively.

The expression for the precession torque generated by the centrifugal forces of the mass element (Eqs. (3) and (4)) is almost the same as for the resistance torque of the sphere considered above. The difference is in the change by the cosine law. The direction of the resistance (sign (-)) and the precession torque (sign (+)) are in the clockwise and the counter- clockwise direction, respectively.

Coriolis torques of a spinning sphere

The mathematical modeling of the action Coriolis torques generated by the mass elements of the spinning sphere is the same as presented for the centrifugal forces (Section 2.1). The scheme of acting Coriolis forces and torques of the sphere’s plane with rotating mass elements about axis ox is presented in Figure 3.

Figure 3 Schematic of acting Coriolis forces and torques of sphere’s plane with rotating mass elements about axis ox.

The expression for the inertial torque Δ T cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaa dkhaaSWdaeqaaaaa@3F8D@  of Coriolis forces of the mass elements for the sphere is:

Δ T cr = f cr y m =m a z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadsfalmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiab g2da9iabgkHiTiaadAgajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaa WcbeaajugibiaadMhajuaGdaWgaaWcbaqcLbmacaWGTbaaleqaaKqz GeGaeyypa0JaeyOeI0IaamyBaiaadggalmaaBaaabaqcLbmacaWG6b aaleqaaKqzGeGaamyEaSWaaSbaaeaajugWaiaad2gaaSqabaaaaa@5592@    (17)

where ym is represented by Eq. (1).

The expression for az is as follows: 

α z = d V z dt = d(VcosαsinΔγ) dt =Vcosα dγ dt = R i sinβcosαω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg 7aHTWaaSbaaeaajugWaiaadQhaaSqabaqcLbsacqGH9aqpcqGHsisl juaGdaWcaaGcbaqcLbsacaWGKbGaamOvaSWaaSbaaeaajugWaiaadQ haaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9Kqbaoaalaaa keaajugibiaadsgacaGGOaGaamOvaiGacogacaGGVbGaai4Caiabeg 7aHjGacohacaGGPbGaaiOBaiabfs5aejabeo7aNjaacMcaaOqaaKqz GeGaamizaiaadshaaaGaeyypa0JaeyOeI0IaamOvaiGacogacaGGVb Gaai4Caiabeg7aHLqbaoaalaaakeaajugibiaadsgacqaHZoWzaOqa aKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0IaamOuaKqbaoaaBa aaleaajugWaiaadMgaaSqabaqcLbsaciGGZbGaaiyAaiaac6gacqaH YoGyciGGJbGaai4BaiaacohacqaHXoqycqaHjpWDcqaHjpWDlmaaBa aabaqcLbmacaWG4baaleqaaaaa@7CEA@   (18)

where a z =d V z /dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamyyaSWdamaaBaaabaqcLbmapeGaamOEaaWcpaqabaqc LbsapeGaeyypa0JaamizaiaadAfajuaGpaWaaSbaaSqaaKqzadWdbi aadQhaaSWdaeqaaKqzGeWdbiaac+cacaWGKbGaamiDaaaa@4711@  is

Coriolis acceleration of the mass element along axis oz; V z =VcosαsinΔγ= R i ωcosαcosβsinΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOvaKqba+aadaWgaaWcbaqcLbmapeGaamOEaaWcpaqa baqcLbsapeGaeyypa0JaamOvaiaadogacaWGVbGaam4Caiabeg7aHj aadohacaWGPbGaamOBaiabfs5aejabeo7aNjabg2da9iaadkfal8aa daWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabeM8a3jaado gacaWGVbGaam4Caiabeg7aHjaadogacaWGVbGaam4Caiabek7aIjaa dohacaWGPbGaamOBaiabfs5aejabeo7aNbaa@6048@  is the change in the tangential velocity V of the mass element; sinΔγ =Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaam4CaiaadMgacaWGUbGaeuiLdqKaeq4SdCMaaeiiaiab g2da9iabfs5aejabeo7aNbaa@4478@ for the small angle; other components are as specified above.

Defined parameters are substituted into the expression f cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadkhaaSWd aeqaaaaa@3E39@ (Eq. (17))that brings:

-for the solid sphere

f cr = MΔδ 4π 2 3 Rω ω x sinβcosα= MRΔδ 6π ω ω x sinβcosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaad2eacqqHuoarcqaH0oazaOqaaKqzGeGaaG inaiabec8aWbaajuaGdaWcaaGcbaqcLbsacaaIYaaakeaajugibiaa iodaaaGaamOuaiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadI haaSqabaqcLbsaciGGZbGaaiyAaiaac6gacqaHYoGyciGGJbGaai4B aiaacohacqaHXoqycqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGnbGaam Ouaiabfs5aejabes7aKbGcbaqcLbsacaaI2aGaeqiWdahaaiabeM8a 3jabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaqcLbsaciGGZbGaai yAaiaac6gacqaHYoGyciGGJbGaai4BaiaacohacqaHXoqyaaa@7549@   (19)

-for the hollow sphere

f cr = MΔδ 4π Rω ω x sinβcosα= MRΔδ 4π ω ω x sinβcosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaad2eacqqHuoarcqaH0oazaOqaaKqzGeGaaG inaiabec8aWbaacaWGsbGaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaKqz adGaamiEaaWcbeaajugibiGacohacaGGPbGaaiOBaiabek7aIjGaco gacaGGVbGaai4Caiabeg7aHjabg2da9Kqbaoaalaaakeaajugibiaa d2eacaWGsbGaeuiLdqKaeqiTdqgakeaajugibiaaisdacqaHapaCaa GaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaajugibiGa cohacaGGPbGaaiOBaiabek7aIjGacogacaGGVbGaai4Caiabeg7aHb aa@71FE@   (20)

Then, the defined parameters are substituted into Eq. (17) that yields:

-for the solid sphere

Δ T cr = MRω ω x Δδ 6π sinβcosα× y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadsfajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugi biabg2da9Kqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCNaeq yYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiabfs5aejab es7aKbGcbaqcLbsacaaI2aGaeqiWdahaaiGacohacaGGPbGaaiOBai abek7aIjGacogacaGGVbGaai4Caiabeg7aHjabgEna0kaadMhalmaa BaaabaqcLbmacaWGTbaaleqaaaaa@5FD3@   (21)

for the hollow sphere

Δ T cr = MRω ω x Δδ 4π sinβcosα× y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs 5aejaadsfalmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiab g2da9Kqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCNaeqyYdC xcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiabfs5aejabes7a KbGcbaqcLbsacaaI0aGaeqiWdahaaiGacohacaGGPbGaaiOBaiabek 7aIjGacogacaGGVbGaai4Caiabeg7aHjabgEna0kaadMhalmaaBaaa baqcLbmacaWGTbaaleqaaaaa@5F43@   (22)

The disposition of the resultant torque is the centroid C of the Coriolis torque’s curve calculated by Eq. (5).

-for the solid sphere

y C = α=0 π β=0 π f cr y m dαdβ α=0 π β=0 π f cr dαdβ = α=0 π β=0 π MRω ω x Δδ 6π sinβcosα× 2 3 Rsinαsinβdαdβ α=0 π β=0 π MRω ω x Δδ 6π sinβcosαdαdβ = MRω ω x Δδ 6π α=0 π 2 3 Rsinβcosαdα× 0 π sinβcosβdβ MRω ω x Δδ 6π α=0 π sinβdβ× 0 π cosαdα = 2 3 R 0 π sin 2 βd× 0 π sinαcosαdα α=0 π sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaamyEaSWaaSbaaeaajugWaiaadoeaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiaadAgaju aGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugibiaadMhajuaG daWgaaWcbaqcLbmacaWGTbaaleqaaKqzGeGaamizaiabeg7aHjaads gacqaHYoGyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaaWcbaqcLbma cqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMaeyypa0JaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaOqaaKqbaoaapeha keaajuaGdaWdXbGcbaqcLbsacaWGMbqcfa4aaSbaaSqaaKqzadGaam 4yaiaadkhaaSqabaqcLbsacaWGKbGaeqySdeMaamizaiabek7aIbWc baqcLbmacqaHYoGycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLb sacqGHRiI8aaWcbaqcLbmacqaHXoqycqGH9aqpcaaIWaaaleaajugW aiabec8aWbqcLbsacqGHRiI8aaaacqGH9aqpjuaGdaWcaaGcbaqcfa 4aa8qCaOqaaKqbaoaapehakeaajuaGdaWcaaGcbaqcLbsacaWGnbGa amOuaiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqaba qcLbsacqqHuoarcqaH0oazaOqaaKqzGeGaaGOnaiabec8aWbaaciGG ZbGaaiyAaiaac6gacqaHYoGyciGGJbGaai4BaiaacohacqaHXoqycq GHxdaTjuaGdaWcaaGcbaqcLbsacaaIYaaakeaajugibiaaiodaaaGa amOuaiGacohacaGGPbGaaiOBaiabeg7aHjGacohacaGGPbGaaiOBai aadk7acaWGKbGaeqySdeMaamizaiabek7aIbWcbaqcLbmacqaHYoGy cqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaWcba qcLbmacqaHXoqycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsa cqGHRiI8aaGcbaqcfa4aa8qCaOqaaKqbaoaapehakeaajuaGdaWcaa GcbaqcLbsacaWGnbGaamOuaiabeM8a3jabeM8a3TWaaSbaaeaajugW aiaadIhaaSqabaqcLbsacqqHuoarcqaH0oazaOqaaKqzGeGaaGOnai abec8aWbaaciGGZbGaaiyAaiaac6gacqaHYoGyciGGJbGaai4Baiaa cohacqaHXoqycaWGKbGaeqySdeMaamizaiabek7aIbWcbaqcLbmacq aHYoGycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8 aaWcbaqcLbmacqaHXoqycqGH9aqpcaaIWaaaleaajugWaiabec8aWb qcLbsacqGHRiI8aaaacqGH9aqpaOqaaKqbaoaalaaakeaajuaGdaWc aaGcbaqcLbsacaWGnbGaamOuaiabeM8a3jabeM8a3LqbaoaaBaaale aajugWaiaadIhaaSqabaqcLbsacqqHuoarcqaH0oazaOqaaKqzGeGa aGOnaiabec8aWbaajuaGdaWdXbGcbaqcfa4aaSaaaOqaaKqzGeGaaG OmaaGcbaqcLbsacaaIZaaaaiaadkfaciGGZbGaaiyAaiaac6gacqaH YoGyciGGJbGaai4BaiaacohacqaHXoqycaWGKbGaeqySdeMaey41aq Bcfa4aa8qCaOqaaKqzGeGaci4CaiaacMgacaGGUbGaeqOSdiMaci4y aiaac+gacaGGZbGaeqOSdiMaamizaiabek7aIbWcbaqcLbmacaaIWa aaleaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacqaHXoqy cqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaGcba qcfa4aaSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDcqaHjpWDjuaG daWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaeuiLdqKaeqiTdqgake aajugibiaaiAdacqaHapaCaaqcfa4aa8qCaOqaaKqzGeGaci4Caiaa cMgacaGGUbGaeqOSdiMaamizaiabek7aIjabgEna0Mqbaoaapehake aajugibiGacogacaGGVbGaai4Caiabeg7aHjaadsgacqaHXoqyaSqa aKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaK qzadGaeqySdeMaeyypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGa ey4kIipaaaGaeyypa0tcfa4aaSaaaOqaaKqbaoaalaaakeaajugibi aaikdaaOqaaKqzGeGaaG4maaaacaWGsbqcfa4aa8qCaOqaaKqzGeGa ci4CaiaacMgacaGGUbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLb sacqaHYoGycaWGKbGaey41aqBcfa4aa8qCaOqaaKqzGeGaci4Caiaa cMgacaGGUbGaeqySdeMaci4yaiaac+gacaGGZbGaeqySdeMaamizai abeg7aHbWcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqcLbsacqGH RiI8aaWcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRi I8aaGcbaqcfa4aa8qCaOqaaKqzGeGaci4CaiaacMgacaGGUbGaeqOS diMaamizaiabek7aIjabgEna0MqbaoaapehakeaajugibiGacogaca GGVbGaai4Caiabeg7aHjaadsgacqaHXoqyaSqaaKqzadGaaGimaaWc baqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMaey ypa0JaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaaaaaa@C7E6@   (23)

-for the hollow sphere

y C = α=0 π β=0 π f cr y m dαdβ α=0 π β=0 π f cr dαdβ = α=0 π β=0 π MRω ω x Δδ 4π sinβcosα×Rsinαsinβdαdβ α=0 π β=0 π MRω ω x Δδ 4π sinβcosαdαdβ = MRω ω x Δδ 4π α=0 π Rsinαcosαdα× 0 π sin 2 βdβ MRω ω x Δδ 4π α=0 π sinβdβ× 0 π cosαdα = R 0 π sinαdsinα× 0 π sin 2 βdβ 0 π sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGe GaamyEaKqbaoaaBaaaleaajugWaiaadoeaaSqabaqcLbsacqGH9aqp juaGdaWcaaGcbaqcfa4aa8qCaOqaaKqbaoaapehakeaajugibiaadA galmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiaadMhajuaG daWgaaWcbaqcLbmacaWGTbaaleqaaKqzGeGaamizaiabeg7aHjaads gacqaHYoGyaSqaaKqzadGaeqOSdiMaeyypa0JaaGimaaWcbaqcLbma cqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGaeqySdeMaeyypa0JaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaOqaaKqbaoaapeha keaajuaGdaWdXbGcbaqcLbsacaWGMbWcdaWgaaqaaKqzadGaam4yai aadkhaaSqabaqcLbsacaWGKbGaeqySdeMaamizaiabek7aIbWcbaqc LbmacqaHYoGycqGH9aqpcaaIWaaaleaajugWaiabec8aWbqcLbsacq GHRiI8aaWcbaqcLbmacqaHXoqycqGH9aqpcaaIWaaaleaajugWaiab ec8aWbqcLbsacqGHRiI8aaaacqGH9aqpjuaGdaWcaaGcbaqcfa4aa8 qCaOqaaKqbaoaapehakeaajuaGdaWcaaGcbaqcLbsacaWGnbGaamOu aiabeM8a3jabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacq qHuoarcqaH0oazaOqaaKqzGeGaaGinaiabec8aWbaaciGGZbGaaiyA aiaac6gacqaHYoGyciGGJbGaai4BaiaacohacqaHXoqycqGHxdaTca WGsbGaci4CaiaacMgacaGGUbGaeqySdeMaci4CaiaacMgacaGGUbGa amOSdiaadsgacqaHXoqycaWGKbGaeqOSdigaleaajugWaiabek7aIj abg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIiYdaaleaa jugWaiabeg7aHjabg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibi abgUIiYdaakeaajuaGdaWdXbGcbaqcfa4aa8qCaOqaaKqbaoaalaaa keaajugibiaad2eacaWGsbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzad GaamiEaaWcbeaajugibiabfs5aejabes7aKbGcbaqcLbsacaaI0aGa eqiWdahaaiGacohacaGGPbGaaiOBaiabek7aIjGacogacaGGVbGaai 4Caiabeg7aHjaadsgacqaHXoqycaWGKbGaeqOSdigaleaajugWaiab ek7aIjabg2da9iaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIiYd aaleaajugWaiabeg7aHjabg2da9iaaicdaaSqaaKqzadGaeqiWdaha jugibiabgUIiYdaaaiabg2da9aGcbaqcfa4aaSaaaOqaaKqbaoaala aakeaajugibiaad2eacaWGsbGaeqyYdCNaeqyYdCxcfa4aaSbaaSqa aKqzadGaamiEaaWcbeaajugibiabfs5aejabes7aKbGcbaqcLbsaca aI0aGaeqiWdahaaKqbaoaapehakeaajugibiaadkfaciGGZbGaaiyA aiaac6gacqaHXoqyciGGJbGaai4BaiaacohacqaHXoqycaWGKbGaeq ySdeMaey41aqBcfa4aa8qCaOqaaKqzGeGaci4CaiaacMgacaGGUbqc fa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqaHYoGycaWGKbGaeq OSdigaleaajugWaiaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIi YdaaleaajugWaiabeg7aHjabg2da9iaaicdaaSqaaKqzadGaeqiWda hajugibiabgUIiYdaakeaajuaGdaWcaaGcbaqcLbsacaWGnbGaamOu aiabeM8a3jabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacq qHuoarcqaH0oazaOqaaKqzGeGaaGinaiabec8aWbaajuaGdaWdXbGc baqcLbsaciGGZbGaaiyAaiaac6gacqaHYoGycaWGKbGaeqOSdiMaey 41aqBcfa4aa8qCaOqaaKqzGeGaci4yaiaac+gacaGGZbGaeqySdeMa amizaiabeg7aHbWcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqcLb sacqGHRiI8aaWcbaqcLbmacqaHXoqycqGH9aqpcaaIWaaaleaajugW aiabec8aWbqcLbsacqGHRiI8aaaacqGH9aqpjuaGdaWcaaGcbaqcLb sacaWGsbqcfa4aa8qCaOqaaKqzGeGaci4CaiaacMgacaGGUbGaeqyS deMaamizaiGacohacaGGPbGaaiOBaiabeg7aHjabgEna0Mqbaoaape hakeaajugibiGacohacaGGPbGaaiOBaKqbaoaaCaaaleqabaqcLbma caaIYaaaaKqzGeGaeqOSdiMaamizaiabek7aIbWcbaqcLbmacaaIWa aaleaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmacaaIWaaa leaajugWaiabec8aWbqcLbsacqGHRiI8aaGcbaqcfa4aa8qCaOqaaK qzGeGaci4CaiaacMgacaGGUbGaeqOSdiMaamizaiabek7aIjabgEna 0MqbaoaapehakeaajugibiGacogacaGGVbGaai4Caiabeg7aHjaads gacqaHXoqyaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGa ey4kIipaaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey 4kIipaaaaaaaa@B997@   (24)

where the components MRω ω x Δδ 6π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGnbGaamOuaiabeM8a3jabeM8a3LqbaoaaBaaaleaa jugWaiaadIhaaSqabaqcLbsacqqHuoarcqaH0oazaOqaaKqzGeGaaG Onaiabec8aWbaaaaa@4947@  and MRω ω x Δδ 4π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGnbGaamOuaiabeM8a3jabeM8a3LqbaoaaBaaaleaa jugWaiaadIhaaSqabaqcLbsacqqHuoarcqaH0oazaOqaaKqzGeGaaG inaiabec8aWbaaaaa@4945@  are accepted as constant. The expressions of y C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamyEaSWdamaaBaaabaqcLbmapeGaam4qaaWcpaqabaaa aa@3D35@ (Eqs. (23) and (24)) are substituted into Eqs. (21) and (22), respectively. Where cosα= 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco gacaGGVbGaai4Caiabeg7aHjabg2da9Kqbaoaapehakeaajugibiab gkHiTiGacohacaGGPbGaaiOBaiabeg7aHjaadsgacqaHXoqyaSqaaK qzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaa@5010@ , sinβ= 0 π cosβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGaco hacaGGPbGaaiOBaiabek7aIjabg2da9KqbaoaapehakeaajugibiGa cogacaGGVbGaai4Caiabek7aIjaadsgacqaHYoGyaSqaaKqzadGaaG imaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaa@4F29@  are presented by the integral forms:

-for the solid sphere

0 T cr d T cr = MRω ω x 6π 0 2π dδ × 0 π cosβdβ 0 π sin αdα× 2 3 R 0 π sinαdsinα× 0 π sin 2 βdβ 0 π sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWdXb GcbaqcLbsacaWGKbGaamivaKqbaoaaBaaameaajugWaiaadogacaWG YbaakeqaaaadbaqcLbmacaaIWaaameaajugibiaadsfajuaGdaWgaa adbaqcLbmacaWGJbGaamOCaaadbeaaaKqzGeGaey4kIipacqGH9aqp juaGdaWcaaGcbaqcLbsacaWGnbGaamOuaiabeM8a3jabeM8a3TWaaS baaeaajugWaiaadIhaaSqabaaakeaajugibiaaiAdacqaHapaCaaqc fa4aa8qCaOqaaKqzGeGaamizaiabes7aKbadbaqcLbmacaaIWaaame aajugWaiaaikdacqaHapaCaKqzGeGaey4kIipacqGHxdaTjuaGdaWd XbGcbaqcLbsaciGGJbGaai4BaiaacohacqaHYoGycaWGKbGaeqOSdi galeaajugWaiaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIiYdqc fa4aa8qCaOqaaKqzGeGaeyOeI0Iaci4CaiaacMgacaGGUbaaleaaju gWaiaaicdaaSqaaKqzadGaeqiWdahajugibiabgUIiYdGaeqySdeMa amizaiabeg7aHjabgEna0MqbaoaalaaakeaajuaGdaWcaaGcbaqcLb sacaaIYaaakeaajugibiaaiodaaaGaamOuaKqbaoaapehakeaajugi biGacohacaGGPbGaaiOBaiabeg7aHjaadsgaciGGZbGaaiyAaiaac6 gacqaHXoqycqGHxdaTjuaGdaWdXbGcbaqcLbsaciGGZbGaaiyAaiaa c6galmaaCaaabeqaaKqzadGaaGOmaaaajugibiabek7aIjaadsgacq aHYoGyaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4k IipaaSqaaKqzadGaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIi paaOqaaKqbaoaapehakeaajugibiGacohacaGGPbGaaiOBaiabek7a IjaadsgacqaHYoGycqGHxdaTjuaGdaWdXbGcbaqcLbsaciGGJbGaai 4BaiaacohacqaHXoqycaWGKbGaeqySdegalqaabeqaaKqzadGaaGim aaWcbaaaaeaajugWaiabec8aWbqcLbsacqGHRiI8aaWcbaqcLbmaca aIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aaaaaaa@D674@   (25)

-for the hollow sphere

0 T cr d T cr = MRω ω x 4π 0 2π dδ × 0 π cosβdβ 0 π sin αdα× R 0 π sinαdsinα× 0 π sin 2 βdβ 0 π cosαdα× 0 π sinβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWdXb GcbaqcLbsacaWGKbGaamivaSWaaSbaaWqaaKqzadGaam4yaiaadkha aOqabaaameaajugWaiaaicdaaWqaaKqzGeGaamivaSWaaSbaaWqaaK qzadGaam4yaiaadkhaaWqabaaajugibiabgUIiYdGaeyypa0tcfa4a aSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDcqaHjpWDjuaGdaWgaa WcbaqcLbmacaWG4baaleqaaaGcbaqcLbsacaaI0aGaeqiWdahaaKqb aoaapehakeaajugibiaadsgacqaH0oazaWqaaKqzadGaaGimaaadba qcLbmacaaIYaGaeqiWdahajugibiabgUIiYdGaey41aqBcfa4aa8qC aOqaaKqzGeGaci4yaiaac+gacaGGZbGaeqOSdiMaamizaiabek7aIb WcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aKqb aoaapehakeaajugibiabgkHiTiGacohacaGGPbGaaiOBaaWcbaqcLb macaaIWaaaleaajugWaiabec8aWbqcLbsacqGHRiI8aiabeg7aHjaa dsgacqaHXoqycqGHxdaTjuaGdaWcaaGcbaqcLbsacaWGsbqcfa4aa8 qCaOqaaKqzGeGaci4CaiaacMgacaGGUbGaeqySdeMaamizaiGacoha caGGPbGaaiOBaiabeg7aHjabgEna0MqbaoaapehakeaajugibiGaco hacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqOS diMaamizaiabek7aIbWcbaqcLbmacaaIWaaaleaajugWaiabec8aWb qcLbsacqGHRiI8aaWcbaqcLbmacaaIWaaaleaajugWaiabec8aWbqc LbsacqGHRiI8aaGcbaqcfa4aa8qCaOqaaKqzGeGaci4yaiaac+gaca GGZbGaeqySdeMaamizaiabeg7aHjabgEna0Mqbaoaapehakeaajugi biGacohacaGGPbGaaiOBaiabek7aIjaadsgacqaHYoGyaSqaaKqzad GaaGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaSqaaKqzadGa aGimaaWcbaqcLbmacqaHapaCaKqzGeGaey4kIipaaaaaaa@D339@   (26)

where the limits of integration for the trigonometric expressions are taken for the hemisphere.

Solving of integrals Eq. (25) and (26) yield:

-for the solid sphere

T cr | 0 T cr = MRω ω x 6π ×( δ| 0 2π )×(2sinα| 0 π/2 )×( cosβ| 0 π )× 2 3 R×2 sin 2 α 2 | 0 π/2 × 1 2 ( β sin2β 2 )| 0 π 2sinα| 0 π/2 (cosβ)| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajuaGdaabbaGcbaqc fa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacaWGubWcdaWgaaadba qcLbmacaWGJbGaamOCaaadbeaaaaaakiaawEa7aKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDcqaHjpWDlmaaBa aabaqcLbmacaWG4baaleqaaaGcbaqcLbsacaaI2aGaeqiWdahaaiab gEna0Mqbaoaabmaakeaajugibiabes7aKLqbaoaaeeaakeaajuaGda qhaaWcbaqcLbsacaaIWaaaleaajugibiaaikdacqaHapaCaaaakiaa wEa7aaGaayjkaiaawMcaaKqzGeGaey41aqRaaiikaiaaikdaciGGZb GaaiyAaiaac6gacqaHXoqyjuaGdaabbaGcbaqcfa4aa0baaSqaaKqz GeGaaGimaaWcbaqcLbsacqaHapaCcaGGVaGaaGOmaaaacaGGPaGaey 41aqlakiaawEa7aKqbaoaabmaakeaajugibiGacogacaGGVbGaai4C aiabek7aILqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsacaaIWaaale aajugibiabec8aWbaaaOGaay5bSdaacaGLOaGaayzkaaqcLbsacqGH xdaTjuaGdaWcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaaGcbaqcLb sacaaIZaaaaiaadkfacqGHxdaTcaaIYaqcfa4aaSaaaOqaaKqzGeGa ci4CaiaacMgacaGGUbWcdaahaaqabeaajugWaiaaikdaaaqcLbsacq aHXoqyaOqaaKqzGeGaaGOmaaaajuaGdaabbaGcbaqcfa4aa0baaSqa aKqzGeGaaGimaaWcbaqcLbsacqaHapaCcaGGVaGaaGOmaaaacqGHxd aTjuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4a aeWaaOqaaKqzGeGaeqOSdiMaeyOeI0scfa4aaSaaaOqaaKqzGeGaci 4CaiaacMgacaGGUbGaaGOmaiabek7aIbGcbaqcLbsacaaIYaaaaaGc caGLOaGaayzkaaqcfa4aaqqaaOqaaKqbaoaaDaaaleaajugibiaaic daaSqaaKqzGeGaeqiWdahaaaGccaGLhWoaaiaawEa7aaqaaKqzGeGa aGOmaiGacohacaGGPbGaaiOBaiabeg7aHLqbaoaaeeaakeaajuaGda qhaaWcbaqcLbsacaaIWaaaleaajugibiabec8aWjaac+cacaaIYaaa aiaacIcacqGHsislciGGJbGaai4BaiaacohacqaHYoGycaGGPaqcfa 4aaqqaaOqaaKqbaoaaDaaaleaajugibiaaicdaaSqaaKqzGeGaeqiW dahaaaGccaGLhWoaaiaawEa7aaaaaaa@D2F0@

that giving the rise to the following:

T cr = MRω ω x 6π ×(2π0)×2(10)×(11)× 2 3 R(10)× 1 2 ( π0 ) 2(10)]×()(11) = M R 2 πω ω x 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da 9Kqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCNaeqyYdCxcfa 4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaaGOnaiabec8a WbaacqGHxdaTcaGGOaGaaGOmaiabec8aWjabgkHiTiaaicdacaGGPa Gaey41aqRaaGOmaiaacIcacaaIXaGaeyOeI0IaaGimaiaacMcacqGH xdaTcaGGOaGaeyOeI0IaaGymaiabgkHiTiaaigdacaGGPaGaey41aq Bcfa4aaSaaaOqaaKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGa aG4maaaacaWGsbGaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgE na0MqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaG daqadaGcbaqcLbsacqaHapaCcqGHsislcaaIWaaakiaawIcacaGLPa aaaeaajugibiaaikdacaGGOaGaaGymaiabgkHiTiaaicdacaGGPaGa aiyxaiabgEna0kaacIcacqGHsislcaGGPaGaaiikaiabgkHiTiaaig dacqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsisljuaGdaWcaaGc baqcLbsacaWGnbGaamOuaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGe GaeqiWdaNaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWc beaaaOqaaKqzGeGaaGyoaaaaaaa@9779@    (27)

-for the hollow sphere

T cr | 0 T cr = MRω ω x 4π ×( δ| 0 2π )×(2sinβ| 0 π/2 )×( cosα| 0 π )× R×2 sin 2 α 2 | 0 π/2 × 1 2 ( β sin2β 2 )| 0 π 2sinα| 0 π/2 (cosβ)| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajuaGdaabbaGcbaqc fa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacaWGubWcdaWgaaadba qcLbmacaWGJbGaamOCaaadbeaaaaaakiaawEa7aKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaamytaiaadkfacqaHjpWDcqaHjpWDlmaaBa aabaqcLbmacaWG4baaleqaaaGcbaqcLbsacaaI0aGaeqiWdahaaiab gEna0Mqbaoaabmaakeaajugibiabes7aKLqbaoaaeeaakeaajuaGda qhaaWcbaqcLbsacaaIWaaaleaajugibiaaikdacqaHapaCaaaakiaa wEa7aaGaayjkaiaawMcaaKqzGeGaey41aqRaaiikaiaaikdaciGGZb GaaiyAaiaac6gacqaHYoGyjuaGdaabbaGcbaqcfa4aa0baaSqaaKqz GeGaaGimaaWcbaqcLbsacqaHapaCcaGGVaGaaGOmaaaacaGGPaGaey 41aqlakiaawEa7aKqbaoaabmaakeaajugibiGacogacaGGVbGaai4C aiabeg7aHLqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsacaaIWaaale aajugibiabec8aWbaaaOGaay5bSdaacaGLOaGaayzkaaqcLbsacqGH xdaTjuaGdaWcaaGcbaqcLbsacaWGsbGaey41aqRaaGOmaKqbaoaala aakeaajugibiGacohacaGGPbGaaiOBaKqbaoaaCaaaleqabaqcLbma caaIYaaaaKqzGeGaeqySdegakeaajugibiaaikdaaaqcfa4aaqqaaO qaaKqbaoaaDaaaleaajugibiaaicdaaSqaaKqzGeGaeqiWdaNaai4l aiaaikdaaaGaey41aqBcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacaaIYaaaaKqbaoaabmaakeaajugibiabek7aIjabgkHiTKqbaoaa laaakeaajugibiGacohacaGGPbGaaiOBaiaaikdacqaHYoGyaOqaaK qzGeGaaGOmaaaaaOGaayjkaiaawMcaaKqbaoaaeeaakeaajuaGdaqh aaWcbaqcLbsacaaIWaaaleaajugibiabec8aWbaaaOGaay5bSdaaca GLhWoaaeaajugibiaaikdaciGGZbGaaiyAaiaac6gacqaHXoqyjuaG daabbaGcbaqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqcLbsacqaHap aCcaGGVaGaaGOmaaaacaGGOaGaeyOeI0Iaci4yaiaac+gacaGGZbGa eqOSdiMaaiykaKqbaoaaeeaakeaajuaGdaqhaaWcbaqcLbsacaaIWa aaleaajugibiabec8aWbaaaOGaay5bSdaacaGLhWoaaaaaaa@D0C2@

that giving the rise to the following:

T cr = MRω ω x 4π ×(2π0)×2(10)×(11)× R(10)× 1 2 ( π0 ) 2(10)()(11) = 1 4 M R 2 πω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da 9Kqbaoaalaaakeaajugibiaad2eacaWGsbGaeqyYdCNaeqyYdCxcfa 4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaaGinaiabec8a WbaacqGHxdaTcaGGOaGaaGOmaiabec8aWjabgkHiTiaaicdacaGGPa Gaey41aqRaaGOmaiaacIcacaaIXaGaeyOeI0IaaGimaiaacMcacqGH xdaTcaGGOaGaeyOeI0IaaGymaiabgkHiTiaaigdacaGGPaGaey41aq Bcfa4aaSaaaOqaaKqzGeGaamOuaiaacIcacaaIXaGaeyOeI0IaaGim aiaacMcacqGHxdaTjuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibi aaikdaaaqcfa4aaeWaaOqaaKqzGeGaeqiWdaNaeyOeI0IaaGimaaGc caGLOaGaayzkaaaabaqcLbsacaaIYaGaaiikaiaaigdacqGHsislca aIWaGaaiykaiaacIcacqGHsislcaGGPaGaaiikaiabgkHiTiaaigda cqGHsislcaaIXaGaaiykaaaacqGH9aqpcqGHsisljuaGdaWcaaGcba qcLbsacaaIXaaakeaajugibiaaisdaaaGaamytaiaadkfajuaGdaah aaWcbeqaaKqzadGaaGOmaaaajugibiabec8aWjabeM8a3jabeM8a3T WaaSbaaeaajugWaiaadIhaaSqabaaaaa@927B@   (28)

Coriolis torque acts on the upper and lower sides of the hemisphere. Then the total resistance torque T cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadkhaaSWd aeqaaaaa@3E27@ is obtained when the result of Eqs. (27) and (28) is multiplied by two.

-for the solid sphere

T cr =2× M R 2 πω ω x 9 = 5 9 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da 9iabgkHiTiaaikdacqGHxdaTjuaGdaWcaaGcbaqcLbsacaWGnbGaam OuaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWdaNaeqyYdCNa eqyYdCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaaG yoaaaacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaaI1aaakeaa jugibiaaiMdaaaGaeqiWdaNaamOsaiabeM8a3jabeM8a3TWaaSbaae aajugWaiaadIhaaSqabaaaaa@60B2@   (29)

-for the hollow sphere

T cr =2× M R 2 πω ω x 4 = 3 4 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da9iab gkHiTiaaikdacqGHxdaTjuaGdaWcaaGcbaqcLbsacaWGnbGaamOuaS WaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWdaNaeqyYdCNaeqyY dCxcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaaGinaa aacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaaIZaaakeaajugi biaaisdaaaGaeqiWdaNaamOsaiabeM8a3jabeM8a3TWaaSbaaeaaju gWaiaadIhaaSqabaaaaa@6018@   (30)

where J= 2M R 2 /5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOsaiabg2da9iaabccacaaIYaGaamytaiaadkfajuaG paWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaaiwdaaa a@437E@ and J= 2M R 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOsaiabg2da9iaabccacaaIYaGaamytaiaadkfal8aa daahaaqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaaiodaaaa@42EE@ is the sphere moment of inertia for solid and hollow sphere,5–8 respectively; the sign (-) means the action of the torque in the clockwise direction; other parameters are as specified above.

The torque of the change in the angular momentum is:5–7

T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGHbGaamyBaaWcbeaajugibiabg2da9iaa dQeacqaHjpWDcqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaaaa@4632@   (31)

The analysis of Eqs. (17) and (31) shows the torques of the centrifugal and Coriolis forces of the spinning sphere’s mass elements present the resistance torques acting opposite to the load torque. The torques of the centrifugal forces and the change in the angular momentum present the precession load torques.

Attributes of the inertial torques acting on the spinning sphere

The derived mathematical models for the inertial torques of the solid and hollow sphere should be used for computing their gyroscopic effects. The inertial torques of the centrifugal, Coriolis forces, and the torque of the change in the angular momentum are active physical components of the spinning sphere. These torques are the components of the total resistance and precession torques acting about axes ox and oy of the spinning sphere. The mathematical models for internal torques of the spinning sphere are represented in Table 1. The inertial torques of the spinning solid and hollow sphere should be used for the formulation of their gyroscopic effects. New studies of the inertial torques have shown that their values depend on the geometry of the spinning objects that can be different designs in engineering. The equality of the kinetic energies of its motions defined the kinematic dependency of the angular velocities of the spinning sphere.15 This kinematic dependency for the solid and hollow spheres is as follows:

-The solid sphere

5 18 π 3 Jω ω x 5 9 πJω ω x 5 18 π 3 Jω ω y Jω ω y = 5 18 π 3 Jω ω x +Jω ω x 5 18 π 3 Jω ω y 5 9 πJω ω y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi sljuaGdaWcaaGcbaqcLbsacaaI1aaakeaajugibiaaigdacaaI4aaa aiabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGeGaamOsaiabeM 8a3jabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacqGHsisl juaGdaWcaaGcbaqcLbsacaaI1aaakeaajugibiaaiMdaaaGaeqiWda NaamOsaiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqa baqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaaI1aaakeaajugibi aaigdacaaI4aaaaiabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqz GeGaamOsaiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadMhaaS qabaqcLbsacqGHsislcaWGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqz adGaamyEaaWcbeaajugibiabg2da9Kqbaoaalaaakeaajugibiaaiw daaOqaaKqzGeGaaGymaiaaiIdaaaGaeqiWdaxcfa4aaWbaaSqabeaa jugWaiaaiodaaaqcLbsacaWGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaK qzadGaamiEaaWcbeaajugibiabgUcaRiaadQeacqaHjpWDcqaHjpWD lmaaBaaabaqcLbmacaWG4baaleqaaKqzGeGaeyOeI0scfa4aaSaaaO qaaKqzGeGaaGynaaGcbaqcLbsacaaIXaGaaGioaaaacqaHapaClmaa CaaabeqaaKqzadGaaG4maaaajugibiaadQeacqaHjpWDcqaHjpWDlm aaBaaabaqcLbmacaWG5baaleqaaKqzGeGaeyOeI0scfa4aaSaaaOqa aKqzGeGaaGynaaGcbaqcLbsacaaI5aaaaiabec8aWjaadQeacqaHjp WDcqaHjpWDlmaaBaaabaqcLbmacaWG5baaleqaaaaa@A5C9@   (32)

Transformation of Eq. (32) yields:

ω y =( 5 π 3 +5π+9 5π9 ) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeM 8a3LqbaoaaBaaaleaajugWaiaadMhaaSqabaqcLbsacqGH9aqpjuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGynaiabec8aWTWaaWbaae qabaqcLbmacaaIZaaaaKqzGeGaey4kaSIaaGynaiabec8aWjabgUca RiaaiMdaaOqaaKqzGeGaaGynaiabec8aWjabgkHiTiaaiMdaaaaaki aawIcacaGLPaaajugibiabeM8a3LqbaoaaBaaaleaajugWaiaadIha aSqabaaaaa@57A8@   (33)

For the hollow sphere

3 8 π 3 Jω ω x 3 4 πJω ω x 3 8 π 3 Jω ω y Jω ω y = 3 8 π 3 Jω ω x +Jω ω x 3 8 π 3 Jω ω y 3 4 πJω ω Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi sljuaGdaWcaaGcbaqcLbsacaaIZaaakeaajugibiaaiIdaaaGaeqiW da3cdaahaaqabeaajugWaiaaiodaaaqcLbsacaWGkbGaeqyYdCNaeq yYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaajugibiabgkHiTKqbaoaa laaakeaajugibiaaiodaaOqaaKqzGeGaaGinaaaacqaHapaCcaWGkb GaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaajugibiab gkHiTKqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGioaaaacq aHapaClmaaCaaabeqaaKqzadGaaG4maaaajugibiaadQeacqaHjpWD cqaHjpWDlmaaBaaabaqcLbmacaWG5baaleqaaKqzGeGaeyOeI0Iaam OsaiabeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadMhaaSqabaqc LbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIZaaakeaajugibiaaiI daaaGaeqiWda3cdaahaaqabeaajugWaiaaiodaaaqcLbsacaWGkbGa eqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaajugibiabgU caRiaadQeacqaHjpWDcqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baa leqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaG4maaGcbaqcLb sacaaI4aaaaiabec8aWTWaaWbaaeqabaqcLbmacaaIZaaaaKqzGeGa amOsaiabeM8a3jabeM8a3TWaaSbaaeaajugWaiaadMhaaSqabaqcLb sacqGHsisljuaGdaWcaaGcbaqcLbsacaaIZaaakeaajugibiaaisda aaGaeqiWdaNaamOsaiabeM8a3jabeM8a3TWaaSbaaeaajugWaiaadM faaSqabaaaaa@A219@   (34)

Transformation of Eq. (34) yields:

ω y =( 3 π 3 +3π+4 3π4 ) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeM 8a3TWaaSbaaeaajugWaiaadMhaaSqabaqcLbsacqGH9aqpjuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGaaG4maiabec8aWTWaaWbaaeqaba qcLbmacaaIZaaaaKqzGeGaey4kaSIaaG4maiabec8aWjabgUcaRiaa isdaaOqaaKqzGeGaaG4maiabec8aWjabgkHiTiaaisdaaaaakiaawI cacaGLPaaajugibiabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaaa aa@567C@   (35)

The ratio of the angular velocities of the spinning spheres should be used for the mathematical models for their rotation about axes ox and oy.

Type of the torque generated by

 Equation for the spinning sphere

Solid

Hollow

Centrifugal forces (axis ox)

T ct = 5 18 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaadbaqcLbmacaWGJbGaamiDaaGcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaiwdaaOqaaKqzGeGaaGymaiaaiIdaaa GaeqiWda3cdaahaaqabeaajugWaiaaiodaaaqcLbsacaWGkbGaeqyY dCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaaa@4F39@ T ct = 3 8 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaadbaqcLbmacaWGJbGaamiDaaGcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGioaaaacqaHap aCjuaGdaahaaWcbeqaaKqzadGaaG4maaaajugibiaadQeacqaHjpWD cqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaaaa@4F0A@

Centrifugal forces (axis oy)

Coriolis forces

T cr = 5 9 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaaiwdaaOqaaKqzGeGaaGyoaaaacqaHapaCca WGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaaa@4B48@ T cr = 3 4 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGinaaaacqaHap aCcaWGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaa aaa@4BCF@

Change in an angular momentum

T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGHbGaamyBaaWcbeaajugibiabg2da 9iaadQeacqaHjpWDcqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaa aa@46C0@

Table 1 Equations of the internal torques acting on the spinning sphere

Working example

The sphere of a mass of 0.5 kg, a radius of 0.08 m, and spinning at 2000 rpm. The sphere rotates with an angular velocity of 0.02 rpm under the action of the external torque. The values of the inertial torques acting on the spinning sphere should be determined Figure 1. Substituting the initial data into equations of Table 2 and computing yields.

Torque generated by

Solid sphere

Hollowsphere

Centrifugal fore Tct

T r =( 5 18 ) π 3 Jω ω x =( 5 18 ) π 3 × 2 5 × 0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60 = 0,004835 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfalmaaBaaabaqcLbmacaWGYbaaleqaaKqzGeGaeyypa0tcfa4a aeWaaOqaaKqbaoaalaaakeaajugibiaaiwdaaOqaaKqzGeGaaGymai aaiIdaaaaakiaawIcacaGLPaaajugibiabec8aWLqbaoaaCaaaleqa baqcLbmacaaIZaaaaKqzGeGaamOsaiabeM8a3jabeM8a3LqbaoaaBa aaleaajugWaiaadIhaaSqabaqcLbsacqGH9aqpjuaGdaqadaGcbaqc fa4aaSaaaOqaaKqzGeGaaGynaaGcbaqcLbsacaaIXaGaaGioaaaaaO GaayjkaiaawMcaaKqzGeGaeqiWda3cdaahaaqabeaajugWaiaaioda aaqcLbsacqGHxdaTjuaGdaWcaaGcbaqcLbsacaaIYaaakeaajugibi aaiwdaaaGaey41aqlakeaajugibiaaicdacaGGSaGaaGynaiabgEna 0kaaicdacaGGSaGaaGimaiaaiIdalmaaCaaabeqaaKqzadGaaGOmaa aajugibiabgEna0MqbaoaalaaakeaajugibiaaikdacaaIWaGaaGim aiaaicdacqGHxdaTcaaIYaGaeqiWdahakeaajugibiaaiAdacaaIWa aaaiabgEna0MqbaoaalaaakeaajugibiaaicdacaGGSaGaaGimaiaa ikdacqGHxdaTcaaIYaGaeqiWdahakeaajugibiaaiAdacaaIWaaaai abg2da9aGcbaqcfa4aaCbeaOqaaKqzGeGaaeimaiaabYcacaqGWaGa aeimaiaabsdacaqG4aGaae4maiaabwdaaSqaaaqabaqcfa4aaCbeaO qaaKqzGeGaaeOtaiaab2gaaSqaaaqabaaaaaa@91EB@ T r =( 3 8 ) π 3 Jω ω x =( 3 π 3 8 )× 2 3 × 0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60 = 0,010880 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbmacaWGYbaaleqaaKqzGeGaeyypa0tc fa4aaeWaaOqaaKqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaG ioaaaaaOGaayjkaiaawMcaaKqzGeGaeqiWda3cdaahaaqabeaajugW aiaaiodaaaqcLbsacaWGkbGaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaK qzadGaamiEaaWcbeaajugibiabg2da9KqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacaaIZaGaeqiWda3cdaahaaqabeaajugWaiaaiodaaa aakeaajugibiaaiIdaaaaakiaawIcacaGLPaaajugibiabgEna0Mqb aoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaG4maaaacqGHxdaTaO qaaKqzGeGaaGimaiaacYcacaaI1aGaey41aqRaaGimaiaacYcacaaI WaGaaGioaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey41aq Bcfa4aaSaaaOqaaKqzGeGaaGOmaiaaicdacaaIWaGaaGimaiabgEna 0kaaikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGaey41aqBcfa 4aaSaaaOqaaKqzGeGaaGimaiaacYcacaaIWaGaaGOmaiabgEna0kaa ikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGaeyypa0dakeaaju gibiaabcdacaqGSaGaaeimaiaabgdacaqGWaGaaeioaiaabIdacaqG WaGaaeiiaiaab6eacaqGTbaaaaa@8EDD@

Coriolis forces Tcr

T r =( 5 9 )πJω ω x =( 5 9 )π× 2 5 × 0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60 = 9,799514× 10 -4 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbmacaWGYbaaleqaaKqzGeGaeyypa0tc fa4aaeWaaOqaaKqbaoaalaaakeaajugibiaaiwdaaOqaaKqzGeGaaG yoaaaaaOGaayjkaiaawMcaaKqzGeGaeqiWdaNaamOsaiabeM8a3jab eM8a3TWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacqGH9aqpjuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGynaaGcbaqcLbsacaaI5aaa aaGccaGLOaGaayzkaaqcLbsacqaHapaCcqGHxdaTjuaGdaWcaaGcba qcLbsacaaIYaaakeaajugibiaaiwdaaaGaey41aqlakeaajugibiaa icdacaGGSaGaaGynaiabgEna0kaaicdacaGGSaGaaGimaiaaiIdaju aGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgEna0Mqbaoaalaaa keaajugibiaaikdacaaIWaGaaGimaiaaicdacqGHxdaTcaaIYaGaeq iWdahakeaajugibiaaiAdacaaIWaaaaiabgEna0Mqbaoaalaaakeaa jugibiaaicdacaGGSaGaaGimaiaaikdacqGHxdaTcaaIYaGaeqiWda hakeaajugibiaaiAdacaaIWaaaaiabg2da9aGcbaqcLbsacaqG5aGa aeilaiaabEdacaqG5aGaaeyoaiaabwdacaqGXaGaaeinaiabgEna0k aabgdacaqGWaqcfa4aaWbaaSqabeaajugWaiaab2cacaqG0aaaaKqb aoaavadakeqaleaaaeaaa0qaaaaajugibiaad6eacaWGTbaaaaa@916E@ T cr = 3 4 πJω ω x = 3 4 π× 2 3 × 0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60 = 0,002204 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfalmaaBaaabaqcLbmacaWGJbGaamOCaaWcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGinaaaacqaHap aCcaWGkbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaa jugibiabg2da9KqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaG inaaaacqaHapaCcqGHxdaTjuaGdaWcaaGcbaqcLbsacaaIYaaakeaa jugibiaaiodaaaGaey41aqlakeaajugibiaaicdacaGGSaGaaGynai abgEna0kaaicdacaGGSaGaaGimaiaaiIdajuaGdaahaaWcbeqaaKqz adGaaGOmaaaajugibiabgEna0Mqbaoaalaaakeaajugibiaaikdaca aIWaGaaGimaiaaicdacqGHxdaTcaaIYaGaeqiWdahakeaajugibiaa iAdacaaIWaaaaiabgEna0MqbaoaalaaakeaajugibiaaicdacaGGSa GaaGimaiaaikdacqGHxdaTcaaIYaGaeqiWdahakeaajugibiaaiAda caaIWaaaaiabg2da9aGcbaqcLbsacaqGWaGaaeilaiaabcdacaqGWa GaaeOmaiaabkdacaqGWaGaaeinaKqbaoaaxadakeaaaSqaaaqaaaaa jugibiaad6eacaWGTbaaaaa@8545@

Chnge in the angular momentum Tam   

T am =Jω ω x = 2 5 ×0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60  = 5,614708× 10 -4 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbmacaWGHbGaamyBaaWcbeaajugibiab g2da9iaadQeacqaHjpWDcqaHjpWDlmaaBaaabaqcLbmacaWG4baale qaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOmaaGcbaqcLbsa caaI1aaaaiabgEna0kaaicdacaGGSaGaaGynaiabgEna0kaaicdaca GGSaGaaGimaiaaiIdalmaaCaaabeqaaKqzadGaaGOmaaaajugibiab gEna0cGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaiaaicdacaaIWaGaaG imaiabgEna0kaaikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGa ey41aqBcfa4aaSaaaOqaaKqzGeGaaGimaiaacYcacaaIWaGaaGOmai abgEna0kaaikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGaaeii aiabg2da9aGcbaqcLbsacaqG1aGaaeilaiaabAdacaqGXaGaaeinai aabEdacaqGWaGaaeioaiabgEna0kaabgdacaqGWaWcdaahaaqabeaa jugWaiaab2cacaqG0aaaaKqzGeGaamOtaiaad2gaaaaa@7E94@ T am =Jω ω x = 2 3 ×0,5×0, 08 2 × 2000×2π 60 × 0,02×2π 60 = 9,357847× 10 -4 Nm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadsfajuaGdaWgaaWcbaqcLbmacaWGHbGaamyBaaWcbeaajugibiab g2da9iaadQeacqaHjpWDcqaHjpWDlmaaBaaabaqcLbmacaWG4baale qaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOmaaGcbaqcLbsa caaIZaaaaiabgEna0kaaicdacaGGSaGaaGynaiabgEna0kaaicdaca GGSaGaaGimaiaaiIdajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugi biabgEna0cGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaiaaicdacaaIWa GaaGimaiabgEna0kaaikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicda aaGaey41aqBcfa4aaSaaaOqaaKqzGeGaaGimaiaacYcacaaIWaGaaG OmaiabgEna0kaaikdacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGa eyypa0dakeaajugibiaabMdacaqGSaGaae4maiaabwdacaqG3aGaae ioaiaabsdacaqG3aGaey41aqRaaeymaiaabcdajuaGdaahaaWcbeqa aKqzadGaaeylaiaabsdaaaqcfa4aaCbiaOqaaaWcbeqaaaaajugibi aad6eacaWGTbaaaaa@7FF8@

Table 2 Substituting the initial data into equations

Results and discussion

The known publications with the mathematical models for the inertial torques generated by the rotating mass of the spinning sphere contained errors in the graphical presentation of the acting forces and processing of the integral equations. The issues had the wrong title of the precession torque generated by the rotating mass of the sphere. The new graphical scheme and vectorial diagrams of the acting forces derived the corrected mathematical models for the inertial torques of the centrifugal and Coriolis forces of the spinning sphere. The corrected inertial torques and the ratio of the angular velocities of the sphere about axes of rotation enable getting the exact solutions in computing the gyroscopic effects and present the novelty for the dynamics of rotating objects.

Conclusion

The modified method of graphical and analytical approaches for deriving the inertial torques generated by the rotating mass of the spinning sphere developed their correct mathematical models. The expressions of inertial torques and the ratio of the angular velocities of the sphere about axes of rotation enable planning mathematical models for its motion in space. The analytical models for the kinetically interrelated inertial torques of the spinning sphere describe its physics of gyroscopic effects and yield a high accuracy of computing. This analytical solution for inertial torques opens new possibilities for solving gyroscopic problems of spherical objects.

Notation

f ct , f cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamOzaSWdamaaBaaabaqcLbmapeGaam4yaiaadshaaSWd aeqaaiaacYcajugib8qacaWGMbWcpaWaaSbaaeaajugWa8qacaWGJb GaamOCaaWcpaqabaaaaa@43E7@ , – centrifugal and Coriolis forces, respectively, generated by mass elements of a spinning sphere

J – mass moment of inertia of a sphere

M – mass of a sphere

m – mass element of a sphere

R – radius of a sphere

T – external torque

T ct , T cr , T am MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamivaSWdamaaBaaabaqcLbmapeGaam4yaiaadshaaSWd aeqaaiaacYcajugib8qacaWGubWcpaWaaSbaaeaajugWa8qacaWGJb GaamOCaaWcpaqabaGaaiilaKqzGeWdbiaadsfal8aadaWgaaqaaKqz adWdbiaadggacaWGTbaal8aabeaaaaa@4956@  – torque generated by centrifugal, Coriolis, and a change in the angular momentum, respectively

t – time

y A , y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaamyEaSWdamaaBaaabaqcLbmapeGaamyqaaWcpaqabaGa aiilaKqzGeWdbiaadMhal8aadaWgaaqaaKqzadWdbiaad2gaaSWdae qaaaaa@4205@  – centroid and distance of disposition of mass element along axis

Δα,α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaeqySdeMaaiilaiabeg7aHbaa@3F30@ – increment angle and angle of the turn for a sphere around axis of spinning, respectively

β – angle of disposition the mass element of a sphere

Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaeqiTdqgaaa@3CE7@  – spherical angle of the mass element

Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeuiLdqKaeq4SdCgaaa@3CE9@  – angle of inclination of a sphere

ω – angular velocity of a sphere

ω x , ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaa aaaaaapeGaeqyYdC3cpaWaaSbaaeaajugWa8qacaWG4baal8aabeaa caGGSaqcLbsapeGaeqyYdC3cpaWaaSbaaeaajugWa8qacaWG5baal8 aabeaaaaa@43E6@  – angular velocity of precession around axes ox and oy, respectively

Acknowledgments

None.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

None.

References

  1. Muller D. The bizarre behavior of rotating bodies, explained. Veritasium. 2020.
  2. Jin J, Hwang I. Attitude control of a spacecraft with single variable-speed control moment gyroscope. Journal of Guidance, Control, and Dynamics. 2011;34:1920–1925.
  3. Liang WC, Lee SC. Vorticity, gyroscopic precession, and spin- curvature force. Physical Review D. 2013;87:044024.
  4. Weinberg H. Gyro mechanical performance: the most important parameter. Analog Devices, Technical Article MS-2158. 2011;1–5.
  5. Cordeiro FJB. The gyroscope. Createspace, NV, USA. 2015.
  6. Greenhill G. Report on gyroscopic theory. Relnk Books, Fallbrook, CA, USA. 2015.
  7. Scarborough JB. The gyroscope theory and applications. Nabu Press, London. 2014.
  8. Aardema MD. Analytical dynamics. theory and application. Academic/Plenum Publishers, New York. 2005.
  9. Hibbeler RC, Yap KB. Mechanics for engineers-statics and dynamics. 13th ed. Prentice Hall, Pearson, Singapore. 2013.
  10. Gregory DR. Classical mechanics. Cambridge University Press, New York. 2006.
  11. Taylor JR. Classical mechanics. University Science Books, California, USA. 2005.
  12. Crassidis JL, Markley FL. Three-axis attitude estimation using rate-integrating gyroscopes. Journal of Guidance, Control, and Dynamics. 2016;39:1513–1526.
  13. Nanamori Y, Takahashi M. An integrated steering law considering biased loads and singularity for control moment gyroscopes. AIAA Guidance, Navigation, and Control Conference. 2015.
  14. Sands T, Kim JJ, Agrawal BN. Nonredundant single-gimbaled control moment gyroscopes. Journal of Guidance, Control, and Dynamics. 2012;35(2):578–587.
  15. Usubamatov R. Inertial forces acting on gyroscope. Journal of Mechanical Science and Technology. 2018;32(1):101-108.
  16. Usubamatov R. Theory of gyroscopic effects for rotating objects. Springer, Singapore. 2020.
Creative Commons Attribution License

©2021 Usubamatov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.