Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 6 Issue 1

Direct applications of homotopy perturbation method for solving nonlinear algebraic and transcendental equations

M G Sobamowo

Department of Mechanical Engineering and Mathematics, University of Lagos, Akoka, Lagos, Nigeria

Correspondence: M G Sobamowo, Department of Mechanical Engineering and Mathematics, University of Lagos, Akoka, Lagos, Nigeria

Received: March 31, 2023 | Published: April 28, 2023

Citation: Sobamowo MG. Direct applications of homotopy perturbation method for solving nonlinear algebraic and transcendental equations. Int J Petrochem Sci Eng. 2023;6(1):10-22 DOI: 10.15406/ipcse.2023.06.00127

Download PDF

Abstract

In this work, homotopy perturbation method is directly applied to provide solutions to nonlinear algebraic and transcendental equations. The reliability and efficiency of the method in solving the nonlinear equations are demonstrated through different illustrative numerical examples. The method is shown to be conceptually and computationally simple and straightforward without any ambiguity. Also, the superiority of the direct applications of the approximate analytical method over the other methods shows that it does not require the development of any other iterative scheme that could be used to find the solutions to algebraic and transcendental equations. With the use of the homotopy perturbation method, there is no search for an auxiliary parameter for adjus`ting and controlling the rate and region of convergence of the solution. Additionally, the approximate analytical method does not entail the determination of Adomian polynomials and finding symbolic or numerical derivatives of any given function. The method does not require finding the correct fixed point and it is free from the problem of choosing an appropriate initial approximation. Therefore, it is hoped that the present work will assist in providing accurate solutions to many practical problems in science and engineering.

Keywords: nonlinear algebraic equations, root-finding method; homotopy perturbation method

Introduction

The determinations of the roots of nonlinear algebraic equations are important aspects in providing solutions to many practical problems in science and engineering. In fact, providing exact solutions to the nonlinear equations has been among the oldest problems of mathematical methods. However, it is generally difficult to establish a general analytical method that provides exact solutions to nonlinear algebraic equations. Consequently, often time, recourse has been made to numerical methods in finding roots to polynomials, transcendental, and other nonlinear algebraic equations. In such mathematical adventures, bisection method is one of the oldest root-finding numerical methods. Although, the method is simple and its convergence is guaranteed, it is generally slow and works when the root to be estimated is of even-order. Choosing an initial guess or estimate close to root has no advantage in the application of the method and it may lead to carrying out many iterations to converge. Using method of regular falsi which seems to be an improvement over the bisection method, but unfortunately, the method yields an estimate without useable known error bound. Interestingly, the applications of linear fixed-point iteration method to find root of a nonlinear algebraic equations comes with an increased rate of convergence over bisection method and method of regular falsi. However, sometimes, selection of the correct fixed-point or iteration function poses serious challenges in the use of the numerical method. In fact, in fixed-point iteration method, convergence can be slow or non-existence. Newton-Raphson method is taken as the most popular root-finding numerical method with high rate of convergence. Unfortunately, the convergence of the Newton-Raphson method to the required solution is not guaranteed i.e., sometimes, for a given equation and for a given initial guess or estimate, one may not get the required solution. The method converges provided the initial approximation is chosen sufficiently close to the root, otherwise, the procedure may lead to an endless cycle. This shows that the method is very sensitive and grossly dependent on initial guess or starting values. Such an initial guess may be too far from the local root, and it may give a zero derivative and loop indefinitely. In fact, the Newton-Raphson method has poor global convergence properties. It converges slowly near local maxima and local minima, due to oscillation. Furthermore, such slow convergence is witnessed when Newton-Raphson is used for a problem with multiple roots. Moreover, the numerical method encounters problem when the value of the inherent derivative is very small or zero as such can lead to division by zero problem and inflection point issue can occur. Furthermore, root jumping might take place thereby not getting intended solution. Newton-Raphson method requires symbolic derivatives which might be difficult or virtually impossible to get especially for some complicated functions. Secant method has been used to obviate the symbolic derivative and derivative zero problem in Newton-Raphson method as the method does not require the derivatives of the given function. Although, the method is taken as one of the most economical numerical methods that give rapid convergence at a low cost, it requires two initial guesses or estimates for starting and it can produce erratic results when the approximations become close together. In fact, most often in numerical methods, choosing the right initial estimate(s), developing derivative(s) and the finding the correct fixed-point poses serious difficulties.

The limitations of the numerical methods as presented in the preceding sections show that the classical ways of finding analytical solutions (exact or approximate) to the nonlinear problems are still very much important. Although, as stated previously, it is very difficult to develop a general analytical method for solving nonlinear algebraic equations, there have been several submissions such as Cardan’s method, Viète’s, algebraic geometry, Ferrari’s method, Descartes’s method, Euler’s method, Lagrange resolvent, etc. for the developments of exact solutions to polynomial equations. In fact, the past centuries have witnessed the establishments of various exact analytical solutions to quadratic, cubic and quartic equations.1–8 However, in the early 19th century, Abel and Galois ingeniously and rigorously demonstrated in their impossibility theorem that there exists no general formula for zeroes of a polynomial equation of degree five or higher.9 Therefore, the general quintic equation and other higher-order polynomials cannot be solved algebraically in terms of a finite number of additions, subtractions, multiplications, divisions, and root extractions. Such Abel’s impossibility theorem puts a period to longstanding search for a ‘magic’ formula for polynomials of higher orders. However, in recent times, Waston’s and Dummit’s methods have been used to develop and establish analytical solutions to quintic equations while Buya’s method and Hagedorn’s method have been applied to solve sextic or hexic equations. Abel-Ruffin theorem and Kulkarni’s method were put forward to provide solutions to octic equations while another Kulkarni’s method was also developed to establish analytical solutions for nonic equations. De’ Moivre theorem can be used to solve polynomial equation of any power but of a reduced form. Nonetheless, all these methods only provide analytical solutions to polynomial equations. At the other hand, transcendental equations and other nonlinear algebraic equations have been solved analytically with the aid of Lambert W-function. However, the method of Lambert W-function is used to solve the nonlinear equations in which the unknown appears both outside and inside an exponential function or a logarithm. Consequently, in the continuous quest of finding roots of nonlinear algebraic equations, there have been unending applications of numerical methods as the viable options, even with all their inherent limitations. However, one major gap in literature is that Abel’s impossibility theorem did not state whether polynomial equations can be solved with infinite power series or not. Therefore, in recent years, an infinite power series approach such as Adomian perturbation method (ADM) has been used to find the roots of nonlinear algebraic equations and more, importantly to solve nonlinear differential equations.10–20 With the aid of the ADM, the approximate solution of the nonlinear equation is considered as an infinite series converging to the accurate solution. However, such power series solution involves determination of Adomian polynomials which increases the computational effort and time. Its slow rate of convergence for problems of wide region or domain is a great shortcoming of the method. Homotopy perturbation method have been applied to develop some iterative methods to solve nonlinear algebraic equations.21–24 Some other computational schemes have been developed25–42 to solve nonlinear algebraic equations. A critical review of the developed methods in previous studies point to the fact that they numeric in nature which means that they are based on iterative or numerical procedures and on the idea of successive approximations that start with one or more initial approximations to the required roots. Also, many of the methods in the review works require symbolic derivatives which might be difficult to get in some complicated functions. Motivated by the above limitations and the gaps in the past works and to the best of the author’s knowledge, it can be stated that homotopy perturbation method has not been directly applied to solve nonlinear algebraic equations, especially when the given equation does not have a linear term. Therefore, in this study, it is demonstrated that the direct applications of homotopy perturbation method is not only limited to solve nonlinear differential and integral equations but also, it is capable of solving nonlinear algebraic equations. Several numerical examples are given to show the reliability, performance and efficiency of the method in solving nonlinear algebraic equations.

Homotopy perturbation method

Homotopy perturbation methos is a total analytical power series method for solving nonlinear equations. It is first proposed by He.43 The method was also improved by He.44–47 Its basic principle is stated in the next section.

The basic idea of homotopy perturbation method

In order to establish the basic idea behind homotopy perturbation method, consider a system of nonlinear differential equations given as

A( U )f( r )=0,rΩ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm aabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqadaqaaiaa dkhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaywW7caWGYb GaeyicI4SaeuyQdCLaaiilaaaa@462E@   (1)

 with the boundary conditions

B( u, u η )=0,rΓ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaabm aabaGaamyDaiaacYcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciIT cqaH3oaAaaaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcacaaMe8 UaaGzbVlaaywW7caWGYbGaeyicI4Saeu4KdCKaaiilaaaa@4B1E@   (2)

where A is a general differential operator, B is a boundary operator, f( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamOCaaGaayjkaiaawMcaaaaa@3961@  a known analytical function and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@375E@ is the boundary of the domain Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3784@

The operator A can be decomposed or divided into two parts, which are L and N, where L is a linear operator, N is a non-linear operator. Eq. (1) can be therefore rewritten as follows

L( u )+N( u )f( r )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaabm aabaGaamyDaaGaayjkaiaawMcaaiabgUcaRiaad6eadaqadaqaaiaa dwhaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaaeaacaWGYbaaca GLOaGaayzkaaGaeyypa0JaaGimaiaac6caaaa@444C@   (3)

 By the homotopy technique, a homotopy U( r,p ):Ω×[ 0,1 ]R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGaamOCaiaacYcacaWGWbaacaGLOaGaayzkaaGaaiOoaiabfM6a xjabgEna0oaadmaabaGaaGimaiaacYcacaaIXaaacaGLBbGaayzxaa GaeyOKH4QaamOuaaaa@4633@  can be constructed, which satisfies

H( U,p )=( 1p )[ L( U )L( U ο ) ]+p[ A( U )f( r ) ]=0,p[ 0,1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaabm aabaGaamyvaiaacYcacaWGWbaacaGLOaGaayzkaaGaeyypa0ZaaeWa aeaacaaIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaamaadmaabaGaam itamaabmaabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadYeadaqa daqaaiaadwfadaWgaaWcbaGaeq4Vd8gabeaaaOGaayjkaiaawMcaaa Gaay5waiaaw2faaiabgUcaRiaadchadaWadaqaaiaadgeadaqadaqa aiaadwfaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaaeaacaWGYb aacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaaGimaiaacYca caaMe8UaaGzbVlaadchacqGHiiIZdaWadaqaaiaaicdacaGGSaGaaG ymaaGaay5waiaaw2faaiaacYcaaaa@6344@   (4)

or

H( U,p )=L( U )L( U ο )+pL( U ο )+p[ N( U )f( r ) ]=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaabm aabaGaamyvaiaacYcacaWGWbaacaGLOaGaayzkaaGaeyypa0Jaamit amaabmaabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadYeadaqada qaaiaadwfadaWgaaWcbaGaeq4Vd8gabeaaaOGaayjkaiaawMcaaiab gUcaRiaadchacaWGmbWaaeWaaeaacaWGvbWaaSbaaSqaaiabe+7aVb qabaaakiaawIcacaGLPaaacqGHRaWkcaWGWbWaamWaaeaacaWGobWa aeWaaeaacaWGvbaacaGLOaGaayzkaaGaeyOeI0IaamOzamaabmaaba GaamOCaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabg2da9iaaicda caGGUaaaaa@59DC@   (5)

In the above Eqs. (4) and (5), p[ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgI GiopaadmaabaGaaGimaiaacYcacaaIXaaacaGLBbGaayzxaaaaaa@3C86@  is an embedding parameter, u o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGVbaabeaaaaa@3810@ is an initial approximation of equation of Eq.(1), which satisfies the boundary conditions.

Also, from Eqs. (4) and Eq. (5), we will have

H( U,0 )=L( U )L( U o )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaabm aabaGaamyvaiaacYcacaaIWaaacaGLOaGaayzkaaGaeyypa0Jaamit amaabmaabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadYeadaqada qaaiaadwfadaWgaaWcbaGaam4BaaqabaaakiaawIcacaGLPaaacqGH 9aqpcaaIWaGaaiilaaaa@4685@   (6)

or

H( U,1 )=A( U )f( r )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaabm aabaGaamyvaiaacYcacaaIXaaacaGLOaGaayzkaaGaeyypa0Jaamyq amaabmaabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaa@458A@   (7)

The changing process of p from zero to unity is just that of U( r,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGaamOCaiaacYcacaWGWbaacaGLOaGaayzkaaaaaa@3AF5@ from u o ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGVbaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaaaa @3A9A@  to u( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamOCaaGaayjkaiaawMcaaaaa@3970@ . This is referred to deformation in topology. L( U )L( U o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaabm aabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadYeadaqadaqaaiaa dwfadaWgaaWcbaGaam4BaaqabaaakiaawIcacaGLPaaaaaa@3E75@  and A( U )f( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm aabaGaamyvaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqadaqaaiaa dkhaaiaawIcacaGLPaaaaaa@3D77@ are called homotopic.

Using the embedding parameter p as a small parameter, the solution of Eqs. (4) and Eq. (5) can be assumed to be written as a power series in p as given in Eq. (8)

U= U o +p U 1 + p 2 U 2 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9iaadwfadaWgaaWcbaGaam4BaaqabaGccqGHRaWkcaWGWbGaamyv amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWGvbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaiOl aiaac6cacaGGUaaaaa@450A@   (8)

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. Therefore, setting p=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iaaigdaaaa@38AC@ , results in the approximation solution of Eq. (9)

u= lim p1 U= U o + U 1 + U 2 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2 da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWGWbGaeyOKH4Qa aGymaaqabaGccaWGvbGaeyypa0JaamyvamaaBaaaleaacaWGVbaabe aakiabgUcaRiaadwfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG vbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUa aaaa@4ADD@   (9)

Therefore

u= U o + U 1 + U 2 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2 da9iaadwfadaWgaaWcbaGaam4BaaqabaGccqGHRaWkcaWGvbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamyvamaaBaaaleaacaaIYaaabe aakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@424D@   (10)

The series Eq. (10) is convergent for most cases.

The basic idea expressed above is a combination of homotopy and perturbation method. Hence, the method is called homotopy perturbation method (HPM), which has eliminated the limitations of the traditional perturbation methods. On the other hand, this technique can have full advantages of the traditional perturbation techniques.

Numerical examples

In order to demonstrate the simplicity, reliability and efficiency of the direct homotopy perturbation method in solving nonlinear algebraic equations, the following polynomial and transcendental equations are clearly solved as presented under this section as presented as follows:

Example 5.1: Find the roots of the following quadratic equation using homotopy perturbation method

x 2 +4x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaisdacaWG4bGaey4kaSIaaG4m aiabg2da9iaaicdaaaa@3DE2@ . (11)

The above equation can be expressed as

x+ x 2 4 + 3 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRmaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisda aaGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaaaacqGH9aqpcaaIWa aaaa@3EC0@   (12)

In order to apply homotopy perturbation method, the equation is expressed as

(1p)[ x v 0 ]+p[ x+ 3 4 + x 2 4 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaig dacqGHsislcaWGWbGaaiykamaadmaabaGaamiEaiabgkHiTiaadAha daWgaaWcbaGaaGimaaqabaaakiaawUfacaGLDbaacqGHRaWkcaWGWb WaamWaaeaacaWG4bGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaaaa cqGHRaWkdaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaca aI0aaaaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@4C46@   (13)

One can write the above Eq. (13) as

x v 0 +p[ v 0 ]+p[ x 2 4 + 3 4 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTiaadAhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbWaamWa aeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGLBbGaayzxaaGaey 4kaSIaamiCamaadmaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGinaaaacqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0a aaaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@4A33@  (14)

Using the embedding parameter p as a small parameter, the solution of Eq. (11) can be assumed to be written as a power series in p as given in Eq. (15)

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI3aaaaOGaamiEamaaBaaaleaacaaI 3aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiIdaaaGccaWG4b WaaSbaaSqaaiaaiIdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGyoaaaakiaadIhadaWgaaWcbaGaaGyoaaqabaGccqGHRaWkcaGGUa GaaiOlaiaac6caaaa@66A3@   (15)

On substituting Eq. (15) into Eq.(14), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... v 0 + p[ v 0 ]+ 1 4 p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... ) 2 + 3 4 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaamiCam aaCaaaleqabaGaaG4naaaakiaadIhadaWgaaWcbaGaaG4naaqabaGc cqGHRaWkcaWGWbWaaWbaaSqabeaacaaI4aaaaOGaamiEamaaBaaale aacaaI4aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiMdaaaGc caWG4bWaaSbaaSqaaiaaiMdaaeqaaOGaey4kaSIaaiOlaiaac6caca GGUaGaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiabgUcaRaqa aiaadchadaWadaqaaiaadAhadaWgaaWcbaGaaGimaaqabaaakiaawU facaGLDbaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiaadcha daWadaqaamaabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgU caRiaadchacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaa leaacaaIZaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaisdaaa GccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGynaaaakiaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI2aaaaOGaamiEamaaBaaaleaacaaI 2aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiEdaaaGccaWG4b WaaSbaaSqaaiaaiEdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGioaaaakiaadIhadaWgaaWcbaGaaGioaaqabaGccqGHRaWkcaWGWb WaaWbaaSqabeaacaaI5aaaaOGaamiEamaaBaaaleaacaaI5aaabeaa kiabgUcaRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiabgUcaRmaalaaabaGaaG4maaqaaiaaisdaaaaa caGLBbGaayzxaaGaeyypa0JaaGimaaaaaa@A7D8@   (16)

Arrange the equation according to the power of the embedding parameter p, we have

p 0 : x 0 v 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG2bWaaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaacYcaaaa@4786@  

p 1 : x 1 + v 0 + 1 4 x 0 2 + 3 4 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG2bWaaS baaSqaaiaaicdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGin aaaacaWG4bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaey4kaSYaaS aaaeaacaaIZaaabaGaaGinaaaacqGH9aqpcaaIWaGaaiilaaaa@4EFF@  

p 2 : x 2 + 1 4 ( 2 x 0 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaGimaiaacYcaaaa@4D3D@  

p 3 : x 3 + 1 4 ( x 1 2 +2 x 0 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab g2da9iaaicdacaGGSaaaaa@50CD@  

p 4 : x 4 + 1 4 ( 2 x 0 x 3 +2 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@52BE@  

p 5 : x 5 + 1 4 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaacaaI0aaabe aaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaaaaa@5650@  

p 6 : x 6 + 1 4 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa isdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyyp a0JaaGimaiaacYcaaaa@5843@  

p 7 : x 7 + 1 4 ( x 3 2 +2 x 0 x 6 +2 x 1 x 5 +2 x 2 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4naaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4naaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIZaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiE amaaBaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaiabg2da9iaaic dacaGGSaaaaa@5BD7@  

p 8 : x 8 + 1 4 ( 2 x 0 x 7 +2 x 1 x 6 +2 x 2 x 5 +2 x 3 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGioaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGioaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiEdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa iAdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqaba GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaGOmaiaadIha daWgaaWcbaGaaG4maaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@5DCC@  

p 9 : x 9 + 1 4 ( x 4 2 +2 x 0 x 8 +2 x 1 x 7 +2 x 2 x 6 +2 x 3 x 5 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGyoaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGyoaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaI0aaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaI4aaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaI3aaabe aakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiE amaaBaaaleaacaaI2aaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaamiEamaaBaaaleaacaaI1aaabeaaaOGaayjk aiaawMcaaiabg2da9iaaicdacaGGSaaaaa@6162@  

Taking an initial approximation as v 0 =0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIWaaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGyn aaaa@3BFF@

On solving the above equations, we have

x 0 =0.500000, x 1 =0.312500, x 2 =0.078125, x 3 =0.043945, x 4 =0.023193, x 5 =0.014190, x 6 =0.008880, x 7 =0.005826, x 8 =0.003908, x 9 =0.002680 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6ca caaI1aGaaGimaiaaicdacaaIWaGaaGimaiaaicdacaGGSaGaaGPaVl aaykW7caaMc8UaamiEamaaBaaaleaacaaIXaaabeaakiabg2da9iab gkHiTiaaicdacaGGUaGaaG4maiaaigdacaaIYaGaaGynaiaaicdaca aIWaGaaiilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOm aaqabaGccqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaI3aGaaG ioaiaaigdacaaIYaGaaGynaiaacYcacaaMc8UaaGPaVlaaykW7caWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6 cacaaIWaGaaGinaiaaiodacaaI5aGaaGinaiaaiwdacaGGSaGaaGPa VlaaykW7caaMc8UaamiEamaaBaaaleaacaaI0aaabeaakiabg2da9i abgkHiTiaaicdacaGGUaGaaGimaiaaikdacaaIZaGaaGymaiaaiMda caaIZaGaaiilaaqaaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcba GaaGynaaqabaGccqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaI XaGaaGinaiaaigdacaaI5aGaaGimaiaacYcacaaMb8UaaGPaVlaayk W7caaMc8UaamiEamaaBaaaleaacaaI2aaabeaakiabg2da9iabgkHi TiaaicdacaGGUaGaaGimaiaaicdacaaI4aGaaGioaiaaiIdacaaIWa GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaa iEdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGimai aaiwdacaaI4aGaaGOmaiaaiAdacaGGSaGaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGioaaqabaGccqGH9aqpcqGHsislca aIWaGaaiOlaiaaicdacaaIWaGaaG4maiaaiMdacaaIWaGaaGioaiaa cYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiMdaaeqaaO Gaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaikdacaaI 2aGaaGioaiaaicdaaaaa@CBE5@   (17)

Taking an initial approximation as v 0 =0.75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIWaaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaG4n aiaaiwdaaaa@3CC0@

x 0 =0.75, x 1 =0.140625, x 2 =0.052734, x 3 =0.024719, x 4 =0.012977, x 5 =0.007300, x 6 =0.004302, x 7 =0.002621, x 8 =0.001634, x 9 =0.001043 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6ca caaI3aGaaGynaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIXaGa aGinaiaaicdacaaI2aGaaGOmaiaaiwdacaGGSaGaaGPaVlaaykW7ca aMc8UaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGimaiaaiwdacaaIYaGaaG4naiaaiodacaaI0aGaai ilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIYaGaaGinaiaaiE dacaaIXaGaaGyoaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSba aSqaaiaaisdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWa GaaGymaiaaikdacaaI5aGaaG4naiaaiEdacaGGSaaabaGaaGPaVlaa ykW7caaMc8UaamiEamaaBaaaleaacaaI1aaabeaakiabg2da9iabgk HiTiaaicdacaGGUaGaaGimaiaaicdacaaI3aGaaG4maiaaicdacaaI WaGaaiilaiaaygW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaai aaiAdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGim aiaaisdacaaIZaGaaGimaiaaikdacaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaadIhadaWgaaWcbaGaaG4naaqabaGccqGH9aqpcqGHsisl caaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaaiAdacaaIYaGaaGymai aacYcacaaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaI 4aaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGimaiaaicdaca aIXaGaaGOnaiaaiodacaaI0aGaaiilaiaaykW7caaMc8UaaGPaVlaa dIhadaWgaaWcbaGaaGyoaaqabaGccqGH9aqpcqGHsislcaaIWaGaai OlaiaaicdacaaIWaGaaGymaiaaicdacaaI0aGaaG4maaaaaa@C8E3@  (18)

From the basic principle of HPM,

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI3aaaaOGaamiEamaaBaaaleaacaaI 3aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiIdaaaGccaWG4b WaaSbaaSqaaiaaiIdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGyoaaaakiaadIhadaWgaaWcbaGaaGyoaaqabaGccqGHRaWkcaGGUa GaaiOlaiaac6caaaa@66A3@  

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. Therefore, setting p=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9iaaigdaaaa@38AC@ , results in the approximation solution of Eq. (9)

x= lim p1 x= x 0 + x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + x 8 + x 9 +...... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWGWbGaeyOKH4Qa aGymaaqabaGccaWG4bGaeyypa0JaamiEamaaBaaaleaacaaIWaaabe aakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiEamaaBaaaleaaca aIZaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGinaaqabaGccqGH RaWkcaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiEamaaBa aaleaacaaI2aaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaG4naaqa baGccqGHRaWkcaWG4bWaaSbaaSqaaiaaiIdaaeqaaOGaey4kaSIaam iEamaaBaaaleaacaaI5aaabeaakiabgUcaRiaac6cacaGGUaGaaiOl aiaac6cacaGGUaGaaiOlaaaa@611B@   (20)

Which gives

x= x 0 + x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + x 8 + x 9 +...... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG4bWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiEamaaBaaaleaaca aI1aaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGH RaWkcaWG4bWaaSbaaSqaaiaaiEdaaeqaaOGaey4kaSIaamiEamaaBa aaleaacaaI4aaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGyoaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6caaa a@5868@   (21)

Therefore, when the initial approximation, v 0 =0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIWaaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGyn aaaa@3BFF@ we have

x=0.500000,0.312500,0.0781250.0439450.0231930.014190 0.008880,0.0058260.0039080.002680=0.993252 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaeyOeI0IaaGimaiaac6cacaaI1aGaaGimaiaaicdacaaI WaGaaGimaiaaicdacaGGSaGaeyOeI0IaaGimaiaac6cacaaIZaGaaG ymaiaaikdacaaI1aGaaGimaiaaicdacaGGSaGaeyOeI0IaaGimaiaa c6cacaaIWaGaaG4naiaaiIdacaaIXaGaaGOmaiaaiwdacqGHsislca aIWaGaaiOlaiaaicdacaaI0aGaaG4maiaaiMdacaaI0aGaaGynaiab gkHiTiaaicdacaGGUaGaaGimaiaaikdacaaIZaGaaGymaiaaiMdaca aIZaGaeyOeI0IaaGimaiaac6cacaaIWaGaaGymaiaaisdacaaIXaGa aGyoaiaaicdaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaiIdacaaI 4aGaaGioaiaaicdacaGGSaGaeyOeI0IaaGimaiaac6cacaaIWaGaaG imaiaaiwdacaaI4aGaaGOmaiaaiAdacqGHsislcaaIWaGaaiOlaiaa icdacaaIWaGaaG4maiaaiMdacaaIWaGaaGioaiabgkHiTiaaicdaca GGUaGaaGimaiaaicdacaaIYaGaaGOnaiaaiIdacaaIWaGaeyypa0Ja eyOeI0IaaGimaiaac6cacaaI5aGaaGyoaiaaiodacaaIYaGaaGynai aaikdaaaaa@907A@  (22)

And, when the initial approximation, v 0 =0.75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIWaaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaG4n aiaaiwdaaaa@3CC0@ , we have

x=0.750.1406250.0527340.0247190.0129770.007300 0.0043020.0026210.0016340.001043+...=0.997955 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaeyOeI0IaaGimaiaac6cacaaI3aGaaGynaiabgkHiTiaa icdacaGGUaGaaGymaiaaisdacaaIWaGaaGOnaiaaikdacaaI1aGaey OeI0IaaGimaiaac6cacaaIWaGaaGynaiaaikdacaaI3aGaaG4maiaa isdacqGHsislcaaIWaGaaiOlaiaaicdacaaIYaGaaGinaiaaiEdaca aIXaGaaGyoaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaIYaGa aGyoaiaaiEdacaaI3aGaeyOeI0IaaGimaiaac6cacaaIWaGaaGimai aaiEdacaaIZaGaaGimaiaaicdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaIWaGaai OlaiaaicdacaaIWaGaaGinaiaaiodacaaIWaGaaGOmaiabgkHiTiaa icdacaGGUaGaaGimaiaaicdacaaIYaGaaGOnaiaaikdacaaIXaGaey OeI0IaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaI2aGaaG4maiaa isdacqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaicdaca aI0aGaaG4maiabgUcaRiaac6cacaGGUaGaaiOlaiabg2da9iabgkHi TiaaicdacaGGUaGaaGyoaiaaiMdacaaI3aGaaGyoaiaaiwdacaaI1a aaaaa@9184@   (23)

The above results show that the closer the initial approximation to the root of the equation, the more accurate is the result of the solution. However, the approach requires an initial estimate. In order to avoid this, one can write a modified homotopy perturbation method so that the scheme can be free from the problem of choosing an appropriate initial approximation.

The equation is expressed as

[ L( u )+c ]+pN( u )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGmbWaaeWaaeaacaWG1baacaGLOaGaayzkaaGaey4kaSIaam4yaaGa ay5waiaaw2faaiabgUcaRiaadchacaWGobWaaeWaaeaacaWG1baaca GLOaGaayzkaaGaeyypa0JaaGimaiaac6caaaa@44A5@   (24)

where c is the constant in the nonlinear equation,

x+ 3 4 +p[ x 2 4 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRmaalaaabaGaaG4maaqaaiaaisdaaaGaey4kaSIaamiCamaadmaa baWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaa aaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@41A7@   (25)

As done previously, the solution of Eq. (11) can be assumed to be written as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI3aaaaOGaamiEamaaBaaaleaacaaI 3aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiIdaaaGccaWG4b WaaSbaaSqaaiaaiIdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGyoaaaakiaadIhadaWgaaWcbaGaaGyoaaqabaGccqGHRaWkcaGGUa GaaiOlaiaac6caaaa@66A3@   (26)

On substituting Eq. (26) into Eq.(25), one has

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +...+ 3 4 + 1 4 p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 + p 7 x 7 + p 8 x 8 + p 9 x 9 +... ) 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaamiCam aaCaaaleqabaGaaG4naaaakiaadIhadaWgaaWcbaGaaG4naaqabaGc cqGHRaWkcaWGWbWaaWbaaSqabeaacaaI4aaaaOGaamiEamaaBaaale aacaaI4aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiMdaaaGc caWG4bWaaSbaaSqaaiaaiMdaaeqaaOGaey4kaSIaaiOlaiaac6caca GGUaGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaaaaaeaacqGHRaWk daWcaaqaaiaaigdaaeaacaaI0aaaaiaadchadaWadaqaamaabmaaba GaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG OmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWa aWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaaki abgUcaRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqa aiaaisdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaaki aadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqa beaacaaI2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRi aadchadaahaaWcbeqaaiaaiEdaaaGccaWG4bWaaSbaaSqaaiaaiEda aeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGioaaaakiaadIhada WgaaWcbaGaaGioaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI 5aaaaOGaamiEamaaBaaaleaacaaI5aaabeaakiabgUcaRiaac6caca GGUaGaaiOlaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGa ay5waiaaw2faaiabg2da9iaaicdaaaaa@9F4C@  (27)

Arrange the equation according to the power of the embedding parameter p, we have

p 0 : x 0 + 3 4 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaai aaiodaaeaacaaI0aaaaiabg2da9iaaicdacaGGSaaaaa@471B@  

p 1 : x 1 + 1 4 x 0 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaikda aaGccqGH9aqpcaaIWaGaaiilaaaa@49C5@  

p 2 : x 2 + 1 4 ( 2 x 0 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaGimaiaacYcaaaa@4D3D@  

p 3 : x 3 + 1 4 ( x 1 2 +2 x 0 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab g2da9iaaicdacaGGSaaaaa@50CD@  

p 4 : x 4 + 1 4 ( 2 x 0 x 3 +2 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@52BE@  

p 5 : x 5 + 1 4 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaacaaI0aaabe aaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaaaaa@5650@  

p 6 : x 6 + 1 4 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa isdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyyp a0JaaGimaiaacYcaaaa@5843@  

p 7 : x 7 + 1 4 ( x 3 2 +2 x 0 x 6 +2 x 1 x 5 +2 x 2 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4naaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4naaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaIZaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiE amaaBaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaiabg2da9iaaic dacaGGSaaaaa@5BD7@  

p 8 : x 8 + 1 4 ( 2 x 0 x 7 +2 x 1 x 6 +2 x 2 x 5 +2 x 3 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGioaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGioaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiEdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa iAdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqaba GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaGOmaiaadIha daWgaaWcbaGaaG4maaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@5DCC@  

p 9 : x 9 + 1 4 ( x 4 2 +2 x 0 x 8 +2 x 1 x 7 +2 x 2 x 6 +2 x 3 x 5 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGyoaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGyoaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI0aaaamaabmaabaGaamiEamaaDaaaleaacaaI0aaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaI4aaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaI3aaabe aakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiE amaaBaaaleaacaaI2aaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaamiEamaaBaaaleaacaaI1aaabeaaaOGaayjk aiaawMcaaiabg2da9iaaicdacaGGSaaaaa@6162@  

On solving the above equations, we have

x 0 =0.75, x 1 =0.140625, x 2 =0.052734, x 3 =0.024719, x 4 =0.012977, x 5 =0.007300, x 6 =0.004302, x 7 =0.002621, x 8 =0.001634, x 9 =0.001043 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6ca caaI3aGaaGynaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIXaGa aGinaiaaicdacaaI2aGaaGOmaiaaiwdacaGGSaGaaGPaVlaaykW7ca aMc8UaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGimaiaaiwdacaaIYaGaaG4naiaaiodacaaI0aGaai ilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaIYaGaaGinaiaaiE dacaaIXaGaaGyoaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSba aSqaaiaaisdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWa GaaGymaiaaikdacaaI5aGaaG4naiaaiEdacaGGSaaabaGaaGPaVlaa ykW7caaMc8UaamiEamaaBaaaleaacaaI1aaabeaakiabg2da9iabgk HiTiaaicdacaGGUaGaaGimaiaaicdacaaI3aGaaG4maiaaicdacaaI WaGaaiilaiaaygW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaai aaiAdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGim aiaaisdacaaIZaGaaGimaiaaikdacaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaadIhadaWgaaWcbaGaaG4naaqabaGccqGH9aqpcqGHsisl caaIWaGaaiOlaiaaicdacaaIWaGaaGOmaiaaiAdacaaIYaGaaGymai aacYcacaaMc8UaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaI 4aaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGimaiaaicdaca aIXaGaaGOnaiaaiodacaaI0aGaaiilaiaaykW7caaMc8UaaGPaVlaa dIhadaWgaaWcbaGaaGyoaaqabaGccqGH9aqpcqGHsislcaaIWaGaai OlaiaaicdacaaIWaGaaGymaiaaicdacaaI0aGaaG4maaaaaa@C8E3@  (28)

Therefore

x= x 0 + x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + x 8 + x 9 +...... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG4bWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiEamaaBaaaleaaca aI1aaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGH RaWkcaWG4bWaaSbaaSqaaiaaiEdaaeqaaOGaey4kaSIaamiEamaaBa aaleaacaaI4aaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGyoaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6caaa a@5868@  (29)

From Eqs. (28) and (29), we have

x=0.750.1406250.0527340.0247190.0129770.007300 0.0043020.0026210.0016340.001043+...=0.997955 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaeyOeI0IaaGimaiaac6cacaaI3aGaaGynaiabgkHiTiaa icdacaGGUaGaaGymaiaaisdacaaIWaGaaGOnaiaaikdacaaI1aGaey OeI0IaaGimaiaac6cacaaIWaGaaGynaiaaikdacaaI3aGaaG4maiaa isdacqGHsislcaaIWaGaaiOlaiaaicdacaaIYaGaaGinaiaaiEdaca aIXaGaaGyoaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdacaaIYaGa aGyoaiaaiEdacaaI3aGaeyOeI0IaaGimaiaac6cacaaIWaGaaGimai aaiEdacaaIZaGaaGimaiaaicdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaIWaGaai OlaiaaicdacaaIWaGaaGinaiaaiodacaaIWaGaaGOmaiabgkHiTiaa icdacaGGUaGaaGimaiaaicdacaaIYaGaaGOnaiaaikdacaaIXaGaey OeI0IaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaI2aGaaG4maiaa isdacqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaicdaca aI0aGaaG4maiabgUcaRiaac6cacaGGUaGaaiOlaiabg2da9iabgkHi TiaaicdacaGGUaGaaGyoaiaaiMdacaaI3aGaaGyoaiaaiwdacaaI1a aaaaa@9184@  

The exact solutions for the roots of the equation are -1 and -3. The above solution shows that the results of the HPM is approaching a negative root of -1, which is one of the roots of the equation. It should be stated that the rate of convergence can be accelerated using Shank transformation (Table 1).

Number of Iteration (n)

n-term Solution

Absolute Error

1

-0.75

0.25

2

-0.890625

0.109375

3

-0.943359

0.056641

4

-0.968078

0.031922

5

-0.981055

0.018945

6

-0.988355

0.011645

7

-0.992657

0.007343

8

-0.995278

0.004722

9

-0.996912

0.003088

10

-0.997995

0.002045

Table 1 Solution of the equation of example 3.1

Example 5.2: Find the roots of the following cubic equation using homotopy perturbation method

x 3 5x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgkHiTiaaiwdacaWG4bGaey4kaSIaaG4m aiabg2da9iaaicdaaaa@3DEF@ .  (30)

The above equation can be expressed as

x x 3 5 3 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiwda aaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaGynaaaacqGH9aqpcaaIWa aaaa@3ED9@  (31)

In order to apply homotopy perturbation method, the equation is expressed as

x 3 5 +p[ x 3 5 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiwdaaaGaey4kaSIaamiCamaadmaa baGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcba GaaGynaaaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@42A2@   (32)

Which can be written as

x 3 5 p[ x 3 5 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiwdaaaGaeyOeI0IaamiCamaadmaa baWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGynaa aaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@41C0@   (33)

According to the procedure of HPM, the solution of Eq. (30) can be assumed to be written as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (34)

After substitution of Eq. (34) into Eq.(33), on arrives at

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 3 5 1 5 p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaGynaaaaaeaa cqGHsisldaWcaaqaaiaaigdaaeaacaaI1aaaaiaadchadaWadaqaam aabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadcha caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaale qabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWk caWGWbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZa aabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWa aSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG ynaaaakiaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWa aWbaaSqabeaacaaI2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaaki abgUcaRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaamaaCaaaleqa baGaaG4maaaaaOGaay5waiaaw2faaiabg2da9iaaicdaaaaa@82C7@  (35)

Eq. (35) can be arranged according to the power of the embedding parameter p as

p 0 : x 0 3 5 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaiodaaeaacaaI1aaaaiabg2da9iaaicdacaGGSaaaaa@4727@  

p 1 : x 1 1 5 x 0 3 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaioda aaGccqGH9aqpcaaIWaGaaiilaaaa@49D2@  

p 2 : x 2 1 5 ( 3 x 0 2 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@4E07@  

p 3 : x 3 1 5 ( 3 x 0 2 x 2 +3 x 1 2 x 0 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaaG4maiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG 4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaG imaiaacYcaaaa@5441@  

p 4 : x 4 1 5 ( 3 x 0 2 x 3 + x 1 3 +6 x 0 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaaIXaaabaGaaG4maaaakiabgUcaRiaa iAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaaca aIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGH9aqpcaaIWaGaaiilaaaa@5907@  

p 5 : x 5 1 5 ( 3 x 0 2 x 4 +3 x 0 x 2 2 +6 x 0 x 1 x 3 +3 x 1 2 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey 4kaSIaaG4maiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOnaiaadIhadaWgaa WcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiE amaaBaaaleaacaaIZaaabeaakiabgUcaRiaaiodacaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaaaaa@61EE@  

p 6 : x 6 1 5 ( 3 x 0 2 x 5 +6 x 0 x 2 x 3 +6 x 0 x 1 x 4 +3 x 1 x 2 2 +3 x 1 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey 4kaSIaaGOnaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiaaiAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaa leaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRa WkcaaIZaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIZaGaamiEamaaDaaale aacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaG4maaqabaaa kiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaaaa@6962@  

The solutions of the above equations are

x 0 =0.600000, x 1 =0.0432000, x 2 =0.0093312, x 3 =0.0026874, x 4 =0.0008868, x 5 =0.0003169, x 6 =0.0001194 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI2aGa aGimaiaaicdacaaIWaGaaGimaiaaicdacaGGSaGaaGPaVlaaykW7ca aMc8UaamiEamaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdacaGG UaGaaGimaiaaisdacaaIZaGaaGOmaiaaicdacaaIWaGaaGimaiaacY cacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaikdaaeqaaOGa eyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaiMdacaaIZaGaaG4mai aaigdacaaIYaGaaiilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWc baGaaG4maaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaG OmaiaaiAdacaaI4aGaaG4naiaaisdacaGGSaaabaGaaGPaVlaaykW7 caaMc8UaamiEamaaBaaaleaacaaI0aaabeaakiabg2da9iaaicdaca GGUaGaaGimaiaaicdacaaIWaGaaGioaiaaiIdacaaI2aGaaGioaiaa cYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiwdaaeqaaO Gaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIZaGaaGym aiaaiAdacaaI5aGaaiilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaIWaGa aGimaiaaigdacaaIXaGaaGyoaiaaisdaaaaa@97ED@   (36)

From the basic principle of HPM,

x=0.600000+0.0432000+0.0093312+0.0026874+0.0008868+0.0003169+0.0001194+...=0.6565417 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGOnaiaaicdacaaIWaGaaGimaiaaicdacaaI WaGaey4kaSIaaGimaiaac6cacaaIWaGaaGinaiaaiodacaaIYaGaaG imaiaaicdacaaIWaGaey4kaSIaaGimaiaac6cacaaIWaGaaGimaiaa iMdacaaIZaGaaG4maiaaigdacaaIYaGaey4kaSIaaGimaiaac6caca aIWaGaaGimaiaaikdacaaI2aGaaGioaiaaiEdacaaI0aGaey4kaSIa aGimaiaac6cacaaIWaGaaGimaiaaicdacaaI4aGaaGioaiaaiAdaca aI4aGaey4kaSIaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIZaGa aGymaiaaiAdacaaI5aGaey4kaSIaaGimaiaac6cacaaIWaGaaGimai aaicdacaaIXaGaaGymaiaaiMdacaaI0aGaey4kaSIaaiOlaiaac6ca caGGUaGaeyypa0JaaGimaiaac6cacaaI2aGaaGynaiaaiAdacaaI1a GaaGinaiaaigdacaaI3aaaaa@7537@  

The exact solutions of the roots of the given equation are -2.49086362, 0.6566204, 1.83424318. Table 2 shows that the solution through the HPM is approaching the lowest positive root of 0.6566204.

Number of Iteration (n)

 n-term Solution

Absolute Error

1

0.6

0.0566204

2

0.6432

0.0134204

3

0.6525312

0.0040892

4

0.6552186

0.0014018

5

0.6561054

0.000515

6

0.6564223

0.0001981

7

0.6565417

0.0000787

Table 2 Solution of the equation of example 3.2

Example 5.3: Determine the root of the following cubic equation with the aid of homotopy perturbation method

x 3 7 x 2 +14x6=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgkHiTiaaiEdacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGymaiaaisdacaWG4bGaeyOeI0IaaGOnai abg2da9iaaicdaaaa@424A@ .  (37)

The above equation can be expressed as

x 3 7 + x 3 14 x 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiEdaaaGaey4kaSYaaSaaaeaacaWG 4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaisdaaaGaeyOeI0 YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaa cqGH9aqpcaaIWaaaaa@4333@   (38)

In order to apply homotopy perturbation method, the equation is expressed as

x 3 7 +p[ x 3 14 x 2 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiEdaaaGaey4kaSIaamiCamaadmaa baWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymai aaisdaaaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGOmaaaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@461A@   (39)

Following the HPM procedure, the solution of Eq. (37) can be assumed to be written as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (40)

When Eq. (40) is substituted into Eq. (39), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 3 7 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 14 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaG4naaaaaeaa cqGHRaWkcaWGWbWaamWaaqaabeqaamaalaaabaWaaeWaaeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaGc baGaaGymaiaaisdaaaaabaGaeyOeI0YaaSaaaeaadaqadaqaaiaadI hadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaa GccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI 0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaaGccaWG4b WaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkcaGGUa GaaiOlaiaac6caaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaa keaacaaIYaaaaaaacaGLBbGaayzxaaGaeyypa0JaaGimaaaaaa@A754@   (41)

On arranging the Eq. (41) according to the power of the embedding parameter p, gives

p 0 : x 0 3 7 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaiodaaeaacaaI3aaaaiabg2da9iaaicdacaGGSaaaaa@4729@  

p 1 : x 1 + 1 14 x 0 3 1 2 x 0 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaacaWG4bWaa0baaSqaaiaaicdaaeaa caaIZaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG4b Waa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyypa0JaaGimaiaacYca aaa@4F9F@  

p 2 : x 2 + 1 14 ( 3 x 0 2 x 1 ) 1 2 ( 2 x 0 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaacaaIYaGaamiEamaaBaaaleaacaaIWaaabeaakiaadI hadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaI WaGaaiilaaaa@574A@  

p 3 : x 3 + 1 14 ( 3 x 0 2 x 2 +3 x 1 2 x 0 ) 1 2 ( x 1 2 +2 x 0 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabe aakiabgUcaRiaaiodacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaamiEamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiabgk HiTmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhadaWgaa WcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGL OaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@6112@  

p 4 : x 4 + 1 14 ( 3 x 0 2 x 3 + x 1 3 +6 x 0 x 1 x 2 ) 1 2 ( 2 x 0 x 3 +2 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIZaaabe aakiabgUcaRiaadIhadaqhaaWcbaGaaGymaaqaaiaaiodaaaGccqGH RaWkcaaI2aGaamiEamaaBaaaleaacaaIWaaabeaakiaadIhadaWgaa WcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGL OaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaqada qaaiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaa leaacaaIZaaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMca aiabg2da9iaaicdacaGGSaaaaa@67C7@  

p 5 : x 5 + 1 14 ( 3 x 0 2 x 4 +3 x 0 x 2 2 +6 x 0 x 1 x 3 +3 x 1 2 x 2 ) 1 2 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaI0aaabe aakiabgUcaRiaaiodacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiE amaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaiAdacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaa kiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaIZaGaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaabmaabaGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaa kiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEam aaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqa aiaaicdaaeqaaOGaamiEamaaBaaaleaacaaI0aaabeaaaOGaayjkai aawMcaaiabg2da9iaaicdacaGGSaaaaa@743E@  

p 6 : x 6 + 1 14 ( 3 x 0 2 x 5 +6 x 0 x 2 x 3 +6 x 0 x 1 x 4 +3 x 1 x 2 2 +3 x 1 2 x 3 ) 1 2 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIXaGaaGinaaaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaaiAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiE amaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaaI2aGaamiEamaaBaaaleaacaaIWaaabeaakiaadIha daWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaO Gaey4kaSIaaG4maiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWa a0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaG4maiaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaioda aeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG OmaaaadaqadaqaaiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGa amiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaaikdacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaI0aaabeaakiab gUcaRiaaikdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiEamaaBa aaleaacaaIZaaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGG Saaaaa@7DA3@  

The solutions of the above equations are

x 0 =0.4285714, x 1 =0.0862141, x 2 =0.0335563, x 3 =0.0160944, x 4 =0.0080918, x 5 =0.0046883, x 6 =0.0029661 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI0aGa aGOmaiaaiIdacaaI1aGaaG4naiaaigdacaaI0aGaaiilaiaaykW7ca aMc8UaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaaI WaGaaiOlaiaaicdacaaI4aGaaGOnaiaaikdacaaIXaGaaGinaiaaig dacaGGSaGaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIYaaa beaakiabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaIZaGaaGynai aaiwdacaaI2aGaaG4maiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaG ymaiaaiAdacaaIWaGaaGyoaiaaisdacaaI0aGaaiilaaqaaiaaykW7 caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGH9aqpca aIWaGaaiOlaiaaicdacaaIWaGaaGioaiaaicdacaaI5aGaaGymaiaa iIdacaGGSaGaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaI1a aabeaakiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaI0aGaaGOn aiaaiIdacaaI4aGaaG4maiaacYcacaaMc8UaaGPaVlaaykW7caWG4b WaaSbaaSqaaiaaiAdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGa aGimaiaaikdacaaI5aGaaGOnaiaaiAdacaaIXaaaaaa@98E0@   (42)

Therefore, we have

x=0.4285714+0.0862141+0.0335563+0.0160944 +0.0080918+0.0046883+0.0029661+...=0.5801824 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaaGimaiaac6cacaaI0aGaaGOmaiaaiIdacaaI1aGaaG4n aiaaigdacaaI0aGaey4kaSIaaGimaiaac6cacaaIWaGaaGioaiaaiA dacaaIYaGaaGymaiaaisdacaaIXaGaey4kaSIaaGimaiaac6cacaaI WaGaaG4maiaaiodacaaI1aGaaGynaiaaiAdacaaIZaGaey4kaSIaaG imaiaac6cacaaIWaGaaGymaiaaiAdacaaIWaGaaGyoaiaaisdacaaI 0aaabaGaey4kaSIaaGimaiaac6cacaaIWaGaaGimaiaaiIdacaaIWa GaaGyoaiaaigdacaaI4aGaey4kaSIaaGimaiaac6cacaaIWaGaaGim aiaaisdacaaI2aGaaGioaiaaiIdacaaIZaGaey4kaSIaaGimaiaac6 cacaaIWaGaaGimaiaaikdacaaI5aGaaGOnaiaaiAdacaaIXaGaey4k aSIaaiOlaiaac6cacaGGUaGaeyypa0JaaGimaiaac6cacaaI1aGaaG ioaiaaicdacaaIXaGaaGioaiaaikdacaaI0aaaaaa@762B@
The exact solutions of the roots of the given equation are 0.5857864, 3.000000 and 3.4142135. The solution of the equation using HPM is approaching the lowest positive root of 0.5857864 as the absolute error is approaching zero (Table 3).

Number of Iteration (n)

 n-term Solution

Absolute Error

1

0.4285714

0.157215

2

0.5147855

0.0710009

3

0.5483418

0.0374446

4

0.5644362

0.0213502

5

0.572528

0.0132584

6

0.5772163

0.0085701

7

0.5801824

0.005604

Table 3 Solution of the equation of example 3.3

Example 5.4: Solve the following cubic equation using homotopy perturbation method

x 3 +4 x 2 +8x+8=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaaisdacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGioaiaadIhacqGHRaWkcaaI4aGaeyypa0 JaaGimaaaa@417C@   . (43)

The above equation can be expressed as

x+1+ x 3 8 + x 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRiaaigdacqGHRaWkdaWcaaqaaiaadIhadaahaaWcbeqaaiaaioda aaaakeaacaaI4aaaaiabgUcaRmaalaaabaGaamiEamaaCaaaleqaba GaaGOmaaaaaOqaaiaaikdaaaGaeyypa0JaaGimaaaa@4193@   (44)

As before, in order to apply homotopy perturbation method, the Eq. (44) can be expressed as

x+1+p[ x 3 8 + x 2 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRiaaigdacqGHRaWkcaWGWbWaamWaaeaadaWcaaqaaiaadIhadaah aaWcbeqaaiaaiodaaaaakeaacaaI4aaaaiabgUcaRmaalaaabaGaam iEamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaacaGLBbGaayzx aaGaeyypa0JaaGimaaaa@447A@  (45)

In a similar way, one can say that the solution of Eq. (43) can be expressed as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@  (46)

On substituting Eq. (456) into Eq.(45), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +...+1 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 8 + ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaey4kaSIaaGymaaqaaiabgUcaRiaadchadaWadaab aeqabaWaaSaaaeaadaqadaqaaiaadIhadaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaWGWbGaamiEamaaBaaaleaacaaIXaaabeaakiabgUca RiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaik daaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiaadIha daWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaaca aI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgUcaRiaadcha daahaaWcbeqaaiaaiwdaaaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaO Gaey4kaSIaamiCamaaCaaaleqabaGaaGOnaaaakiaadIhadaWgaaWc baGaaGOnaaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawIcaca GLPaaadaahaaWcbeqaaiaaiodaaaaakeaacaaI4aaaaaqaaiabgUca RmaalaaabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey 4kaSIaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSba aSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaa aakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGWbWaaWba aSqabeaacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaabeaakiabgU caRiaadchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaa iAdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaaGaay5waiaaw2fa aiabg2da9iaaicdaaaaa@A5B4@   (47)

Arrange the equation according to the power of the embedding parameter p, produces

p 0 : x 0 +1=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaGaey ypa0JaaGimaiaacYcaaaa@464B@  

p 1 : x 1 + 1 8 x 0 3 + 1 2 x 0 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaioda aaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaqhaa WcbaGaaGimaaqaaiaaikdaaaGccqGH9aqpcaaIWaGaaiilaaaa@4EDD@  

p 2 : x 2 + 1 8 ( 3 x 0 2 x 1 )+ 1 2 ( 2 x 0 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaaiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBa aaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGG Saaaaa@5688@  

p 3 : x 3 + 1 8 ( 3 x 0 2 x 2 +3 x 1 2 x 0 )+ 1 2 ( x 1 2 +2 x 0 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaaG4maiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG 4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadIhadaqhaaWcbaGa aGymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiEamaaBaaaleaaca aIWaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGH9aqpcaaIWaGaaiilaaaa@6050@  

p 4 : x 4 + 1 8 ( 3 x 0 2 x 3 + x 1 3 +6 x 0 x 1 x 2 )+ 1 2 ( 2 x 0 x 3 +2 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaaIXaaabaGaaG4maaaakiabgUcaRiaa iAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaaca aIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaG OmaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqaba GccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyyp a0JaaGimaiaacYcaaaa@6705@  

p 5 : x 5 + 1 8 ( 3 x 0 2 x 4 +3 x 0 x 2 2 +6 x 0 x 1 x 3 +3 x 1 2 x 2 )+ 1 2 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey 4kaSIaaG4maiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOnaiaadIhadaWgaa WcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiE amaaBaaaleaacaaIZaaabeaakiabgUcaRiaaiodacaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa WaaeWaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGim aaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaa Gaeyypa0JaaGimaiaacYcaaaa@737C@  

p 6 : x 6 + 1 8 ( 3 x 0 2 x 5 +6 x 0 x 2 x 3 +6 x 0 x 1 x 4 +3 x 1 x 2 2 +3 x 1 2 x 3 )+ 1 2 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey 4kaSIaaGOnaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiaaiAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaa leaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRa WkcaaIZaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIZaGaamiEamaaDaaale aacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaG4maaqabaaa kiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaam aabmaabaGaaGOmaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWa aSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcba GaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIa aGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaai aaiodaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@7CE1@  

When the above equations are solved, we have

x 0 =1.0000000, x 1 =0.37500000, x 2 =0.23437500, x 3 =0.1640625, x 4 =0.1179199, x 5 =0.0835876, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaeyOeI0IaaGymaiaac6ca caaIWaGaaGimaiaaicdacaaIWaGaaGimaiaaicdacaaIWaGaaiilai aaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpcqGHsislcaaIWaGaaiOlaiaaiodacaaI3aGaaGynaiaaicdaca aIWaGaaGimaiaaicdacaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaa dIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsislcaaIWaGaai OlaiaaikdacaaIZaGaaGinaiaaiodacaaI3aGaaGynaiaaicdacaaI WaGaaiilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maa qabaGccqGH9aqpcqGHsislcaaIWaGaaiOlaiaaigdacaaI2aGaaGin aiaaicdacaaI2aGaaGOmaiaaiwdacaGGSaaabaGaaGPaVlaaykW7ca aMc8UaamiEamaaBaaaleaacaaI0aaabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGymaiaaigdacaaI3aGaaGyoaiaaigdacaaI5aGaaG yoaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiwda aeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGioaiaaio dacaaI1aGaaGioaiaaiEdacaaI2aGaaiilaaaaaa@919B@  (48)

Therefore, we have

x=( 1.0000000 )+( 0.37500000 )+( 0.23437500 )+(0.1640625) +(0.1179199)+(0.0835876)+...=1.974945 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0ZaaeWaaeaacqGHsislcaaIXaGaaiOlaiaaicdacaaIWaGa aGimaiaaicdacaaIWaGaaGimaiaaicdaaiaawIcacaGLPaaacqGHRa WkdaqadaqaaiabgkHiTiaaicdacaGGUaGaaG4maiaaiEdacaaI1aGa aGimaiaaicdacaaIWaGaaGimaiaaicdaaiaawIcacaGLPaaacqGHRa WkdaqadaqaaiabgkHiTiaaicdacaGGUaGaaGOmaiaaiodacaaI0aGa aG4maiaaiEdacaaI1aGaaGimaiaaicdaaiaawIcacaGLPaaacqGHRa WkcaGGOaGaeyOeI0IaaGimaiaac6cacaaIXaGaaGOnaiaaisdacaaI WaGaaGOnaiaaikdacaaI1aGaaiykaaqaaiabgUcaRiaacIcacqGHsi slcaaIWaGaaiOlaiaaigdacaaIXaGaaG4naiaaiMdacaaIXaGaaGyo aiaaiMdacaGGPaGaey4kaSIaaiikaiabgkHiTiaaicdacaGGUaGaaG imaiaaiIdacaaIZaGaaGynaiaaiIdacaaI3aGaaGOnaiaacMcacqGH RaWkcaGGUaGaaiOlaiaac6cacqGH9aqpcqGHsislcaaIXaGaaiOlai aaiMdacaaI3aGaaGinaiaaiMdacaaI0aGaaGynaaaaaa@7E82@  

The exact solutions of the roots of the given equation are -2.00000, -1+ 3 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIZaaaleqaaOGaamyAaaaa@37C6@  and -1- 3 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIZaaaleqaaOGaamyAaaaa@37C6@ . The result of the HPM is approaching the real root of -2.0000 as the absolute error is reducing to 0. The rate of convergence can be accelerated using Shank transformation (Table 4).

Number of Iteration (n)

 n-term Solution

Absolute Error

1

-1

1

2

-1.375

0.625

3

-1.609375

0.390625

4

-1.7734375

0.2265625

5

-1.8913574

0.1086426

6

-1.974945

0.025055

Table 4 Solution of the equation of example 3.4

Example 5.5: Solve the following quintic equation using homotopy perturbation method

x 5 3 x 4 +2 x 3 +5 x 2 6x4=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGynaaaakiabgkHiTiaaiodacaWG4bWaaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmaiaadIhadaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaiAdacaWG4bGaeyOeI0IaaGinaiabg2da9iaaicdaaaa@48BA@ .  (49)

Eq. (4) can be rearranged as

x+ 2 3 x 5 6 + x 4 2 x 3 3 5 x 2 6 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRmaalaaabaGaaGOmaaqaaiaaiodaaaGaeyOeI0YaaSaaaeaacaWG 4bWaaWbaaSqabeaacaaI1aaaaaGcbaGaaGOnaaaacqGHRaWkdaWcaa qaaiaadIhadaahaaWcbeqaaiaaisdaaaaakeaacaaIYaaaaiabgkHi TmaalaaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodaaa GaeyOeI0YaaSaaaeaacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaa aOqaaiaaiAdaaaGaeyypa0JaaGimaaaa@4A85@   (50)

The homotopy perturbation method is applied to write the Eq. (50) as

x+ 2 3 +p[ x 5 6 + x 4 2 x 3 3 5 x 2 6 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgU caRmaalaaabaGaaGOmaaqaaiaaiodaaaGaey4kaSIaamiCamaadmaa baGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaI1aaaaaGcba GaaGOnaaaacqGHRaWkdaWcaaqaaiaadIhadaahaaWcbeqaaiaaisda aaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaamiEamaaCaaaleqaba GaaG4maaaaaOqaaiaaiodaaaGaeyOeI0YaaSaaaeaacaaI1aGaamiE amaaCaaaleqabaGaaGOmaaaaaOqaaiaaiAdaaaaacaGLBbGaayzxaa Gaeyypa0JaaGimaaaa@4E4E@   (51)

Following the usual procedures of HPM, the solution of Eq. (51) is written as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@  (52)

The substitution of Eq. (52) into Eq.(51) produces

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +...+ 2 3 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 5 6 + ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 4 2 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 3 5 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 6 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaey4kaSYaaSaaaeaacaaIYaaabaGaaG4maaaaaeaa cqGHRaWkcaWGWbWaamWaaqaabeqaaiabgkHiTmaalaaabaWaaeWaae aacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIha daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadcha daahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWc baGaaGinaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaO GaamiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaS IaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI 1aaaaaGcbaGaaGOnaaaaaeaacqGHRaWkdaWcaaqaamaabmaabaGaam iEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaa aakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWba aSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaa isdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadI hadaWgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaa caaI2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6 cacaGGUaGaaiOlaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaa aOqaaiaaikdaaaaabaGaeyOeI0YaaSaaaeaadaqadaqaaiaadIhada WgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGcca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqa baGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkca WGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaa beaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaaGccaWG4bWaaS baaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOn aaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkcaGGUaGaai Olaiaac6caaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaakeaa caaIZaaaaaqaaiabgkHiTmaalaaabaGaaGynamaabmaabaGaamiEam aaBaaaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaaki aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqa beaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRi aadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisda aeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhada WgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI 2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6caca GGUaGaaiOlaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqa aiaaiAdaaaaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaaa@F158@   (53)

 

On arranging Eq.(53) according to the power of the embedding parameter p, we have

p 0 : x 0 + 2 3 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaai aaikdaaeaacaaIZaaaaiabg2da9iaaicdacaGGSaaaaa@4719@  

p 1 : x 1 1 6 x 0 5 + 1 2 x 0 4 1 3 x 0 3 5 6 x 0 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI2aaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaiwda aaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaqhaa WcbaGaaGimaaqaaiaaisdaaaGccqGHsisldaWcaaqaaiaaigdaaeaa caaIZaaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaiodaaaGccqGHsi sldaWcaaqaaiaaiwdaaeaacaaI2aaaaiaadIhadaqhaaWcbaGaaGim aaqaaiaaikdaaaGccqGH9aqpcaaIWaGaaiilaaaa@5930@  

p 2 : x 2 1 6 ( 5 x 0 4 x 1 )+ 1 2 ( 4 x 0 3 x 1 ) 1 3 ( 3 x 0 2 x 1 ) 5 6 ( 2 x 0 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI2aaaamaabmaabaGaaGynaiaadIhadaqhaaWcbaGa aGimaaqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaaiaaisdacaWG4bWaa0baaSqaaiaaicdaaeaacaaIZaaaaOGaam iEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaa laaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaacaaIZaGaamiEamaaDa aaleaacaaIWaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGymaaqa baaakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaiwdaaeaacaaI2a aaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG 4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaG imaiaacYcaaaa@6944@  

p 3 : x 3 1 6 ( 10 x 0 3 x 1 2 +5 x 0 4 x 2 )+ 1 2 ( 4 x 0 3 x 2 +6 x 0 2 x 1 2 ) 1 3 ( 3 x 0 2 x 2 +3 x 1 2 x 0 ) 5 6 ( x 1 2 +2 x 0 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaI2aaaamaabmaabaGaaGymaiaaicdacaWG4bWaa0ba aSqaaiaaicdaaeaacaaIZaaaaOGaamiEamaaDaaaleaacaaIXaaaba GaaGOmaaaakiabgUcaRiaaiwdacaWG4bWaa0baaSqaaiaaicdaaeaa caaI0aaaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaI 0aGaamiEamaaDaaaleaacaaIWaaabaGaaG4maaaakiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcaaI2aGaamiEamaaDaaaleaacaaI WaaabaGaaGOmaaaakiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaa aakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaa amaabmaabaGaaG4maiaadIhadaqhaaWcbaGaaGimaaqaaiaaikdaaa GccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiaadIha daqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaic daaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaI1aaabaGa aGOnaaaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccqGHRaWkcaaIYaGaamiEamaaBaaaleaacaaIWaaabeaakiaadIha daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWa Gaaiilaaaa@81B2@  

p 4 : x 4 1 6 ( 10 x 0 2 x 1 3 +20 x 0 3 x 1 x 2 +5 x 0 4 x 3 )+ 1 2 ( 4 x 0 3 x 3 +12 x 0 2 x 1 x 2 +4 x 0 x 1 3 ) 1 3 ( 3 x 0 2 x 3 + x 1 3 +6 x 0 x 1 x 2 ) 5 6 ( 2 x 0 x 3 +2 x 1 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGWb WaaWbaaSqabeaacaaI0aaaaOGaaiOoaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaamiEamaaBaaaleaacaaI0aaabeaakiabgkHiTmaala aabaGaaGymaaqaaiaaiAdaaaWaaeWaaeaacaaIXaGaaGimaiaadIha daqhaaWcbaGaaGimaaqaaiaaikdaaaGccaWG4bWaa0baaSqaaiaaig daaeaacaaIZaaaaOGaey4kaSIaaGOmaiaaicdacaWG4bWaa0baaSqa aiaaicdaaeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIXaaabeaaki aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaI1aGaamiEamaa DaaaleaacaaIWaaabaGaaGinaaaakiaadIhadaWgaaWcbaGaaG4maa qabaaakiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI YaaaamaabmaabaGaaGinaiaadIhadaqhaaWcbaGaaGimaaqaaiaaio daaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGymaiaa ikdacaWG4bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaamiEamaaBa aaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH RaWkcaaI0aGaamiEamaaBaaaleaacaaIWaaabeaakiaadIhadaqhaa WcbaGaaGymaaqaaiaaiodaaaaakiaawIcacaGLPaaaaeaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabgkHiTmaalaaabaGaaGymaaqaaiaaiodaaaWaaeWa aeaacaaIZaGaamiEamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadI hadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaa igdaaeaacaaIZaaaaOGaey4kaSIaaGOnaiaadIhadaWgaaWcbaGaaG imaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaa leaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaG ynaaqaaiaaiAdaaaWaaeWaaeaacaaIYaGaamiEamaaBaaaleaacaaI WaaabeaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaIYa GaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaaaaaa@AA6B@  

p 5 : x 5 1 6 ( 5 x 0 x 1 4 +30 x 0 2 x 1 2 x 2 +10 x 0 3 x 2 2 +20 x 0 3 x 1 x 3 +5 x 0 4 x 4 ) + 1 2 ( 4 x 0 3 x 4 +12 x 0 2 x 1 x 3 +6 x 0 2 x 2 2 +12 x 0 x 1 2 x 2 + x 1 4 ) 1 3 ( 3 x 0 2 x 4 +3 x 0 x 2 2 +6 x 0 x 1 x 3 +3 x 1 2 x 2 ) 5 6 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGWb WaaWbaaSqabeaacaaI1aaaaOGaaiOoaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaamiEamaaBaaaleaacaaI1aaabeaakiabgkHiTmaala aabaGaaGymaaqaaiaaiAdaaaWaaeWaaeaacaaI1aGaamiEamaaBaaa leaacaaIWaaabeaakiaadIhadaqhaaWcbaGaaGymaaqaaiaaisdaaa GccqGHRaWkcaaIZaGaaGimaiaadIhadaqhaaWcbaGaaGimaaqaaiaa ikdaaaGccaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaamiEam aaBaaaleaacaaIYaaabeaakiabgUcaRiaaigdacaaIWaGaamiEamaa DaaaleaacaaIWaaabaGaaG4maaaakiaadIhadaqhaaWcbaGaaGOmaa qaaiaaikdaaaGccqGHRaWkcaaIYaGaaGimaiaadIhadaqhaaWcbaGa aGimaaqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaam iEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaiwdacaWG4bWaa0ba aSqaaiaaicdaaeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabe aaaOGaayjkaiaawMcaaaqaaiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaacaaI0aGaamiEamaaDaaaleaacaaIWaaabaGaaG 4maaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaaIXaGa aGOmaiaadIhadaqhaaWcbaGaaGimaaqaaiaaikdaaaGccaWG4bWaaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiab gUcaRiaaiAdacaWG4bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaam iEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaigdacaaI YaGaamiEamaaBaaaleaacaaIWaaabeaakiaadIhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamiEamaaDaaaleaacaaIXaaabaGaaGinaaaaaOGaayjkaiaawM caaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0YaaSaaaeaacaaIXaaaba GaaG4maaaadaqadaqaaiaaiodacaWG4bWaa0baaSqaaiaaicdaaeaa caaIYaaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgUcaRiaaio dacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaDaaaleaacaaI YaaabaGaaGOmaaaakiabgUcaRiaaiAdacaWG4bWaaSbaaSqaaiaaic daaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWc baGaaG4maaqabaGccqGHRaWkcaaIZaGaamiEamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaacqGHsisldaWcaaqaaiaaiwdaaeaacaaI2aaaamaabmaaba GaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikda caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIZa aabeaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGa amiEamaaBaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaiabg2da9i aaicdacaGGSaaaaaa@D3EE@  

The solutions of the above equations give

x 0 =0.66666667, x 1 =0.15089163, x 2 =0.01366097, x 3 =0.03656980, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGOn aiaaiAdacaaI2aGaaGOnaiaaiAdacaaI2aGaaGOnaiaaiEdacaGGSa GaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIXaaabeaakiab g2da9iaaicdacaGGUaGaaGymaiaaiwdacaaIWaGaaGioaiaaiMdaca aIXaGaaGOnaiaaiodacaGGSaGaaGPaVlaaykW7caaMc8UaamiEamaa BaaaleaacaaIYaaabeaakiabg2da9iaaicdacaGGUaGaaGimaiaaig dacaaIZaGaaGOnaiaaiAdacaaIWaGaaGyoaiaaiEdacaGGSaGaaGPa VlaaykW7caaMc8UaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9i abgkHiTiaaicdacaGGUaGaaGimaiaaiodacaaI2aGaaGynaiaaiAda caaI5aGaaGioaiaaicdacaGGSaaaaa@71CC@   (54)

Therefore, we have

x=(0.66666667)+(0.15089163)+(0.01366097)+(0.03656980)+...=0.53868386 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaacIcacqGHsislcaaIWaGaaiOlaiaaiAdacaaI2aGaaGOnaiaa iAdacaaI2aGaaGOnaiaaiAdacaaI3aGaaiykaiabgUcaRiaacIcaca aIWaGaaiOlaiaaigdacaaI1aGaaGimaiaaiIdacaaI5aGaaGymaiaa iAdacaaIZaGaaiykaiabgUcaRiaacIcacaaIWaGaaiOlaiaaicdaca aIXaGaaG4maiaaiAdacaaI2aGaaGimaiaaiMdacaaI3aGaaiykaiab gUcaRiaacIcacqGHsislcaaIWaGaaiOlaiaaicdacaaIZaGaaGOnai aaiwdacaaI2aGaaGyoaiaaiIdacaaIWaGaaiykaiabgUcaRiaac6ca caGGUaGaaiOlaiabg2da9iabgkHiTiaaicdacaGGUaGaaGynaiaaio dacaaI4aGaaGOnaiaaiIdacaaIZaGaaGioaiaaiAdaaaa@6BBA@  

The exact solutions of the roots of the given equation are -0.528886049, -1.09890396, 1.76518196. It can be seen that the above solution shows that the scheme is approaching the real root of -0.528886049 as the absolute error is approaching 0 (Table 5).

Number of Iteration (n)

n-term Solution

 Absolute Error

1

-0.66666667

0.137780621

2

-0.51577504

0.013111009

3

-0.50211407

0.026771979

4

-0.53868387

0.009797821

Table 5 Solution of the equation of example 3.5

Example 5.6: Solve the following nonlinear algebraic simultaneous equations using homotopy perturbation method

x 2 10x+ y 2 +8=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaigdacaaIWaGaamiEaiabgUca RiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI4aGaeyypa0 JaaGimaaaa@417C@ .  (55)

x y 2 +x10y+8=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadM hadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bGaeyOeI0IaaGym aiaaicdacaWG5bGaey4kaSIaaGioaiabg2da9iaaicdaaaa@4187@   (56)

The above equation can be expressed as

x 4 5 x 2 10 y 2 10 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGinaaqaaiaaiwdaaaGaeyOeI0YaaSaaaeaacaWG 4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiaaicdaaaGaeyOeI0 YaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiaa icdaaaGaeyypa0JaaGimaaaa@43F2@   (57)

y 4 5 x 10 x y 2 10 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgk HiTmaalaaabaGaaGinaaqaaiaaiwdaaaGaeyOeI0YaaSaaaeaacaWG 4baabaGaaGymaiaaicdaaaGaeyOeI0YaaSaaaeaacaWG4bGaamyEam aaCaaaleqabaGaaGOmaaaaaOqaaiaaigdacaaIWaaaaiabg2da9iaa icdaaaa@43FD@   (58)

According to the definitions of HPM, Eqs. (57) and (58) can be written as

x 4 5 +p[ x 2 10 y 2 10 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGinaaqaaiaaiwdaaaGaey4kaSIaamiCamaadmaa baGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcba GaaGymaiaaicdaaaGaeyOeI0YaaSaaaeaacaWG5bWaaWbaaSqabeaa caaIYaaaaaGcbaGaaGymaiaaicdaaaaacaGLBbGaayzxaaGaeyypa0 JaaGimaaaa@47BB@   (59)

y 4 5 +p[ x 10 x y 2 10 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgk HiTmaalaaabaGaaGinaaqaaiaaiwdaaaGaey4kaSIaamiCamaadmaa baGaeyOeI0YaaSaaaeaacaWG4baabaGaaGymaiaaicdaaaGaeyOeI0 YaaSaaaeaacaWG4bGaamyEamaaCaaaleqabaGaaGOmaaaaaOqaaiaa igdacaaIWaaaaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@47C6@   (60)

The solutions of Eqs. (59) and (60) can be assumed to be written

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (61)

y= y 0 +p y 1 + p 2 y 2 + p 3 y 3 + p 4 y 4 + p 5 y 5 + p 6 y 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaadMhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamyE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadMhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamyEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG5bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadMhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@585C@   (62)

On substituting Eqs. (61) and (62) into Eq.(59) and (60), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 4 5 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 10 ( y 0 +p y 1 + p 2 y 2 + p 3 y 3 + p 4 y 4 + p 5 y 5 + p 6 y 6 +... ) 2 10 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaI0aaabaGaaGynaaaaaeaa cqGHRaWkcaWGWbWaamWaaqaabeqaamaalaaabaGaeyOeI0YaaeWaae aacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIha daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadcha daahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWc baGaaGinaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaO GaamiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaS IaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaaGcbaGaaGymaiaaicdaaaaabaGaeyOeI0YaaSaaaeaadaqada qaaiaadMhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamyE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadMhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamyEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG5bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadMhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaakeaacaaIXaGaaGimaaaaaaGaay5waiaaw2faaiabg2da9i aaicdaaaaa@A8FB@   (63)

y 0 +p y 1 + p 2 y 2 + p 3 y 3 + p 4 y 4 + p 5 y 5 + p 6 y 6 +... 4 5 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 10 { ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) ( y 0 +p y 1 + p 2 y 2 + p 3 y 3 + p 4 y 4 + p 5 y 5 + p 6 y 6 +... ) 2 } 10 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadMhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamyEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadMhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamyEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG5bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaI0aaabaGaaGynaaaaaeaa cqGHRaWkcaWGWbWaamWaaqaabeqaamaalaaabaGaeyOeI0YaaeWaae aacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIha daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaaca aIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadcha daahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWc baGaaGinaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaO GaamiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaS IaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaaabaGaaGymaiaaicda aaaabaGaeyOeI0YaaSaaaeaadaGadaabaeqabaWaaeWaaeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWG5bWaaSba aSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadMhadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamyE amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaiodaaaGccaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaGinaaaakiaadMhadaWgaaWcbaGaaGinaaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamyEamaaBaaa leaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaa GccaWG5bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6ca caGGUaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiaawU hacaGL9baaaeaacaaIXaGaaGimaaaaaaGaay5waiaaw2faaiabg2da 9iaaicdaaaaa@CC2B@  (64)

When the Eqs. (63) and (64) are arranged according to the power of the embedding parameter p, one arrives at

p 0 : x 0 4 5 =0, y 0 4 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaisdaaeaacaaI1aaaaiabg2da9iaaicdacaGGSaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaamyEamaaBaaaleaacaaIWaaabe aakiabgkHiTmaalaaabaGaaGinaaqaaiaaiwdaaaGaeyypa0JaaGim aaaa@5692@  

p 1 : x 1 1 10 x 0 2 1 10 y 0 2 =0, y 1 1 10 x 0 1 10 x y 0 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaIXaGaaGimaaaacaWG4bWaa0baaSqaaiaaicdaaeaa caaIYaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymaiaaicdaaa GaamyEamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabg2da9iaaicda caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG5bWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGymaiaa icdaaaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTmaalaaaba GaaGymaaqaaiaaigdacaaIWaaaaiaadIhacaWG5bWaa0baaSqaaiaa icdaaeaacaaIYaaaaOGaeyypa0JaaGimaiaacYcaaaa@6864@  

p 2 : x 2 1 10 ( 2 x 0 x 1 ) 1 10 ( 2 y 0 y 1 )=0, y 2 1 10 x 1 1 10 ( x 1 y 0 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaIXaGaaGimaaaadaqadaqaaiaaikdacaWG4bWaaSba aSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaaigdacaaIWaaa amaabmaabaGaaGOmaiaadMhadaWgaaWcbaGaaGimaaqabaGccaWG5b WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMhadaWgaa WcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGa aGimaaaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaae aacaaIXaaabaGaaGymaiaaicdaaaWaaeWaaeaacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaamyEamaaDaaaleaacaaIWaaabaGaaGOmaaaaaO GaayjkaiaawMcaaiabg2da9iaaicdaaaa@711F@  

p 3 : x 3 1 10 ( x 1 2 +2 x 0 x 2 ) 1 10 ( y 1 2 +2 y 0 y 2 )=0, y 3 1 10 x 2 1 10 ( x 0 y 1 2 +2 x 1 y 0 y 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsisldaWcaaqaai aaigdaaeaacaaIXaGaaGimaaaadaqadaqaaiaadIhadaqhaaWcbaGa aGymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiEamaaBaaaleaaca aIWaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIXaGaaGimaaaadaqada qaaiaadMhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaaI YaGaamyEamaaBaaaleaacaaIWaaabeaakiaadMhadaWgaaWcbaGaaG OmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaamyEamaaBaaaleaacaaIZaaabe aakiabgkHiTmaalaaabaGaaGymaaqaaiaaigdacaaIWaaaaiaadIha daWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaaca aIXaGaaGimaaaadaqadaqaaiaadIhadaWgaaWcbaGaaGimaaqabaGc caWG5bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmai aadIhadaWgaaWcbaGaaGymaaqabaGccaWG5bWaaSbaaSqaaiaaicda aeqaaOGaamyEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaai abg2da9iaaicdacaGGSaaaaa@8059@  

On solving the above equations to the sixth power of the embedding parameter p, we have

x=0.997853 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGyoaiaaiMdacaaI3aGaaGioaiaaiwdacaaI Zaaaaa@3DEA@ , y=0.997562 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 da9iaaicdacaGGUaGaaGyoaiaaiMdacaaI3aGaaGynaiaaiAdacaaI Yaaaaa@3DE8@  (65)

The exact solutions of the roots of the given equation are x = 1 and y = 1 . The absolute errors in the approximate solutions are 0.002147 and 0.0024380. It can be seen that the above solution shows that the scheme is approaching the roots of the equations as the absolute errors approach zero.

Example 5.7: Find the roots of the following transcendental equation using homotopy perturbation method

x2 e x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTiaaikdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislcaWG4baa aOGaeyypa0JaaGimaaaa@3E54@ .  (66)

In order to apply homotopy perturbation method, the equation is expressed as

x2+p[ e x ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTiaaikdacqGHRaWkcaWGWbWaamWaaeaacqGHsislcaWGLbWaaWba aSqabeaacqGHsislcaWG4baaaaGccaGLBbGaayzxaaGaeyypa0JaaG imaaaa@421D@   (67)

The solution of Eq. (67) can be assumed to be written

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (68)

The substitution Eq. (68) into Eq.(67) gives

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +...2p[ e ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadI hadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaa caaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadc hadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaa WcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaa aOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUa GaaiOlaiabgkHiTiaaikdacqGHsislcaWGWbWaamWaaeaacaWGLbWa aWbaaSqabeaacqGHsisldaqadaqaaiaadIhadaWgaaadbaGaaGimaa qabaWccqGHRaWkcaWGWbGaamiEamaaBaaameaacaaIXaaabeaaliab gUcaRiaadchadaahaaadbeqaaiaaikdaaaWccaWG4bWaaSbaaWqaai aaikdaaeqaaSGaey4kaSIaamiCamaaCaaameqabaGaaG4maaaaliaa dIhadaWgaaadbaGaaG4maaqabaWccqGHRaWkcaWGWbWaaWbaaWqabe aacaaI0aaaaSGaamiEamaaBaaameaacaaI0aaabeaaliabgUcaRiaa dchadaahaaadbeqaaiaaiwdaaaWccaWG4bWaaSbaaWqaaiaaiwdaae qaaSGaey4kaSIaamiCamaaCaaameqabaGaaGOnaaaaliaadIhadaWg aaadbaGaaGOnaaqabaWccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawI cacaGLPaaaaaaakiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@8198@  (69)

A further simplification of the above equation produces

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +...2p[ e x 0 e ( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadI hadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaa caaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadc hadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaa WcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaa aOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUa GaaiOlaiabgkHiTiaaikdacqGHsislcaWGWbWaamWaaeaacaWGLbWa aWbaaSqabeaacqGHsislcaWG4bWaaSbaaWqaaiaaicdaaeqaaaaaki aadwgadaahaaWcbeqaaiabgkHiTmaabmaabaGaamiCaiaadIhadaWg aaadbaGaaGymaaqabaWccqGHRaWkcaWGWbWaaWbaaWqabeaacaaIYa aaaSGaamiEamaaBaaameaacaaIYaaabeaaliabgUcaRiaadchadaah aaadbeqaaiaaiodaaaWccaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaey 4kaSIaamiCamaaCaaameqabaGaaGinaaaaliaadIhadaWgaaadbaGa aGinaaqabaWccqGHRaWkcaWGWbWaaWbaaWqabeaacaaI1aaaaSGaam iEamaaBaaameaacaaI1aaabeaaliabgUcaRiaadchadaahaaadbeqa aiaaiAdaaaWccaWG4bWaaSbaaWqaaiaaiAdaaeqaaSGaey4kaSIaai Olaiaac6cacaGGUaaacaGLOaGaayzkaaaaaaGccaGLBbGaayzxaaGa eyypa0JaaGimaaaa@82B9@   (70)

The expression in the block bracket can be expanded with the aid of Taylor series as

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +...2 +p[ e x 0 [ 1[ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 2! [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 3! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 4! [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 5! ] ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0IaaGOmaaqaaiabgUcaRiaadchadaWadaqa aiaadwgadaahaaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaa qabaaaaOWaamWaaqaabeqaaiaaigdacqGHsisldaWadaqaaiaadcha caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaale qabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWk caWGWbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZa aabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWa aSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG ynaaaakiaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWa aWbaaSqabeaacaaI2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaaki abgUcaRiaac6cacaGGUaGaaiOlaaGaay5waiaaw2faaaqaaiabgUca RmaalaaabaWaamWaaeaacaWGWbGaamiEamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maa aakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaWba aSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgU caRiaadchadaahaaWcbeqaaiaaiwdaaaGccaWG4bWaaSbaaSqaaiaa iwdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOnaaaakiaadI hadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6ca aiaawUfacaGLDbaaaeaacaaIYaGaaiyiaaaaaeaacqGHsisldaWcaa qaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaaca aIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqaba GaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaSba aSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLBb GaayzxaaaabaGaaG4maiaacgcaaaaabaGaey4kaSYaaSaaaeaadaWa daqaaiaadchacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam iCamaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBa aaleaacaaIZaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaisda aaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamiCamaaCa aaleqabaGaaGynaaaakiaadIhadaWgaaWcbaGaaGynaaqabaGccqGH RaWkcaWGWbWaaWbaaSqabeaacaaI2aaaaOGaamiEamaaBaaaleaaca aI2aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaGaay5waiaaw2fa aaqaaiaaisdacaGGHaaaaaqaaiabgkHiTmaalaaabaWaamWaaeaaca WGWbGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaah aaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGa aG4maaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaam iEamaaBaaaleaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqa aiaaiwdaaaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaam iCamaaCaaaleqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaaca aI1aGaaiyiaaaaaaGaay5waiaaw2faaaGaay5waiaaw2faaiabg2da 9iaaicdaaaaa@0BFE@   (71)

The arrangement of Eq.(71) according to the power of the embedding parameter p gives

p 0 : x 0 2 3 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaikdaaeaacaaIZaaaaiabg2da9iaaicdacaGGSaaaaa@4724@  

p 1 : x 1 e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGLbWaaW baaSqabeaacqGHsislcaWG4bWaaSbaaWqaaiaaicdaaeqaaaaakiab g2da9iaaicdacaGGSaaaaa@498F@  

p 2 : x 2 x 1 e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaaaa@4B7F@  

p 3 : x 3 x 2 e x 0 + x 1 2 2! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaikdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaaiaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaaIYaGaaiyiaaaacaWG LbWaaWbaaSqabeaacqGHsislcaWG4bWaaSbaaWqaaiaaicdaaeqaaa aakiabg2da9iaaicdacaGGSaaaaa@5472@  

p 4 : x 4 x 3 e x 0 + x 1 x 2 e x 0 x 1 3 3! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaiodaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkcaWG4bWaaSbaaSqaai aaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiaadwgadaah aaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaey OeI0YaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaaGc baGaaG4maiaacgcaaaGaamyzamaaCaaaleqabaGaeyOeI0IaamiEam aaBaaameaacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaaaa@5D33@  

p 5 : x 5 x 4 e x 0 + ( 2 x 1 x 3 + x 2 2 ) 2! e x 0 3 x 1 2 x 2 3! e x 0 + x 1 4 4! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaisdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaamaabmaaba GaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaG OmaaaaaOGaayjkaiaawMcaaaqaaiaaikdacaGGHaaaaiaadwgadaah aaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaey OeI0YaaSaaaeaacaaIZaGaamiEamaaDaaaleaacaaIXaaabaGaaGOm aaaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaaIZaGaaiyiaa aacaWGLbWaaWbaaSqabeaacqGHsislcaWG4bWaaSbaaWqaaiaaicda aeqaaaaakiabgUcaRmaalaaabaGaamiEamaaDaaaleaacaaIXaaaba GaaGinaaaaaOqaaiaaisdacaGGHaaaaiaadwgadaahaaWcbeqaaiab gkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaeyypa0JaaGimai aacYcaaaa@701A@  

p 6 : x 6 x 5 e x 0 + ( 2 x 2 x 3 +2 x 1 x 4 ) 2! e x 0 ( 3 x 1 2 x 3 +3 x 1 x 2 2 ) 3! e x 0 + 4 x 1 3 x 2 4! e x 0 x 1 5 5! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaiwdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaamaabmaaba GaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaa qabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaaa baGaaGOmaiaacgcaaaGaamyzamaaCaaaleqabaGaeyOeI0IaamiEam aaBaaameaacaaIWaaabeaaaaGccqGHsisldaWcaaqaamaabmaabaGa aG4maiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaaS baaSqaaiaaiodaaeqaaOGaey4kaSIaaG4maiaadIhadaWgaaWcbaGa aGymaaqabaGccaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcca GLOaGaayzkaaaabaGaaG4maiaacgcaaaGaamyzamaaCaaaleqabaGa eyOeI0IaamiEamaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaa qaaiaaisdacaWG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaOGaamiE amaaBaaaleaacaaIYaaabeaaaOqaaiaaisdacaGGHaaaaiaadwgada ahaaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGa eyOeI0YaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaI1aaaaa GcbaGaaGynaiaacgcaaaGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaaaa@857D@  

On solving the above equations, we have

x 0 =2.00000000000, x 1 =0.13533528323366, x 2 =0.01831563889, x 3 =0.003718128265, x 4 =0.0008945670078 x 5 =0.0002364579676, x 6 =0.0000663574935, x 7 =0.0000194104211 x 8 =0.0000058532581, x 9 =0.0000018066598, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGOmaiaac6cacaaIWaGa aGimaiaaicdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaaicdaca aIWaGaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIXaGaaG4maiaaiw dacaaIZaGaaG4maiaaiwdacaaIYaGaaGioaiaaiodacaaIYaGaaG4m aiaaiodacaaI2aGaaGOnaiaacYcacaaMc8UaaGPaVlaaykW7caWG4b WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6ca caaIWaGaaGymaiaaiIdacaaIZaGaaGymaiaaiwdacaaI2aGaaG4mai aaiIdacaaI4aGaaGyoaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaG imaiaaiodacaaI3aGaaGymaiaaiIdacaaIXaGaaGOmaiaaiIdacaaI YaGaaGOnaiaaiwdacaGGSaaabaGaaGPaVlaaykW7caaMc8UaamiEam aaBaaaleaacaaI0aaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGa aGimaiaaicdacaaIWaGaaGioaiaaiMdacaaI0aGaaGynaiaaiAdaca aI3aGaaGimaiaaicdacaaI3aGaaGioaiaaykW7caaMc8UaaGPaVlaa dIhadaWgaaWcbaGaaGynaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaic dacaaIWaGaaGimaiaaikdacaaIZaGaaGOnaiaaisdacaaI1aGaaG4n aiaaiMdacaaI2aGaaG4naiaaiAdacaGGSaGaaGPaVlaaykW7caaMc8 UaamiEamaaBaaaleaacaaI2aaabeaakiabg2da9iabgkHiTiaaicda caGGUaGaaGimaiaaicdacaaIWaGaaGimaiaaiAdacaaI2aGaaG4mai aaiwdacaaI3aGaaGinaiaaiMdacaaIZaGaaGynaiaacYcacaaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4naaqabaGccqGH9aqpcaaIWaGaai OlaiaaicdacaaIWaGaaGimaiaaicdacaaIXaGaaGyoaiaaisdacaaI XaGaaGimaiaaisdacaaIYaGaaGymaiaaigdaaeaacaWG4bWaaSbaaS qaaiaaiIdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGa aGimaiaaicdacaaIWaGaaGimaiaaiwdacaaI4aGaaGynaiaaiodaca aIYaGaaGynaiaaiIdacaaIXaGaaiilaiaaykW7caaMc8UaamiEamaa BaaaleaacaaI5aaabeaakiabg2da9iaaicdacaGGUaGaaGimaiaaic dacaaIWaGaaGimaiaaicdacaaIXaGaaGioaiaaicdacaaI2aGaaGOn aiaaiwdacaaI5aGaaGioaiaacYcaaaaa@EA2D@

Therefore, we have

x=2.00000000000+0.135335283233660.01831563889+0.003718128265 0.0008945670078+0.00023645796760.0000663574935,+0.0000194104211 0.0000058532581+0.0000018066598+...=2.1200286699020 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaaGOmaiaac6cacaaIWaGaaGimaiaaicdacaaIWaGaaGim aiaaicdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiabgUcaRiaaic dacaGGUaGaaGymaiaaiodacaaI1aGaaG4maiaaiodacaaI1aGaaGOm aiaaiIdacaaIZaGaaGOmaiaaiodacaaIZaGaaGOnaiaaiAdacqGHsi slcaaIWaGaaiOlaiaaicdacaaIXaGaaGioaiaaiodacaaIXaGaaGyn aiaaiAdacaaIZaGaaGioaiaaiIdacaaI5aGaey4kaSIaaGimaiaac6 cacaaIWaGaaGimaiaaiodacaaI3aGaaGymaiaaiIdacaaIXaGaaGOm aiaaiIdacaaIYaGaaGOnaiaaiwdaaeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaIWaGa aiOlaiaaicdacaaIWaGaaGimaiaaiIdacaaI5aGaaGinaiaaiwdaca aI2aGaaG4naiaaicdacaaIWaGaaG4naiaaiIdacqGHRaWkcaaIWaGa aiOlaiaaicdacaaIWaGaaGimaiaaikdacaaIZaGaaGOnaiaaisdaca aI1aGaaG4naiaaiMdacaaI2aGaaG4naiaaiAdacqGHsislcaaIWaGa aiOlaiaaicdacaaIWaGaaGimaiaaicdacaaI2aGaaGOnaiaaiodaca aI1aGaaG4naiaaisdacaaI5aGaaG4maiaaiwdacaGGSaGaey4kaSIa aGimaiaac6cacaaIWaGaaGimaiaaicdacaaIWaGaaGymaiaaiMdaca aI0aGaaGymaiaaicdacaaI0aGaaGOmaiaaigdacaaIXaaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIWaGaaGim aiaaiwdacaaI4aGaaGynaiaaiodacaaIYaGaaGynaiaaiIdacaaIXa Gaey4kaSIaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaIWaGaaGim aiaaigdacaaI4aGaaGimaiaaiAdacaaI2aGaaGynaiaaiMdacaaI4a Gaey4kaSIaaiOlaiaac6cacaGGUaGaeyypa0JaaGOmaiaac6cacaaI XaGaaGOmaiaaicdacaaIWaGaaGOmaiaaiIdacaaI2aGaaGOnaiaaiM dacaaI5aGaaGimaiaaikdacaaIWaaaaaa@D6FE@   (72)

The exact solutions of the roots of the given equation are 2.1200282389876. It can be seen that the above solution shows that the scheme approaches the exact solution (Table 6).

Number of Iteration (n)

n-term Solution

 Absolute Error

1

2

0.1200282

2

2.135335283

0.015307

3

2.117019644

0.026772

4

2.120737773

0.0007095

5

2.119843206

0.000185

6

2.120079664

5.14E-05

7

2.120013306

1.49E-05

8

2.120032717

4.48E-06

9

2.120026863

1.38E-06

10

2.12002867

4.31E-07

Table 6 Solution of the equation in example 3.6

Example 5.8: Determine the root of the following transcendental equation using homotopy perturbation method

e x x 2 3x+2=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiEaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikda aaGccqGHsislcaaIZaGaamiEaiabgUcaRiaaikdacqGH9aqpcaaIWa aaaa@40F6@ .  (73)

The above equation can be written as

x 2 3 + x 2 3 e x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGOmaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaWG 4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maaaacqGHsisldaWcaa qaaiaadwgadaahaaWcbeqaaiaadIhaaaaakeaacaaIZaaaaiabg2da 9iaaicdaaaa@42A0@ .  (74)

In order to apply homotopy perturbation method, we can write Eq. (74) as

x 2 3 +p[ x 2 3 e x 3 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGOmaaqaaiaaiodaaaGaey4kaSIaamiCamaadmaa baWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maa aacqGHsisldaWcaaqaaiaadwgadaahaaWcbeqaaiaadIhaaaaakeaa caaIZaaaaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@4587@   (75)

The assumed solution can be written

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (76)

From Eq. (76), Eq. (75) can be written as

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 2 3 p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 3 e ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaaaeaa cqGHsislcaWGWbWaamWaaeaadaWcaaqaamaabmaabaGaamiEamaaBa aaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadI hadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaa caaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadc hadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaa WcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaa aOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUa GaaiOlaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaa iodaaaGaeyOeI0YaaSaaaeaacaWGLbWaaWbaaSqabeaadaqadaqaai aadIhadaWgaaadbaGaaGimaaqabaWccqGHRaWkcaWGWbGaamiEamaa BaaameaacaaIXaaabeaaliabgUcaRiaadchadaahaaadbeqaaiaaik daaaWccaWG4bWaaSbaaWqaaiaaikdaaeqaaSGaey4kaSIaamiCamaa CaaameqabaGaaG4maaaaliaadIhadaWgaaadbaGaaG4maaqabaWccq GHRaWkcaWGWbWaaWbaaWqabeaacaaI0aaaaSGaamiEamaaBaaameaa caaI0aaabeaaliabgUcaRiaadchadaahaaadbeqaaiaaiwdaaaWcca WG4bWaaSbaaWqaaiaaiwdaaeqaaSGaey4kaSIaamiCamaaCaaameqa baGaaGOnaaaaliaadIhadaWgaaadbaGaaGOnaaqabaWccqGHRaWkca GGUaGaaiOlaiaac6caaiaawIcacaGLPaaaaaaakeaacaaIZaaaaaGa ay5waiaaw2faaiabg2da9iaaicdaaaaa@A6DD@   (77)

Eq. (77) can be written as after applying Taylor series to the second function in the block bracket

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 2 3 + 1 3 p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 e x 0 [ 1+[ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 2! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 3! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 4! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ] 5! ] ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaaaeaa cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaaiaadchadaWadaabae qabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa amiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaW baaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaai aaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaa dIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabe aacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaa dchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaae qaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaGcbaGaeyOeI0IaamyzamaaCaaaleqabaGaam iEamaaBaaameaacaaIWaaabeaaaaGcdaWadaabaeqabaGaaGymaiab gUcaRmaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaa caaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGcca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqa baGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkca WGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaa beaakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaS baaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGL BbGaayzxaaaabaGaey4kaSYaaSaaaeaadaWadaqaaiaadchacaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWb WaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaa kiabgUcaRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaS qaaiaaisdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaa kiaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaS qabeaacaaI2aaaaOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUca Riaac6cacaGGUaGaaiOlaaGaay5waiaaw2faaaqaaiaaikdacaGGHa aaaaqaaiabgUcaRmaalaaabaWaamWaaeaacaWGWbGaamiEamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaa GccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRa WkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI 0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaaGccaWG4b WaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGa aGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkcaGGUa GaaiOlaiaac6caaiaawUfacaGLDbaaaeaacaaIZaGaaiyiaaaaaeaa cqGHRaWkdaWcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiE amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEamaaBaaa leaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaa GccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6ca caGGUaaacaGLBbGaayzxaaaabaGaaGinaiaacgcaaaaabaGaey4kaS YaaSaaaeaadaWadaqaaiaadchacaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaa aOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadchadaahaa WcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4k aSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaaWcbaGaaG ynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaaaOGaamiE amaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaa Gaay5waiaaw2faaaqaaiaaiwdacaGGHaaaaaaacaGLBbGaayzxaaaa aiaawUfacaGLDbaacqGH9aqpcaaIWaaaaaa@3110@   (78)

Arranging Eq. (77) according to the power of the embedding parameter p, we have

p 0 : x 0 2=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIYaGaey ypa0JaaGimaiaacYcaaaa@4657@  

p 1 : x 1 + 1 3 x 0 2 1 3 e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaikda aaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaaiaadwgadaahaa WcbeqaaiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaeyypa0JaaGim aiaacYcaaaa@4F3E@  

p 2 : x 2 + 1 3 ( 2 x 0 x 1 ) 1 3 x 1 e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaay zkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaacaWG4bWaaSba aSqaaiaaigdaaeqaaOGaamyzamaaCaaaleqabaGaamiEamaaBaaame aacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaaaa@54A4@  

p 3 : x 3 + 1 3 ( x 1 2 +2 x 0 x 2 ) 1 3 ( x 2 + x 1 2 2! ) e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaamaabmaabaGaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab gkHiTmaalaaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaacaWG4bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqa aiaaigdaaeaacaaIYaaaaaGcbaGaaGOmaiaacgcaaaaacaGLOaGaay zkaaGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabeaa aaGccqGH9aqpcaaIWaGaaiilaaaa@5EBC@  

p 4 : x 4 + 1 3 ( 2 x 0 x 3 +2 x 1 x 2 ) 1 3 ( x 3 + x 1 x 2 + x 1 3 3! ) e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaaba GaaG4maaaadaqadaqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH RaWkcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaaca aIYaaabeaakiabgUcaRmaalaaabaGaamiEamaaDaaaleaacaaIXaaa baGaaG4maaaaaOqaaiaaiodacaGGHaaaaaGaayjkaiaawMcaaiaadw gadaahaaWcbeqaaiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaeyyp a0JaaGimaiaacYcaaaa@656F@  

p 5 : x 5 + 1 3 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 ) 1 3 ( x 4 + ( 2 x 1 x 3 + x 2 2 ) 2! + 3 x 1 2 x 2 3! + x 1 4 4! ) e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaamaabmaabaGaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgUcaRiaaikdacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaacaaI0aaabe aaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaaioda aaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSYaaS aaaeaadaqadaqaaiaaikdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa amiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadIhadaqhaaWcba GaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaaIYaGaaiyi aaaacqGHRaWkdaWcaaqaaiaaiodacaWG4bWaa0baaSqaaiaaigdaae aacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaaioda caGGHaaaaiabgUcaRmaalaaabaGaamiEamaaDaaaleaacaaIXaaaba GaaGinaaaaaOqaaiaaisdacaGGHaaaaaGaayjkaiaawMcaaiaadwga daahaaWcbeqaaiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaeyypa0 JaaGimaiaacYcaaaa@77F4@  

p 6 : x 6 + 1 3 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 ) 1 3 ( x 5 + ( 2 x 2 x 3 +2 x 1 x 4 ) 2! + ( 3 x 1 2 x 3 +3 x 1 x 2 2 ) 3! + 4 x 1 3 x 2 4! + x 1 5 5! ) e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaIZaaaamaabmaabaGaaGOmaiaadIhadaWgaaWcbaGa aGimaaqabaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa isdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqaba GccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyOe I0YaaSaaaeaacaaIXaaabaGaaG4maaaadaqadaqaaiaadIhadaWgaa WcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaamaabmaabaGaaGOmaiaa dIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaiodaae qaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG 4bWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaaabaGaaGOmai aacgcaaaGaey4kaSYaaSaaaeaadaqadaqaaiaaiodacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIZaaabe aakiabgUcaRiaaiodacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiE amaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaai aaiodacaGGHaaaaiabgUcaRmaalaaabaGaaGinaiaadIhadaqhaaWc baGaaGymaaqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaa GcbaGaaGinaiaacgcaaaGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqa aiaaigdaaeaacaaI1aaaaaGcbaGaaGynaiaacgcaaaaacaGLOaGaay zkaaGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabeaa aaGccqGH9aqpcaaIWaGaaiilaaaa@8B4B@  

On solving the above equations, we have

x 0 =0.666667, x 1 =0.501097, x 2 =0.102625, x 3 =0.01883, x 4 =0.016575 x 5 =0.013209, x 6 =0.007343, x 7 =0.004327 x 8 =0.003109, x 9 =0.002240, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI2aGa aGOnaiaaiAdacaaI2aGaaGOnaiaaiEdacaGGSaGaaGPaVlaaykW7ca aMc8UaamiEamaaBaaaleaacaaIXaaabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGynaiaaicdacaaIXaGaaGimaiaaiMdacaaI3aGaai ilaiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaaIWaGaaiOlaiaaigdacaaIWaGaaGOmaiaaiAdacaaIYa GaaGynaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaa iodaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaIWaGaaGymai aaiIdacaaI4aGaaG4maiaacYcaaeaacaaMc8UaaGPaVlaaykW7caWG 4bWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWa GaaGymaiaaiAdacaaI1aGaaG4naiaaiwdacaaMc8UaaGPaVlaaykW7 caWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaeyypa0JaeyOeI0IaaGimai aac6cacaaIWaGaaGymaiaaiodacaaIYaGaaGimaiaaiMdacaGGSaGa aGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaI2aaabeaakiabg2 da9iaaicdacaGGUaGaaGimaiaaicdacaaI3aGaaG4maiaaisdacaaI ZaGaaiilaiaaykW7caaMc8UaamiEamaaBaaaleaacaaI3aaabeaaki abg2da9iabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaI0aGaaG4m aiaaikdacaaI3aaabaGaamiEamaaBaaaleaacaaI4aaabeaakiabg2 da9iaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaGymaiaaicdacaaI 5aGaaiilaiaaykW7caaMc8UaamiEamaaBaaaleaacaaI5aaabeaaki abg2da9iabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaIYaGaaGOm aiaaisdacaaIWaGaaiilaaaaaa@B98E@  

Therefore, we have

x=0.6666670.501097+0.1026250.01883+0.0165750.013209 +0.0073430.004327+0.0031090.002240+...=0.256616 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaaGimaiaac6cacaaI2aGaaGOnaiaaiAdacaaI2aGaaGOn aiaaiEdacqGHsislcaaIWaGaaiOlaiaaiwdacaaIWaGaaGymaiaaic dacaaI5aGaaG4naiabgUcaRiaaicdacaGGUaGaaGymaiaaicdacaaI YaGaaGOnaiaaikdacaaI1aGaeyOeI0IaaGimaiaac6cacaaIWaGaaG ymaiaaiIdacaaI4aGaaG4maiabgUcaRiaaicdacaGGUaGaaGimaiaa igdacaaI2aGaaGynaiaaiEdacaaI1aGaeyOeI0IaaGimaiaac6caca aIWaGaaGymaiaaiodacaaIYaGaaGimaiaaiMdaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGimaiaac6 cacaaIWaGaaGimaiaaiEdacaaIZaGaaGinaiaaiodacqGHsislcaaI WaGaaiOlaiaaicdacaaIWaGaaGinaiaaiodacaaIYaGaaG4naiabgU caRiaaicdacaGGUaGaaGimaiaaicdacaaIZaGaaGymaiaaicdacaaI 5aGaeyOeI0IaaGimaiaac6cacaaIWaGaaGimaiaaikdacaaIYaGaaG inaiaaicdacqGHRaWkcaGGUaGaaiOlaiaac6cacqGH9aqpcaaIWaGa aiOlaiaaikdacaaI1aGaaGOnaiaaiAdacaaIXaGaaGOnaaaaaa@8EA8@   (79)

The exact solutions of the roots of the given equation are 0.257530. It can be seen that the above solution shows that the scheme approaches the exact solution (Table 7).

Number of Iteration (n)

n-term Solution

 Absolute Error

1

0.666667

0.409137

2

0.165557

0.091973

3

0.268195

0.010665

4

0.249365

0.008165

5

0.26594

0.00841

6

0.252731

4.80E-03

7

0.260074

2.54E-03

8

0.255747

1.78E-03

9

0.258856

1.33E-03

10

0.256616

9.14E-04

Table 7 Solution of the equation in example 3.7

It could be seen from the above examples and from the procedures of homotopy perturbation method that a linear term must be in the equation for the HPM to operate. However, it is found that in some equations, there is no presence of a linear term. Under such scenario, the application of HPM will fail except a kind of modification is done to the given equation to include an artificial linear term. Therefore, in the subsequent examples such problems will be handled.

In order to treat such problems, we adopt that the general nonlinear equation is in the form

Lu+Ru+Nu=c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaadw hacqGHRaWkcaWGsbGaamyDaiabgUcaRiaad6eacaWG1bGaeyypa0Ja am4yaaaa@3F11@   (80)

The linear terms are decomposed into L + R, with L taken as the first linear term which is easily and R as the remainder of the linear operator apart from L. where c is the constant in the equation and u is the variable, Nu represents the nonlinear terms.

Example 5.9: Find the roots of the following cubic equation using homotopy perturbation method

x 3 +4 x 2 5=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaaisdacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaaGynaiabg2da9iaaicdaaaa@3EE3@ .  (81)

The above equation does not contain a linear term. A linear term with a convenient coefficient can be introduced to make the equation be easily amendable to the form that homotopy perturbation can easily be applied. Therefore, we write

x 3 +4 x 2 +axax5=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaaisdacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaamyyaiaadIhacqGHsislcaWGHbGaamiEai abgkHiTiaaiwdacqGH9aqpcaaIWaaaaa@4478@  (82)

For the choice of “a”, the ratio of the constant in the given equation and that of “a” must be within two values where the needed root of the equation lies. Therefore, we have 0 5 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJoaalaaabaGaaGynaaqaaiaadggaaaGaeyizImQaaGymaaaa@3C8A@ . In this example, we choice a=8.

x 3 +4 x 2 +8x8x5=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaaisdacaWG4bWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGioaiaadIhacqGHsislcaaI4aGaamiEai abgkHiTiaaiwdacqGH9aqpcaaIWaaaaa@4430@   (83)

We can rewrite Eq. (82) as

x 5 8 + x 3 8 + x 2 2 x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGynaaqaaiaaiIdaaaGaey4kaSYaaSaaaeaacaWG 4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGioaaaacqGHRaWkdaWcaa qaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgkHi TiaadIhacqGH9aqpcaaIWaaaaa@445E@   (84)

In order to apply homotopy perturbation method, the Eq.(84) is expressed as

x 5 8 +p[ x 3 8 + x 2 2 x ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaGynaaqaaiaaiIdaaaGaey4kaSIaamiCamaadmaa baWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGioaa aacqGHRaWkdaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaa caaIYaaaaiabgkHiTiaadIhaaiaawUfacaGLDbaacqGH9aqpcaaIWa aaaa@4745@   (85)

As done in the previous examples, the solution of the given nonlinear algebraic model can be written as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiwdaaa GccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiCamaaCaaa leqabaGaaGOnaaaakiaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRa WkcaGGUaGaaiOlaiaac6caaaa@5854@   (86)

After the substitution of Eq. (86) into Eq. (85), one arrives at

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 5 8 +p[ ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 3 8 + ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 2 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaI1aaabaGaaGioaaaaaeaa cqGHRaWkcaWGWbWaamWaaqaabeqaamaalaaabaWaaeWaaeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaGc baGaaGioaaaaaeaacqGHRaWkdaWcaaqaamaabmaabaGaamiEamaaBa aaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadI hadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaa caaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadc hadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaa WcbaGaaGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaa aOGaamiEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUa GaaiOlaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaa ikdaaaaabaGaeyOeI0YaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaaca aIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqaba GaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaSba aSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaaaaiaawUfacaGLDbaa cqGH9aqpcaaIWaaaaaa@CA5B@   (87)

Arranging Eq. (87) according to the power of the embedding parameter p, we have

p 0 : x 0 5 8 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaiwdaaeaacaaI4aaaaiabg2da9iaaicdacaGGSaaaaa@472C@  

p 1 : x 1 + 1 8 x 0 3 + 1 2 x 0 2 x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaaiaadIhadaqhaaWcbaGaaGimaaqaaiaaioda aaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaqhaa WcbaGaaGimaaqaaiaaikdaaaGccqGHsislcaWG4bWaaSbaaSqaaiaa icdaaeqaaOGaeyypa0JaaGimaiaacYcaaaa@51B7@  

p 2 : x 2 + 1 8 ( 3 x 0 2 x 1 )+ 1 2 ( 2 x 0 x 1 ) x 1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaaiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBa aaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadIhadaWg aaWcbaGaaGymaaqabaGccqGH9aqpcaaIWaGaaiilaaaa@5963@  

p 3 : x 3 + 1 8 ( 3 x 0 2 x 2 +3 x 1 2 x 0 )+ 1 2 ( x 1 2 +2 x 0 x 2 ) x 2 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaaG4maiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG 4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaadIhadaqhaaWcbaGa aGymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiEamaaBaaaleaaca aIWaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaG imaiaacYcaaaa@632C@  

p 4 : x 4 + 1 8 ( 3 x 0 2 x 3 + x 1 3 +6 x 0 x 1 x 2 )+ 1 2 ( 2 x 0 x 3 +2 x 1 x 2 ) x 3 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaaIXaaabaGaaG4maaaakiabgUcaRiaa iAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaaleaaca aIXaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaG OmaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqaba GccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOe I0IaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9iaaicdacaGGSa aaaa@69E2@  

p 5 : x 5 + 1 8 ( 3 x 0 2 x 4 +3 x 0 x 2 2 +6 x 0 x 1 x 3 +3 x 1 2 x 2 )+ 1 2 ( x 2 2 +2 x 1 x 3 +2 x 0 x 4 ) x 4 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey 4kaSIaaG4maiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOnaiaadIhadaWgaa WcbaGaaGimaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiE amaaBaaaleaacaaIZaaabeaakiabgUcaRiaaiodacaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa WaaeWaaeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGim aaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaa GaeyOeI0IaamiEamaaBaaaleaacaaI0aaabeaakiabg2da9iaaicda caGGSaaaaa@765A@  

p 6 : x 6 + 1 8 ( 3 x 0 2 x 5 +6 x 0 x 2 x 3 +6 x 0 x 1 x 4 +3 x 1 x 2 2 +3 x 1 2 x 3 )+ 1 2 ( 2 x 0 x 5 +2 x 1 x 4 +2 x 2 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI4aaaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGa aGimaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiwdaaeqaaOGaey 4kaSIaaGOnaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgU caRiaaiAdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaamiEamaaBaaa leaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRa WkcaaIZaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIZaGaamiEamaaDaaale aacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaG4maaqabaaa kiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaam aabmaabaGaaGOmaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWG4bWa aSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcba GaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIa aGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaai aaiodaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@7CE1@  

On solving the above equations, we have

x 0 =0.6250000, x 1 =0.3991699, x 2 =0.0912166, x 3 =0.0961684, x 4 =0.0834048, x 5 =0.0257617, x 6 =0.0951325 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6cacaaI2aGa aGOmaiaaiwdacaaIWaGaaGimaiaaicdacaaIWaGaaiilaiaaykW7ca aMc8UaaGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaaI WaGaaiOlaiaaiodacaaI5aGaaGyoaiaaigdacaaI2aGaaGyoaiaaiM dacaGGSaGaaGPaVlaaykW7caaMc8UaamiEamaaBaaaleaacaaIYaaa beaakiabg2da9iaaicdacaGGUaGaaGimaiaaiMdacaaIXaGaaGOmai aaigdacaaI2aGaaGOnaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWa aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6caca aIWaGaaGyoaiaaiAdacaaIXaGaaGOnaiaaiIdacaaI0aGaaiilaaqa aiaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccq GH9aqpcqGHsislcaaIWaGaaiOlaiaaicdacaaI4aGaaG4maiaaisda caaIWaGaaGinaiaaiIdacaGGSaGaaGPaVlaaykW7caaMc8UaamiEam aaBaaaleaacaaI1aaabeaakiabg2da9iaaicdacaGGUaGaaGimaiaa ikdacaaI1aGaaG4naiaaiAdacaaIXaGaaG4naiaacYcacaaMc8UaaG PaVlaaykW7caWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaeyypa0JaaGim aiaac6cacaaIWaGaaGyoaiaaiwdacaaIXaGaaG4maiaaikdacaaI1a aaaaa@9ACB@  (88)

Therefore,

x=0.6250000+0.3991699+0.09121660.0961684 0.0834048+0.0257617+0.0951325+...=1.0567075 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b Gaeyypa0JaaGimaiaac6cacaaI2aGaaGOmaiaaiwdacaaIWaGaaGim aiaaicdacaaIWaGaey4kaSIaaGimaiaac6cacaaIZaGaaGyoaiaaiM dacaaIXaGaaGOnaiaaiMdacaaI5aGaey4kaSIaaGimaiaac6cacaaI WaGaaGyoaiaaigdacaaIYaGaaGymaiaaiAdacaaI2aGaeyOeI0IaaG imaiaac6cacaaIWaGaaGyoaiaaiAdacaaIXaGaaGOnaiaaiIdacaaI 0aaabaGaeyOeI0IaaGimaiaac6cacaaIWaGaaGioaiaaiodacaaI0a GaaGimaiaaisdacaaI4aGaey4kaSIaaGimaiaac6cacaaIWaGaaGOm aiaaiwdacaaI3aGaaGOnaiaaigdacaaI3aGaey4kaSIaaGimaiaac6 cacaaIWaGaaGyoaiaaiwdacaaIXaGaaG4maiaaikdacaaI1aGaey4k aSIaaiOlaiaac6cacaGGUaGaeyypa0JaaGymaiaac6cacaaIWaGaaG ynaiaaiAdacaaI3aGaaGimaiaaiEdacaaI1aaaaaa@7655@  

The exact solutions of the roots of the given equation are 1.0000000, -1.381966011 and -3.618033989. It can be seen that the above solution shows that the scheme is approaching the real positive root of 1.0000 from both ends, as the absolute error tends to zero (Table 8).

Number of Iteration (n)

n-term Solution

 Absolute Error

1

0.625

0.375

2

1.0241699

0.0241699

3

1.1153865

0.1153865

4

1.0192181

0.0192181

5

0.9358133

0.0641867

6

0.961575

0.038425

7

1.0567075

0.0567075

Table 8 Solution of the equation of example 3.8

Example 5.10: Find the roots of the following transcendental equation using homotopy perturbation method

e x +sinx+cosx=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiEaaaakiabgUcaRiaadohacaWGPbGaamOBaiaadIha cqGHRaWkcaWGJbGaam4BaiaadohacaWG4bGaeyypa0JaaG4maaaa@4342@ .  (89)

The above equation does not contain a linear term. A convenient linear term with a coefficient can be introduced to make the equation be easily amendable to the form that homotopy perturbation can easily be applied. Therefore, we write

e x +sinx+cosx+axax=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiEaaaakiabgUcaRiaadohacaWGPbGaamOBaiaadIha cqGHRaWkcaWGJbGaam4BaiaadohacaWG4bGaey4kaSIaamyyaiaadI hacqGHsislcaWGHbGaamiEaiabg2da9iaaiodaaaa@48D7@   (90)

For the choice of “a”, the ratio of the constant in the given equation and that of “a” must be within two values where the needed root of the equation lies. Therefore, we have 0 3 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJoaalaaabaGaaG4maaqaaiaadggaaaGaeyizImQaaGymaaaa@3C88@ . In this example, we choice a = 7.

A convenient linear term is therefore introduced such that we can write,

e x +sinx+cosx+7x7x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiEaaaakiabgUcaRiaadohacaWGPbGaamOBaiaadIha cqGHRaWkcaWGJbGaam4BaiaadohacaWG4bGaey4kaSIaaG4naiaadI hacqGHsislcaaI3aGaamiEaiabg2da9iaaiodaaaa@488D@   (91)

Which can be expressed as

x 3 7 + 1 7 ( e x +sinx+cosx7x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiEdaaaGaey4kaSYaaSaaaeaacaaI XaaabaGaaG4naaaadaqadaqaaiaadwgadaahaaWcbeqaaiaadIhaaa GccqGHRaWkcaWGZbGaamyAaiaad6gacaWG4bGaey4kaSIaam4yaiaa d+gacaWGZbGaamiEaiabgkHiTiaaiEdacaWG4baacaGLOaGaayzkaa Gaeyypa0JaaGimaaaa@4D59@   (92)

In order to apply homotopy perturbation method, the equation is expressed as

x 3 7 + 1 7 p( e x +sinx+cosx7x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTmaalaaabaGaaG4maaqaaiaaiEdaaaGaey4kaSYaaSaaaeaacaaI XaaabaGaaG4naaaacaWGWbWaaeWaaeaacaWGLbWaaWbaaSqabeaaca WG4baaaOGaey4kaSIaam4CaiaadMgacaWGUbGaamiEaiabgUcaRiaa dogacaWGVbGaam4CaiaadIhacqGHsislcaaI3aGaamiEaaGaayjkai aawMcaaiabg2da9iaaicdaaaa@4E4E@   (93)

The solution of the given equation can be assumed to be written as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@4ED4@   (94)

On substituting Eq. (94) into Eq.(93), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... 3 7 + 1 7 p[ e ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) +sin( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) +cos( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) 7( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 + p 6 x 6 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1aaaaOGaamiEam aaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlai aac6cacaGGUaGaeyOeI0YaaSaaaeaacaaIZaaabaGaaG4naaaaaeaa cqGHRaWkdaWcaaqaaiaaigdaaeaacaaI3aaaaiaadchadaWadaabae qabaGaamyzamaaCaaaleqabaWaaeWaaeaacaWG4bWaaSbaaWqaaiaa icdaaeqaaSGaey4kaSIaamiCaiaadIhadaWgaaadbaGaaGymaaqaba WccqGHRaWkcaWGWbWaaWbaaWqabeaacaaIYaaaaSGaamiEamaaBaaa meaacaaIYaaabeaaliabgUcaRiaadchadaahaaadbeqaaiaaiodaaa WccaWG4bWaaSbaaWqaaiaaiodaaeqaaSGaey4kaSIaamiCamaaCaaa meqabaGaaGinaaaaliaadIhadaWgaaadbaGaaGinaaqabaWccqGHRa WkcaWGWbWaaWbaaWqabeaacaaI1aaaaSGaamiEamaaBaaameaacaaI 1aaabeaaliabgUcaRiaadchadaahaaadbeqaaiaaiAdaaaWccaWG4b WaaSbaaWqaaiaaiAdaaeqaaSGaey4kaSIaaiOlaiaac6cacaGGUaaa caGLOaGaayzkaaaaaaGcbaGaey4kaSIaam4CaiaadMgacaWGUbWaae WaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabe aacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaae qaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWg aaWcbaGaaGinaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI1a aaaOGaamiEamaaBaaaleaacaaI1aaabeaakiabgUcaRiaadchadaah aaWcbeqaaiaaiAdaaaGccaWG4bWaaSbaaSqaaiaaiAdaaeqaaOGaey 4kaSIaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaaabaGaey4kaSIa am4yaiaad+gacaWGZbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaaca aIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG 4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqaba GaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaI1aaaaOGaamiEamaaBaaaleaacaaI1aaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaiAdaaaGccaWG4bWaaSba aSqaaiaaiAdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOa GaayzkaaaabaGaeyOeI0IaaG4namaabmaabaGaamiEamaaBaaaleaa caaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadIhadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZa aaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadchadaah aaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey 4kaSIaamiCamaaCaaaleqabaGaaGynaaaakiaadIhadaWgaaWcbaGa aGynaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI2aaaaOGaam iEamaaBaaaleaacaaI2aaabeaakiabgUcaRiaac6cacaGGUaGaaiOl aaGaayjkaiaawMcaaaaacaGLBbGaayzxaaGaeyypa0JaaGimaaaaaa@F1D9@   (95)

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... 3 7 + 1 7 p[ e x 0 e ( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) +sin[ x 0 +( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ] +cos[ x 0 +( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ] 7( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHsisldaWcaaqaai aaiodaaeaacaaI3aaaaaqaaiabgUcaRmaalaaabaGaaGymaaqaaiaa iEdaaaGaamiCamaadmaaeaqabeaacaWGLbWaaWbaaSqabeaacaWG4b WaaSbaaWqaaiaaicdaaeqaaaaakiaadwgadaahaaWcbeqaamaabmaa baGaamiCaiaadIhadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWGWb WaaWbaaWqabeaacaaIYaaaaSGaamiEamaaBaaameaacaaIYaaabeaa liabgUcaRiaadchadaahaaadbeqaaiaaiodaaaWccaWG4bWaaSbaaW qaaiaaiodaaeqaaSGaey4kaSIaamiCamaaCaaameqabaGaaGinaaaa liaadIhadaWgaaadbaGaaGinaaqabaWccqGHRaWkcaGGUaGaaiOlai aac6caaiaawIcacaGLPaaaaaaakeaacqGHRaWkcaWGZbGaamyAaiaa d6gadaWadaqaaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkda qadaqaaiaadchacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amiCamaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaa BaaaleaacaaIZaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaais daaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaaiOlaiaa c6cacaGGUaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaey4kaS Iaam4yaiaad+gacaWGZbWaamWaaeaacaWG4bWaaSbaaSqaaiaaicda aeqaaOGaey4kaSYaaeWaaeaacaWGWbGaamiEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG 4maaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWa aWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaaki abgUcaRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaGaay5waiaa w2faaaqaaiabgkHiTiaaiEdadaqadaqaaiaadIhadaWgaaWcbaGaaG imaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maaaa kiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaWbaaS qabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgUca Riaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaaacaGLBbGaayzxaa Gaeyypa0JaaGimaaaaaa@C669@   (96)

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... 3 7 + 1 7 p[ e x 0 e ( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) +sin x 0 cos( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) +cos x 0 sin( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) +cos x 0 cos( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) sin x 0 sin( p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) 7( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHsisldaWcaaqaai aaiodaaeaacaaI3aaaaaqaaiabgUcaRmaalaaabaGaaGymaaqaaiaa iEdaaaGaamiCamaadmaaeaqabeaacaWGLbWaaWbaaSqabeaacaWG4b WaaSbaaWqaaiaaicdaaeqaaaaakiaadwgadaahaaWcbeqaamaabmaa baGaamiCaiaadIhadaWgaaadbaGaaGymaaqabaWccqGHRaWkcaWGWb WaaWbaaWqabeaacaaIYaaaaSGaamiEamaaBaaameaacaaIYaaabeaa liabgUcaRiaadchadaahaaadbeqaaiaaiodaaaWccaWG4bWaaSbaaW qaaiaaiodaaeqaaSGaey4kaSIaamiCamaaCaaameqabaGaaGinaaaa liaadIhadaWgaaadbaGaaGinaaqabaWccqGHRaWkcaGGUaGaaiOlai aac6caaiaawIcacaGLPaaaaaaakeaacqGHRaWkcaWGZbGaamyAaiaa d6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaam4yaiaad+gacaWGZb WaaeWaaeaacaWGWbGaamiEamaaBaaaleaacaaIXaaabeaakiabgUca RiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaik daaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiaadIha daWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaaca aI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgUcaRiaac6ca caGGUaGaaiOlaaGaayjkaiaawMcaaaqaaiabgUcaRiaadogacaWGVb Gaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWGZbGaamyAaiaa d6gadaqadaqaaiaadchacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamiCamaaCaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIZaaaaOGaam iEamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadchadaahaaWcbeqa aiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaai Olaiaac6cacaGGUaaacaGLOaGaayzkaaaabaGaey4kaSIaam4yaiaa d+gacaWGZbGaamiEamaaBaaaleaacaaIWaaabeaakiaadogacaWGVb Gaam4CamaabmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaale aacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGc caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaale qabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWk caGGUaGaaiOlaiaac6caaiaawIcacaGLPaaaaeaacqGHsislcaWGZb GaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaam4Caiaa dMgacaWGUbWaaeWaaeaacaWGWbGaamiEamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4maa aakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaWba aSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiabgU caRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaqaaiabgkHiTiaa iEdadaqadaqaaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkca WGWbGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaah aaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamiCamaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGa aG4maaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaam iEamaaBaaaleaacaaI0aaabeaakiabgUcaRiaac6cacaGGUaGaaiOl aaGaayjkaiaawMcaaaaacaGLBbGaayzxaaGaeyypa0JaaGimaaaaaa@029D@   (97)

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... 3 7 +p[ e x 0 [ 1[ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ]+ [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 2! [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 3! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 4! ] +sin x 0 [ 1 [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 2! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 4! +... ] +cos x 0 [ [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 3! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 5! +... ] +cos x 0 [ 1 [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 2! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 4! +... ] sin x 0 [ [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 3! + [ p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ] 5! +... ] 7( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHsisldaWcaaqaai aaiodaaeaacaaI3aaaaaqaaiabgUcaRiaadchadaWadaabaeqabaGa amyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabeaaaaGcda WadaabaeqabaGaaGymaiabgkHiTmaadmaabaGaamiCaiaadIhadaWg aaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYa aaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaah aaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGa aGinaaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDb aacqGHRaWkdaWcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaam iEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqa aiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam iCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaaca aIYaGaaiyiaaaaaeaacqGHsisldaWcaaqaamaadmaabaGaamiCaiaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabe aacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaa dchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaae qaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWg aaWcbaGaaGinaaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawU facaGLDbaaaeaacaaIZaGaaiyiaaaacqGHRaWkdaWcaaqaamaadmaa baGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWb WaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaa kiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaGGUaGaaiOlai aac6caaiaawUfacaGLDbaaaeaacaaI0aGaaiyiaaaaaaGaay5waiaa w2faaaqaaiabgUcaRiaadohacaWGPbGaamOBaiaadIhadaWgaaWcba GaaGimaaqabaGcdaWadaqaaiaaigdacqGHsisldaWcaaqaamaadmaa baGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWb WaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaa kiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaGGUaGaaiOlai aac6caaiaawUfacaGLDbaaaeaacaaIYaGaaiyiaaaacqGHRaWkdaWc aaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaa caaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGcca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqa baGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkca GGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacaaI0aGaaiyiaaaa cqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacqGHRa WkcaWGJbGaam4BaiaadohacaWG4bWaaSbaaSqaaiaaicdaaeqaaOWa amWaaqaabeqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaa BaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaio daaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaa CaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccq GHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaacqGHsisldaWc aaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaa caaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGcca WG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqa baGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkca GGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacaaIZaGaaiyiaaaa aeaacqGHRaWkdaWcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGa amiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbe qaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIa amiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaa qabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaa caaI1aGaaiyiaaaacqGHRaWkcaGGUaGaaiOlaiaac6caaaGaay5wai aaw2faaaqaaiabgUcaRiaadogacaWGVbGaam4CaiaadIhadaWgaaWc baGaaGimaaqabaGcdaWadaqaaiaaigdacqGHsisldaWcaaqaamaadm aabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabe aakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSba aSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaa aakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaGGUaGaaiOl aiaac6caaiaawUfacaGLDbaaaeaacaaIYaGaaiyiaaaacqGHRaWkda WcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaale aacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGc caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaale qabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWk caGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacaaI0aGaaiyiaa aacqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacqGH sislcaWGZbGaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaO WaamWaaqaabeqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEam aaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaa iodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCam aaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGc cqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaacqGHsislda WcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaale aacaaIYaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaiodaaaGc caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamiCamaaCaaale qabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWk caGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaaeaacaaIZaGaaiyiaa aaaeaacqGHRaWkdaWcaaqaamaadmaabaGaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaawUfacaGLDbaaae aacaaI1aGaaiyiaaaacqGHRaWkcaGGUaGaaiOlaiaac6caaaGaay5w aiaaw2faaaqaaiabgkHiTiaaiEdadaqadaqaaiaadIhadaWgaaWcba GaaGimaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaG4m aaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGWbWaaW baaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabeaakiab gUcaRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaaacaGLBbGaay zxaaGaeyypa0JaaGimaaaaaa@EF27@   (98)

Arrange the equation according to the power of the embedding parameter p, we have

p 0 : x 0 3 7 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaai aaiodaaeaacaaI3aaaaiabg2da9iaaicdacaGGSaaaaa@4729@  

p 1 : x 1 + 1 7 ( e x 0 +sin x 0 +cos x 0 7 x 0 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaabaGaamyzamaaCaaaleqabaGaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkcaWGZbGaamyAaiaad6 gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam4yaiaad+ga caWGZbGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiEdaca WG4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja aGimaiaacYcaaaa@5A92@  

p 2 : x 2 + 1 7 ( x 1 e x 0 + x 1 cos x 0 x 1 sin x 0 7 x 1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaabaGaamiEamaaBaaaleaacaaIXaaa beaakiaadwgadaahaaWcbeqaaiaadIhadaWgaaadbaGaaGimaaqaba aaaOGaey4kaSIaamiEamaaBaaaleaacaaIXaaabeaakiaadogacaWG VbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaam4CaiaadMgacaWGUbGaamiEamaa BaaaleaacaaIWaaabeaakiabgkHiTiaaiEdacaWG4bWaaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@606A@  

p 3 : x 3 + 1 7 ( x 2 e x 0 + x 1 2 2! e x 0 1 2! x 1 2 sin x 0 + x 2 cos x 0 1 2! x 1 2 cos x 0 x 2 sin x 0 7 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaabaGaamiEamaaBaaaleaacaaIYaaa beaakiaadwgadaahaaWcbeqaaiaadIhadaWgaaadbaGaaGimaaqaba aaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaI YaaaaaGcbaGaaGOmaiaacgcaaaGaamyzamaaCaaaleqabaGaamiEam aaBaaameaacaaIWaaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaa caaIYaGaaiyiaaaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaO Gaam4CaiaadMgacaWGUbGaamiEamaaBaaaleaacaaIWaaabeaakiab gUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWGJbGaam4Baiaado hacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0YaaSaaaeaacaaI XaaabaGaaGOmaiaacgcaaaGaamiEamaaDaaaleaacaaIXaaabaGaaG OmaaaakiaadogacaWGVbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaam4CaiaadM gacaWGUbGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiEda caWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0 JaaGimaiaacYcaaaa@7D82@  

p 4 : x 4 + 1 7 ( x 3 e x 0 + x 1 x 2 e x 0 + x 1 3 3! e x 0 1 3! x 1 3 cos x 0 x 1 x 2 sin x 0 + x 3 cos x 0 1 3! x 1 3 sin x 0 x 1 x 2 cos x 0 x 3 sin x 0 7 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaaeaqabeaacaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWa aabeaaaaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiE amaaBaaaleaacaaIYaaabeaakiaadwgadaahaaWcbeqaaiaadIhada WgaaadbaGaaGimaaqabaaaaOGaey4kaSYaaSaaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIZaaaaaGcbaGaaG4maiaacgcaaaGaamyzam aaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabeaaaaGccqGHsisl daWcaaqaaiaaigdaaeaacaaIZaGaaiyiaaaacaWG4bWaa0baaSqaai aaigdaaeaacaaIZaaaaOGaam4yaiaad+gacaWGZbGaamiEamaaBaaa leaacaaIWaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqaba GccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaam4CaiaadMgacaWGUbGa amiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadIhadaWgaaWcba GaaG4maaqabaGccaWGJbGaam4BaiaadohacaWG4bWaaSbaaSqaaiaa icdaaeqaaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maiaacg caaaGaamiEamaaDaaaleaacaaIXaaabaGaaG4maaaakiaadohacaWG PbGaamOBaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaa kiaadogacaWGVbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccq GHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaam4CaiaadMgacaWG UbGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiEdacaWG4b WaaSbaaSqaaiaaiodaaeqaaaaakiaawIcacaGLPaaacqGH9aqpcaaI WaGaaiilaaaa@9874@  

p 5 : x 5 + 1 7 ( x 4 e x 0 + ( 2 x 1 x 3 + x 2 2 ) 2! e x 0 + 3 x 1 2 x 2 3! e x 0 + x 1 4 4! e x 0 + 1 4! x 1 4 sin x 0 3 x 1 2 x 2 3! cos x 0 x 2 2 2! sin x 0 x 1 x 3 sin x 0 + x 4 cos x 0 + 1 4! x 1 4 cos x 0 + 3 x 1 2 x 2 3! sin x 0 x 2 2 2! cos x 0 x 1 x 3 cos x 0 x 4 sin x 0 7 x 4 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaaeaqabeaacaWG4bWaaSbaaSqaaiaa isdaaeqaaOGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWa aabeaaaaGccqGHRaWkdaWcaaqaamaabmaabaGaaGOmaiaadIhadaWg aaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaa wMcaaaqaaiaaikdacaGGHaaaaiaadwgadaahaaWcbeqaaiaadIhada WgaaadbaGaaGimaaqabaaaaOGaey4kaSYaaSaaaeaacaaIZaGaamiE amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaG OmaaqabaaakeaacaaIZaGaaiyiaaaacaWGLbWaaWbaaSqabeaacaWG 4bWaaSbaaWqaaiaaicdaaeqaaaaakiabgUcaRmaalaaabaGaamiEam aaDaaaleaacaaIXaaabaGaaGinaaaaaOqaaiaaisdacaGGHaaaaiaa dwgadaahaaWcbeqaaiaadIhadaWgaaadbaGaaGimaaqabaaaaaGcba Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaiaacgcaaaGaamiEamaa DaaaleaacaaIXaaabaGaaGinaaaakiaadohacaWGPbGaamOBaiaadI hadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaaiaaiodacaWG 4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaaca aIYaaabeaaaOqaaiaaiodacaGGHaaaaiaadogacaWGVbGaam4Caiaa dIhadaWgaaWcbaGaaGimaaqabaGccqGHsisldaWcaaqaaiaadIhada qhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaGaaiyiaaaacaWG ZbGaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0 IaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaG4m aaqabaGccaWGZbGaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamiEamaaBaaaleaacaaI0aaabeaakiaadogacaWG VbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaaakeaacqGHRaWkda WcaaqaaiaaigdaaeaacaaI0aGaaiyiaaaacaWG4bWaa0baaSqaaiaa igdaaeaacaaI0aaaaOGaam4yaiaad+gacaWGZbGaamiEamaaBaaale aacaaIWaaabeaakiabgUcaRmaalaaabaGaaG4maiaadIhadaqhaaWc baGaaGymaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaa GcbaGaaG4maiaacgcaaaGaam4CaiaadMgacaWGUbGaamiEamaaBaaa leaacaaIWaaabeaakiabgkHiTmaalaaabaGaamiEamaaDaaaleaaca aIYaaabaGaaGOmaaaaaOqaaiaaikdacaGGHaaaaiaadogacaWGVbGa am4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaa dogacaWGVbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsi slcaWG4bWaaSbaaSqaaiaaisdaaeqaaOGaam4CaiaadMgacaWGUbGa amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiEdacaWG4bWaaS baaSqaaiaaisdaaeqaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGa aiilaaaa@D6E5@  

p 6 : x 6 + 1 7 ( x 5 e x 0 + ( 2 x 2 x 3 +2 x 1 x 4 ) 2! e x 0 + ( 3 x 1 2 x 3 +3 x 1 x 2 2 ) 3! e x 0 + 4 x 1 3 x 2 4! e x 0 + x 1 5 5! e x 0 + 1 5! x 1 5 cos x 0 + 4 x 1 3 x 2 4! sin x 0 6 x 2 x 3 3! sin x 0 6 x 1 x 4 3! sin x 0 x 1 x 2 2 2! cos x 0 x 1 2 x 3 2! cos x 0 + x 5 cos x 0 1 5! x 1 5 sin x 0 + 4 x 1 3 x 2 4! cos x 0 6 x 2 x 3 3! cos x 0 6 x 1 x 4 3! cos x 0 + x 1 x 2 2 2! sin x 0 + x 1 2 x 3 2! sin x 0 x 5 sin x 0 7 x 5 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI3aaaamaabmaaeaqabeaacaWG4bWaaSbaaSqaaiaa iwdaaeqaaOGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWa aabeaaaaGccqGHRaWkdaWcaaqaamaabmaabaGaaGOmaiaadIhadaWg aaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey 4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSba aSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaaabaGaaGOmaiaacgcaaa GaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabeaaaaGc cqGHRaWkdaWcaaqaamaabmaabaGaaG4maiaadIhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4k aSIaaG4maiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaa0baaS qaaiaaikdaaeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaaG4maiaa cgcaaaGaamyzamaaCaaaleqabaGaamiEamaaBaaameaacaaIWaaabe aaaaGccqGHRaWkdaWcaaqaaiaaisdacaWG4bWaa0baaSqaaiaaigda aeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIYaaabeaaaOqaaiaais dacaGGHaaaaiaadwgadaahaaWcbeqaaiaadIhadaWgaaadbaGaaGim aaqabaaaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaae aacaaI1aaaaaGcbaGaaGynaiaacgcaaaGaamyzamaaCaaaleqabaGa amiEamaaBaaameaacaaIWaaabeaaaaaakeaacqGHRaWkdaWcaaqaai aaigdaaeaacaaI1aGaaiyiaaaacaWG4bWaa0baaSqaaiaaigdaaeaa caaI1aaaaOGaam4yaiaad+gacaWGZbGaamiEamaaBaaaleaacaaIWa aabeaakiabgUcaRmaalaaabaGaaGinaiaadIhadaqhaaWcbaGaaGym aaqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaG inaiaacgcaaaGaam4CaiaadMgacaWGUbGaamiEamaaBaaaleaacaaI WaaabeaakiabgkHiTmaalaaabaGaaGOnaiaadIhadaWgaaWcbaGaaG OmaaqabaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaG4maiaa cgcaaaGaam4CaiaadMgacaWGUbGaamiEamaaBaaaleaacaaIWaaabe aakiabgkHiTmaalaaabaGaaGOnaiaadIhadaWgaaWcbaGaaGymaaqa baGccaWG4bWaaSbaaSqaaiaaisdaaeqaaaGcbaGaaG4maiaacgcaaa Gaam4CaiaadMgacaWGUbGaamiEamaaBaaaleaacaaIWaaabeaakiab gkHiTmaalaaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhada qhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaGaaiyiaaaacaWG JbGaam4BaiaadohacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0 YaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaamiE amaaBaaaleaacaaIZaaabeaaaOqaaiaaikdacaGGHaaaaiaadogaca WGVbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaiwdaaeqaaOGaam4yaiaad+gacaWGZbGaamiEam aaBaaaleaacaaIWaaabeaaaOqaaiabgkHiTmaalaaabaGaaGymaaqa aiaaiwdacaGGHaaaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaiwdaaa GccaWGZbGaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGa ey4kaSYaaSaaaeaacaaI0aGaamiEamaaDaaaleaacaaIXaaabaGaaG 4maaaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaaI0aGaaiyi aaaacaWGJbGaam4BaiaadohacaWG4bWaaSbaaSqaaiaaicdaaeqaaO GaeyOeI0YaaSaaaeaacaaI2aGaamiEamaaBaaaleaacaaIYaaabeaa kiaadIhadaWgaaWcbaGaaG4maaqabaaakeaacaaIZaGaaiyiaaaaca WGJbGaam4BaiaadohacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOe I0YaaSaaaeaacaaI2aGaamiEamaaBaaaleaacaaIXaaabeaakiaadI hadaWgaaWcbaGaaGinaaqabaaakeaacaaIZaGaaiyiaaaacaWGJbGa am4BaiaadohacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaS aaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaDaaaleaa caaIYaaabaGaaGOmaaaaaOqaaiaaikdacaGGHaaaaiaadohacaWGPb GaamOBaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqa aiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaaSbaaS qaaiaaiodaaeqaaaGcbaGaaGOmaiaacgcaaaGaam4CaiaadMgacaWG UbGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadIhadaWgaa WcbaGaaGynaaqabaGccaWGZbGaamyAaiaad6gacaWG4bWaaSbaaSqa aiaaicdaaeqaaOGaeyOeI0IaaG4naiaadIhadaWgaaWcbaGaaGynaa qabaaaaOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaaaaa@2285@  

On solving the above equations, we have

x 0 =0.4285714, x 1 =0.0199721, x 2 =0.0141811, x 3 =0.0100645, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabg2da9iaaicdacaGGUaGaaGinaiaaikda caaI4aGaaGynaiaaiEdacaaIXaGaaGinaiaacYcacaaMc8UaaGPaVl aaykW7caaMc8UaamiEamaaBaaaleaacaaIXaaabeaakiabg2da9iaa icdacaGGUaGaaGimaiaaigdacaaI5aGaaGyoaiaaiEdacaaIYaGaaG ymaiaacYcacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaGymaiaaisdacaaIXa GaaGioaiaaigdacaaIXaGaaiilaiaaykW7caaMc8UaaGPaVlaadIha daWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGimaiaaicdacaaI2aGaaGinaiaaiwdacaGGSaaaaa@6E5A@ x 4 =0.0071586, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVlaayk W7caaMc8UaamiEamaaBaaaleaacaaI0aaabeaakiabg2da9iaaicda caGGUaGaaGimaiaaicdacaaI3aGaaGymaiaaiwdacaaI4aGaaGOnai aacYcaaaa@44DB@  (99)

Therefore

x=0.4285714+0.0199721+0.0141811+0.0100645+0.0071586+...=0.4799477 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGinaiaaikdacaaI4aGaaGynaiaaiEdacaaI XaGaaGinaiabgUcaRiaaicdacaGGUaGaaGimaiaaigdacaaI5aGaaG yoaiaaiEdacaaIYaGaaGymaiabgUcaRiaaicdacaGGUaGaaGimaiaa igdacaaI0aGaaGymaiaaiIdacaaIXaGaaGymaiabgUcaRiaaicdaca GGUaGaaGimaiaaigdacaaIWaGaaGimaiaaiAdacaaI0aGaaGynaiab gUcaRiaaicdacaGGUaGaaGimaiaaicdacaaI3aGaaGymaiaaiwdaca aI4aGaaGOnaiabgUcaRiaac6cacaGGUaGaaiOlaiabg2da9iaaicda caGGUaGaaGinaiaaiEdacaaI5aGaaGyoaiaaisdacaaI3aGaaG4naa aa@6731@  

The above solution is converging to 0.4972 at the tenth term which is a root of the equation. Therefore, x=0.4972 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGinaiaaiMdacaaI3aGaaGOmaaaa@3C63@ (Table 9).

Number of Iteration (n)

n-term Solution

 Absolute Error

1

0.4284714

0.0687268

2

0.4485435

0.0486565

3

0.4627246

0.0344754

4

0.4727891

0.0244109

5

0.4799477

0.0172523

Table 9 Solution of the equation of example 3.9

Example 5.11: Find the roots of the following transcendental equation using homotopy perturbation method

Inx+sinhx+si n 2 xco s 2 x=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad6 gacaWG4bGaey4kaSIaam4CaiaadMgacaWGUbGaamiAaiaadIhacqGH RaWkcaWGZbGaamyAaiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4b Gaam4yaiaad+gacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiab g2da9iaaigdacaaI1aaaaa@4B48@ .  (100)

The above equation does not contain a linear term. A convenient linear term with a coefficient can be introduced to make the equation be easily amendable to the form that homotopy perturbation can easily be applied. Therefore, we write

Inx+sinhx+si n 2 xco s 2 x+axax=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad6 gacaWG4bGaey4kaSIaam4CaiaadMgacaWGUbGaamiAaiaadIhacqGH RaWkcaWGZbGaamyAaiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4b Gaam4yaiaad+gacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiab gUcaRiaadggacaWG4bGaeyOeI0IaamyyaiaadIhacqGH9aqpcaaIXa GaaGynaaaa@50DD@   (101)

For the choice of “a”, the ratio of the constant in the given equation and that of “a” must be within two values where the needed root of the equation lies. Therefore, we have 3 15 a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiabgs MiJoaalaaabaGaaGymaiaaiwdaaeaacaWGHbaaaiabgsMiJkaaisda aaa@3D4B@ . In this example, we choice a = 5.

Inx+sinhx+si n 2 xco s 2 x+5x5x=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad6 gacaWG4bGaey4kaSIaam4CaiaadMgacaWGUbGaamiAaiaadIhacqGH RaWkcaWGZbGaamyAaiaad6gadaahaaWcbeqaaiaaikdaaaGccaWG4b Gaam4yaiaad+gacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiab gUcaRiaaiwdacaWG4bGaeyOeI0IaaGynaiaadIhacqGH9aqpcaaIXa GaaGynaaaa@508F@   (102)

The homotopy perturbation of the equation is given as

x3+ 1 5 p[ Inx+sinhx+si n 2 xco s 2 x5x ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTiaaiodacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaadcha daWadaqaaiaadMeacaWGUbGaamiEaiabgUcaRiaadohacaWGPbGaam OBaiaadIgacaWG4bGaey4kaSIaam4CaiaadMgacaWGUbWaaWbaaSqa beaacaaIYaaaaOGaamiEaiaadogacaWGVbGaam4CamaaCaaaleqaba GaaGOmaaaakiaadIhacqGHsislcaaI1aGaamiEaaGaay5waiaaw2fa aiabg2da9iaaicdaaaa@552B@   (103)

The assumed solution is expressed as a power series in p as

x= x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaai aaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiC amaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqaba GccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaa leaacaaI0aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@4ED4@   (104)

On substituting Eq. (104) into Eq.(103), we have

x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +...3 +p[ In( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... )+sinh( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) +si n 2 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... )co s 2 ( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) 5( x 0 +p x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 +... ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaIYaaaaO GaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadchadaahaaWc beqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaS IaamiCamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcbaGaaGin aaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHsislcaaIZaaaba Gaey4kaSIaamiCamaadmaaeaqabeaacaWGjbGaamOBamaabmaabaGa amiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOm aaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaW baaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiab gUcaRiaadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaai aaisdaaeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOaGaayzk aaGaey4kaSIaam4CaiaadMgacaWGUbGaamiAamaabmaabaGaamiEam aaBaaaleaacaaIWaaabeaakiabgUcaRiaadchacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGOmaaaaki aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGWbWaaWbaaSqa beaacaaIZaaaaOGaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRi aadchadaahaaWcbeqaaiaaisdaaaGccaWG4bWaaSbaaSqaaiaaisda aeqaaOGaey4kaSIaaiOlaiaac6cacaGGUaaacaGLOaGaayzkaaaaba Gaey4kaSIaam4CaiaadMgacaWGUbWaaWbaaSqabeaacaaIYaaaaOWa aeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiCai aadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGWbWaaWbaaSqa beaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRi aadchadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaioda aeqaaOGaey4kaSIaamiCamaaCaaaleqabaGaaGinaaaakiaadIhada WgaaWcbaGaaGinaaqabaGccqGHRaWkcaGGUaGaaiOlaiaac6caaiaa wIcacaGLPaaacaWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaa GcdaqadaqaaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG WbGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadchadaahaa WcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamiCamaaCaaaleqabaGaaG4maaaakiaadIhadaWgaaWcbaGaaG 4maaqabaGccqGHRaWkcaWGWbWaaWbaaSqabeaacaaI0aaaaOGaamiE amaaBaaaleaacaaI0aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaa GaayjkaiaawMcaaaqaaiabgkHiTiaaiwdadaqadaqaaiaadIhadaWg aaWcbaGaaGimaaqabaGccqGHRaWkcaWGWbGaamiEamaaBaaaleaaca aIXaaabeaakiabgUcaRiaadchadaahaaWcbeqaaiaaikdaaaGccaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiCamaaCaaaleqaba GaaG4maaaakiaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG WbWaaWbaaSqabeaacaaI0aaaaOGaamiEamaaBaaaleaacaaI0aaabe aakiabgUcaRiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaaacaGL BbGaayzxaaGaeyypa0JaaGimaaaaaa@DE91@  (105)

Arranging the above equation according to the power of the embedding parameter p, we have

p 0 : x 0 3=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGimaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIZaGaey ypa0JaaGimaiaacYcaaaa@4658@  

p 1 : x 1 + 1 5 ( In x 0 +sinh x 0 +si n 2 x 0 co s 2 x 0 5 x 0 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGymaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaGaamysaiaad6gacaWG4bWaaSba aSqaaiaaicdaaeqaaOGaey4kaSIaam4CaiaadMgacaWGUbGaamiAai aadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGZbGaamyAaiaa d6gadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaicdaae qaaOGaam4yaiaad+gacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaamiE amaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiwdacaWG4bWaaSbaaS qaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaacYca aaa@62D0@  

p 2 : x 2 + 1 5 ( x 1 x 0 + x 1 cosh x 0 +2 x 1 sin x 0 co s 3 x 0 2 x 1 si n 3 x 0 cos x 0 5 x 1 )=0,, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOmaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI1aaaamaabmaabaWaaSaaaeaacaWG4bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIWaaabeaaaaGccq GHRaWkcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaam4yaiaad+gacaWG ZbGaamiAaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIYa GaamiEamaaBaaaleaacaaIXaaabeaakiaadohacaWGPbGaamOBaiaa dIhadaWgaaWcbaGaaGimaaqabaGccaWGJbGaam4Baiaadohadaahaa WcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOe I0IaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWGZbGaamyAai aad6gadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaicda aeqaaOGaam4yaiaad+gacaWGZbGaamiEamaaBaaaleaacaaIWaaabe aakiabgkHiTiaaiwdacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaGaeyypa0JaaGimaiaacYcacaGGSaaaaa@7573@  

p 3 : x 3 + 1 5 ( x 2 x 0 x 1 2 2 x 0 + x 2 cosh x 0 + x 1 2 2! sinh x 0 + x 1 co s 4 x 0 6 x 1 2 si n 2 x 0 co s 2 x 0 +2 x 2 sin x 0 co s 3 x 0 + x 1 2 si n 4 x 0 2 x 2 si n 3 x 0 cos x 0 5 x 2 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaG4maaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI1aaaamaabmaaeaqabeaadaWcaaqaaiaadIhadaWg aaWcbaGaaGOmaaqabaaakeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaa aakiabgkHiTmaalaaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOm aaaaaOqaaiaaikdacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaakiabgU caRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWGJbGaam4Baiaadoha caWGObGaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRmaalaaaba GaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaOqaaiaaikdacaGG HaaaaiaadohacaWGPbGaamOBaiaadIgacaWG4bWaaSbaaSqaaiaaic daaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIXaaabeaakiaadoga caWGVbGaam4CamaaCaaaleqabaGaaGinaaaakiaadIhadaWgaaWcba GaaGimaaqabaGccqGHsislcaaI2aGaamiEamaaDaaaleaacaaIXaaa baGaaGOmaaaakiaadohacaWGPbGaamOBamaaCaaaleqabaGaaGOmaa aakiaadIhadaWgaaWcbaGaaGimaaqabaGccaWGJbGaam4Baiaadoha daahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaa GcbaGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG ZbGaamyAaiaad6gacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaam4yai aad+gacaWGZbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaa caaIWaaabeaakiabgUcaRiaadIhadaqhaaWcbaGaaGymaaqaaiaaik daaaGccaWGZbGaamyAaiaad6gadaahaaWcbeqaaiaaisdaaaGccaWG 4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGOmaiaadIhadaWgaa WcbaGaaGOmaaqabaGccaWGZbGaamyAaiaad6gadaahaaWcbeqaaiaa iodaaaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaam4yaiaad+gaca WGZbGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaiwdacaWG 4bWaaSbaaSqaaiaaikdaaeqaaaaakiaawIcacaGLPaaacqGH9aqpca aIWaGaaiilaaaa@A766@  

p 4 : x 4 + 1 5 ( x 3 x 0 x 1 x 2 x 0 2 + x 1 3 3 x 0 3 + x 3 cosh x 0 + x 1 x 2 sinh x 0 + x 1 3 3! cosh x 0 16 3 x 1 3 co s 3 x 0 sin x 0 +2 x 1 x 2 co s 4 x 0 + 16 3 x 1 3 si n 3 x 0 cos x 0 12 x 1 x 2 si n 2 x 0 co s 2 x 0 +2 x 3 sin x 0 co s 3 x 0 +2 x 1 x 2 si n 4 x 0 2 x 3 si n 3 x 0 cos x 0 5 x 3 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGinaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkdaWcaaqaai aaigdaaeaacaaI1aaaamaabmaaeaqabeaadaWcaaqaaiaadIhadaWg aaWcbaGaaG4maaqabaaakeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaa aakiabgkHiTmaalaaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaa dIhadaWgaaWcbaGaaGOmaaqabaaakeaacaWG4bWaa0baaSqaaiaaic daaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaamiEamaaDaaaleaa caaIXaaabaGaaG4maaaaaOqaaiaaiodacaWG4bWaa0baaSqaaiaaic daaeaacaaIZaaaaaaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqa baGccaWGJbGaam4BaiaadohacaWGObGaamiEamaaBaaaleaacaaIWa aabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaam4CaiaadMgacaWGUbGaamiAaiaadI hadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaaiaadIhadaqh aaWcbaGaaGymaaqaaiaaiodaaaaakeaacaaIZaGaaiyiaaaacaWGJb Gaam4BaiaadohacaWGObGaamiEamaaBaaaleaacaaIWaaabeaaaOqa aiabgkHiTmaalaaabaGaaGymaiaaiAdaaeaacaaIZaaaaiaadIhada qhaaWcbaGaaGymaaqaaiaaiodaaaGccaWGJbGaam4Baiaadohadaah aaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaam 4CaiaadMgacaWGUbGaamiEamaaBaaaleaacaaIWaaabeaakiabgUca RiaaikdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaale aacaaIYaaabeaakiaadogacaWGVbGaam4CamaaCaaaleqabaGaaGin aaaakiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqaai aaigdacaaI2aaabaGaaG4maaaacaWG4bWaa0baaSqaaiaaigdaaeaa caaIZaaaaOGaam4CaiaadMgacaWGUbWaaWbaaSqabeaacaaIZaaaaO GaamiEamaaBaaaleaacaaIWaaabeaakiaadogacaWGVbGaam4Caiaa dIhadaWgaaWcbaGaaGimaaqabaaakeaacqGHsislcaaIXaGaaGOmai aadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikda aeqaaOGaam4CaiaadMgacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaam iEamaaBaaaleaacaaIWaaabeaakiaadogacaWGVbGaam4CamaaCaaa leqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRa WkcaaIYaGaamiEamaaBaaaleaacaaIZaaabeaakiaadohacaWGPbGa amOBaiaadIhadaWgaaWcbaGaaGimaaqabaGccaWGJbGaam4Baiaado hadaahaaWcbeqaaiaaiodaaaGccaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaam4CaiaadMgacaWGUbWaaWbaaSqa beaacaaI0aaaaOGaamiEamaaBaaaleaacaaIWaaabeaaaOqaaiabgk HiTiaaikdacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaam4CaiaadMga caWGUbWaaWbaaSqabeaacaaIZaaaaOGaamiEamaaBaaaleaacaaIWa aabeaakiaadogacaWGVbGaam4CaiaadIhadaWgaaWcbaGaaGimaaqa baGccqGHsislcaaI1aGaamiEamaaBaaaleaacaaIZaaabeaaaaGcca GLOaGaayzkaaGaeyypa0JaaGimaiaacYcaaaa@E146@  

p 5 : x 5 x 4 e x 0 + ( 2 x 1 x 3 + x 2 2 ) 2! e x 0 3 x 1 2 x 2 3! e x 0 + x 1 4 4! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGynaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGynaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaisdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaamaabmaaba GaaGOmaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaG OmaaaaaOGaayjkaiaawMcaaaqaaiaaikdacaGGHaaaaiaadwgadaah aaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaey OeI0YaaSaaaeaacaaIZaGaamiEamaaDaaaleaacaaIXaaabaGaaGOm aaaakiaadIhadaWgaaWcbaGaaGOmaaqabaaakeaacaaIZaGaaiyiaa aacaWGLbWaaWbaaSqabeaacqGHsislcaWG4bWaaSbaaWqaaiaaicda aeqaaaaakiabgUcaRmaalaaabaGaamiEamaaDaaaleaacaaIXaaaba GaaGinaaaaaOqaaiaaisdacaGGHaaaaiaadwgadaahaaWcbeqaaiab gkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGaeyypa0JaaGimai aacYcaaaa@701A@  

p 6 : x 6 x 5 e x 0 + ( 2 x 2 x 3 +2 x 1 x 4 ) 2! e x 0 ( 3 x 1 2 x 3 +3 x 1 x 2 2 ) 3! e x 0 + 4 x 1 3 x 2 4! e x 0 x 1 5 5! e x 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaCa aaleqabaGaaGOnaaaakiaacQdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadIhadaWgaaWcbaGaaGOnaaqabaGccqGHsislcaWG4bWaaS baaSqaaiaaiwdaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaamaabmaaba GaaGOmaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqa aiaaiodaaeqaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcbaGaaGymaa qabaGccaWG4bWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaaa baGaaGOmaiaacgcaaaGaamyzamaaCaaaleqabaGaeyOeI0IaamiEam aaBaaameaacaaIWaaabeaaaaGccqGHsisldaWcaaqaamaabmaabaGa aG4maiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaaS baaSqaaiaaiodaaeqaaOGaey4kaSIaaG4maiaadIhadaWgaaWcbaGa aGymaaqabaGccaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcca GLOaGaayzkaaaabaGaaG4maiaacgcaaaGaamyzamaaCaaaleqabaGa eyOeI0IaamiEamaaBaaameaacaaIWaaabeaaaaGccqGHRaWkdaWcaa qaaiaaisdacaWG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaOGaamiE amaaBaaaleaacaaIYaaabeaaaOqaaiaaisdacaGGHaaaaiaadwgada ahaaWcbeqaaiabgkHiTiaadIhadaWgaaadbaGaaGimaaqabaaaaOGa eyOeI0YaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaI1aaaaa GcbaGaaGynaiaacgcaaaGaamyzamaaCaaaleqabaGaeyOeI0IaamiE amaaBaaameaacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaaaa@857D@  

On solving the above equations, we have

x= x 1 + x 2 + x 3 + x 4 + x 5 + x 6 +...=3.31705 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamiEamaaBaaaleaacaaIZaaabe aakiabgUcaRiaadIhadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWG 4bWaaSbaaSqaaiaaiwdaaeqaaOGaey4kaSIaamiEamaaBaaaleaaca aI2aaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaiabg2da9iaaioda caGGUaGaaG4maiaaigdacaaI3aGaaGimaiaaiwdaaaa@5125@   (106)

In the solutions of nonlinear algebraic equations, Shanks transformation can be used to covert a slowly converging sequence to its rapidly converging counterpart effectively. The Shanks transformation is an efficient relation that can acceleratee the convergence rate of the series (Table 10).48 The Shanks transformation Sh(Un) of the sequence Un is defined as,

Equations

Approximate analytical solution

x 3 +x1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgUcaRiaadIhacqGHsislcaaIXaGaeyyp a0JaaGimaaaa@3D2E@

x=0.6823278 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGOnaiaaiIdacaaIYaGaaG4maiaaikdacaaI 3aGaaGioaaaa@3E9F@

x 2 ( 1x ) 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabgkHiTmaabmaabaGaaGymaiabgkHiTiaa dIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiwdaaaGccqGH9aqpca aIWaaaaa@3FB7@

x=0.3459542 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaG4maiaaisdacaaI1aGaaGyoaiaaiwdacaaI 0aGaaGOmaaaa@3E9B@

e x +cosx=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaamiEaaaakiabgUcaRiaadogacaWGVbGaam4C aiaadIhacqGH9aqpcaaIWaaaaa@3F74@

x=1.7461395 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaigdacaGGUaGaaG4naiaaisdacaaI2aGaaGymaiaaiodacaaI 5aGaaGynaaaa@3E9F@

cosxx=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaad+ gacaWGZbGaamiEaiabgkHiTiaadIhacqGH9aqpcaaIWaaaaa@3D71@

x=0.7390851 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaG4naiaaiodacaaI5aGaaGimaiaaiIdacaaI 1aGaaGymaaaa@3E9C@

x0.2sinx=0.8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk HiTiaaicdacaGGUaGaaGOmaiaadohacaWGPbGaamOBaiaadIhacqGH 9aqpcaaIWaGaaiOlaiaaiIdaaaa@4112@

x=0.9643339 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGyoaiaaiAdacaaI0aGaaG4maiaaiodacaaI ZaGaaGyoaaaa@3EA0@

si n 2 x x 2 +1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaadM gacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaamiEaiabgkHiTiaadIha daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaeyypa0JaaGimaa aa@40F9@

x=1.4044916 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaigdacaGGUaGaaGinaiaaicdacaaI0aGaaGinaiaaiMdacaaI XaGaaGOnaaaa@3E98@

e x 3 x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaamiEaaaakiabgkHiTiaaiodacaWG4bWaaWba aSqabeaacaaIYaaaaOGaeyypa0JaaGimaaaa@3E5B@

x=0.9100075 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGyoaiaaigdacaaIWaGaaGimaiaaicdacaaI 3aGaaGynaaaa@3E91@

x 6 5 x 5 +3 x 4 + x 3 +2 x 2 8x=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOnaaaakiabgkHiTiaaiwdacaWG4bWaaWbaaSqabeaa caaI1aaaaOGaey4kaSIaaG4maiaadIhadaahaaWcbeqaaiaaisdaaa GccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOm aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI4aGaamiEai abg2da9iaaicdacaGGUaGaaGynaaaa@4B58@

x=0.6823278 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGOnaiaaiIdacaaIYaGaaG4maiaaikdacaaI 3aGaaGioaaaa@3E9F@

Inx+ e x 2 x 2 +1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaad6 gacaWG4bGaey4kaSIaamyzamaaCaaaleqabaGaamiEaaaakiabgkHi TiaaikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymai abg2da9iaaicdaaaa@42AA@

x=0.1224248 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGUaGaaGymaiaaikdacaaIYaGaaGinaiaaikdacaaI 0aGaaGioaaaa@3E92@

Table 10 Solutions of some other nonlinear equations using homotopy perturbation method

Sh( U n )= U n+1 U n1 U n 2 U n+1 2 U n + U n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gadaqadaqaaiaadwfadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaadwfadaWgaaWcbaGaamOBaiabgUcaRi aaigdaaeqaaOGaamyvamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqa baGccqGHsislcaWGvbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcba GaamyvamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHsisl caaIYaGaamyvamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadwfada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaaaaaa@5324@   (107)

Further speed-up may be achieved by successive implementation of the Shanks transformation, that is S h 2 ( U n )=Sh( Sh( U n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadwfadaWgaaWcbaGa amOBaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGtbGaamiAamaabm aabaGaam4uaiaadIgadaqadaqaaiaadwfadaWgaaWcbaGaamOBaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@45DF@ , S h 3 ( U n )=Sh( Sh( Sh( U n ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gadaahaaWcbeqaaiaaiodaaaGcdaqadaqaaiaadwfadaWgaaWcbaGa amOBaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGtbGaamiAamaabm aabaGaam4uaiaadIgadaqadaqaaiaadofacaWGObWaaeWaaeaacaWG vbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaay zkaaaacaGLOaGaayzkaaaaaa@492E@ , S h 4 ( U n )=Sh( Sh( Sh( Sh( U n ) ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gadaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiaadwfadaWgaaWcbaGa amOBaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGtbGaamiAamaabm aabaGaam4uaiaadIgadaqadaqaaiaadofacaWGObWaaeWaaeaacaWG tbGaamiAamaabmaabaGaamyvamaaBaaaleaacaWGUbaabeaaaOGaay jkaiaawMcaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayjkaiaa wMcaaaaa@4C7D@ etc.

Conclusion

In this work, homotopy perturbation method has been directly applied to solve nonlinear algebraic and transcendental equations. The reliability and efficiency of the method in solving the nonlinear equations have been demonstrated by different number of illustrative examples. The method has been shown to be conceptually and computationally simple and straightforward without any ambiguity. Also, the advantages and the superiority of the approximate analytical method over the other approximate analytical and numerical methods of finding the roots of nonlinear algebraic and transcendental equations have been presented. Additionally, the following points should be noted

  1. The homotopy perturbation method has capability to find the complex root of nonlinear Through a numerical of numerical experiments, it was found that if an initial term xo is appropriately chosen as a complex number close to the root, the HPM might converge to a complex root. It should be noted that a diverging series (for the equation with real coefficients) may indicate complex roots. For example, the direct application of HPM to solve equation x 3 3x5=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabgkHiTiaaiodacaWG4bGaeyOeI0IaaGyn aiabg2da9iaaicdaaaa@3DFA@ , produces divergence results which indicate that the equation has complex root(s).
  2. It is not unlikely that the direct approach of the HPM to the solution of nonlinear algebraic and transcendental equations can produce diverging results for an equation that has real roots such as x 5 4 x 4 13 x 3 +46 x 2 +11x43=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGynaaaakiabgkHiTiaaisdacaWG4bWaaWbaaSqabeaa caaI0aaaaOGaeyOeI0IaaGymaiaaiodacaWG4bWaaWbaaSqabeaaca aIZaaaaOGaey4kaSIaaGinaiaaiAdacaWG4bWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGymaiaaigdacaWG4bGaeyOeI0IaaGinaiaaio dacqGH9aqpcaaIWaaaaa@4BA9@ . However, with some mathematical manipulations, the direct application of HPM to such problems is possible. This will be presented in the further works on the study.
  3. It can also be said that with the combination of matrix algebra and direct HPM, all the possible roots of a nonlinear equation can be found. This will also be presented in the subsequent paper of this study.

It is hoped that the present work will assist in providing accurate solutions to many practical problems in science and engineering.

Acknowledgments

None.

Conflicts of interest

The author declares there are no conflicts of interest.

References

  1. Smith D. History of Mathematics, Dover, New York. 1953;2.
  2. McNamee JM. A bibliography on roots of polynomials. J Comput Appl Math. 1993;47:391–394.
  3. Pan V. Solving a polynomial equation: some history and recent progress. SIAM Rev. 1997;39:187–220.
  4. Brugnano L, Trigiante D. Polynomial roots: the ultimate answer ? Lin Algebra Appl. 1995;225:207–219.
  5. McNamee JM. A supplementary bibliography on roots of polynomials. J Comput Appl Math. 1997;78.
  6. McNamee JM. A 2002 update of the supplementary bibliography on roots of polynomials. J Comput Appl Math. 2002;142(2):433–434.
  7. Pan VY, Zheng AL, New progress in real and complex polynomial root-finding. Comput Math Appl. 2011;61:1305–1334.
  8. McNamee JM, Pan VY. Efficient polynomial root-refiners: a survey and new record efficiency estimates. Comput Math Appl. 2012;63:239–254.
  9. Fraleigh JB. First Course in Abstract Algebra. Addison-Wesley, New York, 2014.
  10. Adomian Rach GR. On the solution of algebraic equations by the decomposition method. J Math Anal Appl. 1985;105:141–166.
  11. Adomian G. Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer Academic, Dordrecht, 1989.
  12. Babolian E, Javadi SH. Restarted Adomian method for algebraic equations. Appl Math Comput. 2003;146:533–541.
  13. Babolian E, Biazar J. Solution of nonlinear equations by modified Adomian decomposition method. Appl Math Comput. 2002;132(1):167–172.
  14. Babolian E, Javadi SH. Restarted Adomian method for algebraic equations. Appl Math Comput. 2003;146:533–541.
  15. Abbasbandy S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. App Math Comput. 2003;145(2):887–893.
  16. Wazwaz AM. A reliable modification of Adomian decomposition method. Appl Math Comput. 1999;102:77–86.
  17. Jafari H, Daftardar VG. Revised Adomian decomposition method for solving a system of nonlinear equations. App Math Comput. 2006;175(1):1–7.
  18. Jafari H, Daftardar VG. Revised Adomian decomposition method for solving a system of nonlinear equations. Appl Math Comput. 2006;175(1):1–7.
  19. Vahidi AR, Jalalvand B. Improving the accuracy of the Adomian decomposition method for solving nonlinear equations. Appl Math Sci. 2012;6(10):487–497.
  20. Chun C. Iterative methods improving Newton's method by the decomposition method. Comput Math Appl. 2005;50(10–12):1559–1568.
  21. Kharrat BN, Toma GA. Development of Homotopy Perturbation Method for Solving Nonlinear Algebraic Equations. Int J Sci Res Math Stat Sci. 2020;7(2):47–50.
  22. Khan WA, Noor MA, Younus S. Homotopy Perturbation techniques for the solution of certain nonlinear equations. Applied Mathematical Sciences. 2012;6(130):6487–6499.
  23. Ide NA. Some New Iterative Algorithms by using Homotopy Perturbation Method for Solving Nonlinear Algebraic Equations. Asian J Math Comput Res. 2015;5(3):175–185.
  24. Sehati MM, Karbassi1 SM, Heydari M, et al. Several new iterative methods for solving nonlinear algebraic equations incorporating homotopy perturbation method (HPM). Int J Phys Sci. 2012;7(27):5017–5025.
  25. Golbabai A, Javidi M. A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method. Appl Math Comput. 2007;191(1):199–205.
  26. Sehati1 MM, Karbassi SM, Heydari M, et al. Several new iterative methods for solving nonlinear algebraic equations incorporating homotopy perturbation method (HPM). Int J Phys Sci. 2012;7(27):5017–5025.
  27. He JH. A new iterative method for solving algebraic equations. Appl Math Comput. 2003;135(1):81–84.
  28. Yuen CF, Hoong LK, Seng CF. Solving Nonlinear Algebraic Equation by Homotopy Analysis Method. Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010) Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia, 2015.
  29. Abbasbandy S, Tan Y, Liao SJ. Newton-homotopy analysis method for nonlinear equations. Appl Math Comput. 2007;188:1794–1800.
  30. Javidi M. Fourth-order and fifth-order iterative methods for nonlinear algebraic equations. Math Comput Model. 2009;50(1–2):66–71.
  31. Basto MM, Semiao V. Calheiros. A new iterative method to compute nonlinear equations. Appl Math Comput. 2006;173(1):468–483.
  32. Chun C. A new iterative method for solving nonlinear equations. Appl Math Comput. 2006;178:415–422.
  33. Noor MA. New family of iterative methods for nonlinear equations. Appl Math Comput. 2007;190:553–558.
  34. Noor MA, Noor KI, Mohyud DST, et al. An iterative method with cubic convergence for nonlinear equations. Appl Math Comput. 2006;183(2):1249–1255.
  35. Ide N. A new Hybrid iteration method for solving algebraic equations. J Appl Math Comput. 2008;195:772–774.
  36. Ide N. On modified Newton methods for solving a non-linear algebraic equations. J Appl Math Comput. 2008;198(1):138–142.
  37. Ide N. Some New Type Iterative Methods for Solving Nonlinea Algebraic Equation. World Appl Sci J. 2013;26(10):1330–1334.
  38. Bi W, Ren H, Wu Q. Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J Comput Appl Math. 2009;225(1):105–112.
  39. Bi W, Ren H, Wu Q. A new family of eighth-order iterative methods for solving nonlinear equations. Appl Math Comput. 2009;214(1):236–245.
  40. Jisheng K, Yitian L, Xiuhua W. A composite fourth-order iterative method for solving non-linear equations. Appl Math Comput. 2007;184(2):471–475.
  41. Jisheng K, Yitian L, Xiuhua W. Fourth-order iterative methods free from second derivative. Appl Math Comput. 2007;184(2):880–885.
  42. Liu T, Qin X, Li BQ. An optimal fourth-order family of modified Cauchy methods for finding solutions of nonlinear equations and their dynamical. Open Math. 2019;17:1567–1589.
  43. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng. 2009;178:257–262.
  44. He JH. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Non- Linear Mech. 2000;35(1):37–43.
  45. He JH. Homotopy perturbation method: A new nonlinear analytical technique. Appl Math Comput. 2003;135:73–79.
  46. He JH. Some asymptotic methods for strongly nonlinear equation. Int J Modern Phys B. 2006;20:1144–1199.
  47. He JH. New interpretation of homotopy perturbation method. Int J Modern Phys B. 2006;20:2561–2568.
  48. Shanks D. Nonlinear transformation of divergent and slowly convergent sequences. J Math Phys Sci. 1955;34:1–42.
Creative Commons Attribution License

©2023 Sobamowo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.