Submit manuscript...
eISSN: 2577-8307

Forestry Research and Engineering: International Journal

Research Article Volume 2 Issue 2

Historic pollen and seed dispersal in fragmented populations of the two largest trees of the atlantic forest

Francine B Souza,1 Thaisa YK Kubota,1 Evandro V Tambarussi,2 Miguel LM Freitas,2 Mario LT Moraes,1 Alexandre M da Silva,1 Jose Cambuim,1 Alexandre M Sebbenn2

1Department of Plant Technology, University of Sao Paulo/UNESP, Brazil
2Forestry Institute of Sao Paulo, Sao Paulo State University, Brazil

Correspondence: Francine Beatriz de Souza, Department of Plant Technology, Food Technology and Socio Economy, Faculty of Engineering of Ilha Solteira, University of Sao Paulo / UNESP, Ilha Solteira, SP, CP: 31, 15385 000, Brazil

Received: March 26, 2018 | Published: April 11, 2018

Citation: Souza FB, Kubota TYK, Tambarussi EV, et al. Historic pollen and seed dispersal in fragmented populations of the two largest trees of the atlantic forest. Forest Res Eng Int J. 2018;2(2):98-107. DOI: 10.15406/freij.2018.02.00033

Download PDF

Abstract

Cariniana estrellensis and C. legalis are two of the largest trees in the Amazon and Atlantic Forest biomes that are currently vulnerable to extinction due to the intense deforestation of these biomes. Strategies for in and ex situ conservation are urgent and studies of genetic diversity and gene flow are necessary to inform such strategies. Here we investigate the historic pollen and seed flow, dispersal distance and patterns in fragmented populations of both species, using microsatellite markers. All trees found in the populations were mapped, measured for diameter at breast height (DBH), and bark cambium sampled. For both species, high levels of seed (38.5–61.5%) and pollen (80.1–100%) immigration were observed, showing that populations are not genetically isolated. No self–fertilization was detected, but we did find evidence of mating among related trees (8.9–12.5%), suggesting stronger selection against selfed individuals than those originating from mating among relatives. The realized pollen and seed dispersal for both species reached long distances (C. estrellensis > 3 km, C. legalis up to 385 m), but in general followed a pattern of isolation by distance. The effective size ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ ) in three populations (10–33) was lower than suggested for short term in situ genetic conservation ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ < 70). For in situ conservation, the results show that the surrounding forest fragments must be preserved to maintain connectivity between the studied populations and other trees of the species and where the N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ was insufficient for short term in situ genetic conservation, the N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ must be increased through the introduction of at least 150 individuals.

Keywords: effective population size, gene flow, microsatellite loci, parentage analysis, tropical forests

Introduction

Cariniana estrellensis (Raddi) Kuntze (jequitibá–branco) and C. legalis (Mart.) Kuntze (jequitibá–rosa) belong to the Lecythidaceae family and are the largest South American Neotropical trees in the Amazon, Atlantic, and Savanna forests. Cariniana estrellensis can reach up to 45 m in height and 120 cm in diameter at breast height (DBH), and C. legalis can reach 60 m in height and 4 m in DBH.1 Both species are hermaphrodite, mainly bee pollinated, and wind seed dispersed. In general, populations present low density (1<tree/ha), depending on the region of occurrence.1 Both species are classified as vulnerable to extinction due to extensive exploitation of their wood and the intense deforestation of their biomes over the last several decades.2,3 Due to their size and long life span, the largest trees in forest biomes provide the environmental conditions required for the survival of many other plant and animal species. Thus, it is necessary to develop in and ex situ conservation strategies for the remaining natural populations of such species that are currently spatially isolated in small forest fragments across the landscape.

The conservation of trees depends directly on the knowledge obtained through ecological and genetic studies of populations, which requires an understanding of the genetic structure and gene flow of remaining populations.4–6 Deforestation and forest fragmentation of natural forests causes an environmental imbalance that results in irreversible consequences, such as the extinction of animal and plant species.7 Without adequate intervention, deforestation and a lack of forest conservation can result in the disappearance of fragments over time.7 The spatial isolation of tree species populations in small forest fragments reduces the number of reproductive individuals and may cause reproductive isolation by cutting off gene flow through pollen and seeds, which can affect genetic processes, such as genetic drift, mating systems, and natural selection.8 Such processes can decrease the genetic diversity and effective population size and increase the spatial genetic structure and inbreeding within populations,9 eventually resulting in local extinction of tree species populations. Loss of alleles, changes in gene frequencies, and a decrease in effective population size are inevitable in tree populations submitted to forest fragmentation and exploitation through selective logging.4,8,10,11 With fragmentation there is an increase in the fixed genetic load within populations and small and isolated populations often experience reduced fitness.12 Studies on tropical arboreal species in populations located in fragmented areas show a reduction in the rate of pollen and seed immigration.13 Genetic problems, coupled with disruptions to the interactions between plant, pollinator, and seed dispersal vectors, and in association with demographic and environmental stochasticity, can further increase the risk of extinction of small isolated populations.13,14 Furthermore, plant populations in fragmented environments tend to exhibit reduced heterozygosity and adaptability, again increasing the likelihood of extinction.14

Understanding gene flow by pollen and seeds is a key aspect in determining the evolutionary potential of tree species, providing support for conservation and management. Gene flow can be defined as the movement of genes among and within populations and it is responsible for the spatial homogenization of genetic diversity within and between populations. While the effects of natural selection, mutation, and genetic drift lead to differentiation within and among populations, gene flow acts in the opposite direction.13,15 Estimates of pollen and seed flow are necessary to predict the effects of forest fragmentation on the genetic structure of a tree species. These estimates are also used to define the minimum distance between populations to maintain genetic connectivity13 for in situ conservation, the minimum distance and number of seed trees needed for seed collection for ex situ conservation and reforestation for environmental restoration.16

Gene flow can be effectively assessed using genetic markers, particularly microsatellite loci (SSRs), because they are abundant and uniformly distributed throughout the genome, have high polymorphism in terms of number of alleles within the loci, are reproducible, require small amounts of DNA and have codominant inheritance, which allows the distinction between homozygous and heterozygous genotypes, and are multi–allelic.17 These characteristics enable the quantification of genetic diversity and structure, inbreeding, relatedness, intrapopulation spatial genetic structure, mating system, pollen and seed dispersal patterns, among other functions in population genetics.17–19 Studies of gene flow based on genetic markers can be classified as historical or realized, that occurred in the past, or contemporary or effective, that occur in the present.20 Such estimates of gene flow in trees can be obtained using a direct method based on parentage analysis of samples of established individuals, as saplings, seedlings and juveniles and all reproductive trees in the populations.20 Direct estimates of gene flow based on parentage analysis requires samples of regenerants (realized) and/or open–pollinated seeds of known mothers (effective) and all reproductive plants in the population, i.e., the possible parents of the regenerants and seeds. However, between the mating stage and the establishment of seedlings or juveniles (historical or realized pollen dispersal) many stochastic and deterministic processes may occur,20 such as random mortality, predation, dispersal of seeds at a distance, and selection. The dispersal distances of pollen and seeds can be measured by sampling established regenerants.8

The aims of this study were to use microsatellite loci to investigate the inbreeding, effective population size, and historic pollen and seed flow and distance in small fragmented populations of C. estrellensis and C. legalis. We specifically address the following two questions:

  1. What is the rate of historic pollen and seed immigration and the distance and patterns within populations?
  2. Is the effective population size ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ ) sufficient for in situ conservation? As the studied species are mainly bee pollinated and wind seed dispersed, both of which have the potential for long distance gene dispersal, we expect to detect both pollen and seed immigration. Further, because the size of the studied populations in general is lower than 100 trees, we expect that N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ is insufficient for in situ

Material and methods

Studied species

Cariniana estrellensis occurs in the Amazon, Atlantic, and Savanna forests of Brazil (from southern Bahia to Rio Grande do Sul and Acre States), Bolivia, Paraguay and Peru, preferentially in moist and deep soils.1 The species is monoecious with hermaphrodite flowers, which are pollinated by small insects, mainly bees of the genus Melipona and Trigona.1 The seeds are winged and dispersed by anemochory, although seed dispersal can be facilitated by monkeys (Alouatta caraya) that consume the seeds during the dry season.21 Reproduction occurs by outcrossing22,23 and fruiting begins at about ten years of age.1

Cariniana legalis is a tree endemic to Brazil, being one of the largest trees found in the Atlantic Forest.1 The species occurs in the states of Alagoas, Bahia, Espírito Santo, Mato Grosso, Minas Gerais, Paraíba, Paraná, Pernambuco, Rio de Janeiro, and São Paulo.1 The trees are monoecious with hermaphrodite flowers that are also pollinated by bees of the genus Melipona and Trigona.21 Reproduction occurs mainly by outcrossing.4,24,25 Fruiting starts in trees at approximately 20 years of age and each fruit can contain more than ten seeds that are dispersed by gravity and anemochory.1

Study sites and sampling

Samples were collected from two C. estrellensis populations located in Ibicatu (IB), São Paulo State, and Bataguassu (BA), Mato Grosso do Sul State, and two C. legalis populations in Ibicatu (IB) and Mogi–Guaçu (MG), São Paulo State, Brazil (Figure 1). The Ibicatu State Forest (22°46' S, 47°43' W, altitude 448 to 576 m asl) is a 72 ha, spatially isolated forest fragment located near Piracicaba.4,24 The forest fragment is a remnant of a semi–deciduous forest that is currently bounded by agriculture, including sugarcane, eucalyptus, and pasture for livestock and about 30 years ago the stand was subjected to several episodes of selective logging.4 Ibicatu is isolated from other populations or individuals of the species by at least 4 km.4 The climate is characterized as humid and mesothermal, with a mean annual temperature of 23.9°C and a mean annual precipitation of approximately 1,320 mm.26 The Bataguassu site covers 448.2 ha, consists of forest fragments and isolated trees (21°38’00” S, 52°14’02” W, 273.3 m asl), and is located in the city of Bataguassu, Mato Grosso do Sul State, near the Pardo River.23 The region is characterized as a transition zone between the Savanna and Atlantic Forest biomes27 and is isolated, surrounded by monoculture (sugarcane and eucalyptus) and pasture.23 The climate is tropical humid with rainy summers and dry winters, a mean temperature of 23.1°C, and mean annual rainfall ranging from 1,200 to 1,500 mm.27 The Mata da Figueira (MGI) is a small, 7.2 ha, riparian forest fragment in the semi–deciduous plateau and part of the Mogi–Guaçu Ecological Station (22°16' S 47°11' W, mean altitude of 600 m asl).4 Located approximately 2.9 km from MGI is a cluster of four reproductively mature C. legalis trees, denominated MGII.4 MGI and MGII (MG) are isolated from other populations by at least 4 km and are located approximately 75 km from Ibicatu.4 The climate is the same as that described for IB. All found C. estrellensis and C. legalis trees in the IB site, C. estrellensis in the BA site and C. legalis trees in MG were sampled (foliar or bark cambium), mapped (GPS III–Garmin, USA), genotyped, measured for diameter at breast height (DBH) and estimated for age based on the annual mean DBH increment.1The mean annual DBH increment for C. estrellensis is 0.61 cm/year and for C. legalis is 0.79 cm/year.1

Figure 1 Spatial distribution of Cariniana estrellensis and Cariniana legalis trees sampled in the three study areas: Ibicatu State Forest and Mogi-Guaçu State Forest, Sao Paulo State; and Bataguassu, Mato Grosso do Sul State, Brazil. Source: Google Earth, 2018.

DNA extraction and microsatellite amplification

The DNA extraction of C. estrellensis and C. legalis samples were carried out using the method described by Doyle et al.28 Carianiana estrellensis was genotyped for nine microsatellite loci (Cle01, Cle04, Cle05, Ce07, Cle08, Cle09, Cle10, Cle12, and Ce18)29,30 and C. legalis was genotyped for seven SSR loci (Cle01, Cle04, Cle05, Cle08, Cle09, Cle10, and Cle12).30 Details on amplification and genotyping of the selected loci for C. estrellensis are given in Guidugli et al.29 & Tambarussi et al.30 For C. legalis, details are described in Tambarussi et al.30 All loci used for both species present Mendelian inheritance, an absence of genetic linkage, and genotypic linkage equilibrium.31,32

Genetic diversity analysis

Genetic diversity was quantified at the population level. In order to determine if there are differences based on tree age, the population was divided into two groups, 50% of trees with the lowest DBH and the other 50% with the largest DBH. Genetic diversity indices estimated were: allelic richness ( R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfaaaa@3A25@ ), and observed ( H o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaaaaa@3CBD@ ) and expected ( H e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB3@ ) heterozygosity according to Hardy–Weinberg equilibrium. Inbreeding was quantified using the fixation index ( F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaaaa@3A19@ ) and the statistical significance of F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaaaa@3A19@ values were tested using Monte Carlo permutation of alleles between individuals. All estimates were carried out using the FSTAT software.33 In order to test for differences in the indices between samples, an unpaired t–test was used.

Parentage analysis

Combined non–exclusion probability of the first parent ( P 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3C8C@ ), combined non–exclusion probability of identity ( Q i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CC0@ ), and realized pollen and seed dispersal in both species and all populations were carried out by parentage analysis (maternity and paternity), using the software CERVUS 3.0.34 Cryptic gene flow ( C gf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaBaaajeaibaqcLbmacaWGNbGaamOzaaqcbasa baaaaa@3D9B@ ) was estimated as described in Dow et al.35 Parentage analyses were based on the single exclusion method. In order to identify parents for all sampled trees, all sampled individuals within populations were used as candidate parents. However, to accept a candidate parent as the true parent, we adopted the following approach:

  1. Self–assignments were excluded;
  2. Positive assignment for descendants was accepted if there was a maximum of two mismatches between the descendant and the assigned putative parent or among the trio: descendant, first, and second assigned parent;
  3. As C. estrellensis starts fruiting at ten years of age, which corresponds to a DBH> 7 cm and C. legalis starts fruiting at approximately 20 years of age and a DBH> 20 cm,1 putative C. estrellensis parents with less than ten years difference in relation to the descendant tree, and putative C. legalis parents with less than 20 years difference in relation to the descendant tree were discarded. To confirm positive assignments, the θ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG5baajeai beaaaaa@3EAD@ was estimated between descendant and assigned putative parents, as well as between assigned parents and trees assigned to the same putative parents, using the SPAGEDI 1.3 software.36 The expected θ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG5baajeai beaaaaa@3EAD@ value for parent–sib pairs is 0.25, between half–sibs is 0.125, and full–sibs is 0.25. Realized pollen dispersal distance was estimated as the distance between two putative parents when two parents (probable mother and father) were assigned. In cases where at least one putative parent was assigned, realized seed dispersal distance was estimated assuming that the sole assigned parent is the mother. When two putative parents were assigned, realized seed dispersal distance was based on the mean distance between the offspring and first and second parent. The minimum, maximum, and median pollen and seed dispersal distances were also calculated using the Euclidean distance between two points. Self–fertilization ( s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaaaa@3A46@ ) was accepted only in cases where there was no mismatching between tested descendant and the assigned putative parent as ovule and pollen donor. Following,37 to estimate the rate of mating among related trees ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ ), assigned parents with θ xy  0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG5baajeai beaajugibabaaaaaaaaapeGaeyyzImRaaeiiaiaaicdacaGGUaGaaG ymaaaa@43EC@ were assumed to be genetically related.

Estimates of variance effective size

The variance effective population size ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ ) was calculated following Manoel et al.38 as, N e =0.5/Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biabg2da9iaaicdacaGGUaGaaGynaiaac+cacqqHyoquaaa@42A3@ ,where is the group coancestry ( Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arbaa@3AC5@ ) for the total sample of trees in each population. Group coancestry ( Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arbaa@3AC5@ ) for the total sample of trees in each population was estimated as:

Θ= i= n 0.5(1+ F i )+ i=1 n ji n θ ij n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjabg2da9KqbaoaalaaakeaajuaGdaaeWbGcbaqc LbsacaaIWaGaaiOlaiaaiwdacaGGOaGaaGymaiabgUcaRiaadAealm aaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibiaacMcacqGHRaWk juaGdaaeWbGcbaqcfa4aaabCaOqaaKqzGeGaeqiUde3cdaWgaaqcba saaKqzadGaamyAaiaadQgaaKqaGeqaaaqaaKqzadGaamOAaiabgcMi 5kaadMgaaKqaGeaajugWaiaad6gaaKqzGeGaeyyeIuoaaKqaGeaaju gWaiaadMgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGUbaajugibiab ggHiLdaajeaibaqcLbmacaWGPbGaeyypa0dajeaibaqcLbmacaWGUb aajugibiabggHiLdaakeaajugibiaad6gajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaaaaaaaa@6E1F@ ,

Where n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ is the sample size, F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CB5@ is the inbreeding coefficient of the i–th individual, and θ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E8F@ is the pairwise coancestry coefficient between the i–th and j–th individuals.8 The F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CB5@ and θ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E8F@ values were estimated using the SPAGEDI 1.3 software.36 As the Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arbaa@3AC5@ index was derived from the inbreeding coefficient (ranging from 0 to 1) and true pairwise coancestry coefficient (ranging from 0 to 1), and we estimated F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CB5@ and θ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E8F@ using coefficients of correlation (ranging from –1 to 1), all values lower than zero were assumed as zero. Furthermore, estimates of inbreeding and coancestry from gene markers may be biased due to the occurrence of null alleles, allele dropout, and genotyping errors.8 Thus, F i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CB5@ values lower than 0.125, the minimum inbreeding expected for mating between two half–sib individuals, were also assumed as zero, and values greater than 0.25, the minimum inbreeding expected for mating between two full–sib individuals, were assumed as 0.25. The θ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E8F@ values lower than 0.125, the minimum coancestry coefficient expected between two half–sib individuals, were also assumed as zero, and θ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E8F@ values higher than 0.25, the minimum coancestry coefficient expected between two full–sibs, were assumed as 0.25. The relationship between and the sample size ( n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ ) was calculated as N e /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biaac+cacaWGUbaaaa@3EEE@ .

The loss of observed heterozygosity per generation based on N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ and due to genetic drift was estimated using a model that assumes one locus with two alleles in random mating populations with discrete generations (not overlapping), H o(t) / H o(t) = [ 1( 1/2 N e ) ] t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha caGGPaaajeaibeaajugibiaac+cacaWGibWcdaWgaaqcbasaaKqzad Gaam4BaiaacIcacaWG0bGaaiykaaqcbasabaqcLbsacqGH9aqpjuaG daWadaGcbaqcLbsacaaIXaGaeyOeI0scfa4aaeWaaOqaaKqzGeGaaG ymaiaac+cacaaIYaGaamOtaKqbaoaaBaaajeaibaqcLbmacaWGLbaa leqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWcdaahaaqcbasabe aajugWaiaadshaaaaaaa@5799@ , and the decrease in the observed heterozygosity in generation t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshaaaa@3A47@ as H o(t) = H o(0) [ 1( 1/2 N e ) ] t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha caGGPaaajeaibeaajugibiabg2da9iaadIealmaaBaaajeaibaqcLb macaWGVbGaaiikaiaaicdacaGGPaaajeaibeaajuaGdaWadaGcbaqc LbsacaaIXaGaeyOeI0scfa4aaeWaaOqaaKqzGeGaaGymaiaac+caca aIYaGaamOtaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaGccaGL OaGaayzkaaaacaGLBbGaayzxaaWcdaahaaqcbasabeaajugWaiaads haaaaaaa@5618@ , where H o(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaaicda caGGPaaajeaibeaaaaa@3ED0@ and H o(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha caGGPaaajeaibeaaaaa@3F0F@ are actual observed heterozygosity and heterozygosity in generation t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshaaaa@3A47@ , respectively.39

Results

Population density, DBH and tree age

In Ibicatu, we sampled all 26 C. estrellensis trees (0.36 trees/ha) and 65 C. legalis trees (0.93 trees/ha). The DBH of C. estrellensis ranged from 13–248 cm (mean of 68.5 cm) and the estimated age ranged from 21–400 years, with a mean of 110 years. The DBH of C. legalis ranged from 25–325 cm (mean of 121 cm) and the estimated age ranged from 24–570 years, with a mean of 160 years. In BT, 284 C. estrellensis trees (0.63 trees/ha) were found, with the DBH ranging from 21–147 cm (mean of 65.6 cm) and the estimated age ranging from 36–241 years (mean of 108 years). MGI contains 22 C. legalis trees and MGII contains four trees, for a total of 26 trees (3.6 trees/ha), with DBH ranging from 21–144 cm (mean of 68 cm), and estimated age ranging from 27–144 years, with a mean of 83 years.

Genetic diversity and inbreeding

The observed ( H o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaaaaa@3CBD@ ) and expected ( H e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D17@ ) heterozygosity were similar between C. estrellensis (IB: H o = 0.71 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaG4naiaaig daaaa@41FD@ ; H e = 0.66 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOnaiaaiA daaaa@41F7@ ; BA: H o = 0.65 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeajuaGdaWgaaqcbasaaKqzadGaam4BaaWcbeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOnaiaaiw daaaa@4264@ ; H e = 0.69 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOnaiaaiM daaaa@41FA@ ) and C. legalis (IB: H o =0.81 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaGimaiaac6cacaaI4aGaaGymaaaa@415B@ ; H e = 0.86 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGioaiaaiA daaaa@41F9@ ; MG: H o = 0.82 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGioaiaaik daaaa@41FF@ ; H e = 0.89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGioaiaaiM daaaa@4260@ ) populations (Table 1). The results for fixation index ( F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaaaa@3A19@ ) were significantly (P< 0.05) higher than zero for C. estrellensis of BA ( F= 0.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaicdacaaI2aaaaa@3EC8@ ) and C. legalis of IB ( F= 0.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaicdacaaI2aaaaa@3EC8@ ), indicating inbreeding. According to the unpaired t–test, comparing 50% of trees with <DBH and >DBH, F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaaaa@3A19@ values of C. estrellensis in BA (0.06) and C. legalis in IB (0.09) were significantly greater than zero in trees with < DBH, suggesting the occurrence of inbreeding.

Sample

n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@

R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfaaaa@3A25@ (SE)

H o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbaajeaibeaaaaa@3CBD@ (SE)

H e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB3@ (SE)

F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaaaa@3A19@ (SE)

Cariniana estrellensis

310

 

 

 

 

Ibicatu

26

0.71 (0.06)

0.66 (0.03)

–0.07 (0.08)

50%< DBH

13

3.9 (0.3)

0.71 (0.07)

0.64 (0.03)

–0.11 (0.10)

50%> DBH

13

4.7 (0.2)

0.70 (0.06)

0.69 (0.02)

–0.01 (0.08)

Bataguassu1

284

0.65 (0.03)

0.69 (0.02)

0.06 (0.08)*

50%< DBH

142

5.0 (0.7)

0.64 (0.05)

0.68 (0.05)

0.06 (0.04)*

50%> DBH

142

5.0 (0.6)

0.66 (0.06)

0.69 (0.05)

0.05 (0.05)

Cariniana legalis

91

 

 

 

 

Ibicatu2

65

0.81 (0.02)

0.86 (0.01)

0.06 (0.02)*

50%< DBH

32

7.8 (0.5)

0.75 (0.04)

0.83 (0.03)

0.09 (0.07)*

50%> DBH

33

8.6 (0.5)

0.87 (0.03)

0.88 (0.02)

0.01 (0.05)

Mogi–Guaçu2

26

0.82 (0.07)

0.89 (0.01)

0.08 (0.07)

50%< DBH

12

9.8 (0.7)

0.82 (0.08)

0.92 (0.01)

0.10 (0.08)

50%> DBH

14

9.6 (0.7)

0.85 (0.06)

0.89 (0.02)

0.04 (0.06)

Table 1 Genetic diversity and inbreeding in samples of Cariniana estrellensis and Cariniana legalis
is the sample size; is the allelic richness for ten genotypes in C. estrellensis and nine in C. legalis; is the observed heterozygosity; is the expected heterozygosity; is the fixation index; SE is the standard error; 1Kubota et al.23; 2Tambarussi et al.40; *P< 0.05.

Parentage analysis

For all trees sampled, the combined non–exclusion probability of the first parent ( P 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3C8C@ ) was higher in C. estrellensis (IB= 0.045008; BA= 0.025563) than in C. legalis (IB= 0.002699; MG= 0.000383). This resulted in a cryptic gene flow ( C gf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaBaaajeaibaqcLbmacaWGNbGaamOzaaqcbasa baaaaa@3D9B@ ) greater in C. estrellensis (IB= 0.698; BA= 0.999) than C. legalis (IB= 0.161; MG= 0.010) populations, indicating a high probability that pollen and seed flow in C. estrellensis may be biased. However, the combined non–exclusion probability of identity ( Q i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CC0@ ) was lower for both C. estrellensis populations (IB= 0.00000002; BA= 0.0000054) than for C. legalis (IB= 0.00044367; MG= 0.00030133), indicating that all adults present different genotypes, which is favorable for the assignment of parents in parentage analysis.

At least one putative parent was found for 16 and 123 C. estrellensis trees of IB and BA, respectively, and for 25 and 10 C. legalis trees of IB and MG, respectively (Table 2). These results suggest a respective seed immigration rate of 38.5 and 56.7% for C. estrellensis, and for C. legalis of 61.5% for both populations. Two putative parents within the sample areas were detected for five and 28 C. estrellensis trees of IB and BA, respectively, and for five C. legalis trees of IB, suggesting a rate of pollen flow of 80.8 and 90.1% for C. estrellensis, and for C. legalis of 92.3 and 100%. No trees were themselves assigned as the parent tree, indicating an absence of realized self–fertilization. In general, mean coancestry coefficient between trees ( θ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG5baajeai beaaaaa@3EAD@ ) and assigned putative parents was lower than expected for C. estrellensis in IB (0.18) and for C. legalis in IB (0.22) and MG (0.10). Assuming a minimum coancestry coefficient of 0.1 ( θ r 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXLqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaKqz GeGaeyyzImRaaGimaiaac6cacaaIXaaaaa@4289@ ) to determine parents as related individuals, we found two pairs in IB ( θ r = 0.17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaKqz Geaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaIXaGaaG 4naaaa@42E9@ ) and 11 pairs in BA ( θ r = 0.17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXLqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaKqz Geaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaIXaGaaG 4naaaa@434D@ ) for C. estrellensis, and three pairs ( θ r = 0.20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaKqz Geaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaIYaGaaG imaaaa@42E3@ ) in IB for C. legalis to be related parents. Thus, the realized mating among related trees ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ ) for C. estrellensis in IB was 0.125 and in BA was 0.089 and in C. legalis in IB it was 0.120. The pairwise coancestry coefficient between assigned trees with at least one common parent ranged from –0.01 to 0.15. The fixation index ( F r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CBE@ ) for assigned trees with related parents ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshajuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaaaaa@3D50@ ) ranged from –0.12 to 0.14. The mean distance between related parents for C. estrellensis ranged from 398 to 615 m and for C. legalis the distance was 312 m.

 

Cariniana estrellensis

Cariniana legalis

 

Ibicatu

Bataguassu

Ibicatu

Mogi–Guaçu

Sample size: n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@

26

284

65

26

Pollen

Number of not assigned trees (%)

21 (80.8)

256 (90.1)

60 (92.3)

26 (100)

Number of assigned trees

5

28

5

0

Mean (SD) dispersal distance (m)

338 (88)

850 (888)

312 (80)

Maximum distance (m)

465

3309

385

Median (m)

339

516

322

Seeds

 

 

 

 

Number of not assigned trees (%)

10 (38.5)

161 (56.7)

40 (61.5)

16 (61.5)

Number of assigned trees

16

123

25

10

Maximum mean (SD) distance (m)

308 (227)

615(697)

393 (236)

72 (28)

Maximum distance (m)

878

3483

851

131

Maximum median distance (m)

325

340

397

67

Coancestry and effective population size

 

 

 

 

Assigned trees and parents: θ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG5baajeai beaaaaa@3EAD@ (SD)

0.18 (0.04)

0.25 (0.00)

0.22 (0.01)

0.10 (0.04)

Mean among related parents: θ r 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXTWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaKqz GeGaeyyzImRaaGimaiaac6cacaaIXaaaaa@4225@  (SD)

0.17 (0.06)

0.29 (0.04)

0.20 (0.03)

Rate of mating among related: t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@

0.125

0.089

0.120

Fixation index for assigned trees for t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ : F r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CBE@ (SD)

–0.12 (0.06)

0.08 (0.03)

0.14 (0.07)

Group coancestry: Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arbaa@3AC5@

0.03473

0.00236

0.00747

0.01375

Variance effective size: N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@

10

119

33

15

N e /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biaac+cacaWGUbaaaa@3EEE@

0.37

0.42

0.50

0.57

Decrease rate in the heterozygosity: H o(t=50) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha cqGH9aqpcaaI1aGaaGimaiaacMcaaKqaGeqaaaaa@418E@ (%)

7.7

81.0

46.6

18.4

Table 2 Seed and pollen flow, mean pairwise coancestry, inbreeding and effective population size for Cariniana estrellensis and C. legalis
SD is the standard deviation. H o(t=50) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha cqGH9aqpcaaI1aGaaGimaiaacMcaaKqaGeqaaaaa@418E@  is the decrease rate in the heterozygosity after 50 (t) generations by genetic drift.

Pollen and seed dispersal distance

The pollen dispersal distance for C. estrellensis reached 3309 m, with a mean of 338 and 850 m in IB and BA, respectively (Table 2) (Figure 2). For C. legalis, the pollen dispersal distance reached 385 m, with a mean of 312 m in IB. For C. estrellensis, the median pollen dispersal distance was lower (IB= 330 m, BA= 516 m) than the mean, indicating a pattern of isolation by distance. However, for C. legalis the median (322 m) was larger than the mean, indicating a random pollen dispersal pattern. Seed dispersal distance for C. estrellensis reached 3483 m, with a mean maximum of 308 m in IB and 615 m in BA. For C. legalis seed dispersal distance reached 851 m, with a mean maximum of 393 m in IB, and in MG it was 72 m. The median seed dispersal distance was lower than the mean for the BA population of C. estrellensis and for both C. legalis populations, indicating a pattern of isolation by distance.

  • Figure 2 Frequency distribution of seed and pollen dispersal distance in Cariniana estrellensis of Ibicatu (a), Bataguassu (b), Cariniana legalis of Ibicatu (c) and Mogi-Guaçu (d).

Effective population size

The group coancestry coefficient ( Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arbaa@3AC5@ ) was low among all pairwise C. estrellensis (0.03473–0.00236) and C. legalis (0.00747–0.01375) trees, suggesting that in random mating, the expected inbreeding from mating among related trees is very low, <5% (Table 2). The variance effective population size ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ ) shows that the 26 and 284 C. estrellensis trees of IB and BA correspond to about 10 ( N e /n= 0.37 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biaac+cacaWGUbaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6 cacaaIZaGaaG4naaaa@43A1@ ) and 119 ( N e /n= 0.42 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biaac+cacaWGUbaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6 cacaaI0aGaaGOmaaaa@439D@ ) unrelated and non–inbred individuals. For C. legalis, the estimated N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ suggests that of the 65 and 26 trees of IB and MG, represent to about 33 ( N e /n= 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugi biaac+cacaWGUbaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6 cacaaI1aaaaa@4346@ ) and 15 ( N e /n= 0.57 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biaac+cacaWGUbaeaaaaaaaaa8qacqGH9aqpcaqGGaGaaGimaiaac6 cacaaI1aGaaG4naaaa@43A3@ ) are unrelated and non–inbred individuals. The estimated loss of heterozygosity after 50 generations ( H o(t=50) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha cqGH9aqpcaaI1aGaaGimaiaacMcaaKqaGeqaaaaa@418E@ ), based on the calculated N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ indicates that the observed heterozygosity for C. estrellensis in IB and BA is expected to be only 7.7 and 81.0%, respectively, of the actual. For C. legalis in IB and MG, the actual heterozygosity is expected to be 46.6 and 18.4%, respectively, of the actual.

Discussion

Mating system and inbreeding

All trees assigned through parentage analysis of both species were the result of outcrossing, but 8.9 to 12.5% of the mating events occurred between related individuals ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ ). Previous studies based on samples of germinated seedlings (effective mating system) detected some self–fertilization ( s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaaaa@3A46@ ) and mating among related trees ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ ) in C. estrellensis ( s= 4% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaqaaaaaaaaaWdbiabg2da9iaabccacaaI0aGaaiyj aaaa@3D76@ , t r = 13% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIZaGaaiyjaaaa@4165@ )23 and C. legalis ( s= 5.1% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaqaaaaaaaaaWdbiabg2da9iaabccacaaI1aGaaiOl aiaaigdacaGGLaaaaa@3EE4@ , t r = 35.7% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaiodacaaI1aGaaiOlaiaaiE dacaGGLaaaaa@42DC@ ).37 Considering some levels of self–fertilization previously observed in germinated seeds, the absence of established selfed individuals in our study suggests stronger selection against selfed C. estrellensis and C. legalis individuals between seedling to adult stages in natural populations. Furthermore, selfing ( s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaaaa@3A46@ :2.4–9.9%) and mating among related trees ( t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CEC@ : 5.9–9.1%) were detected in C. legalis juveniles of 17 years of age from established provenance and progeny test,24 again suggesting stronger selection against selfed C. legalis individuals in natural populations than in experimental trials. It is probable that, due to environmental controls in experimental trials, selfed individuals may survive for longer than in natural conditions, where natural selection and stochastic factors, such as random mortality, predation, diseases, among others, may be more predominant.

As no selfing was detected by parentage analysis, the inbreeding found in populations of both species can be attributed to mating between relatives. Both C. estrellensis and C. legalis are subject to inbreeding depression (ID). Kubota et al.23 detected stronger ID for survival in C. estrellensis at the seedling stage (8 months of age) for individuals produced from self–fertilization (2.6%) than from mating among relatives (0.2%). Tambarussi et al.37 also found greater ID for survival in C. legalis seedlings produced from self–fertilization (3.9–36%) than from mating among relatives (0.2–30.4%). The stronger ID for selfing than mating among related trees is supported by the absence of selfed individuals in our study populations, with inbred individuals originating from mating among relatives surviving up to 91 years of age in C. estrellensis and 122 years of age in C. legalis. Selfing results in inbreeding of at least 50% ([ 100%(0.5(1+ F m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaIWaGaaGimaiaacwcacaGGOaGaaGimaiaac6ca caaI1aGaaiikaiaaigdacqGHRaWkcaWGgbqcfa4aaSbaaKqaGeaaju gWaiaad2gaaSqabaqcLbsacaGGPaaaaa@4651@ ], where F m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGTbaajeaibeaaaaa@3CB9@ is the inbreeding in the mother) and mating among related individuals results in inbreeding equal to the coancestry between related parents ( F r = θ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGYbaajeaibeaajugi biabg2da9iabeI7aXTWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaa aa@42AE@ ); for example, if the parents are full–sibs ( θ fs =0.25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXLqbaoaaBaaajeaibaqcLbmacaWGMbGaam4CaaWc beaajugibiabg2da9iaaicdacaGGUaGaaGOmaiaaiwdaaaa@4375@ ), inbreeding ( F r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3CBE@ ) of 25% is expected in their descendants. Thus, inbreeding originating from mating among related individuals is expected to result in lower homozygosis for identical by descent alleles than from selfing. As deleterious genes that produce ID generally occur at low frequencies, mating among related individuals has a low probability that it will result in homozygosis for such genes and, consequently, some mating among related individuals do not result in ID. The fact that inbreeding at early stages was only detected for C. estrellensis in BA ( F= 0.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaicdacaaI2aaaaa@3EC8@ ) and for C. legalis in IB ( F= 0.09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaicdacaaI5aaaaa@3ECB@ ) may be explained by the fact that the genetic load or the occurrence and frequency of deleterious alleles is variable between populations and individuals due to the life histories of mutation in the populations.37

Gene flow

The results for both species suggest greater levels of pollen (80.1–100%) than seed immigration into the populations (38.5–61.5%). The coefficient of coancestry expected between parents and sibs is 0.25, or on average 25% of genes of parents and descendants are identical by descent. Mean pairwise coancestry coefficient between trees and assigned putative parents was lower than expected for both C. estrellensis (0.18–0.25) and C. legalis (0.10–0.22). The differences between the estimated and expected values (0.25) are due to difficulties in estimating kinship using genetic markers.9 However, when several loci are used simultaneously, the mean value of loci tends to be similar to the expected value. Thus, we can consider that the estimates obtained herein reflect the expected relationship between parents and descendants. This may also explain the lower expected values for C. legalis which is likely an artifact of the sampling as the number of loci used (7 loci) was lower than for C. estrellensis (9 loci). Nevertheless, the estimates of pairwise coancestry between parents and descendants were greater than zero, supporting the hypothesis that these individuals are indeed related, and the trees assigned to parents are likely correct. The majority of C. estrellensis and C. legalis trees that were not assigned a mother or father are remnants of the pre–fragmentation era (< 100 years) in the study populations, indicating that parents were logged from the area around or within the forest fragments, died before sampling, or the trees originated from seed immigration from populations located outside of the sample areas.

Pollen dispersal distance

Realized pollen dispersal for C. estrellensis reached longer distance (3309 m) than for C. legalis (IB= 385 m) and mean pollen dispersal distance for C. estrellensis was greater in BA (850 m) than in IB (338 m) and that detected for C. legalis in IB (312 m). However, it is important to note that these results are likely underestimates due to pollen immigration or mortality of pollen parents. In both populations of C. estrellensis, pollen was dispersed in a pattern of isolation by distance (IBD), with a higher frequency of pollination occurring between trees in closer proximity than more distant trees. However, in IB for C. legalis the pattern was random, which may be due to the underestimation of pollen dispersal distance due to pollen immigration, death or logging of the pollen parents. The distances and realized patterns of pollen dispersal for both species can be attributed to many factors, such as population and individual variation in flowering phenology, self–incompatible systems, inbreeding depression, and particularly sample size design. Studies carried out in small areas will result in lower mean and maximum dispersal distances than in larger areas. This can explain the longer pollen dispersal distance detected for C. estrellensis in BA, where the study area was larger (448.2 ha) than in IB (72 ha) for both species. Furthermore, as the sampling in this study did not include seeds, the results for both species represent the realized pollen dispersal and not the effective pollen dispersal, which occurs at fertilization. Based on samples of open–pollinated seeds of C. estrellensis from BA, effective pollen dispersal reached up to 3519 m (mean of 597 m) and also followed an IBD pattern.23 For samples of open–pollinated seeds of C. legalis, pollen reached up to 922 m in IB (mean of 352 m) and followed a pattern of IBD.4 We can see that the effective and realized maximum, mean, and pattern of pollen dispersal do not differ widely. The minimal differences can be due to many factors that can occur between fertilization and the current life cycle of the sampled trees, such as inbreeding depression, random mortality, disease, predation, and logging, which can change the effective pattern of pollen dispersal in relation to that, detected herein, the realized pollen dispersal pattern.

Ghazoul et al.41 notes that fragmented populations can be sustained if pollinators are able to travel long distances. The results of this study for C. estrellensis and C. legalis, which are mainly pollinated by bees that have the potential for long distance pollen dispersal,41 confirm this expectation. Our results suggest that, currently, there are favorable conditions for maintaining the genetic diversity of the studied populations, thus indicating their utility as sites for in situ conservation of these vulnerable species.

Seed dispersal distance

Seed dispersal in C. estrellensis also reached long distances in the BA population (3483 m). The explanation for this result is the same as that discussed for pollen; the ability to measure gene dispersal depends on the sample design and as the sample area of BA was larger than the other studied populations of both species, we were able to detect longer seed dispersal distances. This also explains why mean seed dispersal distance for C. estrellensis was longer in BA (452–615 m) than in IB (308 m) and for C. legalis it was greater in IB (338–393 m) than MG (72 m). However, the seed dispersal pattern was isolation by distance.

The maximum seed dispersal was greater than pollen dispersal in both populations of C. estrellensis and in IB for C. legalis. This can be explained by the fact that for both species, seeds are dispersed by wind and pollen dispersed mainly by bees, both of which have the potential for long distance dispersal. Furthermore, aggregation of regenerants near to the parent trees can result in high mortality rates among juveniles due to predation, thus leading to lower levels of aggregation at advanced life stages,42 which may result in longer average seed dispersal distances.

Final considerations

Cariniana estrellensis and C. legalis are Neotropical trees that are vulnerable to extinction and the results reported herein on pollen and seed flow and dispersal are key in developing strategies aimed at their in and ex situ conservation. For in situ conservation, the results show that the studied populations of both species are not reproductively and genetically isolated due to pollen flow from outside the study areas. However, it is important to maintain connectivity of the studied populations with other reproductive populations that were not included in this study to ensure continuation of gene flow. Thus, other forest fragments and trees of the species surrounding the forest fragments must be preserved.

The variance effective population size ( N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ ) was lower than census size ( n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ ) in all populations. This is related to the occurrence of SGS and inbreeding in the populations.4,23 With the exception of the C. estrellensis population in BA ( N e = 119 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIXaGaaGyoaaaa@41AE@ ), the other populations showed a  (C. estrellensis: IB= 10; C. legalis: IB= 33, MG= 15) that is lower than that suggested ( N e = 70 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi babaaaaaaaaapeGaeyypa0JaaeiiaiaaiEdacaaIWaaaaa@408C@ ) for short term genetic conservation to avoid the effects of genetic drift, such as the occurrence of inbreeding.43 If the N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ is low, genetic drift in the populations will quickly decrease heterozygosity, resulting in a decrease in population fitness.43 The loss of heterozygosity after 50 generations ( H o(t=50) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGVbGaaiikaiaadsha cqGH9aqpcaaI1aGaaGimaiaacMcaaKqaGeqaaaaa@418E@ ) based on actual N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ was higher in populations with low N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ (7.7–46.6%) than with larger N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D1D@ (C. estrellensis: BA= 81.0%). However, as both species present overlapping generations, the loss in heterozygosity is expected to be greater than that observed using this model due to the occurrence of mating between related trees. To avoid inbreeding depression due to genetic drift in small populations, for in situ conservation the N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ must be increased to at least 70. The N e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CB9@ can be increased for C. estrellensis in IB and C. legalis in IB and MG through the introduction of about 60, 40, and 55 non–inbred and unrelated individuals, respectively. The introduced individuals must originate from other populations of the species within the same region to avoid further genetic problems, including out–breeding depression.16 For practical reasons, following the recommendation,11 we suggest the introduction at least 150 individuals to mitigate against the possible mortality of the introduced trees due to random mortality, predation, disease, and other factors.

Conclusion

Our results indicate that in natural populations of both species, inbreeding depression is stronger for selfed trees than for those originated from mating among related individuals. Inbred individuals originating from mating among relatives can survive up to 91 years of age in C. estrellensis and 122 years of age in C. legalis. The inbreeding at early stages detected for C. estrellensis in BA and for C. legalis in IB indicates that the genetic load or the occurrence and frequency of deleterious alleles are variable between populations and individuals. The spatial isolation of populations of both species did not result in reproductive isolation due to pollen and seed immigration from outside the study area. Estimates of pollen and seed dispersal distance are dependent on sample design, with a greater ability to estimate long distances in large rather than small sample areas. The realized dispersal distance of pollen and seeds for both species reached long distances, but in general followed a pattern of isolation by distance. For in situ conservation, the results show that it is important to maintain connectivity of the studied populations with other trees of the species surrounding the forest fragments, especially populations or individuals located at distances lower than 3.5 km, the maximum dispersal distance of pollen and seeds that we detected gene immigration. For C. estrellensis in IB and C. legalis in IB and MG populations, where the effective population size ( ) is insufficient for short term genetic conservation, the must be increased for in situ conservation, through the introducing of at least 150 individuals originating from other populations of the species within the same region, but located in distances higher than 3.5 km to avoid introduce related individuals, which can decrease the effective size of introduced sample.

Acknowledgement

This studied was supported financially by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: grant 2010/10704–7) and the National Council of Technological and Scientific Development (CNPq, grant 471546/2013–5). Francine B. de Souza was supported by a Commission for the Improvement of Higher Education Personnel–Capes PhD scholarship, and Alexandre M. Sebbenn, Miguel L.M. Freitas and Mario L.T. Moras are supported by National Counsel of Technological and Scientific grants.

Conflict of Interest

Authors declare there is no conflict of interest.

References

  1. Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica; 2003.
  2. IUCN. The IUCN Red List of Threatened Species 1998:e.T34747A9887065.
  3. Leite EJ. State–of–knowledge on Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae) for genetic conservation in Brazil. Research Journal of Botany. 2007;2(3):138–160.
  4. Tambarussi EV, Boshier D, Sebbenn AM, et al. Paternity analysis reveals significant isolation and near neighbor pollen dispersal in small Cariniana legalis Mart. Kuntze populations in the Brazilian Atlantic Forest. Ecology and Evolution. 2015;5(23):5588–5600.
  5. Baldoni AB, Wadt LHO, Sebbenn AM, et al. Contemporary pollen and seed dispersal in natural populations of Bertholletia excelsa (Bonpl.). Genetics and Molecular Research. 2017;16(3):1–14.
  6. Giustina LD, Baldoni AB, Sebbenn AM, et al. Hierarchical outcrossing among and within fruits in Bertholletia excelsa Bonpl. (Lecythidaceae) open–pollinated seeds. Genetics and Molecular Research. 2018;17:1–11.
  7. Kashimshetty Y, Pelikan S, Rogstad SH. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes. PLOS One. 2015;18.
  8. Sebbenn AM, Carvalho ACM, Freitas MLM, et al. Low level of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity. 2011;106:134–145.
  9. Carvalho ACM, Freitas MLM, Sebbenn AM, et al. Diversidade genética, endogamia e fluxo gênico em pequena população fragmentada de Copaifera langsdorffii. Revista Brasileira de Botânica. 2010;33(4):599–606.
  10. Arruda CCB, Silva MB, Sebbenn AM, et al. Logging decreases the pollen dispersal distance in a low–density population of the tree Bagassa guianensisin the Brazilian Amazon. Silvae Genetica. 2015;64(1–6):279–290.
  11. Spoladore J, Mansano VF, Sebbenn AM. Genetic conservation of small populations of the endemic tree Swartzia glazioviana (Taub.) Glaz. (Leguminosae) in the Atlantic Forest. Conservation Genetics. 2017;18(5):1105–1117.
  12. Spielman D, Brook BW, Frankham R. Most species are not driven to extinction before genetic factors impact them. Proceedings National Academic Science. 2004;101(42):15261–15264.
  13. Degen B, Sebbenn AM. Genetic and tropical forest. In: Pancel L, Kölh M, editors. Tropical Forestry Handbook, 2nd edn. Germany: Springer Verlag; 2014.
  14. Matthies D, Brauer I, Maibom W, et al. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos. 2004;105(3):481–488.
  15. Sampson JF, Byrne M, Gibson N, et al. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecology and Evolution. 2016;6(16):5867–5880.
  16. Sebbenn AM. Sistema de reprodução em espécies tropicais e suas implicações para a seleção de arvores matrizes para reflorestamentos ambientais. In: Silva LD, Higa AR, editors. Pomar de espécies florestais nativas. Brazil: FUPEF; 2006. p. 93–138.
  17. Ashley MV. Plant parentage, pollination, and dispersal: How DNA microsatellites have altered the landscape. Cryptic Review in Plant Science. 2010;29:148–161.
  18. Collevatti RG, Estolano R, Garcia SF, et al. Short–distance pollen dispersal and high self–pollination in a bat–pollinated Neotropical tree. Tree Genetics and Genomes. 2010;6(4):555–564.
  19. Ellstrand NC. Is gene flow the most important evolutionary force in plants? American Journal of Botany. 2014;101(5):737–753.
  20. Chybicki IJ, Burczyk J. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Molecular Ecology. 2010;19(10):2137–2151.
  21. Prance GT, Mori SA. Lecythidaceae–Part 1. Flora Neotropical Monograph. USA: NYBG Press; 1979. p. 1–272.
  22. Guidugli MC, Nazareno AG, Feres JM, et al. Small but not isolated: a population genetic survey of the tropical tree Cariniana estrellensis (Lecythidaceae) in a highly fragmented habitat. Heredity. 2016;116(3):339–347.
  23. Kubota TYK. Study of flow and contemporary pollen dispersal, mating system, spatial distribution of genotypes and inbreeding depression in fragmented population Cariniana estrellensis (Raddi) Kuntze, using microsatellite loci. Brazil: UNESP; 2017.
  24. Sebbenn AM, Kageyama, PY, Siqueira, ACMF, et al. Sistema de cruzamento em populações de Cariniana legalis Mar. O. Ktze. implicações para a conservação e o melhoramento genético. Scientia Forestalis. 2000;58:24–40.
  25. Leal JB, Santos RP, Gaiotto FA. Effect of selective logging on genetic diversity and gene flow in Cariniana legalis sampled from a cacao agroforestry system. Genetics and Molecular Research. 2014;13(1):626–635.
  26. Köppen W. Climatologia: con un estudio de los climas de la tierra. Mexico: Fondo de Cultura Econômica; 1948.
  27. IBEGE. Cidades Mato Grosso do Sul–Bataguassu. Brazil: Instituto Brasileiro de Geografia e Estatística; 2016.
  28. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus.1990;12:13–15.
  29. Guidugli MC, Campos T, Sebbenn AM, et al. Development and characterization of 15 microsatellite loci for Cariniana estrellensis and transferability to Cariniana legalis, two endangered tropical tree species. Conservation Genetics. 2009;10:1001–1004.
  30. Tambarussi EV, Sebbenn AM, Moreno MA, et al. Microsatellite markers for Cariniana legalis (Lecythidaceae) and their transferability to Cariniana estrellensis. Applications in Plant Sciences. 2013a;1(6):1–4.
  31. Tambarussi EV, Vencovsky R, Sebbenn AM, et al. Mendelian inheritance, genetic linkage and genotypic disequilibrium at nine microsatellite loci of Cariniana legalis (Mart.) O. Kuntze. Genetics and Molecular Research. 2013b;12:5442–5457.
  32. Kubota TYK, Silva AM, Sebbenn AM, et al. Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci in Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae). Genetics and Molecular Research. 2017;16(2).
  33. Goudet J. FSTAT (Version 1.2): A computer program to calculate F–Statistics. Journal of Heredity. 1995;86:485–486.
  34. Marshall TC, Slate J, Kruuk LE, et al. Statistical confidence for likelihood–based paternity inference in natural populations. Molecular Ecology. 1998;7(5):639–655.
  35. Dow BD, Ashley MD. Microsatellite analysis of seed dispersal and parentage of sampling in bur oak, Quercus macrocarpa. Molecular Ecology. 1996;5(5):615–627.
  36. Hardy O, Vekemans X. SPAGeDI: a versatile computer program to analysis spatial genetic structure at the individual or population levels. Molecular Ecology Notes. 2002;2(4):618–620.
  37. Tambarussi EV, Boshier DH, Sebbenn AM, et al. Inbreeding depression from selfing and mating between relatives in the Neotropical tree Cariniana legalis Mart. Kuntze. Conservation Genetics. 2017;18(1):225–234.
  38. Manoel RO, Freitas MLM, Sebbenn AM, et al. Low levels of pollen and seed flow in a riparian forest fragment of the dioecious tropical tree Genipa americanaL. Forestry Research and Engineering: International Journal. 2017;1(1):1–11.
  39. Frankel OH, Soule MS. Conservation and evolution. UK: University Press; 1981.
  40. Tambarussi EV, Boshier DH, Sebbenn AM, et al. Several small: how inbreeding affects conservation of Cariniana legalis Mart. Kuntze (Lecythidaceae) the Brazilian Atlantic Forest’s largest tree. International Forestry Review. 2016;18(4):502–510.
  41. Ghanzoul J. Pollen and seed dispersal among dispersed plants. Biological Review. 2005;80(3):413–443.
  42. Janzen DH. Euglossine bees as long–distance pollinators of tropical plants. Science. 1971;171(3967):203–205.
  43. Caballero A, Bravo I, Wang J. Inbreeding load and purging: implications for the short–term survival and the conservation management of small populations. Heredity. 2016;118(2):177–185.
Creative Commons Attribution License

©2018 Souza, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.