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Introduction
The determinations of the roots of nonlinear algebraic equations 

are important aspects in providing solutions to many practical 
problems in science and engineering. In fact, providing exact 
solutions to the nonlinear equations has been among the oldest 
problems of mathematical methods. However, it is generally difficult 
to establish a general analytical method that provides exact solutions 
to nonlinear algebraic equations. Consequently, often time, recourse 
has been made to numerical methods in finding roots to polynomials, 
transcendental, and other nonlinear algebraic equations. In such 
mathematical adventures, bisection method is one of the oldest root-
finding numerical methods. Although, the method is simple and its 
convergence is guaranteed, it is generally slow and works when 
the root to be estimated is of even-order. Choosing an initial guess 
or estimate close to root has no advantage in the application of the 
method and it may lead to carrying out many iterations to converge. 
Using method of regular falsi which seems to be an improvement over 
the bisection method, but unfortunately, the method yields an estimate 
without useable known error bound. Interestingly, the applications of 
linear fixed-point iteration method to find root of a nonlinear algebraic 
equations comes with an increased rate of convergence over bisection 
method and method of regular falsi. However, sometimes, selection of 
the correct fixed-point or iteration function poses serious challenges 
in the use of the numerical method. In fact, in fixed-point iteration 
method, convergence can be slow or non-existence. Newton-Raphson 
method is taken as the most popular root-finding numerical method 
with high rate of convergence. Unfortunately, the convergence of the 
Newton-Raphson method to the required solution is not guaranteed 
i.e., sometimes, for a given equation and for a given initial guess or 
estimate, one may not get the required solution. The method converges 
provided the initial approximation is chosen sufficiently close to 
the root, otherwise, the procedure may lead to an endless cycle. 
This shows that the method is very sensitive and grossly dependent 
on initial guess or starting values. Such an initial guess may be too 

far from the local root, and it may give a zero derivative and loop 
indefinitely. In fact, the Newton-Raphson method has poor global 
convergence properties. It converges slowly near local maxima and 
local minima, due to oscillation. Furthermore, such slow convergence 
is witnessed when Newton-Raphson is used for a problem with 
multiple roots. Moreover, the numerical method encounters problem 
when the value of the inherent derivative is very small or zero as 
such can lead to division by zero problem and inflection point issue 
can occur. Furthermore, root jumping might take place thereby 
not getting intended solution. Newton-Raphson method requires 
symbolic derivatives which might be difficult or virtually impossible 
to get especially for some complicated functions. Secant method has 
been used to obviate the symbolic derivative and derivative zero 
problem in Newton-Raphson method as the method does not require 
the derivatives of the given function. Although, the method is taken 
as one of the most economical numerical methods that give rapid 
convergence at a low cost, it requires two initial guesses or estimates 
for starting and it can produce erratic results when the approximations 
become close together. In fact, most often in numerical methods, 
choosing the right initial estimate(s), developing derivative(s) and the 
finding the correct fixed-point poses serious difficulties.

The limitations of the numerical methods as presented in the 
preceding sections show that the classical ways of finding analytical 
solutions (exact or approximate) to the nonlinear problems are still 
very much important. Although, as stated previously, it is very 
difficult to develop a general analytical method for solving nonlinear 
algebraic equations, there have been several submissions such as 
Cardan’s method, Viète’s, algebraic geometry, Ferrari’s method, 
Descartes’s method, Euler’s method, Lagrange resolvent, etc. for 
the developments of exact solutions to polynomial equations. In 
fact, the past centuries have witnessed the establishments of various 
exact analytical solutions to quadratic, cubic and quartic equations.1–8 
However, in the early 19th century, Abel and Galois ingeniously and 
rigorously demonstrated in their impossibility theorem that there exists 
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no general formula for zeroes of a polynomial equation of degree five 
or higher.9 Therefore, the general quintic equation and other higher-
order polynomials cannot be solved algebraically in terms of a finite 
number of additions, subtractions, multiplications, divisions, and 
root extractions. Such Abel’s impossibility theorem puts a period to 
longstanding search for a ‘magic’ formula for polynomials of higher 
orders. However, in recent times, Waston’s and Dummit’s methods 
have been used to develop and establish analytical solutions to quintic 
equations while Buya’s method and Hagedorn’s method have been 
applied to solve sextic or hexic equations. Abel-Ruffin theorem and 
Kulkarni’s method were put forward to provide solutions to octic 
equations while another Kulkarni’s method was also developed 
to establish analytical solutions for nonic equations. De’ Moivre 
theorem can be used to solve polynomial equation of any power 
but of a reduced form. Nonetheless, all these methods only provide 
analytical solutions to polynomial equations. At the other hand, 
transcendental equations and other nonlinear algebraic equations 
have been solved analytically with the aid of Lambert W-function. 
However, the method of Lambert W-function is used to solve the 
nonlinear equations in which the unknown appears both outside and 
inside an exponential function or a logarithm. Consequently, in the 
continuous quest of finding roots of nonlinear algebraic equations, 
there have been unending applications of numerical methods as the 
viable options, even with all their inherent limitations. However, 
one major gap in literature is that Abel’s impossibility theorem did 
not state whether polynomial equations can be solved with infinite 
power series or not. Therefore, in recent years, an infinite power 
series approach such as Adomian perturbation method (ADM) has 
been used to find the roots of nonlinear algebraic equations and more, 
importantly to solve nonlinear differential equations.10–20 With the aid 
of the ADM, the approximate solution of the nonlinear equation is 
considered as an infinite series converging to the accurate solution. 
However, such power series solution involves determination of 
Adomian polynomials which increases the computational effort and 
time. Its slow rate of convergence for problems of wide region or 
domain is a great shortcoming of the method. Homotopy perturbation 
method have been applied to develop some iterative methods to solve 
nonlinear algebraic equations.21–24 Some other computational schemes 
have been developed25–42 to solve nonlinear algebraic equations. A 
critical review of the developed methods in previous studies point to 
the fact that they numeric in nature which means that they are based 
on iterative or numerical procedures and on the idea of successive 
approximations that start with one or more initial approximations to 
the required roots. Also, many of the methods in the review works 
require symbolic derivatives which might be difficult to get in some 
complicated functions. Motivated by the above limitations and the 
gaps in the past works and to the best of the author’s knowledge, 
it can be stated that homotopy perturbation method has not been 
directly applied to solve nonlinear algebraic equations, especially 
when the given equation does not have a linear term. Therefore, in 
this study, it is demonstrated that the direct applications of homotopy 
perturbation method is not only limited to solve nonlinear differential 
and integral equations but also, it is capable of solving nonlinear 
algebraic equations. Several numerical examples are given to show 
the reliability, performance and efficiency of the method in solving 
nonlinear algebraic equations.

Homotopy perturbation method
Homotopy perturbation method is a total analytical power series 

method for solving nonlinear equations. It is first proposed by He.43 
The method was also improved by He.44–47 Its basic principle is stated 
in the next section. 

The basic idea of homotopy perturbation method

In order to establish the basic idea behind homotopy perturbation 
method, consider a system of nonlinear differential equations given as

 ( ) ( ) 0, ,A U f r r− = ∈Ω
				  

					                                      (1)

 with the boundary conditions

 
, 0, ,uB u r
η

 ∂
= ∈Γ ∂ 

					   
				                                                 (2)

where A is a general differential operator, B is a boundary operator, 
( )f r  a known analytical function and Γ is the boundary of the 

domain Ω
The operator A can be decomposed or divided into two parts, 

which are L and N, where L is a linear operator, N is a non-linear 
operator. Eq. (1) can be therefore rewritten as follows

 
( ) ( ) ( ) 0.L u N u f r+ − =

					  
				                                                 (3)

 By the homotopy technique, a homotopy ( ) [ ], : 0,1U r p RΩ× →  

can be constructed, which satisfies

 ( ) ( ) ( ) ( ) ( ) ( ) [ ], 1 0, 0,1 ,H U p p L U L U p A U f r pο= − − + − = ∈             (4)

or	
( ) ( ) ( ) ( ) ( ) ( ), 0.H U p L U L U pL U p N U f rο ο= − + + − =           (5)

In the above Eqs. (4) and (5), [ ]0,1p∈  is an embedding 
parameter, ou is an initial approximation of equation of Eq.(1), which 
satisfies the boundary conditions.

Also, from Eqs. (4) and Eq. (5), we will have

( ) ( ) ( ),0 0,oH U L U L U= − =
				  

					                                   (6)

or

( ) ( ) ( ),1 0.H U A U f r= − =
				  

					                                      (7)

The changing process of p from zero to unity is just that of 

( ),U r p from ( )ou r
 
to ( )u r . This is referred to deformation 

in topology. ( ) ( )oL U L U−  and ( ) ( )A U f r− are called 
homotopic.

Using the embedding parameter p as a small parameter, the 
solution of Eqs. (4) and Eq. (5) can be assumed to be written as a 
power series in p as given in Eq. (8)

2
1 2 ...oU U pU p U= + + +

					  
				                                                 (8)

It should be pointed out that of all the values of p between 0 and 1, 
p=1 produces the best result. Therefore, setting 1p = , results in the 
approximation solution of Eq. (9)

1 21
lim ...op

u U U U U
→

= = + + + 				  
					                                    (9)

Therefore

1 2 ...ou U U U= + + +                                                           
 (10)

The series Eq. (10) is convergent for most cases. 

The basic idea expressed above is a combination of homotopy 
and perturbation method. Hence, the method is called homotopy 
perturbation method (HPM), which has eliminated the limitations of 
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the traditional perturbation methods. On the other hand, this technique 
can have full advantages of the traditional perturbation techniques. 

Numerical examples
In order to demonstrate the simplicity, reliability and efficiency 

of the direct homotopy perturbation method in solving nonlinear 
algebraic equations, the following polynomial and transcendental 
equations are clearly solved as presented under this section as 
presented as follows:

Example 5.1: Find the roots of the following quadratic equation using 
homotopy perturbation method

2 4 3 0x x+ + = .                                                                  (11)

The above equation can be expressed as
2 3 0

4 4
xx + + =                                                                      (12) 

In order to apply homotopy perturbation method, the equation is 
expressed as

[ ]
2

0
3(1 ) 0
4 4

xp x v p x
 

− − + + + = 
 

                          (13)

One can write the above Eq. (13) as

[ ]
2

0 0
3 0

4 4
xx v p v p

 
− + + + = 

 
                                   (14)

Using the embedding parameter p as a small parameter, the 
solution of Eq. (11) can be assumed to be written as a power series in 
p as given in Eq. (15)

2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 ...x x px p x p x p x p x p x p x p x p x= + + + + + + + + + +          (15)

On substituting Eq. (15) into Eq.(14), we have 

[ ] ( )

2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0

22 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9

...
1 3... 0
4 4

x px p x p x p x p x p x p x p x p x v

p v p x px p x p x p x p x p x p x p x p x

+ + + + + + + + + + − +

 + + + + + + + + + + + + =  

 (16) 

Arrange the equation according to the power of the embedding 
parameter p, we have

0
0 0: 0,p x v− =  

1 2
1 0 0

1 3: 0,
4 4

p x v x+ + + =

( )2
2 0 1

1: 2 0,
4

p x x x+ =

( )3 2
3 1 0 2

1: 2 0,
4

p x x x x+ + =

( )4
4 0 3 1 2

1: 2 2 0,
4

p x x x x x+ + =

( )5 2
5 2 1 3 0 4

1: 2 2 0,
4

p x x x x x x+ + + =

( )6
6 0 5 1 4 2 3

1: 2 2 2 0,
4

p x x x x x x x+ + + =

( )7 2
7 3 0 6 1 5 2 4

1: 2 2 2 0,
4

p x x x x x x x x+ + + + =

( )8
8 0 7 1 6 2 5 3 4

1: 2 2 2 2 0,
4

p x x x x x x x x x+ + + + =

( )9 2
9 4 0 8 1 7 2 6 3 5

1: 2 2 2 2 0,
4

p x x x x x x x x x x+ + + + + =

Taking an initial approximation as 0 0.5v = −
On solving the above equations, we have 

0 1 2 3 4

5 6 7 8 9

0.500000, 0.312500, 0.078125, 0.043945, 0.023193,
0.014190, 0.008880, 0.005826, 0.003908, 0.002680

x x x x x
x x x x x
= − = − = − = − = −
= − = − = − = − = −

   (17)

Taking an initial approximation as 0 0.75v = −
0 1 2 3 4

5 6 7 8 9

0.75, 0.140625, 0.052734, 0.024719, 0.012977,
0.007300, 0.004302, 0.002621, 0.001634, 0.001043

x x x x x
x x x x x
= − = − = − = − = −
= − = − = − = − = −

   (18)

From the basic principle of HPM, 
2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 ...x x px p x p x p x p x p x p x p x p x= + + + + + + + + + + (19)

It should be pointed out that of all the values of p between 0 and 1, 
p=1 produces the best result. Therefore, setting 1p = , results in the 
approximation solution of Eq. (9)

0 1 2 3 4 5 6 7 8 91
lim ......
p

x x x x x x x x x x x x
→

= = + + + + + + + + + +  (20)

Which gives

0 1 2 3 4 5 6 7 8 9 ......x x x x x x x x x x x= + + + + + + + + + + (21)

Therefore, when the initial approximation, 0 0.5v = − we have
0.500000, 0.312500, 0.078125 0.043945 0.023193 0.014190
0.008880, 0.005826 0.003908 0.002680 0.993252

x = − − − − − −
− − − − = −

 (22)

And, when the initial approximation, 0 0.75v = − , we have

0.75 0.140625 0.052734 0.024719 0.012977 0.007300
0.004302 0.002621 0.001634 0.001043 ... 0.997955

x = − − − − − −
− − − − + = −

 (23)

The above results show that the closer the initial approximation to 
the root of the equation, the more accurate is the result of the solution. 
However, the approach requires an initial estimate. In order to avoid 
this, one can write a modified homotopy perturbation method so that 
the scheme can be free from the problem of choosing an appropriate 
initial approximation. 

The equation is expressed as

( ) ( ) 0.L u c pN u+ + =                                                 (24)

where c is the constant in the nonlinear equation,
23 0

4 4
xx p

 
+ + = 

 
                                                            (25)

As done previously, the solution of Eq. (11) can be assumed to be 
written as a power series in p as 

2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 ...x x px p x p x p x p x p x p x p x p x= + + + + + + + + + +  (26)

On substituting Eq. (26) into Eq.(25), one has

( )

2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

22 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

3...
4

1 ... 0
4

x px p x p x p x p x p x p x p x p x

p x px p x p x p x p x p x p x p x p x

+ + + + + + + + + + +

 + + + + + + + + + + + =  

 (27)

Arrange the equation according to the power of the embedding 
parameter p, we have

0
0

3: 0,
4

p x + =  
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1 2
1 0

1: 0,
4

p x x+ =

( )2
2 0 1

1: 2 0,
4

p x x x+ =

( )3 2
3 1 0 2

1: 2 0,
4

p x x x x+ + =

( )4
4 0 3 1 2

1: 2 2 0,
4

p x x x x x+ + =

( )5 2
5 2 1 3 0 4

1: 2 2 0,
4

p x x x x x x+ + + =

( )6
6 0 5 1 4 2 3

1: 2 2 2 0,
4

p x x x x x x x+ + + =

( )7 2
7 3 0 6 1 5 2 4

1: 2 2 2 0,
4

p x x x x x x x x+ + + + =

( )8
8 0 7 1 6 2 5 3 4

1: 2 2 2 2 0,
4

p x x x x x x x x x+ + + + =

( )9 2
9 4 0 8 1 7 2 6 3 5

1: 2 2 2 2 0,
4

p x x x x x x x x x x+ + + + + =

On solving the above equations, we have 
0 1 2 3 4

5 6 7 8 9

0.75, 0.140625, 0.052734, 0.024719, 0.012977,
0.007300, 0.004302, 0.002621, 0.001634, 0.001043

x x x x x
x x x x x
= − = − = − = − = −
= − = − = − = − = −

 (28)

Therefore

0 1 2 3 4 5 6 7 8 9 ......x x x x x x x x x x x= + + + + + + + + + +  (29)

From Eqs. (28) and (29), we have 

0.75 0.140625 0.052734 0.024719 0.012977 0.007300
0.004302 0.002621 0.001634 0.001043 ... 0.997955

x = − − − − − −
− − − − + = −

 

The exact solutions for the roots of the equation are -1 and -3. The 
above solution shows that the results of the HPM is approaching a 
negative root of -1, which is one of the roots of the equation. It should 
be stated that the rate of convergence can be accelerated using Shank 
transformation (Table 1).

Table 1 Solution of the equation of example 3.1

Number of Iteration (n) n-term Solution Absolute Error

1 -0.75 0.25

2 -0.890625 0.109375

3 -0.943359 0.056641

4 -0.968078 0.031922

5 -0.981055 0.018945

6 -0.988355 0.011645

7 -0.992657 0.007343

8 -0.995278 0.004722

9 -0.996912 0.003088

10 -0.997995 0.002045

Example 5.2: Find the roots of the following cubic equation using 
homotopy perturbation method

3 5 3 0x x− + = .                                                                    (30)

The above equation can be expressed as
3 3 0

5 5
xx − − =                                                                      (31) 

In order to apply homotopy perturbation method, the equation is 
expressed as

33 0
5 5

xx p
 

− + − = 
 

                                                          (32)

Which can be written as
33 0

5 5
xx p

 
− − = 

 
                                                             (33)

According to the procedure of HPM, the solution of Eq. (30) can 
be assumed to be written as a power series in p as 

2 3 4 5 6
0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +            (34)

After substitution of Eq. (34) into Eq.(33), on arrives at

( )

2 3 4 5 6
0 1 2 3 4 5 6

32 3 4 5 6
0 1 2 3 4 5 6

3...
5

1 ... 0
5

x px p x p x p x p x p x

p x px p x p x p x p x p x

+ + + + + + + −

 − + + + + + + + =  

         (35)

Eq. (35) can be arranged according to the power of the embedding 
parameter p as

0
0

3: 0,
5

p x − =  

1 3
1 0

1: 0,
5

p x x− =

( )2 2
2 0 1

1: 3 0,
5

p x x x− =

( )3 2 2
3 0 2 1 0

1: 3 3 0,
5

p x x x x x− + =

( )4 2 3
4 0 3 1 0 1 2

1: 3 6 0,
5

p x x x x x x x− + + =

( )5 2 2 2
5 0 4 0 2 0 1 3 1 2

1: 3 3 6 3 0,
5

p x x x x x x x x x x− + + + =

( )6 2 2 2
6 0 5 0 2 3 0 1 4 1 2 1 3

1: 3 6 6 3 3 0,
5

p x x x x x x x x x x x x x− + + + + =

The solutions of the above equations are 

0 1 2 3

4 5 6

0.600000, 0.0432000, 0.0093312, 0.0026874,
0.0008868, 0.0003169, 0.0001194

x x x x
x x x
= = = =
= = =

 (36)

From the basic principle of HPM,
0.600000 0.0432000 0.0093312 0.0026874 0.0008868 0.0003169 0.0001194 ... 0.6565417x = + + + + + + + =

The exact solutions of the roots of the given equation are 
-2.49086362, 0.6566204, 1.83424318. Table 2 shows that the solution 
through the HPM is approaching the lowest positive root of 0.6566204.

https://doi.org/10.15406/ipcse.2023.06.00127


Direct applications of homotopy perturbation method for solving nonlinear algebraic and transcendental 
equations

14
Copyright:

©2023 Sobamowo 

Citation: Sobamowo  MG. Direct applications of homotopy perturbation method for solving nonlinear algebraic and transcendental equations. Int J Petrochem 
Sci Eng. 2023;6(1):10‒22. DOI: 10.15406/ipcse.2023.06.00127

Table 2 Solution of the equation of example 3.2

Number of Iteration (n)  n-term Solution Absolute Error
1 0.6 0.0566204
2 0.6432 0.0134204
3 0.6525312 0.0040892
4 0.6552186 0.0014018
5 0.6561054 0.000515
6 0.6564223 0.0001981
7 0.6565417 0.0000787

Example 5.3: Determine the root of the following cubic equation with 
the aid of homotopy perturbation method

3 27 14 6 0x x x− + − = .                                                      (37)

The above equation can be expressed as
3 23 0

7 14 2
x xx − + − =                                                            (38) 

In order to apply homotopy perturbation method, the equation is 
expressed as

3 23 0
7 14 2

x xx p
 

− + − = 
                                                  

 (39)

Following the HPM procedure, the solution of Eq. (37) can be 
assumed to be written as a power series in p as 

2 3 4 5 6
0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +    (40)

When Eq. (40) is substituted into Eq. (39), we have 

( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

32 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

3...
7

...
14 0

...
2

x px p x p x p x p x p x

x px p x p x p x p x p x

p
x px p x p x p x p x p x

+ + + + + + + −

 + + + + + + +
 
 + = 

+ + + + + + + 
−  

           (41)

On arranging the Eq. (41) according to the power of the embedding 
parameter p, gives

0
0

3: 0,
7

p x − =  

1 3 2
1 0 0

1 1: 0,
14 2

p x x x+ − =

( ) ( )2 2
2 0 1 0 1

1 1: 3 2 0,
14 2

p x x x x x+ − =

( ) ( )3 2 2 2
3 0 2 1 0 1 0 2

1 1: 3 3 2 0,
14 2

p x x x x x x x x+ + − + =

( ) ( )4 2 3
4 0 3 1 0 1 2 0 3 1 2

1 1: 3 6 2 2 0,
14 2

p x x x x x x x x x x x+ + + − + =

( ) ( )5 2 2 2 2
5 0 4 0 2 0 1 3 1 2 2 1 3 0 4

1 1: 3 3 6 3 2 2 0,
14 2

p x x x x x x x x x x x x x x x+ + + + − + + =

( ) ( )6 2 2 2
6 0 5 0 2 3 0 1 4 1 2 1 3 0 5 1 4 2 3

1 1: 3 6 6 3 3 2 2 2 0,
14 2

p x x x x x x x x x x x x x x x x x x x+ + + + + − + + =

The solutions of the above equations are 

0 1 2 3

4 5 6

0.4285714, 0.0862141, 0.0335563, 0.0160944,
0.0080918, 0.0046883, 0.0029661

x x x x
x x x
= = = =
= = =

   (42)

Therefore, we have
0.4285714 0.0862141 0.0335563 0.0160944 0.0080918 0.0046883 0.0029661 ... 0.5801824x = + + + + + + + =  

The exact solutions of the roots of the given equation are 0.5857864, 
3.000000 and 3.4142135. The solution of the equation using HPM 
is approaching the lowest positive root of 0.5857864 as the absolute 
error is approaching zero (Table 3).

Table 3 Solution of the equation of example 3.3

Number of Iteration (n)  n-term Solution Absolute Error
1 0.4285714 0.157215
2 0.5147855 0.0710009
3 0.5483418 0.0374446
4 0.5644362 0.0213502
5 0.572528 0.0132584
6 0.5772163 0.0085701
7 0.5801824 0.005604

Example 5.4: Solve the following cubic equation using homotopy 
perturbation method

3 24 8 8 0x x x+ + + = .                                                           (43)

The above equation can be expressed as
3 2

1 0
8 2
x xx + + + =                                                            (44) 

As before, in order to apply homotopy perturbation method, the 
Eq. (44) can be expressed as

3 2

1 0
8 2
x xx p

 
+ + + = 

 
                                                      (45)

In a similar way, one can say that the solution of Eq. (43) can be 
expressed as

2 3 4 5 6
0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +

   
 (46)

On substituting Eq. (456) into Eq.(45), we have 

( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

32 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

... 1

...
8 0

...
2

x px p x p x p x p x p x

x px p x p x p x p x p x

p
x px p x p x p x p x p x

+ + + + + + + +

 + + + + + + +
 
 + = 

+ + + + + + + 
+  

             (47)

Arrange the equation according to the power of the embedding 
parameter p, produces

0
0: 1 0,p x + =  

1 3 2
1 0 0

1 1: 0,
8 2

p x x x+ + =

( ) ( )2 2
2 0 1 0 1

1 1: 3 2 0,
8 2

p x x x x x+ + =

( ) ( )3 2 2 2
3 0 2 1 0 1 0 2

1 1: 3 3 2 0,
8 2

p x x x x x x x x+ + + + =

( ) ( )4 2 3
4 0 3 1 0 1 2 0 3 1 2

1 1: 3 6 2 2 0,
8 2

p x x x x x x x x x x x+ + + + + =

( ) ( )5 2 2 2 2
5 0 4 0 2 0 1 3 1 2 2 1 3 0 4

1 1: 3 3 6 3 2 2 0,
8 2

p x x x x x x x x x x x x x x x+ + + + + + + =
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( ) ( )6 2 2 2
6 0 5 0 2 3 0 1 4 1 2 1 3 0 5 1 4 2 3

1 1: 3 6 6 3 3 2 2 2 0,
8 2

p x x x x x x x x x x x x x x x x x x x+ + + + + + + + =

When the above equations are solved, we have 

0 1 2 3

4 5

1.0000000, 0.37500000, 0.23437500, 0.1640625,
0.1179199, 0.0835876,

x x x x
x x
= − = − = − = −
= − = −

  (48)

Therefore, we have

( ) ( ) ( )1.0000000 0.37500000 0.23437500 ( 0.1640625) ( 0.1179199) ( 0.0835876) ... 1.974945x = − + − + − + − + − + − + = −  

The exact solutions of the roots of the given equation are -2.00000, 
-1+ 3i  and -1- 3i . The result of the HPM is approaching the 
real root of -2.0000 as the absolute error is reducing to 0. The rate of 
convergence can be accelerated using Shank transformation (Table 4).

Table 4 Solution of the equation of example 3.4

Number of Iteration (n)  n-term Solution Absolute Error
1 -1 1
2 -1.375 0.625
3 -1.609375 0.390625
4 -1.7734375 0.2265625

5 -1.8913574 0.1086426
6 -1.974945 0.025055

Example 5.5: Solve the following quintic equation using homotopy 
perturbation method

5 4 3 23 2 5 6 4 0x x x x x− + + − − = .                                (49)

Eq. (4) can be rearranged as 
5 4 3 22 5 0

3 6 2 3 6
x x x xx + − + − − =                                   (50) 

The homotopy perturbation method is applied to write the Eq. (50) 
as 

5 4 3 22 5 0
3 6 2 3 6

x x x xx p
 

+ + − + − − = 
 

                       (51)

Following the usual procedures of HPM, the solution of Eq. (51) is 
written as a power series in p as 

2 3 4 5 6
0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +           (52)

The substitution of Eq. (52) into Eq.(51) produces 

( )

( )

( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

52 3 4 5 6
0 1 2 3 4 5 6

42 3 4 5 6
0 1 2 3 4 5 6

32 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

2...
3

...
6

...
2

...
3

5 ...
6

x px p x p x p x p x p x

x px p x p x p x p x p x

x px p x p x p x p x p x

p
x px p x p x p x p x p x

x px p x p x p x p x p x

+ + + + + + + +

 + + + + + + +
−



+ + + + + + +
+

+
+ + + + + + +

−

+ + + + + + +
−


0








  =
 
 
 
 
 
 

      (53)

On arranging Eq.(53) according to the power of the embedding 
parameter p, we have

0
0

2: 0,
3

p x + =  

1 5 4 3 2
1 0 0 0 0

1 1 1 5: 0,
6 2 3 6

p x x x x x− + − − =

( ) ( ) ( ) ( )2 4 3 2
2 0 1 0 1 0 1 0 1

1 1 1 5: 5 4 3 2 0,
6 2 3 6

p x x x x x x x x x− + − − =

( ) ( ) ( ) ( )3 3 2 4 3 2 2 2 2 2
3 0 1 0 2 0 2 0 1 0 2 1 0 1 0 2

1 1 1 5: 10 5 4 6 3 3 2 0,
6 2 3 6

p x x x x x x x x x x x x x x x x− + + + − + − + =

( ) ( )

( ) ( )

4 2 3 3 4 3 2 3
4 0 1 0 1 2 0 3 0 3 0 1 2 0 1

2 3
0 3 1 0 1 2 0 3 1 2

1 1: 10 20 5 4 12 4
6 2

1 53 6 2 2 0,
3 6

p x x x x x x x x x x x x x x x

x x x x x x x x x x

− + + + + +

− + + − + =

( ) ( )

( ) ( )

5 4 2 2 3 2 3 4 3 2 2 2 2 4
5 0 1 0 1 2 0 2 0 1 3 0 4 0 4 0 1 3 0 2 0 1 2 1

2 2 2 2
0 4 0 2 0 1 3 1 2 2 1 3 0 4

1 1: 5 30 10 20 5 4 12 6 12
6 2

1 53 3 6 3 2 2 0,
3 6

p x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

− + + + + + + + + +

− + + + − + + =

The solutions of the above equations give 

0 1 2 30.66666667, 0.15089163, 0.01366097, 0.03656980,x x x x= − = = = −  (54)

Therefore, we have

( 0.66666667) (0.15089163) (0.01366097) ( 0.03656980) ... 0.53868386x = − + + + − + = −
The exact solutions of the roots of the given equation are 

-0.528886049, -1.09890396, 1.76518196. It can be seen that the 
above solution shows that the scheme is approaching the real root of 
-0.528886049 as the absolute error is approaching 0 (Table 5).

Table 5 Solution of the equation of example 3.5

Number of Iteration (n) n-term Solution  Absolute Error
1 -0.66666667 0.137780621
2 -0.51577504 0.013111009
3 -0.50211407 0.026771979
4 -0.53868387 0.009797821

Example 5.6: Solve the following nonlinear algebraic simultaneous 
equations using homotopy perturbation method

2 210 8 0x x y− + + = .                                                      (55)
2 10 8 0xy x y+ − + =                                                         (56)

The above equation can be expressed as
2 24 0

5 10 10
x yx − − − =                                                           (57) 

24 0
5 10 10

x xyy − − − =                                                          (58)

According to the definitions of HPM, Eqs. (57) and (58) can be 
written as 

2 24 0
5 10 10

x yx p
 

− + − − = 
 

                                                (59)

24 0
5 10 10

x xyy p
 

− + − − = 
 

                                            (60)

The solutions of Eqs. (59) and (60) can be assumed to be written 
2 3 4 5 6

0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +        (61)
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2 3 4 5 6
0 1 2 3 4 5 6 ...y y py p y p y p y p y p y= + + + + + + +  (62)

On substituting Eqs. (61) and (62) into Eq.(59) and (60), we have 

( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

4...
5

...
10 0

...
10

x px p x p x p x p x p x

x px p x p x p x p x p x

p
y py p y p y p y p y p y

+ + + + + + + −

 − + + + + + + +
 
 + = 

+ + + + + + + 
−  

 (63)

( )

( )
( )

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

4...
5

...
10

... 0

...

10

y py p y p y p y p y p y

x px p x p x p x p x p x

x px p x p x p x p x p xp

y py p y p y p y p y p y

+ + + + + + + −

 − + + + + + + +
 
 
  + + + + + + ++ =  

  
+ + + + + + +   −  

      (64)

When the Eqs. (63) and (64) are arranged according to the power 
of the embedding parameter p, one arrives at

0
0 0

4 4: 0, 0
5 5

p x y− = − =  

1 2 2 2
1 0 0 1 0 0

1 1 1 1: 0, 0,
10 10 10 10

p x x y y x xy− − = − − =

( ) ( ) ( )2 2
2 0 1 0 1 2 1 1 0

1 1 1 1: 2 2 0, 0
10 10 10 10

p x x x y y y x x y− − = − − =

( ) ( ) ( )3 2 2 2
3 1 0 2 1 0 2 3 2 0 1 1 0 1

1 1 1 1: 2 2 0, 2 0,
10 10 10 10

p x x x x y y y y x x y x y y− + − + = − − + =

On solving the above equations to the sixth power of the embedding 
parameter p, we have 

0.997853x = , 0.997562y =                                          (65)

The exact solutions of the roots of the given equation are x = 1 and 
y = 1 . The absolute errors in the approximate solutions are 0.002147 
and 0.0024380. It can be seen that the above solution shows that the 
scheme is approaching the roots of the equations as the absolute errors 
approach zero. 

Example 5.7: Find the roots of the following transcendental equation 
using homotopy perturbation method

2 0xx e−− − = .                                                                   (66)

In order to apply homotopy perturbation method, the equation is 
expressed as

2 0xx p e− − + − =                                                            (67)

The solution of Eq. (67) can be assumed to be written 
2 3 4 5 6

0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +      
 (68)

The substitution Eq. (68) into Eq.(67) gives
( )2 3 4 5 6

0 1 2 3 4 5 6 ...2 3 4 5 6
0 1 2 3 4 5 6 ... 2 0x px p x p x p x p x p xx px p x p x p x p x p x p e− + + + + + + + + + + + + + + − − =      (69)

A further simplification of the above equation produces
( )2 3 4 5 6

1 2 3 4 5 60
...2 3 4 5 6

0 1 2 3 4 5 6 ... 2 0px p x p x p x p x p xxx px p x p x p x p x p x p e e− + + + + + +− + + + + + + + − − =    (70)

The expression in the block bracket can be expanded with the aid 
of Taylor series as

 

0

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

... 2

1 ...

...
2!

...
3!

...
4!

x

x px p x p x p x p x p x

px p x p x p x p x p x

px p x p x p x p x p x

px p x p x p x p x p x
p e

px p x p x p x p x p x

p

−

+ + + + + + + −

 − + + + + + + 
 + + + + + + +

 + + + + + + + −

 + + + + + + +

−
2 3 4 5 6

1 2 3 4 5 6

0

...
5!

x p x p x p x p x p x

  
  
  
  
  
  
  
  = 
  
  
  
  
   + + + + + +   
    

  

                                                                                                     (71)

The arrangement of Eq.(71) according to the power of the 
embedding parameter p gives

0
0

2: 0,
3

p x − =  

01
1: 0,xp x e−− =

02
2 1: 0,xp x x e−− =

0 0

2
3 1

3 2: 0,
2!

x xxp x x e e− −− + =

0 0 0

3
4 1

4 3 1 2: 0,
3!

x x xxp x x e x x e e− − −− + − =

( )
0 0 0 0

2 2 4
1 3 25 1 2 1

5 4

2 3: 0,
2! 3! 4!

x x x x
x x x x x xp x x e e e e− − − −

+
− + − + =

( ) ( )
0 0 0 0 0

2 2 3 5
1 3 1 22 3 1 46 1 2 1

6 5

3 32 2 4: 0,
2! 3! 4! 5!

x x x x x
x x x xx x x x x x xp x x e e e e e− − − − −

++
− + − + − =

On solving the above equations, we have 
0 1 2 3

4 5 6 7

8 9

2.00000000000, 0.13533528323366, 0.01831563889, 0.003718128265,
0.0008945670078 0.0002364579676, 0.0000663574935, 0.0000194104211

0.0000058532581, 0.0000018066598,

x x x x
x x x x

x x

= = = − =
= − = = − =

= − =

Therefore, we have
2.00000000000 0.13533528323366 0.01831563889 0.003718128265

0.0008945670078 0.0002364579676 0.0000663574935, 0.0000194104211
0.0000058532581 0.0000018066598 ... 2.1200286699020

x = + − +
− + − +
− + + =

  (72)

The exact solutions of the roots of the given equation are 
2.1200282389876. It can be seen that the above solution shows that 
the scheme approaches the exact solution (Table 6).

Table 6 Solution of the equation in example 3.6

Number of Iteration (n) n-term Solution  Absolute Error

1 2 0.1200282

2 2.135335283 0.015307

3 2.117019644 0.026772

4 2.120737773 0.0007095

5 2.119843206 0.000185

6 2.120079664 5.14E-05

7 2.120013306 1.49E-05

8 2.120032717 4.48E-06

9 2.120026863 1.38E-06

10 2.12002867 4.31E-07
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Example 5.8: Determine the root of the following transcendental 
equation using homotopy perturbation method

2 3 2 0xe x x− − + = .                                                           (73)

The above equation can be written as
22 0

3 3 3

xx ex − + − = .                                                               (74)

In order to apply homotopy perturbation method, we can write Eq. 
(74) as

22 0
3 3 3

xx ex p
 

− + − = 
 

                                                 (75)

The assumed solution can be written
2 3 4 5 6

0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +  (76)

From Eq. (76), Eq. (75) can be written as 

( ) ( )2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6 ...
0 1 2 3 4 5 6

2...
3

...
0

3 3

x px p x p x p x p x p x

x px p x p x p x p x p x

x px p x p x p x p x p x ep
+ + + + + + +

+ + + + + + + −

 + + + + + + +
 − − =
 
 

  (77) 

Eq. (77) can be written as after applying Taylor series to the second 
function in the block bracket

( )

0

2 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

2...
3

...

1 ...

...
2!1

...3
3!

x

x px p x p x p x p x p x

x px p x p x p x p x p x

px p x p x p x p x p x

px p x p x p x p x p x

p px p x p x p x p x p x
e

p

+ + + + + + + −

+ + + + + + +

 + + + + + + + 
 + + + + + + +

+  + + + + + + − +

+
2 3 4 5 6

1 2 3 4 5 6

2 3 4 5 6
1 2 3 4 5 6

0

...
4!

...
5!

x p x p x p x p x p x

px p x p x p x p x p x

 
 
  
  
  
  
  
  
  = 
  
  
   + + + + + +   
  
   + + + + + +   +    

 (78)

Arranging Eq. (77) according to the power of the embedding 
parameter p, we have

0
0: 2 0,p x − =  

01 2
1 0

1 1: 0,
3 3

xp x x e+ − =

( ) 02
2 0 1 1

1 1: 2 0,
3 3

xp x x x x e+ − =

( ) 0

2
3 2 1

3 1 0 2 2
1 1: 2 0,
3 3 2!

xxp x x x x x e
 

+ + − + = 
 

( ) 0

3
4 1

4 0 3 1 2 3 1 2
1 1: 2 2 0,
3 3 3!

xxp x x x x x x x x e
 

+ + − + + = 
 

( ) ( )
0

2 2 4
1 3 25 2 1 2 1

5 2 1 3 0 4 4

2 31 1: 2 2 0,
3 3 2! 3! 4!

x
x x x x x xp x x x x x x x e

 +
 + + + − + + + =
 
 

( ) ( ) ( )
0

2 2 3 5
1 3 1 22 3 1 46 1 2 1

6 0 5 1 4 2 3 5

3 32 2 41 1: 2 2 2 0,
3 3 2! 3! 4! 5!

x
x x x xx x x x x x xp x x x x x x x x e

 ++
 + + + − + + + + =
 
 

On solving the above equations, we have 

0 1 2 3

4 5 6 7

8 9

0.666667, 0.501097, 0.102625, 0.01883,
0.016575 0.013209, 0.007343, 0.004327

0.003109, 0.002240,

x x x x
x x x x

x x

= = − = = −
= = − = = −

= = −
 

Therefore, we have

0.666667 0.501097 0.102625 0.01883 0.016575 0.013209
0.007343 0.004327 0.003109 0.002240 ... 0.256616

x = − + − + −
+ − + − + =

   (79)

The exact solutions of the roots of the given equation are 
0.257530. It can be seen that the above solution shows that the scheme 
approaches the exact solution (Table 7).

Table 7 Solution of the equation in example 3.7

Number of Iteration (n) n-term Solution  Absolute Error

1 0.666667 0.409137

2 0.165557 0.091973
3 0.268195 0.010665
4 0.249365 0.008165
5 0.26594 0.00841
6 0.252731 4.80E-03
7 0.260074 2.54E-03
8 0.255747 1.78E-03
9 0.258856 1.33E-03

10 0.256616 9.14E-04

It could be seen from the above examples and from the procedures 
of homotopy perturbation method that a linear term must be in the 
equation for the HPM to operate. However, it is found that in some 
equations, there is no presence of a linear term. Under such scenario, 
the application of HPM will fail except a kind of modification is done 
to the given equation to include an artificial linear term. Therefore, in 
the subsequent examples such problems will be handled.

In order to treat such problems, we adopt that the general nonlinear 
equation is in the form

Lu Ru Nu c+ + =                                                              (80)

The linear terms are decomposed into L + R, with L taken as the 
first linear term which is easily and R as the remainder of the linear 
operator apart from L. where c is the constant in the equation and u is 
the variable, Nu represents the nonlinear terms. 

Example 5.9: Find the roots of the following cubic equation using 
homotopy perturbation method

3 24 5 0x x+ − = .                                                                    (81)

The above equation does not contain a linear term. A linear term 
with a convenient coefficient can be introduced to make the equation 
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be easily amendable to the form that homotopy perturbation can easily 
be applied. Therefore, we write

3 24 5 0x x ax ax+ + − − =                                                 (82)

For the choice of “a”, the ratio of the constant in the given equation 
and that of “a” must be within two values where the needed root of 

the equation lies. Therefore, we have 50 1
a

≤ ≤. In this example, we 
choice a=8.

3 24 8 8 5 0x x x x+ + − − =                                                 (83)

We can rewrite Eq. (82) as
3 25 0

8 8 2
x xx x− + + − =                                                        (84) 

In order to apply homotopy perturbation method, the Eq.(84) is 
expressed as

3 25 0
8 8 2

x xx p x
 

− + + − = 
 

                                              (85)

As done in the previous examples, the solution of the given 
nonlinear algebraic model can be written as 

2 3 4 5 6
0 1 2 3 4 5 6 ...x x px p x p x p x p x p x= + + + + + + +           (86)

After the substitution of Eq. (86) into Eq. (85), one arrives at 

( )

( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

32 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

22 3 4 5 6
0 1 2 3 4 5 6

5...
8

...
8

... 0
2

...

x px p x p x p x p x p x

x px p x p x p x p x p x

x px p x p x p x p x p xp

x px p x p x p x p x p x

+ + + + + + + −

 + + + + + + +
 
 
 

+ + + + + + + + =+ 
 
 − + + + + + + +
 
  

  (87)

Arranging Eq. (87) according to the power of the embedding 
parameter p, we have

0
0

5: 0,
8

p x − =  

1 3 2
1 0 0 0

1 1: 0,
8 2

p x x x x+ + − =

( ) ( )2 2
2 0 1 0 1 1

1 1: 3 2 0,
8 2

p x x x x x x+ + − =

( ) ( )3 2 2 2
3 0 2 1 0 1 0 2 2

1 1: 3 3 2 0,
8 2

p x x x x x x x x x+ + + + − =

( ) ( )4 2 3
4 0 3 1 0 1 2 0 3 1 2 3

1 1: 3 6 2 2 0,
8 2

p x x x x x x x x x x x x+ + + + + − =

( ) ( )5 2 2 2 2
5 0 4 0 2 0 1 3 1 2 2 1 3 0 4 4

1 1: 3 3 6 3 2 2 0,
8 2

p x x x x x x x x x x x x x x x x+ + + + + + + − =

( ) ( )6 2 2 2
6 0 5 0 2 3 0 1 4 1 2 1 3 0 5 1 4 2 3

1 1: 3 6 6 3 3 2 2 2 0,
8 2

p x x x x x x x x x x x x x x x x x x x+ + + + + + + + =

On solving the above equations, we have 

0 1 2 3

4 5 6

0.6250000, 0.3991699, 0.0912166, 0.0961684,
0.0834048, 0.0257617, 0.0951325

x x x x
x x x
= = = = −
= − = =

 (88)

Therefore, 
0.6250000 0.3991699 0.0912166 0.0961684 0.0834048 0.0257617 0.0951325 ... 1.0567075x = + + − − + + + =  

The exact solutions of the roots of the given equation are 
1.0000000, -1.381966011 and -3.618033989. It can be seen that the 
above solution shows that the scheme is approaching the real positive 
root of 1.0000 from both ends, as the absolute error tends to zero 
(Table 8).
Table 8 Solution of the equation of example 3.8

Number of Iteration (n) n-term Solution  Absolute Error
1 0.625 0.375
2 1.0241699 0.0241699
3 1.1153865 0.1153865
4 1.0192181 0.0192181
5 0.9358133 0.0641867
6 0.961575 0.038425
7 1.0567075 0.0567075

Example 5.10: Find the roots of the following transcendental equation 
using homotopy perturbation method

3xe sinx cosx+ + = .                                                      (89)

The above equation does not contain a linear term. A convenient 
linear term with a coefficient can be introduced to make the equation 
be easily amendable to the form that homotopy perturbation can easily 
be applied. Therefore, we write

3xe sinx cosx ax ax+ + + − =                                      (90) 

For the choice of “a”, the ratio of the constant in the given equation 
and that of “a” must be within two values where the needed root of 
the equation lies. Therefore, we have 30 1

a
≤ ≤ . In this example, we 

choice a = 7.

A convenient linear term is therefore introduced such that we can 
write, 

7 7 3xe sinx cosx x x+ + + − =                                         (91)

Which can be expressed as 

( )3 1 7 0
7 7

xx e sinx cosx x− + + + − =                          (92)

In order to apply homotopy perturbation method, the equation is 
expressed as

( )3 1 7 0
7 7

xx p e sinx cosx x− + + + − =                       (93)

The solution of the given equation can be assumed to be written as 
a power series in p as 

2 3 4
0 1 2 3 4 ...x x px p x p x p x= + + + + +                        (94)

On substituting Eq. (94) into Eq.(93), we have 

( )

( )
( )

( )

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

...

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

2 3 4 5 6
0 1 2 3 4 5 6

3...
7

...1
7 ...

7 ...

x px p x p x p x p x p x

x px p x p x p x p x p x

e

sin x px p x p x p x p x p x
p

cos x px p x p x p x p x p x

x px p x p x p x p x p x

+ + + + + + +

+ + + + + + + −



+ + + + + + + +
+
+ + + + + + + +

− + + + + + + +

0




 =



 


 (95)
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( )

( )
( )

( )

2 3 4
1 2 3 40

2 3 4
0 1 2 3 4

...

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

3...
7

...1 0
7 ...

7 ...

px p x p x p xx

x px p x p x p x

e e

sin x px p x p x p x
p

cos x px p x p x p x

x px p x p x p x

+ + + +

+ + + + + −

 
 
  + + + + + +  + =  + + + + + +  
 − + + + + +  

    

(96)

( )

( )
( )
( )
( )

2 3 4
1 2 3 40

2 3 4
0 1 2 3 4

...

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3
0 1 2 3

3...
7

...

...1
7 ...

...

7

px p x p x p xx

x px p x p x p x

e e

sinx cos px p x p x p x

cosx sin px p x p x p x
p

cosx cos px p x p x p x

sinx sin px p x p x p x

x px p x p x

+ + + +

+ + + + + −

+ + + + +

+ + + + +
+

+ + + + +

− + + + +

− + + +( )4
4

0

...p x

 
 
 
 
 
  =
 
 
 
 
 + + 

    (97)

0

2 3 4
0 1 2 3 4

2 3 4
1 2 3 42 3 4

1 2 3 4

2 3 4 2 3 4
1 2 3 4 1 2 3 4

2 3 4
1 2 3 4

0

3...
7

...
1 ...

2!
... ...

3! 4!
...

1
2!

x

x px p x p x p x

px p x p x p x
px p x p x p x

e
px p x p x p x px p x p x p x

px p x p x p x p
sinx

p

+ + + + + −

  + + + +   − + + + + +  
    + + + + + + + +    − +
  

 + + + + + − +

+

2 3 4
1 2 3 4

2 3 4
1 2 3 42 3 4

1 2 3 4

0 2 3 4
1 2 3 4

2 3 4 2 3 4
1 2 3 4 1 2 3

0

...
...

4!

...
...

3!
...

...
5!

...
1

2!

x p x p x p x

px p x p x p x
px p x p x p x

cosx
px p x p x p x

px p x p x p x px p x p x p
cosx

  + + + +  +
  
  + + + +   + + + + −  +
  + + + +  + +
  

 + + + + + + + + − +

( )

4

2 3 4
1 2 3 42 3 4

1 2 3 4

0 2 3 4
1 2 3 4

2 3 4
0 1 2 3 4

...
...

4!

...
...

3!
...

...
5!

7 ...

x

px p x p x p x
px p x p x p x

sinx
px p x p x p x

x px p x p x p x

 
 
 
 
 
 
 
 
 
 







   +   +
   
   + + + +    + + + + −   −   + + + +   + +   

− + + + + + 

0





 =















   (98)

Arrange the equation according to the power of the embedding 
parameter p, we have

0
0

3: 0,
7

p x − =  

( )01
1 0 0 0

1: 7 0,
7

xp x e sinx cosx x+ + + − =

( )02
2 1 1 0 1 0 1

1: 7 0,
7

xp x x e x cosx x sinx x+ + − − =

0 0

2
3 2 21

3 2 1 0 2 0 1 0 2 0 2
1 1 1: 7 0,
7 2! 2! 2!

x xxp x x e e x sinx x cosx x cosx x sinx x
 

+ + − + − − − = 
 

0 0 0

3
31

3 1 2 1 0 1 2 0 3 0
4

4
3
1 0 1 2 0 3 0 3

1
1 3! 3!: 0,
7 1 7

3!

x x xxx e x x e e x cosx x x sinx x cosx
p x

x sinx x x cosx x sinx x

 
+ + − − + 

 + =
 − − − − 
 

( )
0 0 0 0

2 2 4
1 3 2 1 2 1

4

2 2
5 4 1 2 2

5 1 0 0 0 1 3 0 4 0

2 2
4 1 2 2
1 0 0 0 1 3 0 4 0 4

2 3
2! 3! 4!

31 1: 0,
7 4! 3! 2!

31 7
4! 3! 2!

x x x x
x x x x x xx e e e e

x x xp x x sinx cosx sinx x x sinx x cosx

x x xx cosx sinx cosx x x cosx x sinx x

 +
 + + +
 
 

+ + − − − + = 
 
 
+ + − − − − 
 
 

( ) ( )
0 0 0 0 0

2 2 3 5
1 3 1 22 3 1 4 1 2 1

5

23 2
6 5 2 3 1 31 2 1 4 1 2

6 1 0 0 0 0 0 0 5 0

3
5 2 31 2 1
1 0 0 0

3 32 2 4
2! 3! 4! 5!

64 61 1:
7 5! 4! 3! 3! 2! 2!

64 61
5! 4! 3!

x x x x x
x x x xx x x x x x xx e e e e e

x x x xx x x x x xp x x cosx sinx sinx sinx cosx cosx x cosx

x xx x x xx sinx cosx cosx

++
+ + + +

+ + + − − − − +

− + − −
22
1 34 1 2

0 0 0 5 0 5

0,

7
3! 2! 2!

x xx xcosx sinx sinx x sinx x

 
 
 
 
  =
 
 

+ + − − 
 
 

On solving the above equations, we have 

0 1 2 30.4285714, 0.0199721, 0.0141811, 0.0100645,x x x x= = = = 4 0.0071586,x =  (99)

Therefore
0.4285714 0.0199721 0.0141811 0.0100645 0.0071586 ... 0.4799477x = + + + + + =

The above solution is converging to 0.4972 at the tenth term which 
is a root of the equation. Therefore, 0.4972x = (Table 9).

Table 9 Solution of the equation of example 3.9

Number of Iteration (n) n-term Solution  Absolute Error
1 0.4284714 0.0687268
2 0.4485435 0.0486565
3 0.4627246 0.0344754
4 0.4727891 0.0244109
5 0.4799477 0.0172523

Example 5.11: Find the roots of the following transcendental equation 
using homotopy perturbation method

2 2 15Inx sinhx sin xcos x+ + = .                              (100)

The above equation does not contain a linear term. A convenient 
linear term with a coefficient can be introduced to make the equation 
be easily amendable to the form that homotopy perturbation can easily 
be applied. Therefore, we write

2 2 15Inx sinhx sin xcos x ax ax+ + + − =                 (101)

For the choice of “a”, the ratio of the constant in the given equation 
and that of “a” must be within two values where the needed root of 
the equation lies. Therefore, we have 153 4

a
≤ ≤ . In this example, we 

choice a = 5.
2 2 5 5 15Inx sinhx sin xcos x x x+ + + − =                 (102)

The homotopy perturbation of the equation is given as
2 213 5 0

5
x p Inx sinhx sin xcos x x − + + + − = 

           (103)

The assumed solution is expressed as a power series in p as 
2 3 4

0 1 2 3 4 ...x x px p x p x p x= + + + + +                     (104)
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On substituting Eq. (104) into Eq.(103), we have 

( ) ( )
( ) ( )

( )

2 3 4
0 1 2 3 4

2 3 4 2 3 4
0 1 2 3 4 0 1 2 3 4

2 2 3 4 2 2 3 4
0 1 2 3 4 0 1 2 3 4

2 3 4
0 1 2 3 4

... 3

... ...

... ... 0

5 ...

x px p x p x p x

In x px p x p x p x sinh x px p x p x p x

p sin x px p x p x p x cos x px p x p x p x

x px p x p x p x

+ + + + + −

 + + + + + + + + + + +
 
 + + + + + + + + + + + + =
 
 − + + + + + 

 (105)

Arranging the above equation according to the power of the 
embedding parameter p, we have

0
0: 3 0,p x − =  

( )1 2 2
1 0 0 0 0 0

1: 5 0,
5

p x Inx sinhx sin x cos x x+ + + − =

2 3 31
2 1 0 1 0 0 1 0 0 1

0

1: 2 2 5 0, ,
5

xp x x coshx x sinx cos x x sin x cosx x
x

 
+ + + − − = 

 
2 2

4 2 2 22 1 1
2 0 0 1 0 1 0 03

0 03
3 2 4 3

2 0 0 1 0 2 0 0 2

61 2 2!: 0,
5

2 2 5

x x xx coshx sinhx x cos x x sin x cos x
x xp x

x sinx cos x x sin x x sin x cosx x

 
− + + + − + = 

 + + − − 
3 3

3 1 2 1 1
3 0 1 2 0 02 3

0 0 0

3 3 4 3 34
1 0 0 1 2 0 1 0 04

2 2 3 4
1 2 0 0 3 0 0 1 2 0

3
3 0 0 3

3 3!
16 161 2: 0,
3 35

12 2 2

2 5

x x x x xx coshx x x sinhx coshx
x x x

x cos x sinx x x cos x x sin x cosxp x

x x sin x cos x x sinx cos x x x sin x
x sin x cosx x

 
− + + + + 

 
 
− + ++ = 
 
 − + +
  − − 

( )
0 0 0 0

2 2 4
1 3 25 1 2 1

5 4

2 3: 0,
2! 3! 4!

x x x x
x x x x x xp x x e e e e− − − −

+
− + − + =

( ) ( )
0 0 0 0 0

2 2 3 5
1 3 1 22 3 1 46 1 2 1

6 5

3 32 2 4: 0,
2! 3! 4! 5!

x x x x x
x x x xx x x x x x xp x x e e e e e− − − − −

++
− + − + − =

On solving the above equations, we have 

1 2 3 4 5 6 ... 3.31705x x x x x x x= + + + + + + =        (106)

In the solutions of nonlinear algebraic equations, Shanks 
transformation can be used to covert a slowly converging sequence 
to its rapidly converging counterpart effectively. The Shanks 
transformation is an efficient relation that can acceleratee the 
convergence rate of the series (Table 10).48 The Shanks transformation 
Sh(Un) of the sequence Un is defined as,

 ( )
2

1 1

1 12
n n n

n
n n n

U U USh U
U U U

+ −

+ −

−
=

− +
                                       (107)

 Further speed-up may be achieved by successive implementation 
of the Shanks transformation, that is ( ) ( )( )2

n nSh U Sh Sh U= , 
( ) ( )( )( )3

n nSh U Sh Sh Sh U= , ( ) ( )( )( )( )4
n nSh U Sh Sh Sh Sh U= etc. 

Table 10 Solutions of some other nonlinear equations using homotopy 
perturbation method

Equations Approximate analytical 
solution

3 1 0x x+ − = 0.6823278x =

( )52 1 0x x− − = 0.3459542x =

0xe cosx− + = 1.7461395x =

0cosx x− = 0.7390851x =

0.2 0.8x sinx− = 0.9643339x =
2 2 1 0sin x x− + = 1.4044916x =

23 0xe x− − = 0.9100075x =
6 5 4 3 25 3 2 8 0.5x x x x x x− + + + − = 0.6823278x =

22 1 0xInx e x+ − + = 0.1224248x =

Conclusion
In this work, homotopy perturbation method has been directly 

applied to solve nonlinear algebraic and transcendental equations. 
The reliability and efficiency of the method in solving the nonlinear 
equations have been demonstrated by different number of illustrative 
examples. The method has been shown to be conceptually and 
computationally simple and straightforward without any ambiguity. 
Also, the advantages and the superiority of the approximate analytical 
method over the other approximate analytical and numerical methods 
of finding the roots of nonlinear algebraic and transcendental 
equations have been presented. Additionally, the following points 
should be noted.

i.	 The homotopy perturbation method has capability to find the 
complex root of nonlinear equation. Through a numerical of 
numerical experiments, it was found that if an initial term xo is 
appropriately chosen as a complex number close to the root, the 
HPM might converge to a complex root. It should be noted that 
a diverging series (for the equation with real coefficients) may 
indicate complex roots. For example, the direct application of 
HPM to solve equation 3 3 5 0x x− − = , produces divergence 
results which indicate that the equation has complex root(s). 

ii.	 It is not unlikely that the direct approach of the HPM to the 
solution of nonlinear algebraic and transcendental equations can 
produce diverging results for an equation that has real roots such 
as 5 4 3 24 13 46 11 43 0x x x x x− − + + − = . However, 
with some mathematical manipulations, the direct application of 
HPM to such problems is possible. This will be presented in the 
further works on the study.

iii.	It can also be said that with the combination of matrix algebra 
and direct HPM, all the possible roots of a nonlinear equation can 
be found. This will also be presented in the subsequent paper of 
this study.
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It is hoped that the present work will assist in providing accurate 
solutions to many practical problems in science and engineering.
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