Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Conceptual Paper Volume 2 Issue 3

Step Temperature Well Testing

Lev V Eppelbaum,1 Izzy M Kutasov2

1Department of Geosciences, Tel Aviv University, Israel
1Department of Geosciences, Tel Aviv University, Israel
2BYG Consulting Co, Boston, USA
2BYG Consulting Co, Boston, USA

Correspondence: Lev V Eppelbaum, Department of Geosciences, Tel Aviv University, Israel

Received: March 30, 2017 | Published: April 7, 2017

Citation: Eppelbaum LV, Kutasov LM. Step temperature well testing. Int J Petrochem Sci Eng. 2017;2(3):82-85. DOI: 10.15406/ipcse.2017.02.00036

Download PDF

Abstract

Exact determination of thermal parameters is of high importance in a wide spectrum of both solid Earth investigations and subsurface geological and environmental studies. This article demonstrates a new revisited technique for the precise determination of formation thermal conductivity and contact thermal resistance in boreholes. We assume that the volumetric heat capacity of formations is a priori known, and the instantaneous heat flow rate and time data are available for the cylindrical probe located in borehole with a constant temperature. A dimensionless heat flow rate has been approximated by a new empirical equation, parameters of which were computed by use of the Newton method. An effectiveness of the proposed methodology is shown on modelled examples. A simulated case is given on example of metallic electrical heater placed into a vertical open (uncased) borehole.

Keywords: cylindrical probe, constant temperature, thermal conductivity, newton method

Introduction

In the set of potential geophysical fields, applied for solving different environmental and geological-geophysical problems (including hydrogeology, searching economic deposits, various engineering tasks, etc.), thermal parameters analysis plays one of the most significant roles.1–9 Therefore, any precision growth of the thermal parameters estimation will allow to increase accuracy of physical-geological model construction and to optimize a strategy of further investigations.

Due to the similarity in Darcy’s and Fourier’s laws, the same differential diffusivity equation describes the transient flow of incompressible fluid in porous medium and heat conduction in solids.10 As a result, a correspondence exists between the following parameters: volumetric flow rate, pressure gradient, mobility, hydraulic diffusivity coefficient and heat flow rate, temperature gradient, thermal conductivity and thermal diffusivity. Thus, it is reasonable to assume that similar to the techniques and data processing procedures of pressure borehole tests, can be applied to the temperature well tests.11,12

This means that the same analytical solutions of the diffusivity equation (at corresponding initial and boundary conditions) can be utilized for determination of the above-mentioned parameters. Earlier was proposed a semi-theoretical equation to approximate the dimensionless heat flow rate from an infinite cylindrical source with a constant bore-face temperature. This equation was used to process data of pressure and flow well tests and to develop a technique for determining the formation permeability and skin factor.3,10,13 A utilization of step-pressure test for determination of the formation permeability and skin factor was suggested in.3 During a step-pressure, test fluid is produced at two successive constant pressure flow periods. Application of this methodology is possible in both decreasing and increasing pressure sequences.

The objective of this paper consists in suggesting a similar technique for in situ evaluation of the values of formation thermal conductivity and thermal resistance of the borehole (expressed through the skin factor). We will consider below a long cylindrical electrical heater (with a large length/diameter ratio). Calculations conducted by Mufti1 revealed that for the practical purposes a cylinder with a length of 5 times (or more) exceeding its diameter could be accepted as an infinite cylinder. In this case, the heater can be considered as an infinite cylindrical source of heat. For this case, the temperature field in the borehole and around it is a function of:

  1. Time
  2. Radial distance
  3. Thermal diffusivity of formations
  4. Borehole thermal resistance. To evaluate the effect of the contact thermal resistance on the heat flow rate into formation, an effective radius concept is introduced.

An initial application of the basic idea was demonstrated in,13 where the thermal permeability in boreholes was studied. This article demonstrates utilization of the same idea for the enhanced analysis of thermal conductivity.

Effective radius of the heater

To take into account the effect of probe’s casing and the contact thermal resistance on the heat flow rate we will use an effective radius concept. This approach is widely used in transient pressure and flow well testing2 to evaluate the effect of formation damage (improvement) around the borehole on the pressure at the borehole’s wall. Firstly, we introduce skin factor (s)-a parameter which allows to determine quantitatively the effect of the well’s thermal resistance on the heat flow rate. In our case

s = ( λ λ e f 1 ) ln r w r h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbagaadaqfqa qabeaaaeqabaGaam4CaiaaykW7cqGH9aqpcaaMc8+aaeWaaeaadaWc aaqaaiaadU7aaeaacaWG7oWaaSbaaeaajugWaiaadwgacaWGMbaaju aGbeaaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaaykW7ciGGSbGa aiOBaiaaykW7daWcaaqaaiaadkhadaWgaaqaaKqzadGaam4Daaqcfa yabaaabaGaamOCamaaBaaabaqcLbmacaWGObaajuaGbeaaaaaaaaGa aiilaaaa@5280@ …………….. (1)

where rw is the well radius, rh is the radius of the heater, λ is the thermal conductivity of formations (around the borehole), λef is the effective thermal conductivity of the rw -rh annulus, and rhais the effective radius of the heater For an open (uncased) borehole the rw -rh annulus is filled with the drilling fluid (or air) and mud cake-a plastic like coating of the borehole resulting from the solids in the drilling fluid adhering and building up on the wall of the hole. The rw - rh ring in a cased borehole is composed of drilling fluid, steel, and cement.

It is more convenient to express the skin factor through the apparent (effective) heater radius.2

r h a = r h exp ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaamiAaiaadggaaKqbagqaaiaaykW7cqGH9aqpcaaM c8UaamOCamaaBaaabaqcLbmacaWGObaajuaGbeaacaaMc8Uaciyzai aacIhacaGGWbWaaeWaaeaacqGHsislcaWGZbaacaGLOaGaayzkaaaa aa@4AD1@ ………………… (2)

Where rha is the effective radius of the heater

Dimensionless heat flow rate

Let us assume that the thermal probe (at r = rh) is maintained at a constant temperature of Th, and the initial (undisturbed) temperature of formations is Tf. In this case a relationship between the heat flow rate per unit of depth (q) and the time is:

q     =     2 π λ ( T h T f ) q D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghaqa aaaaaaaaWdbiaacckacaGGGcWdaiabg2da98qacaGGGcGaaiiOa8aa caaIYaGaeqiWdaNaeq4UdW2aaeWaaeaacaWGubWaaSbaaeaajugWai aadIgaaKqbagqaaiabgkHiTiaadsfadaWgaaqaaKqzadGaamOzaaqc fayabaaacaGLOaGaayzkaaGaamyCamaaBaaabaqcLbmacaWGebaaju aGbeaaaaa@4ED6@ ................................. (3)
t D = λ t ρ c p r h a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqaaKqzadGaamiraaqcfayabaGaeyypa0ZaaSaaaeaacaWG7oGa amiDaaqaaiaadg8acaWGJbWaaSbaaeaajugWaiaadchaaKqbagqaai aadkhadaqhaaqaaKqzadGaamiAaiaadggaaKqbagaajugWaiaaikda aaaaaaaa@48FF@ ................................. (4)

Where qD is the dimensionless heat flow rate, ρcp is the volumetric heat capacity of formations, and tD is the dimensionless time.

We will assume that the volumetric heat capacity of formations is known. The function qD is expressed by a complex integral. Analytic expressions for the function qD = f(tD) are available only for asymptotic cases or for the large values of tD. Sengul14 numerically computed values of qD for a wide range of tD. Below we will consider Sengul’s values of qD as an "exact" solution of the above-mentioned integral. Chiu and Thakur suggested an empirical equation (Eq. (5)) for the function qD = f(tD):

q D = 1 c 1 ln [ 1 + c 2 t D ] , c 1 = 0.982 , c 2 = 1.81. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada WgaaqaaKqzadGaamiraaqcfayabaGaeyypa0ZaaSaaaeaacaaIXaaa baGaam4yaiaayIW7daWgaaqaaKqzadGaaGymaaqcfayabaGaciiBai aac6gadaWadaqaaiaaigdacqGHRaWkcaWGJbWaaSbaaeaajugWaiaa ikdaaKqbagqaamaakaaabaGaamiDamaaBaaabaqcLbmacaWGebaaju aGbeaaaeqaaaGaay5waiaaw2faaaaacaGGSaGaaGzbVlaaywW7caWG JbWcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaGaeyypa0JaaGimai aac6cacaaI5aGaaGioaiaaikdacaGGSaGaaGzbVlaaywW7caWGJbWa aSbaaeaajugWaiaaikdaaKqbagqaaiabg2da9iaaigdacaGGUaGaaG ioaiaaigdacaGGUaaaaa@6621@ …………………………. (5)

The values of qD calculated after Eq. (5) and the results of a numerical solution, qD*,14 for various valuesof parameter tD are compared Table 1. The agreement between values of qD and qD* calculated by these two methods shows a good correlation.

tD

qD

qD*

tD

qD

qD*

2

0.80203

0.80058

50

0.388

0.38818

3

0.71739

0.7162

100

0.34523

0.34556

5

0.62905

0.62818

200

0.31039

0.3108

10

0.53438

0.53392

500

0.27337

0.27381

20

0.46127

0.46114

1000

0.25054

0.25096

Table 1 Comparison of qD (Eq. (5)) and qD* [14] values for various tD.

During a step-temperature test, the probe is heated at two successive constant temperature periods. Figure 1 illustrates the temperature distribution of a step-temperature test. For this methodology practical employment, either a decreasing or increasing temperature sequence may be applied.

Working equations

Application of the superposition principle to obtain the heat flow rate for the second heating period presented in Eq. (6):

q ( t ) = 2 π λ ( T f T 0 ) [ q D ( t D ) + ( T 0 T 1 ) ( T f T 0 ) q D ( Δ t D ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada qadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpcaaIYaGaeqiWdaNa eq4UdW2aaeWaaeaacaWGubWaaSbaaeaacaWGMbaabeaacqGHsislca WGubWaaSbaaeaajugWaiaaicdaaKqbagqaaaGaayjkaiaawMcaamaa dmaabaGaamyCamaaBaaabaqcLbmacaWGebaajuaGbeaadaqadaqaai aadshadaWgaaqaaKqzadGaamiraaqcfayabaaacaGLOaGaayzkaaGa ey4kaSYaaSaaaeaadaqadaqaaiaadsfadaWgaaqaaKqzadGaaGimaa qcfayabaGaeyOeI0IaamivamaaBaaabaqcLbmacaaIXaaajuaGbeaa aiaawIcacaGLPaaaaeaadaqadaqaaiaadsfadaWgaaqaaKqzadGaam OzaaqcfayabaGaeyOeI0IaamivamaaBaaabaqcLbmacaaIWaaajuaG beaaaiaawIcacaGLPaaaaaGaamyCamaaBaaabaqcLbmacaWGebaaju aGbeaadaqadaqaaiabfs5aejaadshadaWgaaqaaKqzadGaamiraaqc fayabaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaaa@704F@ .............................. (6)
t D 1 = t D t 1 t , Δ t D = t D Δ t t , Δ t = t t 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada WgaaqaaKqzadGaamiraiaaigdaaKqbagqaaiabg2da9iaadshadaWg aaqaaKqzadGaamiraaqcfayabaWaaSaaaeaacaWG0bWaaSbaaeaaju gWaiaaigdaaKqbagqaaaqaaiaadshaaaGaaiilaiaaywW7caaMf8Ua euiLdqKaamiDamaaBaaabaqcLbmacaWGebaajuaGbeaacqGH9aqpca WG0bWaaSbaaeaajugWaiaadseaaKqbagqaamaalaaabaGaeuiLdqKa amiDaaqaaiaadshaaaGaaiilaiaaywW7caaMf8UaeuiLdqKaamiDai abg2da9iaadshacqGHsislcaWG0bWaaSbaaeaajugWaiaaigdaaKqb agqaaiaac6caaaa@624A@

During the second flow period, it is assumed that two heat flow rates were obtained qa = q(t = ta) and qb = q(t = tb). Then

q a = 2 π λ ( T f T 0 ) [ q D ( t D a ) + ( T 0 T 1 ) ( T f T 0 ) q D ( Δ t D a ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada WgaaqaaKqzadGaamyyaaqcfayabaGaeyypa0JaaGOmaiabec8aWjab eU7aSnaabmaabaGaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaacq GHsislcaWGubWaaSbaaeaajugWaiaaicdaaKqbagqaaaGaayjkaiaa wMcaamaadmaabaGaamyCamaaBaaabaqcLbmacaWGebaajuaGbeaada qadaqaaiaadshadaWgaaqaaiaadseacaWGHbaabeaaaiaawIcacaGL PaaacqGHRaWkdaWcaaqaamaabmaabaGaamivamaaBaaabaqcLbmaca aIWaaajuaGbeaacqGHsislcaWGubWaaSbaaeaajugWaiaaigdaaKqb agqaaaGaayjkaiaawMcaaaqaaiaacIcacaWGubWaaSbaaeaajugWai aadAgaaKqbagqaaiabgkHiTiaadsfadaWgaaqaaKqzadGaaGimaaqc fayabaGaaiykaaaacaWGXbWaaSbaaeaajugWaiaadseaaKqbagqaam aabmaabaGaeuiLdqKaamiDamaaBaaabaqcLbmacaWGebGaamyyaaqc fayabaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaaa@722C@ ........................... (7)
q b = 2 π λ ( T f T 0 ) [ q D ( t D b ) + ( T 0 T 1 ) ( T f T 0 ) q D ( Δ t D b ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada Wgaaqaaiaadkgaaeqaaiabg2da9iaaikdacqaHapaCcqaH7oaBcaGG OaGaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaacqGHsislcaWGub WaaSbaaeaajugWaiaaicdaaKqbagqaaiaacMcadaWadaqaaiaadgha daWgaaqaaiaadseaaeqaamaabmaabaGaamiDamaaBaaabaqcLbmaca WGebGaamOyaaqcfayabaaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaa daqadaqaaiaadsfadaWgaaqaaKqzadGaaGimaaqcfayabaGaeyOeI0 IaamivamaaBaaabaqcLbmacaaIXaaajuaGbeaaaiaawIcacaGLPaaa aeaacaGGOaGaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaacqGHsi slcaWGubWaaSbaaeaajugWaiaaicdaaKqbagqaaiaacMcaaaGaamyC amaaBaaabaqcLbmacaWGebaajuaGbeaadaqadaqaaiabfs5aejaads hadaWgaaqaaKqzadGaamiraiaadkgaaKqbagqaaaGaayjkaiaawMca aaGaay5waiaaw2faaaaa@6F93@ ........................... (8)

Combining these two equations we can obtain an equation which can be used for estimating the dimensionless time tD1:

q ( t a ) q ( t b ) = q D ( t D a ) + γ q D ( Δ t D a ) q D ( t D b ) + γ q D ( Δ t D b ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamyCaiaacIcacaWG0bWaaSbaaeaajugWaiaadggaaKqbagqaaiaa cMcaaeaacaWGXbGaaiikaiaadshadaWgaaqaaKqzadGaamOyaaqcfa yabaGaaiykaaaacqGH9aqpdaWcaaqaaiaadghacaWGebWaaeWaaeaa caWG0bWaaSbaaeaajugWaiaadseacaWGHbaajuaGbeaaaiaawIcaca GLPaaacqGHRaWkcqaHZoWzcaWLa8UaamyCamaaBaaabaqcLbmacaWG ebaajuaGbeaadaqadaqaaiabfs5aejaadshadaWgaaqaaKqzadGaam iraiaadggaaKqbagqaaaGaayjkaiaawMcaaaqaaiaadghacaWGebWa aeWaaeaacaWG0bWaaSbaaeaajugWaiaadseacaWGIbaajuaGbeaaai aawIcacaGLPaaacqGHRaWkcqaHZoWzcaWLa8UaamyCamaaBaaabaqc LbmacaWGebaajuaGbeaadaqadaqaaiabfs5aejaadshadaWgaaqaaK qzadGaamiraiaadkgaaKqbagqaaaGaayjkaiaawMcaaaaacaGGSaaa aa@7244@
γ   = p 0 p 1 p i p 0 ,       t D a = t D 1 t a t 1 ,       t D b   = t D 1   t a t 1       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNb baaaaaaaaapeGaaiiOaiabg2da9maalaaabaGaamiCamaaBaaabaqc LbmacaaIWaaajuaGbeaacqGHsislcaWGWbWaaSbaaeaajugWaiaaig daaKqbagqaaaqaaiaadchadaWgaaqaaKqzadGaamyAaaqcfayabaGa eyOeI0IaamiCamaaBaaabaqcLbmacaaIWaaajuaGbeaaaaGaaiilai aacckacaGGGcGaaiiOaiaacshadaWgaaqaaKqzadGaaiiraiaacgga aKqbagqaaiabg2da9iaadshadaWgaaqaaKqzadGaamiraiaaigdaaK qbagqaamaalaaabaGaamiDamaaBaaabaqcLbmacaWGHbaajuaGbeaa aeaacaWG0bWaaSbaaeaajugWaiaaigdaaKqbagqaaaaacaGGSaGaai iOaiaacckacaGGGcGaaiiDamaaBaaabaqcLbmacaGGebGaaiOyaaqc fayabaGaaiiOaiabg2da9iaacshadaWgaaqaaKqzadGaaiiraiaaig daaKqbagqaaiaacckadaWcaaqaaiaadshadaWgaaqaaKqzadGaamyy aaqcfayabaaabaGaamiDamaaBaaabaqcLbmacaaIXaaajuaGbeaaaa GaaiiOaiaacckacaGGGcaaaa@7B22@ ……………………… (9)
Δ t D a   = t D 1 ( t a t 1 1 ) ,         Δ t D a   = t D 1 ( t b t 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshajugWaiaadseacaWGHbqcfaieaaaaaaaaa8qacaGGGcGaeyyp a0JaamiDaKqzadGaamiraiaaigdajuaGdaqadaqaamaalaaabaGaam iDamaaBaaabaqcLbmacaWGHbaajuaGbeaaaeaacaWG0bWaaSbaaeaa jugWaiaaigdaaKqbagqaaaaacqGHsislcaaIXaaacaGLOaGaayzkaa GaaiilaiaacckacaGGGcGaaiiOaiaacckapaGaeuiLdqKaamiDaKqz adGaamiraiaadggajuaGpeGaaiiOaiabg2da9iaadshadaWgaaqaaK qzadGaamiraiaaigdaaKqbagqaamaabmaabaWaaSaaaeaacaWG0bWa aSbaaeaajugWaiaadkgaaKqbagqaaaqaaiaadshadaWgaaqaaKqzad GaaGymaaqcfayabaaaaiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@6990@

To use a computer program, the last equation should be rewritten as

y = q ( t a ) q ( t b ) q D ( t D a ) + γ q D ( Δ t D a ) q D ( t D b ) + γ q D ( Δ t D b ) = ε , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhacq GH9aqpdaWcaaqaaiaadghadaqadaqaaiaadshadaWgaaqaaKqzadGa amyyaaqcfayabaaacaGLOaGaayzkaaaabaGaamyCamaabmaabaGaam iDamaaBaaabaqcLbmacaWGIbaajuaGbeaaaiaawIcacaGLPaaaaaGa eyOeI0YaaSaaaeaacaWGXbWaaSbaaeaacaWGebaabeaadaqadaqaai aadshadaWgaaqaaKqzadGaamiraiaadggaaKqbagqaaaGaayjkaiaa wMcaaiabgUcaRiabeo7aNjaadghadaWgaaqaaiaadseaaeqaamaabm aabaGaeuiLdqKaamiDamaaBaaabaqcLbmacaWGebGaamyyaaqcfaya baaacaGLOaGaayzkaaaabaGaamyCamaaBaaabaGaamiraaqabaWaae WaaeaacaWG0bWaaSbaaeaajugWaiaadseacaWGIbaajuaGbeaaaiaa wIcacaGLPaaacqGHRaWkcqaHZoWzcaWGXbWaaSbaaeaacaWGebaabe aadaqadaqaaiabfs5aejaadshadaWgaaqaaKqzadGaamiraiaadkga aKqbagqaaaGaayjkaiaawMcaaaaacqGH9aqpcqaH1oqzcaGGSaaaaa@70F6@ …………….. (10)

Where ε is a small value and depends on the accuracy of the y ratio.

For solving Eq. (10) the Newton’s method was applied.15 In this method, a solution of an equation is sought by defining a sequence of numbers which become successively closer and closer to the solution. The conditions, which guarantee that the Newton’s method in our case will work and provide a unique solution, are satisfied.15 In the Eq. (10) the empirical function qD (see Eq. (5)) was used. In the subroutine utilizing the Newton method, the following parameters were employed: (a) the starting value of tD1 was 0.001, (b) the time increment was 2, (c) the absolute accuracy of the ratio y (see Eq. 10) was θ = 0.0001. When N records of q and ∆t are available, then N(N-1)/2 values of tD1 can be computed and its average value can be calculated.16

From the of tD1 we can determine the skin factor

r = h a λ t ρ c p t D 1 , s = ln r h a r h . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgbaqaaKqzadGaamiAaiaadggaaKqbagqaaiabg2da9maakaaabaWa aSaaaeaacaWG7oGaamiDaaqaaiaadg8ajugWaiaadogajuaGdaWgaa qaaiaadchaaeqaaiaadshadaWgaaqaaKqzadGaamiraiaaigdaaKqb agqaaaaaaeqaaiaacYcacaaMf8UaaGzbVlaadohacqGH9aqpcqGHsi slciGGSbGaaiOBamaalaaabaGaamOCamaaBaaabaqcLbmacaWGObGa amyyaaqcfayabaaabaGaamOCamaaBaaabaqcLbmacaWGObaajuaGbe aaaaGaaiOlaaaa@59A5@ …………………. (11)

The formation thermal conductivity is determined from Eq. (6). The thermal diffusivity of formations is estimated from the relationship

a = λ p c p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyyaiabg2da9maalaaabaGaeq4UdWgabaGaamiCaiaadoga daWgaaqaaiaadchaaeqaaaaaaaa@3D3C@ ………… (12)

where ρ is the formation’s density and cp is the specific heat. The apparent (effective) heater radius and skin factor are calculated from Eqs. (2) and (4).

And, finally, the values of λef and R are evaluated from Eq. (1)

λ e f = λ ln r w r h s + ln r w r h , R = 1 λ e f , r w r h . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaabaqcLbmacaWGLbGaamOzaaqcfayabaGaeyypa0ZaaSaaaeaa cqaH7oaBcaaMi8UaciiBaiaac6gadaWcaaqaaiaadkhadaWgaaqaaK qzadGaam4DaaqcfayabaaabaGaamOCamaaBaaabaWaaSbaaeaajugW aiaadIgaaKqbagqaaaqabaaaaiaayIW7aeaacaWGZbGaey4kaSIaci iBaiaac6gadaWcaaqaaiaadkhadaWgaaqaaKqzadGaam4Daaqcfaya baaabaGaamOCamaaBaaabaqcLbmacaWGObaajuaGbeaaaaaaaiaacY cacaaMf8UaamOuaiabg2da9maalaaabaGaaGymaaqaaiabeU7aSnaa BaaabaqcLbmacaWGLbGaamOzaaqcfayabaaaaiaacYcacaaMf8Uaam OCamaaBeaabaqcLbmacaWG3baajuaGbeaacqGHGjsUcaWGYbWaaSba aeaajugWaiaadIgaaKqbagqaaiaac6cacaaMf8oaaa@6EF3@ …………… (13)

Simulated example

A metallic electrical heater is placed into a vertical open (uncased) borehole. The heater operated for ten hours and the transient heat flow rate was recorded. During first three hours, the temperature of the heater was T0 = 50˚C and during the following 7 hours the heater temperature was increased on 10˚C (T1 = 60˚C) (see schematic diagram in Figure 1). The borehole radius is rw = 0.10 m, the radius of the probe is rh = 0.08 m. The rw - rh annulus consists of mud cake and drilling fluid. We assumed that the effective thermal conductivity of the rwrh annulus is λef = 0.9741 W/m˚C and thermal contact resistance R =1/λef = 1.027 m˚C/W. The initial formation temperature (Tf) is 40˚C. The geological formation is sandstone with the density ρ = 2300 kg/m3, thermal conductivity λ = 2.0 W/m ˚C, and specific heat c = 783 J/kg ˚C. Using the table presented in (Sengul, 1983) of qD = f(tD) and Eqs. (7) and (8) we generated the data for the aforementioned simulated example (Table 2, columns 2 and 3). The input data were chosen to allow to avoid interpolation of qD values. Indeed

a = λ c ρ = 2 3600 783 2300 = 0.0400 m 2 h r 1 , s = 0.235 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggacq GH9aqpdaWcaaqaaiabeU7aSbqaaiaadogacqaHbpGCaaGaeyypa0Za aSaaaeaacaaIYaGaeyyXICTaaG4maiaaiAdacaaIWaGaaGimaaqaai aaiEdacaaI4aGaaG4maiabgwSixlaaikdacaaIZaGaaGimaiaaicda aaGaeyypa0JaaGimaiaac6cacaaIWaGaaGinaiaaicdacaaIWaGaaG PaVlaaykW7caWGTbWaaWbaaeqabaqcLbmacaaIYaaaaKqbakaaykW7 caWGObGaamOCamaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaajuaGca GGSaGaaGzbVlaadohacqGH9aqpcaaIWaGaaiOlaiaaikdacaaIZaGa aGynaiaacYcaaaa@66DA@
t D ( 1 h r ) = 0.0400 1 ( 0.08 e 0.235 ) 2 = 1.0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaywW7ca WG0bWaaSbaaeaajugWaiaadseaaKqbagqaaiaacIcacaaIXaGaaGPa VlaadIgacaWGYbGaaiykaiabg2da9maalaaabaGaaGimaiaac6caca aIWaGaaGinaiaaicdacaaIWaGaeyyXICTaaGymaaqaaiaacIcacaaI WaGaaiOlaiaaicdacaaI4aGaeyyXICTaamyzamaaCaaabeqaaiabgk HiTiaaicdacaGGUaGaaGOmaiaaiodacaaI1aaaaiaacMcadaahaaqa beaajugWaiaaikdaaaaaaKqbakabg2da9iaaigdacaGGUaGaaGimai aaxcW7caWLa8UaaiOlaaaa@5F4D@

The results of calculations after Eqs. (1) - (13) are presented in Table 2.

Figure 1 A step-temperature test: Schematic diagram.

∆t1, hrs

∆t2,
hrs

q1,
W/m

q2,
W/m

λ,
W/(m·˚C)

R,
m·˚C /m

1

3

207.11

165.5

2

1.048

1

2

207.11

179.53

1.998

1.047

1

4

207.11

156.28

2.002

1.05

1

5

207.11

149.5

2.002

1.05

1

6

207.11

144.2

2.003

1.051

1

7

207.11

139.88

2.003

1.051

2

3

179.53

165.5

2.004

1.052

2

4

179.53

156.28

2.005

1.053

2

5

179.53

149.5

2.005

1.053

2

6

179.53

144.2

2.005

1.054

2

7

179.53

139.88

2.006

1.054

3

4

165.5

156.28

2.007

1.055

3

5

165.5

149.5

2.005

1.054

3

6

165.5

144.2

2.006

1.055

3

7

165.5

139.88

2.006

1.055

4

5

156.28

149.5

2.004

1.053

4

6

156.28

144.2

2.006

1.054

4

7

156.28

139.88

2.006

1.055

5

6

149.5

144.2

2.007

1.057

5

7

149.5

139.88

2.008

1.057

6

7

144.2

139.88

2.008

1.057

Table 2 Comparison of assumed and calculated value of formation thermal conductivity and thermal contact resistance. Assumed parameters: λ = 2.000 W/m ̊C, R = 1.027 m ˚C / W.

This example shows that the basic Eq. (5) can be used to compute the thermal conductivity of geological formations and contact thermal resistance. Indeed, the assumed and calculated values of λ and R are in a very good agreement.

Conclusion

This article displays a new method for in situ determination of formation thermal conductivity and thermal resistance in the borehole. This method is based on a novel empirical equation based on utilization of the heat flow rate from an infinitely long cylindrical source with a constant bore-face temperature. Either decreasing or increasing temperature sequence may be used for this methodology application. It is important to note that this equation is valid for any (arbitarary) values of dimensionless time. This methodology needs in experimental application in boreholes drilled in different physical-geological environments.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Mufti IR. Geothermal aspects of radioactive waste disposal into the subsurface. Jour of Geophysical Research. 1971;76(35):8568–8585.
  2. Earlougher RC. Advances in Well Test Analysis. Soc of Petrol Engineers. New York, USA, 1977. 264 p.
  3. Kutasov IM. Method Corrects API Bottom-hole Circulating-Temperature Correlation. Oil and Gas Jour. 1999;15:47–50.
  4. Santoyo E, Santoyo S, García A, et al. Rheological property measurement of drilling fluids used in geothermal wells. Applied Thermal Engineering Jour. 2001;21(3):283–302.
  5. Smerdon JE, Pollack HN, Cermak V, et al. Air-ground temperature coupling and subsurface propagation of annual temperature signals. Jour of Geophysical Research. 2004;109(D21107):1–10.
  6. Andraverde J, Verma SP, Santoyo E. Uncertainty estimates of static formation temperature in boreholes and evaluation of regression models. Geophysical Jour. International. 2005;160(3):1112–1122.
  7. Espinosa Paredes G, Morales Díaz A, Ulea Gonzalez U, et al. Application of a proportional-integral control for the estimation of static formation temperatures in oil wells. Marine and Petroleum Geology. 2009;26:259–268.
  8. Eppelbaum LV, Kutasov IM, Pilchin AN. Applied Geothermics. Springer. London, UK, 2014. 751 p.
  9. Majorowicz J, Chan J, Crowell J, et al. The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin. Geophysical Jour International. 2014;197:731–747.
  10. Kutasov IM, Eppelbaum LV. Pressure and Temperature Well Testing. CRC Press. 2015. 325 p.
  11. Muskat M. Flow of Homogeneous Fluids through Porous Media. JW Edwards Inc, Ann Arbor. USA, 1946. 763 p.
  12. Eppelbaum LV, Kutasov IM. Temperature and pressure drawdown well testing: Similarities and differences. Jour of Geophysics and Engineering. 2006;3(1):12–20.
  13. Kutasov IM, Kagan M. Cylindricalprobe with a constant temperature-determination of the formation thermal conductivity and contact thermal resistance. Geothermics. 2003;32(2):187–193.
  14. Sengul MM. Analysis of Step-pressure Tests. SPE Paper 12175 presented at the 58th Ann. San Francisco, California, USA, 1983.
  15. Grossman SI. Calculus. USA: Academic Press; 1981. 716 p.
  16. Chiu K, Thakur SC. Modeling of Wellbore Heat Losses in Directional Wells Under Changing Injection Conditions. SPE 2287, Presented at the 66th Annual Techn Conf and Exhib of the Society of Petr Engin. Dallas, USA, 1991. p. 6–9.
Creative Commons Attribution License

©2017 Eppelbaum, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.