Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Review Article Volume 1 Issue 1

Convection in air water layer with side heating

Miguel A Herrada,1 Vladimir N Shtern2

1Department of Aerospace Engineering and Fluids Mechanics, University of Seville, Spain
2Shtern Research and Consulting, USA

Correspondence: Vladimir N Shtern, Shtern Research and Consulting, Houston, Texas 77096, USA, Tel  1-713-2830225

Received: May 25, 2017 | Published: August 17, 2017

Citation: Herrada MA, Shtern VN. Convection in air water layer with side heating. Fluid Mech Res Int. 2017;1(1):4-15. DOI: 10.15406/fmrij.2017.01.00002

Download PDF

Abstract

This paper explores patterns and stability of the air-water thermal gravitational convection in a thin and wide horizontal container whose top and bottom walls are adiabatic while vertical sidewalls have prescribed different temperatures. A compact polynomial solution describes a slow multi-cell motion and a temperature distribution away from the sidewalls. The solution explicitly shows how the flow topology depends on the water fraction, thermal surface-tension effect, characterized by the Marangoni number Ma, and buoyancy strength characterized by the Grashof number Gr. The performed numerical simulations agree with the analytical solution for small Gr and Ma and describe changes in the flow topology for large Gr and Ma. The flow transforms into a boundary-layer pattern with jets located near the interface and container walls. The jet entrainment generates new cells in the bulk water flow. As Ma increases, the Marangoni stresses focus near the sidewalls and develop a thin thermal boundary layer near the cold wall. The performed stability study reveals that the steady convection is stable for Gr and Ma values considered. The stability is due to the favorable stratification of water density provided by the adiabatic walls. The results can be utilized for the development of efficient heat exchangers.

Keywords: Thermal Gravitational Convection; Two-Fluid Flows; Side Heating; Marangoni Number; Grashof Number; Prandtl Number; Marangoni Stresses; Czochralski Technique; Surface-Tension; Boussinesq Approximation; Boundary Conditions; Adiabatic Condition; Jacobians.

Abbreviations

Gr: Grashof Number; Ma: Marangoni Number; Pr: Prandtl Number

Introduction

Convection in a horizontal layer of a fluid induced by the horizontal gradient of temperature is one of basic problems of heat transfer. The global circulation between the equatorial and polar oceanic regions occurs mostly due to the horizontal gradient of temperature.1 Technological applications include shallow water pools used for the removal of waste heat, the Czochralski technique of crystal growth2 and cooling systems for nuclear reactors and solar energy collectors.3

The problem also is of fundamental interest being a rare case where experimental, analytical, and numerical results allow meaningful comparison in a wide range of the flow strength, characterized by the Grashof number Gr (Table 1-3). This helped understand the flow physics and explain the generation of cells by the jet entrainment mechanism in the single-fluid convection.5 Our paper shows that the jet entrainment mechanism works in the two-fluid convection as well. It is striking that these flows are stable for large Gr despite the presence of inflection points in the velocity distribution.

 Grh

10

102

103

104

105

106

107

| u h | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjuaGda abdaGcbaqcLbsaqaaaaaaaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGObaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaaje aibaqcLbmapeGaamyBaiaadggacaWG4baal8aabeaaaaa@43F3@

0.0628

0.6198

4.66

17.95

47.2

100.2

242

| u l | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjuaGda abdaGcbaqcLbsaqaaaaaaaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGSbaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaaje aibaqcLbmapeGaamyBaiaadggacaWG4baal8aabeaaaaa@43F7@

0.0033

0.0327

0.246

1.756

20.998

104.5

402

Table 1  Characteristic Reynolds numbers of horizontal flow of water | u h | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjuaGda abdaGcbaqcLbsaqaaaaaaaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGObaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaaje aibaqcLbmapeGaamyBaiaadggacaWG4baal8aabeaaaaa@43F3@  and air | u l | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjuaGda abdaGcbaqcLbsaqaaaaaaaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGSbaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaaje aibaqcLbmapeGaamyBaiaadggacaWG4baal8aabeaaaaa@43F7@  as the Grashof number increases at L = 4, Hi = 0.5, Ma = 0

Gr

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

104

0

-0.623

105

0

-1.7912

106

0

-3.4951

Table 2 Dependence of stability characteristics on Gr for least decaying mode at Ma = 0

Ma

0

100

300

500

700

900

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

0

0

0

0

0

0

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

-0.623

-0.9458

-1.3011

-1.4818

-1.5753

-1.6738

Table 3 Dependence of stability characteristics on Ma for least decaying mode at Gr = 104

For small and moderate Gr, a single-fluid flow in a rectangular container away from its vertical walls excellently agrees with the elegant polynomial solution obtained by Ostroumov:6

u/ u max = ( y 3 y) ( 27 ) 1/2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhacaGGVaGaamyDaKqba+aadaWgaaqcbasaaKqzadWd biaad2gacaWGHbGaamiEaaWcpaqabaqcLbsapeGaeyypa0Jaaeiia8 aacaGGOaWdbiaadMhajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI ZaaaaKqzGeGaeyOeI0IaamyEa8aacaGGPaqcfa4aaeWaaOqaaKqzGe WdbiaaikdacaaI3aaak8aacaGLOaGaayzkaaqcfa4aaWbaaSqabKqa GeaajugWa8qacaaIXaGaai4laiaaikdaaaqcLbsapaGaai4la8qaca aIYaaaaa@5357@ ,

where u is the horizontal velocity and umax is its maximal magnitude; y is the vertical coordinate, divided by the layer half-height. The horizontal walls are located at y=±1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacqGH9aqpcqGHXcqScaaIXaaaaa@3B52@ . Birikh7 generalized this solution for the case where the upper surface is free and subject to the thermal surface-tension (Marangoni) effect. Multi-fluid convection is systematically analyzed in the monograph by Nepomnyashchy et al.8 Chapter 5 of book8 describes multi-layer analytical solutions for prescribed temperatures of horizontal boundaries. In contrast, our paper addresses the adiabatic horizontal walls. The stability features are very different in these two cases.

 We show that the flow stability radically depends on boundary conditions at the horizontal walls. If temperature is prescribed at the walls, the flow becomes unstable for rather small Gr. Birikh9 considered the stability of flow6 at the Prandtl number Pr= 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaeyypa0Jaaeiiaiaaicdaaaa@3AD4@ and found that the critical value of the Grashof number is Gr* = 495. Gershuni et al.10 explored the stability of flow6 at Pr > 0 with respect to two-dimensional10 and three-dimensional11 disturbances.

They predicted two kinds of instability:

  1. Shear-layer K-instability related to the existence of inflection point in the u(y) profile and
  2. Thermal R-instability caused by the unstable density stratification near the horizontal walls; here K is for Kelvin and R is for Rayleigh. As Pr increases, the K-instability disappears for Pr > 0.5, but the R-instability occurs for any large Pr.

In contrast to these predictions, the experimental studies2,4 reveal no instability up to Gr4× 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGYbGaeyisISRaaGinaiabgEna0kaaigdacaaI Waqcfa4damaaCaaaleqajeaibaqcLbmapeGaaG4naaaaaaa@4156@ . As Gr increases, the flow transforms from that described by solution6 to the boundary-layer pattern with jets developing near the container walls and a slow multi-cellular motion in the bulk region surrounded by the jets.

It is paradoxical that no instability occurs despite the u(y) profile becomes wavy with a few inflection points.2,4 This paradox was recently explained.12 The horizontal walls have prescribed temperatures in the stability studies8-10 while the walls are nearly adiabatic (no heat flux) in the experiments.2,4 It is revealed that the R-instability disappears if the boundary conditions change from the fixed-temperature to the adiabatic ones.12 The physical reason is that the density stratification becomes stable in the entire flow domain for the adiabatic conditions. This clarifies why no instability is observed in the experiments.2,4

The analytical solution6 was generalized for the cylindrical geometry and the centrifugal force replacing the gravity. For a small axial gradient of temperature, the centrifugal convection in a rotating pipe is also described by the polynomial solution:13

w/ w 0 = 14 r 2 +3 r 4 and (T T 1 )/( T 0 T 1 ) =  (1 r 2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhacaGGVaGaam4DaKqba+aadaWgaaqcbasaaKqzadWd biaaicdaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIXaGaeyOeI0 IaaGinaiaadkhajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaa aKqzGeGaey4kaSIaaG4maiaadkhajuaGpaWaaWbaaSqabKqaGeaaju gWa8qacaaI0aaaaKqzGeGaamyyaiaad6gacaWGKbGaaeiia8aacaGG OaWdbiaadsfacqGHsislcaWGubqcfa4damaaBaaajeaibaqcLbmape GaaGymaaWcpaqabaqcLbsacaGGPaWdbiaac+capaGaaiika8qacaWG ubqcfa4damaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLbsape GaeyOeI0IaamivaKqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaSWd aeqaaKqzGeGaaiyka8qacaqGGaGaeyypa0Jaaeiia8aacaGGOaWdbi aaigdacqGHsislcaWGYbqcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaajugib8aacaGGPaqcfa4aaWbaaSqabKqaGeaajugWa8qaca aIZaaaaaaa@6F63@ ;

where r is the distance from the axis divided by the pipe radius. Subscripts 0 and 1 denote values of axial velocity w and temperature T at the axis and sidewall respectively. There is also analytical (though not polynomial) solution for a gap between two co-rotating pipes.13 For a narrow gap, the cylindrical problem becomes close to that for a horizontal layer.6 Birikh and Pukhnachev14 generalized the solution13 to describe a two-fluid thermal convection with the Marangoni effect taken into account. The numerical simulations of the air-water centrifugal convection in a cylindrical container15 agree with the analytical solutions and help explain the emergence of new flow cells due to the Marangoni effect. A similar development occurs in the two-fluid flow studied here.

Early theoretical and experimental studies of thermal convection in a two-fluid horizontal layer are mostly related to vertical heating.8,16 To our knowledge, the first experimental study for lateral heating was performed by Sparrow et al.17 for the water-hexanol horizontal layer. Villers & Platten18 measured the velocity profiles in each fluid layer as a function of the height in a system formed by water and heptanol and analyzed the solutions for an elongated layer19 The polynomial solutions6,7 easily can be generalized for a multi-fluid convection in a horizontal layer.8 Doi & Koster20 studied theoretically the thermo-capillary convection under microgravity conditions in two immiscible liquid layers with a free upper surface. In addition, they carried out numerical simulations in a box of aspect ratio 4 in order to analyze the effect of the vertical walls. Numerical simulations in cavities of different aspect ratios for coupled thermos-capillary and buoyancy-driven convection were performed by Liu et al.,21 and an asymptotic solution for the velocity in the limit of infinite aspect ratio and zero gravity has been derived 22

Madruga et al.16 investigated flow patterns in an unbounded horizontal layer of two liquids and studied the flow stability. Our work generalizes their study by also addressing a bounded layer and differs from8,16 by the following features:

  1. The horizontal walls are adiabatic here while they have prescribed temperatures.8,16 This difference is crucial for the flow stability as discussed above.
  2. We focus on the air-water flow motivated by applications for cooling systems3 while the fluids are specific for crystal-growth applications in16and the other above cited works.
  3. A compact form of the base-flow solution is derived. This form explicitly shows whether the flow patterns are single-cellular or two-cellular in both fluids.
  4. A pattern map on the parametric plane (the Marangoni number, the relative height of the interface) is obtained with analytically determined boundaries between regions of different flow topologies.
  5. Our study also considers the two-dimensional (2D) flow in a container of aspect ratio 4 and describes the development of jet-like boundary layers near the container walls and the interface. We argue that eddies emerging in the bulk flow are generated by the jet entrainment.
  6. The stability of the one- and two-dimensional flows is explored.
  7. In the rest of this paper, we formulate the problem in Section 5, describe the polynomial solutions in Section 6, the numerical technique in Section 7, explore the slow 2D flow in Section 8, effects of increasing Gr (Section 9) and Ma (Section 10), investigate the stability of the core (Section 11) and two-dimensional (Section 12) flows, and summarize the results in Section 13.

Problem Formulation

Flow geometry

Consider a rectangular container of length l and height h schematically shown in Figure 1. The origin of horizontal (x) and vertical (y) axes is located at the left lower container corner and the z-axis is normal to the picture plane in Figure 1. Velocity and temperature of the base flow is time and z-independent. Using h as a length scale makes the coordinates dimensionless.

Figure 1 Schematic of the problem.

The container is filled with a heavy fluid (here water) occupying the region, 0<y< H i = h i /h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGH8aapcaWG5bGaeyipaWJaamisaKqba+aadaWg aaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabg2da9iaadI gajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugib8qa caGGVaGaamiAaaaa@465F@ , and with a light fluid (here air) occupying the region, H i <y< 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aa beaajugib8qacqGH8aapcaWG5bGaeyipaWJaaeiiaiaaigdaaaa@3FA3@ ; g is the gravity acceleration; y= H i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacqGH9aqpcaWGibqcfa4damaaBaaajeaibaqcLbma peGaamyAaaWcpaqabaaaaa@3CA4@  is the interface, depicted by the bold dashed line in Figure 1. The interface deformation is neglected here based on the experimental observation2that the deformation is very small. The left (right) wall has prescribed temperature T 1 ( T 2 ); T 1 < T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamivaKqba+aadaWgaaWcbaqcLb sapeGaaGOmaaWcpaqabaaakiaawIcacaGLPaaajugib8qacaGG7aGa amivaKqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaSWdaeqaaKqzGe WdbiabgYda8iaadsfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaa l8aabeaaaaa@4B04@ . The top and bottom walls are adiabatic. The temperature difference and gravity circulates both fluids. The arrowed contours in Figure 1 depict a possible flow pattern which depends on the fluid properties and fractions.

It is convenient to introduce the dimensionless temperature,

ϑ= (Τ Τ m )/(ε Τ m ), Τ m = ( Τ 1 + Τ 2 )/2,ε= ( Τ 2 Τ 1 )/ Τ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akjabg2da9iabgccaG8aacaGGOaWdbiabfs6aujab gkHiTiabfs6auLqbaoaaBaaajeaibaqcLbmacaWGTbaaleqaaKqzGe WdaiaacMcapeGaai4la8aacaGGOaWdbiabew7aLjabfs6auLqbaoaa BaaajeaibaqcLbmacaWGTbaaleqaaKqzGeWdaiaacMcapeGaaiilai abfs6auLqbaoaaBaaajeaibaqcLbmacaWGTbaaleqaaKqzGeGaeyyp a0Jaeyiiaascfa4damaabmaakeaajugib8qacqqHKoavjuaGpaWaaS baaKqaGeaajugWa8qacaaIXaaal8aabeaajugib8qacqGHRaWkcqqH KoavjuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aabeaaaOGaay jkaiaawMcaaKqzGeWdbiaac+cacaaIYaGaaiilaiabew7aLjabg2da 9iabgccaG8aacaGGOaWdbiabfs6auLqba+aadaWgaaqcbasaaKqzad WdbiaaikdaaSWdaeqaaKqzGeWdbiabgkHiTiabfs6auLqba+aadaWg aaqcbasaaKqzadWdbiaaigdaaSWdaeqaaKqzGeGaaiyka8qacaGGVa GaeuiPdqvcfa4aaSbaaKqaGeaajugWaiaad2gaaSqabaaaaa@795E@ (1)

With no flow, the temperature distribution is

ϑ= ϑ 0 =1/2+x/L,            0 xL, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akjabg2da9iabeg9akLqba+aadaWgaaqcbasaaKqz adWdbiaaicdaaSWdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaigdaca GGVaGaaGOmaiabgUcaRiaadIhacaGGVaGaamitaiaacYcacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaaIWaGaaeiiaiabgsMiJkaadIhacqGHKjYO caWGmbGaaiilaaaa@5BB9@                            (2)

where L = l/h is an aspect ratio of the container.

    • Boussinesq approximation

We apply the Boussinesq approximation,

ρ/ ρ m = 1εβϑ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYjaac+cacqaHbpGCjuaGpaWaaSbaaSqaaKqzGeWd biaad2gaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIXaGaeyOeI0 IaeqyTduMaeqOSdiMaeqy0dOKaaiilaaaa@46DC@                (3)

β= ρ m 1 T m ρ/T,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIjabg2da9iabgkHiTiabeg8aYLqba+aadaWgaaWc baqcLbsapeGaamyBaaWcpaqabaqcfa4aaWbaaSqabKqaGeaajugWa8 qacqGHsislcaaIXaaaaKqzGeGaamivaKqba+aadaWgaaWcbaqcLbsa peGaamyBaaWcpaqabaqcLbsacqGHciITcqaHbpGCpeGaai4laiabgk Gi2kaadsfacaGGSaGaaiiOaaaa@4E9F@          (4)

The quantities, characterizing the heavy (light) fluid, are marked hereafter by subscript “h” (“l”). Equations and relations, which serve for both fluids, are unmarked. In relations (3) and (4), ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYbaa@3865@ is a density, ρ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqa baaaaa@3AD9@  is its value at T= Τ m = ( Τ 1 + Τ 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacqGH9aqpcqqHKoavjuaGdaWgaaqcKfaG=haajugW aiaad2gaaSqabaqcLbsacqGH9aqpcqGHGaaijuaGpaWaaeWaaOqaaK qzGeWdbiabfs6auLqba+aadaWgaaqcbasaaKqzGeWdbiaaigdaaSWd aeqaaKqzGeWdbiabgUcaRiabfs6auLqba+aadaWgaaqcKfaG=haaju gWa8qacaaIYaaal8aabeaaaOGaayjkaiaawMcaaKqzGeWdbiaac+ca caaIYaaaaa@51C1@  and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIbaa@3846@  is a dimensionless thermal expansion coefficient. For the Boussinesq approximation to be valid, density variations must be small compared with ρ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqa baaaaa@3AD9@  i.e., εβ<<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabek7aIjabgYda8iabgYda8iaaigdaaaa@3CB0@ . To this end, we take Tm = 300K = 27°C, T1 = 18°C and T2 = 36°C. This yields that ( T 2 T m )/ T m = 0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaWGubqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyOeI0IaamivaKqba+aadaWgaaqcbasaaK qzadWdbiaad2gaaSWdaeqaaKqzGeGaaiyka8qacaGGVaGaamivaKqb a+aadaWgaaqcbasaaKqzadWdbiaad2gaaSWdaeqaaKqzGeWdbiabg2 da9iaabccacaaIWaGaaiOlaiaaicdacaaIZaaaaa@4BF2@ , ( T 1 T m )/ T m =0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaWGubqcfa4damaaBaaajeaibaqcLbmapeGaaGym aaWcpaqabaqcLbsapeGaeyOeI0IaamivaKqba+aadaWgaaqcbasaaK qzadWdbiaad2gaaSWdaeqaaKqzGeGaaiyka8qacaGGVaGaamivaKqb a+aadaWgaaqcbasaaKqzadWdbiaad2gaaSWdaeqaaKqzGeWdbiabg2 da9iabgkHiTiaaicdacaGGUaGaaGimaiaaiodaaaa@4C3B@  and ε= 0.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabg2da9iaabccacaaIWaGaaiOlaiaaicdacaaI 2aaaaa@3CDB@ . For example, β h = 0.082 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWd aeqaaKqzGeWdbiabg2da9iaabccacaaIWaGaaiOlaiaaicdacaaI4a GaaGOmaaaa@415F@ at Tm = 300K and ε β h = 0.00492 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaa dIgaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIWaGaaiOlaiaaic dacaaIWaGaaGinaiaaiMdacaaIYaaaaa@447F@  for water and β 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaSWd aeqaaKqbakabg2da9iaaigdaaaa@3D90@ and ε β 1 =0.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabek7aILqbaoaaBaaajqwba9FaaKqzadGaaGym aaqcfayabaGaeyypa0JaaGimaiaac6cacaaIWaGaaGOnaaaa@42B0@  for air. Therefore, the Boussinesq approximation is applicable. The Grashof number is Gr=εβg h 3 / ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGYbGaeyypa0JaeqyTduMaeqOSdiMaam4zaiaa dIgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIZaaaaKqzGeGaai 4laiabe27aULqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaa aa@4766@ , the Prandtl number is Pr=ν/κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaeyypa0JaeqyVd4Maai4laiabeQ7aRbaa @3D94@ and the Rayleigh number is Ra = GrPr; ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabe27aUbaa@385D@  is a kinematic viscosity and κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3857@  is a thermal diffusivity of a fluid. We address here a water-air flow. At the atmospheric pressure and T = Tm, the fluid properties are listed in Table 4.

Fluid

Density
(
kg/m3)

Kinematic
Viscosity (
m2/s)

Thermal
Diffusivity(
m2/s)

Conductivity
(
W/(m×K))

Prandtle
Number

Air

ρ l = 1.18 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWGSbaal8aabeaa jugib8qacqGH9aqpcaqGGaGaaGymaiaac6cacaaIXaGaaGioaaaa@40A9@

ν l = 1.58× 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abe27aULqbaoaaBaaajeaibaqcLbmaqaaaaaaaaaWdbiaadYgaaSWd aeqaaKqzGeWdbiabg2da9iaabccacaaIXaGaaiOlaiaaiwdacaaI4a Gaey41aqRaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qa cqGHsislcaaI1aaaaaaa@486C@

k l = 2.21× 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugiba baaaaaaaaapeGaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaadYga aSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIYaGaaiOlaiaaikdaca aIXaGaey41aqRaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugW a8qacqGHsislcaaI1aaaaaaa@47BA@

λ l =0.0261 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugiba baaaaaaaaapeGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaadYgaaSqa baqcLbsacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIYaGaaGOnaiaaig daaaa@41AB@

Prl = 0.714

Water

ρ h =996 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWGObaal8aabeaa jugib8qacqGH9aqpcaaI5aGaaGyoaiaaiAdaaaa@3F5E@

ν h = 8.33× 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abe27aULqbaoaaBaaajeaibaqcLbmaqaaaaaaaaaWdbiaadIgaaSWd aeqaaKqzGeWdbiabg2da9iaabccacaaI4aGaaiOlaiaaiodacaaIZa Gaey41aqRaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qa cqGHsislcaaI3aaaaaaa@486A@

k h = 1.52× 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugiba baaaaaaaaapeGaam4AaKqba+aadaWgaaqcbasaaKqzadWdbiaadIga aSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIXaGaaiOlaiaaiwdaca aIYaGaey41aqRaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugW a8qacqGHsislcaaI3aaaaaaa@47BB@

λ h =0.615 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugiba baaaaaaaaapeGaeq4UdWwcfa4aaSbaaKazba4=baqcLbmacaWGObaa leqaaKqzGeGaeyypa0JaaGimaiaac6cacaaI2aGaaGymaiaaiwdaaa a@42B3@

Prh = 5.49

Table 4 Fluid properties

Governing equations

 Using h, h 2 /ν,ν/h, ρ m ν 2 / h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIgacaGGSaGaamiAaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaikdaaaqcLbsacaGGVaGaeqyVd4Maaiilaiabe27aUjaac+ cacaWGObGaaiilaiabeg8aYLqba+aadaWgaaWcbaqcLbsapeGaamyB aaWcpaqabaqcLbsacqaH9oGBjuaGdaahaaWcbeqcbasaaKqzadWdbi aaikdaaaqcLbsacaGGVaGaamiAaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaikdaaaaaaa@5246@ , as scales for length, time, velocity, and pressure, respectively, renders all variables dimensionless. Then the Boussinesq equations have the form:

u/x+v/y+w/z= 0,    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadwhacaGGVaGaeyOaIyRaamiEaiabgUcaRiab gkGi2kaadAhacaGGVaGaeyOaIyRaamyEaiabgUcaRiabgkGi2kaadE hacaGGVaGaeyOaIyRaamOEaiabg2da9iaabccacaaIWaGaaiilaiaa cckacaGGGcGaaiiOaaaa@4F50@          (6)

u/t+uu/x+vu/y+wu/z= p/x+ 2 u/ x 2 + 2 u/ y 2 + 2 u/ z 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadwhacaGGVaGaeyOaIyRaamiDaiabgUcaRiaa dwhacqGHciITcaWG1bGaai4laiabgkGi2kaadIhacqGHRaWkcaWG2b GaeyOaIyRaamyDaiaac+cacqGHciITcaWG5bGaey4kaSIaam4Daiab gkGi2kaadwhacaGGVaGaeyOaIyRaamOEaiabg2da9iaacckacqGHsi slcqGHciITcaWGWbGaai4laiabgkGi2kaadIhacqGHRaWkcqGHciIT juaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaamyDai aac+cacqGHciITcaWG4bqcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaajugibiabgUcaRiabgkGi2Mqba+aadaahaaWcbeqcbasaaK qzadWdbiaaikdaaaqcLbsacaWG1bGaai4laiabgkGi2kaadMhajuaG paWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIaey OaIyBcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaa dwhacaGGVaGaeyOaIyRaamOEaKqba+aadaahaaWcbeqcbasaaKqzad WdbiaaikdaaaqcLbsacaGGSaaaaa@8344@ (7)

v/t+uv/x+vv/y+wv/z=Grϑp/y+ 2 v/ x 2 + 2 v/ y 2 + 2 v/ z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadAhacaGGVaGaeyOaIyRaamiDaiabgUcaRiaa dwhacqGHciITcaWG2bGaai4laiabgkGi2kaadIhacqGHRaWkcaWG2b GaeyOaIyRaamODaiaac+cacqGHciITcaWG5bGaey4kaSIaam4Daiab gkGi2kaadAhacaGGVaGaeyOaIyRaamOEaiabg2da9iaadEeacaWGYb Gaeqy0dOKaeyOeI0IaeyOaIyRaamiCaiaac+cacqGHciITcaWG5bGa ey4kaSIaeyOaIyBcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaa aajugibiaadAhacaGGVaGaeyOaIyRaamiEaKqba+aadaahaaWcbeqc basaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcqGHciITjuaGpaWaaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaamODaiaac+cacqGH ciITcaWG5bqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaju gibiabgUcaRiabgkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaa ikdaaaqcLbsacaWG2bGaai4laiabgkGi2kaadQhajuaGpaWaaWbaaS qabKqaGeaajugWa8qacaaIYaaaaaaa@8454@                (8)

w/t+uw/x+vw/y+ww/z= p/z+ 2 w/ x 2 + 2 w/ y 2 + 2 v/ z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadEhacaGGVaGaeyOaIyRaamiDaiabgUcaRiaa dwhacqGHciITcaWG3bGaai4laiabgkGi2kaadIhacqGHRaWkcaWG2b GaeyOaIyRaam4Daiaac+cacqGHciITcaWG5bGaey4kaSIaam4Daiab gkGi2kaadEhacaGGVaGaeyOaIyRaamOEaiabg2da9iaacckacqGHsi slcqGHciITcaWGWbGaai4laiabgkGi2kaadQhacqGHRaWkcqGHciIT juaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaam4Dai aac+cacqGHciITcaWG4bqcfa4damaaCaaaleqajeaibaqcLbmapeGa aGOmaaaajugibiabgUcaRiabgkGi2Mqba+aadaahaaWcbeqcbasaaK qzadWdbiaaikdaaaqcLbsacaWG3bGaai4laiabgkGi2kaadMhajuaG paWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIaey OaIyBcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaa dAhacaGGVaGaeyOaIyRaamOEaKqba+aadaahaaWcbeqcbasaaKqzad Wdbiaaikdaaaaaaa@8214@                   (9)

ϑ/t+uϑ/x+vϑ/y+wϑ/z= [ 2 ϑ/ x 2 + 2 ϑ/ y 2 + 2 ϑ/ z 2 ]/Pr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG0bGaey4kaSIa amyDaiabgkGi2kabeg9akjaac+cacqGHciITcaWG4bGaey4kaSIaam ODaiabgkGi2kabeg9akjaac+cacqGHciITcaWG5bGaey4kaSIaam4D aiabgkGi2kabeg9akjaac+cacqGHciITcaWG6bGaeyypa0Jaaeiia8 aacaGGBbWdbiabgkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaa ikdaaaqcLbsacqaHrpGscaGGVaGaeyOaIyRaamiEaKqba+aadaahaa WcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcqGHciITjuaG paWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeqy0dOKaai 4laiabgkGi2kaadMhajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI YaaaaKqzGeGaey4kaSIaeyOaIyBcfa4damaaCaaaleqajeaibaqcLb mapeGaaGOmaaaajugibiabeg9akjaac+cacqGHciITcaWG6bqcfa4d amaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugib8aacaGGDbWdbi aac+cacaWGqbGaamOCaaaa@8412@        (10)

Where (u,ν,w) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacaWG1bGaaiilaiabe27aUjaacYcacaWG3bGaaiyk aaaa@3D0C@  are the velocity components in Cartesian coordinates (x, y, z), t is time, and p is pressure reduced by its hydrostatic contribution. The term Grϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGYbGaeqy0dOeaaa@3A10@ in (8) represents the buoyancy force. Equations (6)-(10) are applied for both light and heavy fluids using values of Gr and Pr corresponding to each fluid.

We denote the list (u,ν,w,p,ϑ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacaWG1bGaaiilaiabe27aUjaacYcacaWG3bGaaiil aiaadchacaGGSaGaeqy0dOKaaiykaaaa@4109@ as V, and look for a solution of the system (6)-(10) in the form

V= V b ( y )+a V d ( y )exp(iαx+ikziωt)+c.c.,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAfacqGH9aqpcaWHwbqcfa4damaaBaaajeaibaqcLbma peGaamOyaaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadMhaaOWdai aawIcacaGLPaaajugib8qacqGHRaWkcaWGHbGaaCOvaKqba+aadaWg aaqcbasaaKqzadWdbiaadsgaaSWdaeqaaKqbaoaabmaakeaajugib8 qacaWG5baak8aacaGLOaGaayzkaaqcLbsapeGaamyzaiaadIhacaWG WbWdaiaacIcapeGaamyAaiabeg7aHjaadIhacqGHRaWkcaWGPbGaam 4AaiaadQhacqGHsislcaWGPbGaeqyYdCNaamiDa8aacaGGPaWdbiab gUcaRiaadogacaGGUaGaam4yaiaac6cacaGGSaGaaiiOaaaa@6193@             (11)

for a horizontal base flow away from the vertical walls as L ® ¥ and in the form

V= V b ( x,y )+a V d ( x,y )exp(ikziωt)+c.c.,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAfacqGH9aqpcaWHwbqcfa4damaaBaaajeaibaqcLbma peGaamOyaaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadIhacaGGSa GaamyEaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgUcaRiaadggacaWH wbqcfa4damaaBaaajeaibaqcLbmapeGaamizaaWcpaqabaqcfa4aae WaaOqaaKqzGeWdbiaadIhacaGGSaGaamyEaaGcpaGaayjkaiaawMca aKqzGeWdbiaadwgacaWG4bGaamiCa8aacaGGOaWdbiaadMgacaWGRb GaamOEaiabgkHiTiaadMgacqaHjpWDcaWG0bWdaiaacMcapeGaey4k aSIaam4yaiaac6cacaWGJbGaaiOlaiaacYcacaGGGcaaaa@6081@                 (12)

for a two-dimensional base flow for finite L.

Subscripts “b” and “d” denote the base flow and a disturbance, respectively; c.c. denotes the complex conjugate of the preceding term; a<<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb GaeyipaWJaeyipaWJaaGymaaaa@3A2E@  is amplitude; real αandk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHjaaykW7caWGHbGaamOBaiaadsgacaaMc8Uaam4A aaaa@3F0C@  are wave numbers; and ω= ω r +i ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3jabg2da9iabeM8a3Lqba+aadaWgaaqcbasaaKqz adWdbiaadkhaaSWdaeqaaKqzGeWdbiabgUcaRiaadMgacqaHjpWDju aGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaaaaa@45E6@  is a complex number to be found, ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWd aeqaaaaa@3BA9@  is a frequency and ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@  is a growth rate of a disturbance. For a decaying (growing) disturbance, ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@  is negative (positive). For neutral disturbances ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3jabg2da9iaaicdaaaa@3A32@  . The equations governing the base flows result from substituting (11) or (12) in system (6)-(10) and setting a = 0. The terms of order O(a) constitute equations governing infinitesimal disturbances.

Boundary conditions

Equations (6)-(10) are solved under the following boundary conditions:

  1. No-slip at all walls: u = v = w = 0 at y = 0, y = 1, x = 0 and x = L.
  2. Fixed temperatures of vertical walls: ϑ b =1/2, ϑ d = 0 atx= 0 and ϑ b = 1/2, ϑ d = 0 atx=L. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWGIbaal8aabeaa jugib8qacqGH9aqpcqGHsislcaaIXaGaai4laiaaikdacaGGSaWdai abeg9akLqbaoaaBaaajeaibaqcLbmapeGaamizaaWcpaqabaqcLbsa peGaeyypa0JaaeiiaiaaicdacaqGGaGaamyyaiaadshacaaMc8Uaam iEaiabg2da9iaabccacaaIWaGaaeiiaiaadggacaWGUbGaamizaiaa ykW7paGaeqy0dOucfa4aaSbaaKqaGeaajugWa8qacaWGIbaal8aabe aajugib8qacqGH9aqpcaqGGaGaaGymaiaac+cacaaIYaGaaiila8aa cqaHrpGsjuaGdaWgaaqcbasaaKqzadWdbiaadsgaaSWdaeqaaKqzGe Wdbiabg2da9iaabccacaaIWaGaaeiiaiaadggacaWG0bGaaGPaVlaa dIhacqGH9aqpcaWGmbGaaiOlaaaa@6E48@
  3. Adiabatic conditions at the horizontal walls: ϑ/y = 0 aty= 0 andy= 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG5bGaaeiiaiab g2da9iaabccacaaIWaGaaeiiaiaadggacaWG0bGaaGPaVlaadMhacq GH9aqpcaqGGaGaaGimaiaabccacaWGHbGaamOBaiaadsgacaaMc8Ua amyEaiabg2da9iaabccacaaIXaGaaiOlaaaa@5042@
  4. Continuity of temperature and velocity at the interface: ϑ l = ϑ h , u h = ν r u l , v=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWGSbaal8aabeaa jugib8qacqGH9aqppaGaeqy0dOucfa4aaSbaaKqaGeaajugWa8qaca WGObaal8aabeaajugib8qacaGGSaGaamyDaKqba+aadaWgaaqcbasa aKqzadWdbiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iabe27aULqba+ aadaWgaaqcbasaaKqzadWdbiaadkhaaSWdaeqaaKqzGeWdbiaadwha juaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabeaajugib8qaca GGSaGaaeiiaiaadAhacqGH9aqpcaaIWaaaaa@575A@  and w h = ν r w l   at y= H i ; ν r = ν l / ν h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacqGH9aqpcqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8 qacaWGYbaal8aabeaajugib8qacaWG3bqcfa4damaaBaaajeaibaqc LbmapeGaamiBaiaacckaaSWdaeqaaKqzGeWdbiaacckacaWGHbGaam iDaiaacckacaWG5bGaeyypa0JaamisaKqba+aadaWgaaqcbasaaKqz adWdbiaadMgaaSWdaeqaaKqzGeWdbiaacUdacaaMc8UaaGPaVlabe2 7aULqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWdaeqaaKqzGeWd biabg2da9iabe27aULqba+aadaWgaaqcbasaaKqzadWdbiaadYgaaS WdaeqaaKqzGeWdbiaac+cacqaH9oGBjuaGpaWaaSbaaKqaGeaajugW a8qacaWGObaal8aabeaaaaa@683F@  is the light-to-heavy fluid kinematic viscosity ratio.
  5. Continuity of heat flux at the interface: ϑ h /y = λ r ϑ l /y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaa dIgaaSWdaeqaaKqzGeWdbiaac+cacqGHciITcaWG5bGaaeiiaiabg2 da9iabeU7aSLqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWdaeqa aKqzGeWdbiabgkGi2kabeg9akLqba+aadaWgaaqcbasaaKqzadWdbi aadYgaaSWdaeqaaKqzGeWdbiaac+cacqGHciITcaWG5baaaa@51BE@ , where λ r = λ l / λ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBjuaGdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaWGYbaal8aabeaa jugib8qacqGH9aqppaGaeq4UdWwcfa4aaSbaaKqaGeaajugWa8qaca WGSbaal8aabeaajugib8qacaGGVaWdaiabeU7aSLqbaoaaBaaajeai baqcLbmapeGaamiAaaWcpaqabaaaaa@482E@  is the light-to-heavy thermal conductivity ratio.
  6. Continuity of tangent stresses at the interface: u h /y= ρ r ν r 2 u l /yεM a 1 ϑ/xaty= H i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Obaal8aabeaajugib8qacaGGVaGaeyOaIyRaamyEaiabg2da9iabeg 8aYLqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWdaeqaaKqzGeGa eqyVd4wcfa4aaSbaaKqaGeaajugWa8qacaWGYbaal8aabeaajuaGda ahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsacqGHciITcaWG1bqc fa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqabaqcLbsapeGaai 4laiabgkGi2kaadMhacqGHsislcqaH1oqzcaWGnbGaamyyaKqba+aa daWgaaqcbasaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgkGi2k abeg9akjaac+cacqGHciITcaWG4bGaaGPaVlaaykW7caaMc8UaaGPa VlaadggacaWG0bGaaGPaVlaadMhacqGH9aqpcaWGibqcfa4damaaBa aajeaibaqcLbmapeGaamyAaaWcpaqabaaaaa@75A8@ , where the left-hand-side term is the shear stress of heavy fluid, the first right-hand-side term is the shear stress of light fluid and the last term is the Marangoni stress; ρ r = ρ l / ρ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWd aeqaaKqzGeWdbiabg2da9iabeg8aYLqba+aadaWgaaqcbasaaKqzad WdbiaadYgaaSWdaeqaaKqzGeWdbiaac+cacqaHbpGCjuaGpaWaaSba aKqaGeaajugWa8qacaWGObaal8aabeaaaaa@4871@  is the light-to-heavy fluid density ratio; and M a 1 = T m ( dσ/dT )h/( ρ h ϑ h 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbqcfa4damaaBaaajeaibaqcLbmapeGaaGym aaWcpaqabaqcLbsapeGaeyypa0JaeyOeI0IaamivaKqba+aadaWgaa qcbasaaKqzadWdbiaad2gaaSWdaeqaaKqbaoaabmaakeaajugib8qa caWGKbGaeq4WdmNaai4laiaadsgacaWGubaak8aacaGLOaGaayzkaa qcLbsapeGaamiAaiaac+capaGaaiika8qacqaHbpGCjuaGpaWaaSba aKqaGeaajugWa8qacaWGObaal8aabeaajugib8qacqaHrpGsjuaGpa WaaSbaaKqaGeaajugWa8qacaWGObaal8aabeaajuaGdaahaaWcbeqc basaaKqzadWdbiaaikdaaaqcLbsapaGaaiykaaaa@5B84@  is the dimensionless value of dσ/dT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacqaHdpWCcaGGVaGaamizaiaadsfaaaa@3BC6@  which is independent of εandL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzcaaMc8Uaamyyaiaad6gacaWGKbGaaGPaVdbaaaaaaaaapeGaamit aaaa@3EF5@ . We use the Marangoni number in the form of Ma=M a 1 ε/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbGaeyypa0JaamytaiaadggajuaGpaWaaSba aKqaGeaajugWa8qacaaIXaaal8aabeaajugibiabew7aL9qacaGGVa Gaamitaaaa@41E0@ . Condition (iii)-(vi) are applied for both base flow and disturbances.

The interface, y = Hi, is considered undisturbed here because this limitation simplifies the analysis and seems a reasonable approximation since no significant deformation of the interface was observed in the experiment.2 Since equations (11)-(13) and boundary conditions for disturbances are uniform, there is the zero solution. For a non-zero solution, eigenvalues of w must be found.

The Base Flow Features Away from the Container Ends

Reduction of governing equations

The base flow is nearly x-independent near x = L/2 if L >> 1. Here, we consider the corresponding limiting case as L ® ¥ where velocity of both fluids is x-directed and depends on y only. In this one-dimensional problem, equations (6)-(10) reduce to

p/x= 2 u/ y 2 ,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadchacaGGVaGaeyOaIyRaamiEaiabg2da9iab gkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsaca WG1bGaai4laiabgkGi2kaadMhajuaGpaWaaWbaaSqabKqaGeaajugW a8qacaaIYaaaaKqzGeGaaiilaiaacckaaaa@4B61@               (13)

p/y=Grϑ,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadchacaGGVaGaeyOaIyRaamyEaiabg2da9iaa dEeacaWGYbGaeqy0dOKaaiilaiaacckaaaa@425C@      (14)

Pr.uϑ/x= 2 ϑ/ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaaiOlaiaadwhacqGHciITcqaHrpGscaGG VaGaeyOaIyRaamiEaiabg2da9iabgkGi2Mqba+aadaahaaWcbeqcba saaKqzadWdbiaaikdaaaqcLbsacqaHrpGscaGGVaGaeyOaIyRaamyE aKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaa@4DD7@ .       (15)

Differentiating (14) with respect to x yields 2 p/xy=Grϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikda aaqcLbsacaWGWbGaai4laiabgkGi2kaadIhacqGHciITcaWG5bGaey ypa0Jaam4raiaadkhacqGHciITcqaHrpGscaGGVaGaeyOaIyRaamiE aaaa@4AE4@ . Differentiating (13) with respect to y and substituting 2 p/xy=Grϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikda aaqcLbsacaWGWbGaai4laiabgkGi2kaadIhacqGHciITcaWG5bGaey ypa0Jaam4raiaadkhacqGHciITcqaHrpGscaGGVaGaeyOaIyRaamiE aaaa@4AE4@  gives

3 u/ y 3 =Grϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2Mqba+aadaahaaWcbeqcbasaaKqzadWdbiaaioda aaqcLbsacaWG1bGaai4laiabgkGi2kaadMhajuaGpaWaaWbaaSqabK qaGeaajugWa8qacaaIZaaaaKqzGeGaeyypa0Jaam4raiaadkhacqGH ciITcqaHrpGscaGGVaGaeyOaIyRaamiEaaaa@4C05@ .         (16)

There is a solution for temperature in the form,

ϑ= ϑ 0 ( x )+ ϑ 1 ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akjabg2da9iabeg9akLqba+aadaWgaaqcbasaaKqz adWdbiaaicdaaSWdaeqaaKqbaoaabmaakeaajugib8qacaWG4baak8 aacaGLOaGaayzkaaqcLbsapeGaey4kaSIaeqy0dOucfa4damaaBaaa jeaibaqcLbmapeGaaGymaaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbi aadMhaaOWdaiaawIcacaGLPaaaaaa@4BC6@ ,             (17)

where ϑ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaSWd aeqaaaaa@3B47@  is given by (2) and ϑ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaSWd aeqaaaaa@3B48@  must be found. Therefore, ϑ/x =d ϑ 0 /dx= 1/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG4bGaaeiiaiab g2da9iaadsgacqaHrpGsjuaGpaWaaSbaaKqaGeaajugWa8qacaaIWa aal8aabeaajugib8qacaGGVaGaamizaiaadIhacqGH9aqpcaqGGaGa aGymaiaac+cacaWGmbaaaa@4B1D@ . Substituting this in (16) yields

d 3 u/d y 3 =Gr/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIZaaa aKqzGeGaamyDaiaac+cacaWGKbGaamyEaKqba+aadaahaaWcbeqcba saaKqzadWdbiaaiodaaaqcLbsacqGH9aqpcaWGhbGaamOCaiaac+ca caWGmbaaaa@466B@ .               (18)

It is convenient to introduce stream function Q( y ),u= dQ/dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfajuaGpaWaaeWaaOqaaKqzGeWdbiaadMhaaOWdaiaa wIcacaGLPaaajugib8qacaGGSaGaamyDaiabg2da9iaabccacaWGKb Gaamyuaiaac+cacaWGKbGaamyEaaaa@43AC@ , which satisfies the equation,

d 4 Q/d y 4 = 24A, A= Gr/( 24L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI0aaa aKqzGeGaamyuaiaac+cacaWGKbGaamyEaKqba+aadaahaaWcbeqcba saaKqzadWdbiaaisdaaaqcLbsacqGH9aqpcaqGGaGaaGOmaiaaisda caWGbbGaaiilaiaacckacaWGbbGaeyypa0JaaeiiaiaadEeacaWGYb Gaai4laKqba+aadaqadaGcbaqcLbsapeGaaGOmaiaaisdacaWGmbaa k8aacaGLOaGaayzkaaaaaa@51D1@ .   (19)

Parameter A= (ε/L)βg h 3 /(24 ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeacqGH9aqpcaqGGaWdaiaacIcapeGaeqyTduMaai4l aiaadYeapaGaaiyka8qacqaHYoGycaWGNbGaamiAaKqba+aadaahaa WcbeqcbasaaKqzadWdbiaaiodaaaqcLbsacaGGVaWdaiaacIcapeGa aGOmaiaaisdacqaH9oGBjuaGpaWaaWbaaSqabKqaGeaajugWa8qaca aIYaaaaKqzGeWdaiaacMcaaaa@4DB7@  has the multiplier, ε/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjaac+cacaWGmbaaaa@39D0@ , which is a dimensionless horizontal temperature gradient—a characteristic common for both fluids.

The boundary conditions are the no-slip at the walls, y = 0 and y = 1, and zero flow rate for each fluid:

Q h = d Q h /dy= 0 aty= 0 and Q h = 0 aty= H i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacqGH9aqpcaqGGaGaamizaiaadgfajuaGpaWaaSbaaK qaGeaajugWa8qacaWGObaal8aabeaajugib8qacaGGVaGaamizaiaa dMhacqGH9aqpcaqGGaGaaGimaiaabccacaWGHbGaamiDaiaaykW7ca aMc8UaamyEaiabg2da9iaabccacaaIWaGaaeiiaiaadggacaWGUbGa amizaiaaykW7caaMc8UaamyuaKqba+aadaWgaaqcbasaaKqzadWdbi aadIgaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIWaGaaeiiaiaa dggacaWG0bGaaGPaVlaaykW7caWG5bGaeyypa0JaamisaKqba+aada WgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaaaa@6988@ .      (20)

Q l = d Q l /dy= 0 aty= 1 and  Q l = 0 aty= H i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajugib8qacqGH9aqpcaqGGaGaamizaiaadgfajuaGpaWaaSbaaK qaGeaajugWa8qacaWGSbaal8aabeaajugib8qacaGGVaGaamizaiaa dMhacqGH9aqpcaqGGaGaaGimaiaabccacaWGHbGaamiDaiaaykW7ca aMc8UaamyEaiabg2da9iaabccacaaIXaGaaeiiaiaadggacaWGUbGa amizaiaacckacaWGrbqcfa4damaaBaaajeaibaqcLbmapeGaamiBaa WcpaqabaqcLbsapeGaeyypa0JaaeiiaiaaicdacaqGGaGaamyyaiaa dshacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGibqcfa4damaaBaaaje aibaqcLbmapeGaamyAaaWcpaqabaaaaa@67A3@ .         (21)

The velocity continuity at the interface yields

u h = ν r u l   aty= H i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacqGH9aqpcqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8 qacaWGYbaal8aabeaajugib8qacaWG1bqcfa4damaaBaaajeaibaqc LbmapeGaamiBaaWcpaqabaqcLbsapeGaaiiOaiaacckacaWGHbGaam iDaiaaykW7caWG5bGaeyypa0JaamisaKqba+aadaWgaaqcbasaaKqz adWdbiaadMgaaSWdaeqaaaaa@527A@ .                             (22)

The shear stress continuity at the interface (condition vi), (17) and (2) yields

d u h /dy = ρ r ν r 2 d u l /dyMa,   ρ r = ρ l / ρ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWG1bqcfa4damaaBaaajqwaa+FaaKqzadWdbiaa dIgaaSWdaeqaaKqzGeWdbiaac+cacaWGKbGaamyEaiaacckacqGH9a qpcqaHbpGCjuaGpaWaaSbaaKqaGeaajugWa8qacaWGYbaal8aabeaa jugib8qacqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8qacaWGYbaal8 aabeaajuaGdaahaaWcbeqcKfaG=haajugWa8qacaaIYaaaaKqzGeGa amizaiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabe aajugib8qacaGGVaGaamizaiaadMhacqGHsislcaWGnbGaamyyaiaa cYcacaGGGcGaaiiOaiabeg8aYLqba+aadaWgaaqcbasaaKqzadWdbi aadkhaaSWdaeqaaKqzGeWdbiabg2da9iabeg8aYLqba+aadaWgaaqc basaaKqzadWdbiaadYgaaSWdaeqaaKqzGeWdbiaac+cacqaHbpGCju aGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aabeaaaaa@7247@ .      (23)

Polynomial solution

Integrating (19) four times and satisfying conditions (20) yield that

Q h = A h y 2 (y H i )(y y h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacqGH9aqpcaWGbbqcfa4damaaBaaajeaibaqcLbmape GaamiAaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqcbasa aKqzadWdbiaaikdaaaqcLbsapaGaaiika8qacaWG5bGaeyOeI0Iaam isaKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGa aiykaiaacIcapeGaamyEaiabgkHiTiaadMhajuaGpaWaaSbaaKqaGe aajugWa8qacaWGObaal8aabeaajugibiaacMcaaaa@5555@ ,               (24a)

where yh is a constant to be found. The line y = yh, where Qh = 0, separates flow cells. Therefore, the heavy-fluid flow is two-cellular if 0 < yh < Hi and one-cellular otherwise. Differentiating (24a) yields

u h ( y ) = A h [4 y 3 3 y 2 ( H i + y h )+2y H i y h ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamyEaaGcpaGaayjkaiaawMcaaK qzGeWdbiaabccacqGH9aqpcaWGbbqcfa4damaaBaaajeaibaqcLbma peGaamiAaaWcpaqabaqcLbsacaGGBbWdbiaaisdacaWG5bqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaG4maaaajugibiabgkHiTiaaioda caWG5bqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajuaGpa WaaeWaaOqaaKqzGeWdbiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qa caWGPbaal8aabeaajugib8qacqGHRaWkcaWG5bqcfa4damaaBaaaje aibaqcLbmapeGaamiAaaWcpaqabaaakiaawIcacaGLPaaajugib8qa cqGHRaWkcaaIYaGaamyEaiaadIeajuaGpaWaaSbaaKqaGeaajugWa8 qacaWGPbaal8aabeaajugib8qacaWG5bqcfa4damaaBaaajeaibaqc LbmapeGaamiAaaWcpaqabaqcLbsacaGGDbaaaa@6B1C@                  (24b)

and              d u h /dy= A h [12 y 2 6y( H i + y h )+2 H i y h ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamiA aaWcpaqabaqcLbsapeGaai4laiaadsgacaWG5bGaeyypa0JaamyqaK qba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWdaeqaaKqzGeGaai4w a8qacaaIXaGaaGOmaiaadMhajuaGpaWaaWbaaSqabKqaGeaajugWa8 qacaaIYaaaaKqzGeGaeyOeI0IaaGOnaiaadMhajuaGpaWaaeWaaOqa aKqzGeWdbiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8 aabeaajugib8qacqGHRaWkcaWG5bqcfa4damaaBaaajeaibaqcLbma peGaamiAaaWcpaqabaaakiaawIcacaGLPaaajugib8qacqGHRaWkca aIYaGaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqa aKqzGeWdbiaadMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8 aabeaajugibiaac2faaaa@66F4@    (24c)

Therefore,             u h ( H i ) = A h H i 2 ( H i y h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamisaKqba+aadaWgaaqcbasaaK qzadWdbiaadMgaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaaeii aiabg2da9iaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8 aabeaajugib8qacaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyA aaWcpaqabaqcfa4aaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGe WdaiaacIcapeGaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaadMga aSWdaeqaaKqzGeWdbiabgkHiTiaadMhajuaGpaWaaSbaaKqaGeaaju gWa8qacaWGObaal8aabeaajugibiaacMcaaaa@5B8D@                  (24d)

And         d u h /dy( H i ) = A h H i (6 H i 4 y h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamiA aaWcpaqabaqcLbsapeGaai4laiaadsgacaWG5bqcfa4damaabmaake aajugib8qacaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWc paqabaaakiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0JaamyqaK qba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWdaeqaaKqzGeWdbiaa dIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugibi aacIcapeGaaGOnaiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaajugib8qacqGHsislcaaI0aGaamyEaKqba+aadaWgaa qcbasaaKqzadWdbiaadIgaaSWdaeqaaKqzGeGaaiykaaaa@5E4E@                   (24e)

 Integrating (19) four times and satisfying (21) yield

Q l = A l (1y) 2 (y H i )(y y l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajugib8qacqGH9aqpcaWGbbqcfa4damaaBaaajeaibaqcLbmape GaamiBaaWcpaqabaqcLbsacaGGOaWdbiaaigdacqGHsislcaWG5bWd aiaacMcajuaGdaahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsapa Gaaiika8qacaWG5bGaeyOeI0IaamisaKqba+aadaWgaaqcbasaaKqz adWdbiaadMgaaSWdaeqaaKqzGeGaaiykaiaacIcapeGaamyEaiabgk HiTiaadMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabeaa jugibiaacMcaaaa@5862@ ,                         (25a)

where yl is a constant to be found. The light-fluid flow is two-cellular if Hi < yl < 1 (as in Figure 1) and one-cellular otherwise. Differentiating (25a) gives

u l ( y ) = A l (1y)[(1y)(2y H i y l )2(y H i )(y y l )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamyEaaGcpaGaayjkaiaawMcaaK qzGeWdbiaabccacqGH9aqpcaWGbbqcfa4damaaBaaajeaibaqcLbma peGaamiBaaWcpaqabaqcLbsacaGGOaWdbiaaigdacqGHsislcaWG5b WdaiaacMcacaGGBbGaaiika8qacaaIXaGaeyOeI0IaamyEa8aacaGG PaGaaiika8qacaaIYaGaamyEaiabgkHiTiaadIeajuaGpaWaaSbaaK qaGeaajugWa8qacaWGPbaal8aabeaajugib8qacqGHsislcaWG5bqc fa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqabaqcLbsacaGGPa WdbiabgkHiTiaaikdapaGaaiika8qacaWG5bGaeyOeI0IaamisaKqb a+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGaaiykai aacIcapeGaamyEaiabgkHiTiaadMhajuaGpaWaaSbaaKqaGeaajugW a8qacaWGSbaal8aabeaajugibiaacMcacaGGDbaaaa@6F7E@          (25b)

and differentiating (25b) gives

d u l /dy= 2 A l [6 y 2 3y( 2+ H i + y l )+1+2 H i +2 y l + H i y l ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamiB aaWcpaqabaqcLbsapeGaai4laiaadsgacaWG5bGaeyypa0Jaaeiiai aaikdacaWGbbqcfa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqa baqcLbsacaGGBbWdbiaaiAdacaWG5bqcfa4damaaCaaaleqajeaiba qcLbmapeGaaGOmaaaajugibiabgkHiTiaaiodacaWG5bqcfa4damaa bmaakeaajugib8qacaaIYaGaey4kaSIaamisaKqba+aadaWgaaqcba saaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiaadMhajuaG paWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabeaaaOGaayjkaiaawM caaKqzGeWdbiabgUcaRiaaigdacqGHRaWkcaaIYaGaamisaKqba+aa daWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRi aaikdacaWG5bqcfa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqa baqcLbsapeGaey4kaSIaamisaKqba+aadaWgaaqcbasaaKqzadWdbi aadMgaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaSbaaKqaGeaajugW a8qacaWGSbaal8aabeaajugibiaac2fapeGaaiOlaaaa@778E@      (25c)

This yields that   u l ( H i ) = A l (1 H i ) 2 ( H i y l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamisaKqba+aadaWgaaqcbasaaK qzadWdbiaadMgaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaaeii aiabg2da9iaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8 aabeaajugibiaacIcapeGaaGymaiabgkHiTiaadIeajuaGpaWaaSba aKqaGeaajugWa8qacaWGPbaal8aabeaajugibiaacMcajuaGdaahaa WcbeqcbasaaKqzadWdbiaaikdaaaqcLbsapaGaaiika8qacaWGibqc fa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaey OeI0IaamyEaKqba+aadaWgaaqcbasaaKqzadWdbiaadYgaaSWdaeqa aKqzGeGaaiykaaaa@5F29@         (25d)

and d u l /dy( H i ) = 2 A l (3 H i 2 2 H i y l 4 H i +2 y l +1) = 2 A l (1 H i )(13 H i +2 y l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamiB aaWcpaqabaqcLbsapeGaai4laiaadsgacaWG5bqcfa4damaabmaake aajugib8qacaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWc paqabaaakiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0Jaaeiiai aaikdacaWGbbqcfa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqa baqcLbsacaGGOaWdbiaaiodacaWGibqcfa4damaaBaaajeaibaqcLb mapeGaamyAaaWcpaqabaqcfa4aaWbaaSqabKqaGeaajugWa8qacaaI YaaaaKqzGeGaeyOeI0IaaGOmaiaadIeajuaGpaWaaSbaaKqaGeaaju gWa8qacaWGPbaal8aabeaajugib8qacaWG5bqcfa4damaaBaaajeai baqcLbmapeGaamiBaaWcpaqabaqcLbsapeGaeyOeI0IaaGinaiaadI eajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugib8qa cqGHRaWkcaaIYaGaamyEaKqba+aadaWgaaqcbasaaKqzadWdbiaadY gaaSWdaeqaaKqzGeWdbiabgUcaRiaaigdapaGaaiyka8qacaqGGaGa eyypa0JaaeiiaiaaikdacaWGbbqcfa4damaaBaaajeaibaqcLbmape GaamiBaaWcpaqabaqcLbsacaGGOaWdbiaaigdacqGHsislcaWGibqc fa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsacaGGPa Gaaiika8qacaaIXaGaeyOeI0IaaG4maiaadIeajuaGpaWaaSbaaKqa GeaajugWa8qacaWGPbaal8aabeaajugib8qacqGHRaWkcaaIYaGaam yEaKqba+aadaWgaaqcbasaaKqzadWdbiaadYgaaSWdaeqaaKqzGeGa aiykaaaa@8EED@    (25e)

 Constants yh and yl follow from conditions (22) and (23). Condition (22) results in       

y h = H i ν r (1/ H i 1) 2 ( H i y l ) A l / A h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacqGH9aqpcaWGibqcfa4damaaBaaajeaibaqcLbmape GaamyAaaWcpaqabaqcLbsapeGaeyOeI0IaeqyVd4wcfa4damaaBaaa jeaibaqcLbmapeGaamOCaaWcpaqabaqcLbsacaGGOaWdbiaaigdaca GGVaGaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqa aKqzGeWdbiabgkHiTiaaigdapaGaaiykaKqbaoaaCaaaleqajeaiba qcLbmapeGaaGOmaaaajugib8aacaGGOaWdbiaadIeajuaGpaWaaSba aKqaGeaajugWa8qacaWGPbaal8aabeaajugib8qacqGHsislcaWG5b qcfa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqabaqcLbsacaGG PaWdbiaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabe aajugib8qacaGGVaGaamyqaKqba+aadaWgaaqcbasaaKqzadWdbiaa dIgaaSWdaeqaaaaa@6919@           (26)

Finally, it follows from condition (23) that

y l =[ H i 2 A h / A l +2 ν r (1 H i ) 2 + ρ r ν r 2 (1 H i )(3 H i 1)+Ma/( 2 A l )] / [2 ν r (1 H i )( ρ r ν r +1/ H i 1)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajugib8qacqGH9aqppaGaai4wa8qacaWGibWcpaWaaSbaaKqaGe aajugWa8qacaWGPbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qa caaIYaaaaKqzGeGaamyqaKqba+aadaWgaaqcbasaaKqzadWdbiaadI gaaSWdaeqaaKqzGeWdbiaac+cacaWGbbqcfa4damaaBaaajeaibaqc LbmapeGaamiBaaWcpaqabaqcLbsapeGaey4kaSIaaGOmaiabe27aUL qba+aadaWgaaqcbasaaKqzadWdbiaadkhaaSWdaeqaaKqzGeGaaiik a8qacaaIXaGaeyOeI0IaamisaKqba+aadaWgaaqcbasaaKqzadWdbi aadMgaaSWdaeqaaKqzGeGaaiykaKqbaoaaCaaaleqajeaibaqcLbma peGaaGOmaaaajugibiabgUcaRiabeg8aYLqba+aadaWgaaqcbasaaK qzadWdbiaadkhaaSWdaeqaaKqzGeWdbiabe27aULqba+aadaWgaaqc basaaKqzadWdbiaadkhaaSWdaeqaaKqbaoaaCaaaleqajeaibaqcLb mapeGaaGOmaaaajugib8aacaGGOaWdbiaaigdacqGHsislcaWGibqc fa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsacaGGPa Gaaiika8qacaaIZaGaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaa dMgaaSWdaeqaaKqzGeWdbiabgkHiTiaaigdapaGaaiyka8qacqGHRa WkcaWGnbGaamyyaiaac+cajuaGpaWaaeWaaOqaaKqzGeWdbiaaikda caWGbbqcfa4damaaBaaajeaibaqcLbmapeGaamiBaaWcpaqabaaaki aawIcacaGLPaaajuaGdaqcJaGcbaqcLbsapeGaai4laaGcpaGaayzx aiaawUfaaKqzGeWdbiaaikdacqaH9oGBjuaGpaWaaSbaaKqaGeaaju gWa8qacaWGYbaal8aabeaajugibiaacIcapeGaaGymaiabgkHiTiaa dIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugibi aacMcacaGGOaWdbiabeg8aYLqba+aadaWgaaqcbasaaKqzadWdbiaa dkhaaSWdaeqaaKqzGeWdbiabe27aULqba+aadaWgaaqcbasaaKqzad WdbiaadkhaaSWdaeqaaKqzGeWdbiabgUcaRiaaigdacaGGVaGaamis aKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbi abgkHiTiaaigdapaGaaiykaiaac2faaaa@B26B@ . (27)

 The relations (24a), (25a), (26) and (27) explicitly describe the stream function and velocity profiles as well as the number and arrangement of flow cells.

One and two-cell light-fluid flows

Since Ah, Al and Ma have the multiplier, ε/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjaac+cacaWGmbaaaa@39D0@ , the flow strength in both fluids is proportional to ε/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjaac+cacaWGmbaaaa@39D0@  while yh and yl are ε/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjaac+cacaWGmbaaaa@39D0@  -independent. For Hi close to 1, the motion of both fluids is one-cellular. The heavy-fluid circulation is driven by the thermal buoyancy force and by the Marangoni stresses. The light-fluid circulation is driven by the heavy-fluid motion. The thermal-buoyancy effect is negligible for the upper fluid.

However as Hi decreases, the buoyancy contribution rises in the light fluid and one more flow cell emerges near the top wall at Ma = Mal. The Mal value follows from (27) at yl = 1:

M a l = 2 A l [3 ρ r ν r 2 (1 H i ) 2 + 2 ν r (1 H i ) 3 / H i H i 2 A h / A l ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbqcfa4damaaBaaajqwaa+FaaKqzadWdbiaa dYgaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIYaGaamyqaKqba+ aadaWgaaqcKfaG=haajugWa8qacaWGSbaal8aabeaajugibiaacUfa peGaaG4maiabeg8aYLqba+aadaWgaaqcbasaaKqzadWdbiaadkhaaS WdaeqaaKqzGeWdbiabe27aULqba+aadaWgaaqcbasaaKqzadWdbiaa dkhaaSWdaeqaaKqbaoaaCaaaleqajqwaa+FaaKqzadWdbiaaikdaaa qcLbsapaGaaiika8qacaaIXaGaeyOeI0IaamisaKqba+aadaWgaaqc basaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGaaiykaKqbaoaaCaaale qajeaibaqcLbmapeGaaGOmaaaajugibiabgUcaRiaabccacaaIYaGa eqyVd4wcfa4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqabaqcLb sacaGGOaWdbiaaigdacqGHsislcaWGibqcfa4damaaBaaajeaibaqc LbmapeGaamyAaaWcpaqabaqcLbsacaGGPaqcfa4aaWbaaSqabKqaGe aajugWa8qacaaIZaaaaKqzGeGaai4laiaadIeajuaGpaWaaSbaaKqa GeaajugWa8qacaWGPbaal8aabeaajugib8qacqGHsislcaWGibWcpa WaaSbaaKqaGeaajugWa8qacaWGPbaajeaipaqabaWcdaahaaqcbasa beaajugWa8qacaaIYaaaaKqzGeGaamyqaKqba+aadaWgaaqcbasaaK qzadWdbiaadIgaaSWdaeqaaKqzGeWdbiaac+cacaWGbbqcfa4damaa BaaajeaibaqcLbmapeGaamiBaaWcpaqabaqcLbsacaGGDbaaaa@8D3E@ .     (28)

The light-fluid motion is singe- (two-) cellular for Ma > Mal (Ma < Mal).

Figure 2 depicts profiles of velocity u and flow rate Q in water (curves) and air (dots) at Hi = 0.5, Ah = 1, and at two values of the Marangoni number. At Ma = 0 (bold curves), the air flow is two-cellular. The motion in the lower air cell, Hi < y < yl = 0.807, is driven by the water flow while the motion in the upper air cell, yl < y < 1, is driven by air buoyancy as Figure 1 schematically depicts. With increasing Ma, the upper air cell shrinks to the top wall and disappears at Ma = Mal = 0.166 as the thin curves illustrate in Figure 2.

Figure 2 Dependence of (a) velocity u and (b) stream function Q on the vertical coordinate y at Hi = 0.5 and Ah = 1. The solid (dotted) curves correspond to the water (air) flow. Values of u and Q in air are multiplied by νr for convenient observation.The bold (thin) curves depict the results for Ma = 0 (Ma =0.166). Square and cross symb ols show numerical results at L = 4 and x = L/2.

Comparison of the thin and bold curves in Figure 2 shows that the Marangoni effect intensifies the water motion since the buoyancy and Marangoni effects cooperate in the water flow. The increased velocity magnitude at the interface speeds up the adjacent air flow expands the lower air cell and diminishes the upper air cell. For Ma ³ Mal, the entire air-water motion is driven by water buoyancy and the Marangoni effect while the effect of air buoyancy diminishes that results in the one-cellular air flow. The agreement between the analytical and two-dimensional numerical results verifies both of them. The numerical results (square and cross symbols in Figure 2) are discussed in more detail in Section 8.1.

Temperature distribution

Substitution of (17) and (2) in (10) yields d 2 ϑ 1 /d y 2 =uPr/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaa aKqzGeGaeqy0dOucfa4damaaBaaajeaibaqcLbmapeGaaGymaaWcpa qabaqcLbsapeGaai4laiaadsgacaWG5bqcfa4damaaCaaaleqajeai baqcLbmapeGaaGOmaaaajugibiabg2da9iaadwhacaWGqbGaamOCai aac+cacaWGmbaaaa@4BB4@ , Taking into account that u = dQ/dy and integrating, we obtain that

d ϑ 1 /dy=QPr/L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgacqaHrpGsjuaGpaWaaSbaaKqaGeaajugWa8qacaaI Xaaal8aabeaajugib8qacaGGVaGaamizaiaadMhacqGH9aqpcaWGrb GaamiuaiaadkhacaGGVaGaamitaaaa@4496@ ,                              (29)

with the adiabatic condition at the horizontal walls and the continuity condition for the heat flux at the interface being satisfied. According to equation (29), the heat flux is zero at the interface, i.e., no heat transfer occurs between the heavy and light fluids for the adiabatic walls.

Integrating (29) from y = Hi with the initial condition, ϑ 1 ( H i ) = ϑ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaSWd aeqaaKqbaoaabmaakeaajugib8qacaWGibqcfa4damaaBaaajeaiba qcLbmapeGaamyAaaWcpaqabaaakiaawIcacaGLPaaajugib8qacaqG GaGaeyypa0Jaeqy0dOucfa4damaaBaaajeaibaqcLbmapeGaamyAaa Wcpaqabaaaaa@492B@  yields the vertical distribution of temperature in both fluids:

ϑ h = ϑ i +P r h ( A h /L )[( y 5 H i 5 )/5( y 4 H i 4 )( H i + y h )/4+( y 3 H i 3 ) H i y h /3] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWd aeqaaKqzGeWdbiabg2da9iabeg9akLqba+aadaWgaaqcbasaaKqzad WdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiaadcfacaWGYbqcfa4d amaaBaaajeaibaqcLbmapeGaamiAaaWcpaqabaqcfa4aaeWaaOqaaK qzGeWdbiaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGObaal8aa beaajugib8qacaGGVaGaamitaaGcpaGaayjkaiaawMcaaKqzGeGaai 4waiaacIcapeGaamyEaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa iwdaaaqcLbsacqGHsislcaWGibqcfa4damaaBaaajeaibaqcLbmape GaamyAaaWcpaqabaqcfa4aaWbaaSqabKqaGeaajugWa8qacaaI1aaa aKqzGeWdaiaacMcapeGaai4laiaaiwdacqGHsislpaGaaiika8qaca WG5bqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGinaaaajugibiab gkHiTiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabe aajuaGdaahaaWcbeqcbasaaKqzadWdbiaaisdaaaqcLbsapaGaaiyk aKqbaoaabmaakeaajugib8qacaWGibqcfa4damaaBaaajeaibaqcLb mapeGaamyAaaWcpaqabaqcLbsapeGaey4kaSIaamyEaKqba+aadaWg aaqcbasaaKqzadWdbiaadIgaaSWdaeqaaaGccaGLOaGaayzkaaqcLb sapeGaai4laiaaisdacqGHRaWkpaGaaiika8qacaWG5bqcfa4damaa CaaaleqajeaibaqcLbmapeGaaG4maaaajugibiabgkHiTiaadIeaju aGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajuaGdaahaaWc beqcbasaaKqzadWdbiaaiodaaaqcLbsapaGaaiyka8qacaWGibqcfa 4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaamyE aKqba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWdaeqaaKqzGeWdbi aac+cacaaIZaWdaiaac2faaaa@9B77@                 (30)

ϑ l = ϑ i +P r l ( A l /L )[( y 5 H i 5 )/5( y 4 H i 4 )( 2+ H i + y l )/4+( y 3 H i 3 )( 1+2 H i +2 y l + H i y l )/3( y 2 H i 2 )( H i + y l +2 H i y l )/2+(y H i ) H i y l ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akLqba+aadaWgaaqcbasaaKqzadWdbiaadYgaaSWd aeqaaKqzGeWdbiabg2da9iabeg9akLqba+aadaWgaaqcbasaaKqzad WdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiaadcfacaWGYbqcfa4d amaaBaaajeaibaqcLbmapeGaamiBaaWcpaqabaqcfa4aaeWaaOqaaK qzGeWdbiaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aa beaajugib8qacaGGVaGaamitaaGcpaGaayjkaiaawMcaaKqzGeGaai 4waiaacIcapeGaamyEaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa iwdaaaqcLbsacqGHsislcaWGibqcfa4damaaBaaajeaibaqcLbmape GaamyAaaWcpaqabaqcfa4aaWbaaSqabKqaGeaajugWa8qacaaI1aaa aKqzGeWdaiaacMcapeGaai4laiaaiwdacqGHsislpaGaaiika8qaca WG5bqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGinaaaajugibiab gkHiTiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabe aajuaGdaahaaWcbeqcbasaaKqzadWdbiaaisdaaaqcLbsapaGaaiyk aKqbaoaabmaakeaajugib8qacaaIYaGaey4kaSIaamisaKqba+aada WgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiaa dMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaal8aabeaaaOGaay jkaiaawMcaaKqzGeWdbiaac+cacaaI0aGaey4kaSYdaiaacIcapeGa amyEaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaqcLbsacq GHsislcaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqa baqcfa4aaWbaaSqabKqaGeaajugWa8qacaaIZaaaaKqzGeWdaiaacM cajuaGdaqadaGcbaqcLbsapeGaaGymaiabgUcaRiaaikdacaWGibqc fa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaey 4kaSIaaGOmaiaadMhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGSbaa l8aabeaajugib8qacqGHRaWkcaWGibqcfa4damaaBaaajeaibaqcLb mapeGaamyAaaWcpaqabaqcLbsapeGaamyEaKqba+aadaWgaaqcbasa aKqzadWdbiaadYgaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaai 4laiaaiodacqGHsislpaGaaiika8qacaWG5bqcfa4damaaCaaaleqa jeaibaqcLbmapeGaaGOmaaaajugibiabgkHiTiaadIeajuaGpaWaaS baaKqaGeaajugWa8qacaWGPbaal8aabeaajuaGdaahaaWcbeqcbasa aKqzadWdbiaaikdaaaqcLbsapaGaaiykaKqbaoaabmaakeaajugib8 qacaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqc LbsapeGaey4kaSIaamyEaKqba+aadaWgaaqcbasaaKqzadWdbiaadY gaaSWdaeqaaKqzGeWdbiabgUcaRiaaikdacaWGibqcfa4damaaBaaa jeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaamyEaKqba+aada WgaaqcbasaaKqzadWdbiaadYgaaSWdaeqaaaGccaGLOaGaayzkaaqc LbsapeGaai4laiaaikdacqGHRaWkpaGaaiika8qacaWG5bGaeyOeI0 IaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaKqz GeGaaiyka8qacaWGibqcfa4damaaBaaajeaibaqcLbmapeGaamyAaa WcpaqabaqcLbsapeGaamyEaKqba+aadaWgaaqcbasaaKqzadWdbiaa dYgaaSWdaeqaaKqzGeGaaiyxaaaa@E91A@  (31)

Figure 3 depicts the temperature profiles, (30) and (31), for the flows shown in Figure 2. In contrast to the problem studied by Madruga et al.,16 where the temperature stratification is unstable near the bottom, here the stratification is stable: the colder (warmer) water is located near the bottom (interface). This feature should make the flow stable even for large Gr.12

Figure 3 (a) Dependence of temperature, ϑ ϑ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akjabgkHiTiabeg9akLqbaoaaBaaajeaibaqcLbma caWGPbaaleqaaaaa@3DE2@ , on the vertical coordinate y at Hi = 0.5. The solid (dotted) curves correspond to the water (air) flow. The bold (thin) curves corresponds to Ma = 0 (Ma =0.166). Square and cross symbols show numerical results at L = 4 and x = L/2. (b) Close-up of (a) in the air flow.

The lower air cell at Ma = 0 and the entire air domain for MaM a l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbGaeyyzImRaamytaiaadggajuaGpaWaaSba aKqaGeaajugWa8qacaWGSbaal8aabeaaaaa@3F0C@  have unstable density stratification (Figure. 3(b)), but the temperature variation in the air region is negligibly small compared with that in the water region at Hi = 0.5. The agreement between the analytical and numerical (square and cross symbols in Figure 3) results verifies both our analytical and numerical calculations of temperature distributions.

Map of flow patterns

Figure 4 is a map of flow patterns. Curve 1 in Figure 4(a) depicts relation (28). Above curve 1, water and air flows are one-cellular as the upper inset in Figure 4(a) schematically shows. The air circulation is driven by the water circulation. Below curve 1 in Figure 4(a), the air flow is two-cellular as the lower inset in Figure 4(a) schematically shows where the bold dashed line denotes the interface. The new cell emerges near the top wall at Ma = Mal. The motion in the lower air cell is driven by the water circulation while the motion in the new cell is driven by the air buoyancy.

Figure 4 Dependence of air-water convection pattern (insets) on water fraction Hi and Marangoni number Ma. Curves 1, 2 and 3 depict relations (28), (32) and (33) respectively.

As Hi decreases at a fixed Ma, the air flow cell, driven by the water motion, shrinks, i.e., yl decreases. At yl = Hi, this cell collapses and the velocity at the interface becomes zero according to (25b), i.e., the interface affects the flow as a wall. It follows from yl = Hi and (16) that yh = Hi. Both air and water motions become one-cellular, each being driven by its buoyancy. Substituting yl = Hi in (27) yields the corresponding value of Ma = Mah:

M a h = 2 A l ρ r ν r 2 (1 H i ) 2 2 A h H i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbqcfa4damaaBaaajqwaa+FaaKqzadWdbiaa dIgaaSWdaeqaaKqzGeWdbiabg2da9iaacckacaaIYaGaamyqaKqba+ aadaWgaaqcKfaG=haajugWa8qacaWGSbaal8aabeaajugib8qacqaH bpGCjuaGpaWaaSbaaKqaGeaajugWa8qacaWGYbaal8aabeaajugib8 qacqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8qacaWGYbaal8aabeaa juaGdaahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsapaGaaiika8 qacaaIXaGaeyOeI0IaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaa dMgaaSWdaeqaaKqzGeGaaiykaKqbaoaaCaaaleqajeaibaqcLbmape GaaGOmaaaajugibiabgkHiTiaaikdacaWGbbqcfa4damaaBaaajeai baqcLbmapeGaamiAaaWcpaqabaqcLbsapeGaamisaSWdamaaBaaaje aibaqcLbmapeGaamyAaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbma peGaaGOmaaaaaaa@6C59@ (32)

Curve 2 in Figure 4(b) depicts relation (32). Above curve 2, the flow topology is the same as below curve 1 in Figure 4(a). Below curve 2, i.e., for Ma < Mah, the water flow becomes two-cellular as the middle inset schematically shows in Figure 4(b) where the bold dashed line denotes the interface. Relation (26) yields that if yl < Hi than yh < Hi as well. This physically means that the air flow reverses the water motion near the interface developing the new water cell, yh < y < Hi.

As Hi further decreases at a fixed Ma, the water cell, driven by the air motion, expands, i.e., yh decreases down to zero. Substituting yh = 0 in (26) and excluding yl from (26) and (27) yield the corresponding value of Ma = Ma0:

M a 0 =M a h +4 A h H i 2 [1+ ρ r ν r H i /(1 H i )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eacaWGHbqcfa4damaaBaaajeaibaqcLbmapeGaaGim aaWcpaqabaqcLbsapeGaeyypa0JaamytaiaadggajuaGpaWaaSbaaK qaGeaajugWa8qacaWGObaal8aabeaajugib8qacqGHRaWkcaaI0aGa amyqaKqba+aadaWgaaqcbasaaKqzadWdbiaadIgaaSWdaeqaaKqzGe WdbiaadIeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaa juaGdaahaaWcbeqcbasaaKqzadWdbiaaikdaaaqcLbsapaGaai4wa8 qacaaIXaGaey4kaSIaeqyWdixcfa4damaaBaaajeaibaqcLbmapeGa amOCaaWcpaqabaqcLbsapeGaeqyVd4wcfa4damaaBaaajeaibaqcLb mapeGaamOCaaWcpaqabaqcLbsapeGaamisaKqba+aadaWgaaqcbasa aKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiaac+capaGaaiika8qaca aIXaGaeyOeI0IaamisaKqba+aadaWgaaqcbasaaKqzadWdbiaadMga aSWdaeqaaKqzGeGaaiykaiaac2faaaa@6BB2@                     (33)

Curve 3 in Figure 4(b) depicts relation (33). For Ma < Ma0, the water and air flows are one-cellular as the lower inset schematically shows in Figure 4(b). The water motion is driven by the air buoyancy. The water and air circulations in the region below curve 3 in Figure 4(b) are reversed compared with those in the region above curve 1 in Figure 4(a): the streamline topologies are identical, but the flow directions are opposite.

Stable stratification

At parameter values, corresponding to curve 2 in Figure 4(b), both air and water circulations are anticlockwise that makes the density stratification stable in both media. Since the water layer is thin compared with the air layer, Hi < 0.14, as Figure 4(b) illustrates, the temperature variation in the water is small compared with that in the air.

Figure 5 illustrates this feature depicting the vertical profiles of velocity and temperature, normalized by their maximal values, at Hi = 0.1 and Ma = 0.63Al. This Ma value follows from relation (32). Since the velocity and temperature profiles are hardly visible in the water layer, 0 < y < 0.1, in Figure 5(a), they are scaled up in Figure 5(b). Figure 5 illustrates the stable density stratification in both air and water domains (dashed curves).

Figure 5 Profiles of normalized velocity u and temperature ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akbaa@384D@  at Hi = 0.1 and Ma = Mah= 0.63Al in (a) air and (b) water.

Numerical Technique

To simulate the nonlinear problem for (a) two-dimensional (2D) basic flows and (b) the generalized eigenvalue problem for the three-dimensional time-dependent infinitesimal disturbances, we use a numerical technique which is a variation of that described in detail in.23 First, each variable (velocities, pressure and temperature) and all its spatial and temporal derivatives, which appear in equations (6)-(10) and the boundary conditions, are composed as a single symbolic vector.

For example, for the x-velocity in the water flow we create a vector having 8 components:

x w = [ u w , u w /x, u w /y, u w /z, 2 u w / x 2 , 2 u w / y 2 , 2 u w / z 2 ,  u w /t] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaKqaGeaajugWa8qacaWG3baal8aa beaajugib8qacqGH9aqpcaqGGaWdaiaacUfapeGaamyDaKqba+aada WgaaqcbasaaKqzadWdbiaadEhaaSWdaeqaaKqzGeWdbiaacYcacqGH ciITcaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaam4DaaWcpaqaba qcLbsapeGaai4laiabgkGi2kaadIhacaGGSaGaeyOaIyRaamyDaKqb a+aadaWgaaqcbasaaKqzadWdbiaadEhaaSWdaeqaaKqzGeWdbiaac+ cacqGHciITcaWG5bGaaiilaiabgkGi2kaadwhajuaGpaWaaSbaaKqa GeaajugWa8qacaWG3baal8aabeaajugib8qacaGGVaGaeyOaIyRaam OEaiaacYcacqGHciITjuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI YaaaaKqzGeGaamyDaKqba+aadaWgaaqcbasaaKqzadWdbiaadEhaaS WdaeqaaKqzGeWdbiaac+cacqGHciITcaWG4bqcfa4damaaCaaaleqa jeaibaqcLbmapeGaaGOmaaaajugibiaacYcacqGHciITjuaGpaWaaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaamyDaKqba+aadaWg aaqcbasaaKqzadWdbiaadEhaaSWdaeqaaKqzGeWdbiaac+cacqGHci ITcaWG5bqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugi biaacYcacqGHciITjuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYa aaaKqzGeGaamyDaKqba+aadaWgaaqcbasaaKqzadWdbiaadEhaaSWd aeqaaKqzGeWdbiaac+cacqGHciITcaWG6bqcfa4damaaCaaaleqaje aibaqcLbmapeGaaGOmaaaajugibiaacYcacaGGGcGaeyOaIyRaamyD aKqba+aadaWgaaqcbasaaKqzadWdbiaadEhaaSWdaeqaaKqzGeWdbi aac+cacqGHciITcaWG0bWdaiaac2faaaa@A004@ .

The next step is to use a symbolic toolbox to calculate the analytical Jacobians of all the equations with respect to all the symbolic vectors. Using these analytical Jacobians we generate functions which then are evaluated point by point in the air and water domains. In this procedure, we use the MATLAB procedure matlab Function to convert the symbolic Jacobians in MATLAB functions.

Then, we carry out the spatial and temporal discretization of the problem. For the 2D problem, the water and air domains are discretized using a set of nh and nl Chebyshev spectral collocation points in the vertical direction (along the y-axis in Figure 1). The water and air domains are discretized using a set of nx Chebyshev spectral collocation points in the horizontal direction (along the x-axis in Figure 1). The second-order backward finite differences are used to compute the time derivatives for the basic flow. Since the basic flow is 2D, all the derivatives in the z direction are set to zero. For disturbances, we obtain the temporal and z-derivatives using the representation (12). The most simulations were performed with nx =121, nh = nl = 25.

For the 1D problem, the water and air domains are discretized using the same procedure than for the 2D problem while all the derivatives for the basics flow in the z and x directions are set to zero except the axial derivative for the temperature which is 1/L according to (2) and (17). For disturbances, we obtain the temporal, z-derivatives and x-derivatives using the representation (11).

The final step is to set up the numerical matrices allowing us to solve the problem by using a Newton procedure for the basic steady flow and by solving a generalized eigenvalue problem for disturbances [23,24].

To summarize, the numeric procedure includes the proper spatial and temporal discretization creating the discrete Jacobian matrix for the Newton procedure for the basic flow and two more matrices for the generalized eigenvalue problem for disturbances. For the basic flow, we get the final steady solution though an unsteady process. Starting from the rest and selecting a time step, dt, the solution is advanced in time until a steady state is reached. Since the nonlinear procedure used to compute the basic flow is fully implicit, dt can be taken sufficiently large to quickly reach the steady solution. Once the base flow is computed, and given z-wavenumber k (for the 2D problem) or z-wavenumber k and x-wavenumber α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyaaa@3824@  (for 1D problem), we use MATLAB subroutine eigs to calculate the eigenvalues of the system of discrete linear equations.

Slow Two-Dimensional Basic Flow

Comparison with the analytical solution

First, we verify our numerical code comparing its results for small Gr and Ma values with the analytical solutions reported in Section 6. To this end, we chose L = 4, supposing that this aspect ratio is sufficiently large for the motion near x = L/2 to be nearly one-dimensional. Figure 2, where the square (cross) symbols depict the numerical results at x = L/2, Ah = 1, Hi = 0.5 and Ma = 0 (0.166), confirms that the numerical (symbols) and analytical (curves) results well agree for the horizontal velocity u. Figure 3(a) shows that the agreement of the numerical and analytical results is also good for the vertical distribution of temperature. This agreement verifies both our analytical and numerical calculations. To visualize flow patterns, we use the stream function ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEaaa@3853@ , u=ψ/y,v=ψ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhacqGH9aqpcqGHciITcqaHipqEcaGGVaGaeyOaIyRa amyEaiaacYcacaaMc8UaamODaiabg2da9iabgkHiTiabgkGi2kabeI 8a5jaac+cacqGHciITcaWG4baaaa@4A63@ , and plot streamlines, i.e., contours ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEaaa@3853@ = constant.

Effect of the end walls

Figure 6 depicts the 2D flow pattern at the control parameter values corresponding to Figure 2 and L = 4. It reveals that the streamlines are indeed nearly horizontal near x = L/2 = 2 that explains the agreement between the numerical and analytical results in Figures 2(a) & 3(a). The water circulation, shown by dark contours, is anticlockwise (AC) in Figure 6.


Figure 6 (Color online) Streamline patterns at L = 4, Hi = 0.5, Ah = 1 and Ma = 0 (a) and 0.166 (b).

The air circulation, shown by light contours, has both clockwise (C) and AC circulation regions. The C air circulation, which is adjacent to the interface, is driven by the water motion while the AC air circulation, which is adjacent to the top wall in Figure 6(a), is driven by the buoyancy force.

At Ma = 0.166, the AC air circulation is limited to the sidewall vicinities. Figure 6(b) depicts two AC cells located near the intersections of the top and vertical walls. They are generated by buoyancy of air which overcomes the water-induced clockwise air circulation near the cold (at x = 0) and hot (at x = L) ends. As Ma decreases, the AC air cells expand in the horizontal direction and merge at x = L/2 for Ma = 0.162. Figure 6(a) depicts the merged AC air circulation which is adjacent to the entire top wall. The numerical and analytical results only agree for small Gr and Ma. For large Gr and Ma they are radically different even near x = L/2 as shown in Sections 9 and 10.

Transformations of Two-Dimensional Basic Flow As Gr Increases at Ma = 0

Development of boundary layers near sidewalls

Numerical simulations allow us to separately explore the buoyancy and Marangoni effects. Here we put Ma=0 and study the buoyance effect alone as Gr increases. Figure 6(a) shows that streamlines are packed near vertical walls even in a slow convection. This packing becomes more prominent for large Gr as Figure 7 illustrates.


Figure 7 (Color online) Streamline patterns at L = 4, Hi = 0.5, Ma = 0 and Grh = 105 (a) and 106 (b).

Figure 7 depicts flow patterns at Grh = 105 (a) and 106 (b) while the other control parameters are the same as those in Figure 6(a) for convenient comparison. As Gr increases, the water flow becomes horizontal in the nearly entire water domain. The cold down-flow and the hot up-flow become limited to boundary layers near the cold, x = 0, and hot, x = 4, walls respectively.

Figure 8 illustrates this by depicting the profile of vertical velocity v(x), normalized by its maximal value vm = 3.287 at y = ym = 0.2826 and Grh = 104. Here ym is the vertical coordinate of location of the v maximum. As it is clear from Figure 8, v is not negligibly small only within the boundary layers near the cold and hot vertical walls. The v(x) profiles are jet-like in these boundary layers.

Figure 8 Profile of vertical velocity vvisualizes the boundary layers near the cold (at x = 0) and hot (at x = 4) sidewalls at y = 0.2826 and Grh = 104.

To find the limiting boundary-layer features, we plot in Figure 9 the v profile near the hot wall, using the scaled distance from the wall η= 0.482(Lx) ( RaL ) 1/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aOjabg2da9iaabccacaaIWaGaaiOlaiaaisdacaaI 4aGaaGOma8aacaGGOaWdbiaadYeacqGHsislcaWG4bWdaiaacMcaju aGdaqadaGcbaqcLbsapeGaamOuaiaadggacaWGmbaak8aacaGLOaGa ayzkaaqcfa4aaWbaaSqabKqaGeaajugWa8qacaaIXaGaai4laiaais daaaaaaa@4B9A@ , at Grh = 103 (triangles), 104 (squares), 105 (circles) and 106 (crosses). The symbols also show the grid points. The solid curve in Figure 9 depicts the analytical solution obtained by Gill25 in the boundary layer approximation for a single-fluid flow near a hot wall,

v/ v max = 3.102exp(η)sinη, η= 0.482(Lx) ( RaL ) 1/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAhacaGGVaGaamODaKqba+aadaWgaaqcKfaG=haajugW a8qacaWGTbGaamyyaiaadIhaaSWdaeqaaKqzGeWdbiabg2da9iaabc cacaaIZaGaaiOlaiaaigdacaaIWaGaaGOmaiaadwgacaWG4bGaamiC a8aacaGGOaWdbiabgkHiTiabeE7aO9aacaGGPaWdbiaadohacaWGPb GaamOBaiabeE7aOjaacYcacaGGGcGaeq4TdGMaeyypa0Jaaeiiaiaa icdacaGGUaGaaGinaiaaiIdacaaIYaWdaiaacIcapeGaamitaiabgk HiTiaadIhapaGaaiykaKqbaoaabmaakeaajugib8qacaWGsbGaamyy aiaadYeaaOWdaiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzad WdbiaaigdacaGGVaGaaGinaaaaaaa@6868@ .                                (34)

Figure 9 Boundary-layer profile of vertical velocity vnear the hot wall at y = 0.2826 and Grh = 103 (triangles), 104 (squares), 105 (circles) and 106 (crosses). The solid curve depicts solution (34); η=0.482(Lx) ( RaL ) 1/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aOjabg2da9iaaicdacaGGUaGaaGinaiaaiIdacaaI YaWdaiaacIcapeGaamitaiabgkHiTiaadIhapaGaaiykaKqbaoaabm aakeaajugib8qacaWGsbGaamyyaiaadYeaaOWdaiaawIcacaGLPaaa juaGdaahaaWcbeqcbasaaKqzadWdbiaaigdacaGGVaGaaGinaaaaaa a@4AF7@ .

Figure 9 reveals that as Gr increases, the numerical results merge into the limiting profile which is rather close to analytical solution (34). Figure 9 shows both the jet-like character and the scale of boundary layer near the hot wall in the water domain. Thus as Gr increases, the water vertical motion becomes limited to thin vicinities of the container ends. This occurs due to stable stratification of water density.

Development of temperature boundary layers near sidewalls

Figure 10 shows the transformation of the temperature profile at the interface as the Grashof number Grh increases from 102 to 108. At Grh = 102, the temperature distribution (solid line in Figure 10) is closed to that due to conduction only being nearly linear according to relation (2). For larger Grh, the thermal boundary layer develops first near the cold wall, x = 0, and then near the hot wall, x = 4. This sequence is physically reasonable since water moves from the hot end to the cold end along the interface. As Grh increases, this convection transports more heat and thus makes the temperature near the cold wall significantly larger than that provided by thermal conduction alone. Figure 10 illustrates this development near x = 0.

Figure 10 Distribution of temperature along the interface shows the formation of thermal boundary layer near cold, x = 0, and hot, x = 4, walls as Gr increases: Gr = 100 (solid line), 104 (dashes), 105 (small dots), 106 (bold dots) and 108 (dots and dashes).

Near the hot wall, the interface motion entrains the colder water from the depths thus decreasing the temperature below its conduction-alone value. Figure 10 illustrates this development near x = 4. Away from the end walls, the temperature remains to be a nearly linear function of x, but the ϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG4baaaa@3CC9@  value reduces as Grh increases, e.g., at x = 1 in Figure 10.

This change in the temperature distribution strengthens (weakens) the buoyancy effect near the vertical walls (in the bulk flow), that results in the development first the vertical jets discussed above and then jet-like boundary layers near the bottom and interface which are discussed below.

Development of boundary layers near horizontal boundaries

The experimental results for single-fluid flows2,4 show that the boundary layers also develop near the horizontal walls as Gr increases. This development occurs for significantly larger Gr than those at which the jets form near the vertical walls. Figure 11 depicts the profile of the horizontal velocity u(y) at x = L/2 = 2 for Grh = 100 (curve) and 106 (dots). For convenient comparison of the results at these very different Grh values, the velocity is normalized by its magnitude (which is achieved at the interface), u i = | u( H i ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aa beaajugib8qacqGH9aqpcaqGGaqcfa4damaaemaakeaajugib8qaca WG1bqcfa4damaabmaakeaajugib8qacaWGibqcfa4damaaBaaajeai baqcLbmapeGaamyAaaWcpaqabaaakiaawIcacaGLPaaaaiaawEa7ca GLiWoaaaa@494B@ where Hi = 0.5 here.

Figure 11 Vertical distribution of normalized horizontal velocity at x = L/2, Hi = 0.5 and Grh = 100 (curve) and 106,/ (dots).

Figure 11 shows that while the u-profiles are remarkably different in air, in water they are close for Grh = 100 and 106. The air-flow profile at Grh = 106 agrees with the streamline pattern in Figure 7(b). The buoyancy driving dominates over the water driving that makes the air velocity maximal magnitude near the top wall close to the water velocity maximal magnitude near the bottom. This significant change practically does not affects the water velocity showing that the air impact on the water motion is negligible at Hi = 0.5. The water u-profile at Grh = 106 is slightly shifted downward near the bottom compared with that at Grh = 100. This shift is a precursor of the boundary layer development near the bottom for larger Grh described below.

Figure 12 depicts the u-profiles in water only and reveals (a) the development of jet-like boundary layers near the bottom and near the interface and (b) the velocity reversal near the central stagnation point where u = 0. These flow features are similar to those observed in the experimental2 and numerical 5 studies of single-fluid (water) convection in a horizontal container.

Figure 12 Vertical distribution of normalized horizontal velocity in water at x = L/2, Hi = 0.5 and Grh = 107 (curve) and 108 (dots).

Figure 13 depicts the profile of temperature at x = L/2 = 2 and Grh = 100 (curve), 104 (dashes) and 106 (dash-dotted curve) and 108 (dots). Up to Grh = 106, the temperature mostly varies in the water domain developing a strong stable density stratification as Grh increases. Note that as G r h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGYbqcfa4damaaBaaajeaibaqcLbmapeGaamiA aaWcpaqabaqcLbsacqGHsgIRcqGHEisPaaa@3F82@ , the limiting values of the bottom (top) temperature is ϑ=0.5 ( 0.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg9akjabg2da9iabgkHiTiaaicdacaGGUaGaaGynaiaa bccajuaGpaWaaeWaaOqaaKqzGeWdbiaaicdacaGGUaGaaGynaaGcpa GaayjkaiaawMcaaaaa@4221@ . At Grh = 108, the vertical variation of temperature in air also becomes remarkable. This variation is due to the intensified thermal convection in the air domain as Table 1 illustrates. It shows that the characteristic Reynolds numbers of horizontal flow of water ( | u h | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1bqcfa4damaaBaaaleaajugib8qa caWGObaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaajeaibaqcLb mapeGaamyBaiaadggacaWG4baal8aabeaaaaa@42D8@ )and air ( | u l | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1bqcfa4damaaBaaaleaajugib8qa caWGSbaal8aabeaaaOGaay5bSlaawIa7aKqbaoaaBaaajeaibaqcLb mapeGaamyBaiaadggacaWG4baal8aabeaaaaa@42DC@ ) are moderate even at Grh = 107. It is interesting that | u h | max >>  | u l | max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1bqcfa4damaaBaaajeaibaqcLbma peGaamiAaaWcpaqabaaakiaawEa7caGLiWoajuaGdaWgaaqcbasaaK qzadWdbiaad2gacaWGHbGaamiEaaWcpaqabaqcLbsapeGaeyOpa4Ja eyOpa4JaaeiiaKqba+aadaabdaGcbaqcLbsapeGaamyDaKqba+aada WgaaqcbasaaKqzadWdbiaadYgaaSWdaeqaaaGccaGLhWUaayjcSdqc fa4aaSbaaKqaGeaajugWa8qacaWGTbGaamyyaiaadIhaaSWdaeqaaa aa@548B@  for G r h   10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGYbqcfa4damaaBaaajeaibaqcLbmapeGaamiA aaWcpaqabaqcLbsapeGaeyizImQaaeiiaiaaigdacaaIWaqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaGynaaaaaaa@42F2@ , but | u h | max  <  | u l | max atG r h 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1bqcfa4damaaBaaajeaibaqcLbma peGaamiAaaWcpaqabaaakiaawEa7caGLiWoajuaGdaWgaaqcbasaaK qzadWdbiaad2gacaWGHbGaamiEaaWcpaqabaqcLbsapeGaaiiOaiab gYda8iaabccajuaGpaWaaqWaaOqaaKqzGeWdbiaadwhajuaGpaWaaS baaKqaGeaajugWa8qacaWGSbaal8aabeaaaOGaay5bSlaawIa7aKqb aoaaBaaajeaibaqcLbmapeGaamyBaiaadggacaWG4baal8aabeaaju gib8qacaWGHbGaamiDaiaaykW7caWGhbGaamOCaKqba+aadaWgaaqc basaaKqzadWdbiacmc4GObaal8aabeaajugibiabgwMiZ+qacaaIXa GaaGimaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiAdaaaaaaa@657C@ .

 Change in the water flow topology

Figure 13 Vertical distribution of temperature at x = L/2, Hi = 0.5 and Grh = 100 (solid bold line), 104 (dashes) and 106 (dash-dotted curve) and 108 (dots).

Figure 14 depicts streamline pattern at Grh = 108. The flow topology in Figure 14 differs with that shown in Figure 7(b) in both air and water domains. In Figure 7(b), the air flow has not only the global circulation near the domain boundary, but also the eight-figure pattern with a saddle stagnation point, connecting the internal circulation cells, and two centers within each of the cells. In contrast, the air flow is one-cellular in Figure 14. The water flow topology changes oppositely: it is one-cellular in Figure 7(b) while have the eight-figure pattern in Figure 14. The water pattern shown in Figure 14 is topologically identical to that experimentally observed in the single-fluid convection (Figure 6).4 The emergence of the eight-figure pattern in the water flow was numerically described and explained by the jet entrainment mechanism.5

Figure 14 (Color online) Streamline patterns at L = 4, Hi = 0.5, Ma = 0 and Grh = 108.

Flow Transformations as Ma Increases at Fixed Gr

Here in order to explore the thermal effect of the surface tension, we fix Gr = 104, L = 4, = 0.5, and increase Ma.

Peaks of horizontal velocity near the sidewalls

Figure 15 depicts the horizontal velocity u(x) at the interface at Ma = 0 (dashed curve) 100 (solid curve) and 200 (dots). Since the velocity is negative being directed from the hot end to the cold end, we show -u for convenient presentation in Figure 15. As Ma increases, the velocity magnitude grows away from the sidewalls since the Marangoni stresses faster drive the water at the interface. A striking feature is that u-velocity peaks develop near the vertical walls as Ma increases.

Figure 15 Velocity at the interface at Ma = 0 (dashes) 100 (solid curve) and 200 (dots); Grh = 104, L = 4 and Hi = 0.5.

Temperature boundary layers near the sidewalls

To better understand physical mechanism of the velocity peak development, shown in Figure 15, we depict the temperature distribution along the interface in Figure 16. It shows the development of temperature boundary layers near the vertical walls. As Ma increases, ϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG4baaaa@3CC9@  slightly decreases away from the sidewalls, x = 0 and x = 4, while strongly grows near the sidewalls. The ϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG4baaaa@3CC9@  growth is especially remarkable near the cold wall because the water flow transports heat from the hot end to the cold end near the interface. This effect of increasing Ma is analogous to that of increasing Gr as comparison of Figure 10 & Figure 16 shows.

Figure 16 Temperature at the interface at Ma = 0 (dashed curve) and 100 (solid curve); Grh = 104. L = 4 and Hi = 0.5.

Since the Marangoni shear stress is proportional to ϑ/x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kabeg9akjaac+cacqGHciITcaWG4baaaa@3CC9@  , the Marangoni driving focuses near x = 0 and x = L resulting in the u-velocity peaks shown in Figure 15. The temperature gradient is maximal near the cold wall, as Figure 16 illustrates, and accordingly the velocity peak near the cold end is larger than that near the hot end in Figure 15. Features of the velocity boundary layer near the cold wall are discussed below.

Velocity boundary layer near the cold end

Figure 17 depicts the dependence of the horizontal velocity on the interface, normalized by its minimal (maximal-magnitude) value, on the scaled distance from the cold sidewall, η=xMa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aOjabg2da9iaadIhacaWGnbGaamyyaaaa@3C0C@ . The results for Ma = 100 and 200 in the scaled variables nearly merge in a single curve in Figure 17 thus revealing the boundary-layer shape and dimension. The velocity peak is located at the distance around x = xm = 3.4/Ma from the cold wall and |u/x| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGG8b aeaaaaaaaaa8qacqGHciITcaWG1bGaai4laiabgkGi2kaadIhapaGa aiiFaaaa@3E2A@  at x = 0 is proportional to Ma2 that limits our numerical simulations to moderate Ma values (the symbols in Figure 17 also show the grid points).

Figure 17 Merging of the results at Ma = 100 (squares) and 200 (crosses) shows the boundary-layer profile of normalized velocity at the interface near the cold sidewall.

Transformation of the air flow

As Ma increases, the water motion intensifies and drives the adjacent air flow. This results in the upward expansion of the air cell adjusted to the interface and the reduction of the air local cells as comparison shows of the streamline patterns at Ma = 0 in Figure 18(a) and at Ma = 200 in Figure 18(b).


Figure 18 (Color online) Transformation of flow pattern as Ma increases from 0 (a) to 200 (b).

Stability of The Horizontal Flow

First we check our stability code for the horizontal flow by comparison of our results with those in Table 2 in Reference26 using the same mesh, 131x51, and parameter values, Pr = 6.78 and Ax = 2.5. Our simulations yields Recr1 = 1548 while Recr1 = 1430 in.26 Using more grid points does not change our value of Recr1. We estimate this check-up as sufficient to the goal of this Section.

It follows from previous studies9,11 that critical Gr is minimal at Pr = 0. This feature is physically reasonable because temperature variation typically results in the stable stratification of density. Therefore in order to ease the stability study, we multiply the Pr values for air and water by parameter b which varies from 0 to 1. We start with b = 0, where Pr = 0 for both fluids, and eventually increases b up to 1.

We found that at b = 0, Ma = 0 and Hi = 0.5, the critical parameters are: Gr = 4.75×105, k = 0, α=2.88, ω r =20.2, ω i =0, and  | u h | max = 287 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHjabg2da9iaaikdacaGGUaGaaGioaiaaiIdacaGG SaGaeqyYdCxcfa4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqaba qcLbsapeGaeyypa0JaeyOeI0IaaGOmaiaaicdacaGGUaGaaGOmaiaa cYcacqaHjpWDjuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabe aajugib8qacqGH9aqpcaaIWaGaaiilaiaabccacaWGHbGaamOBaiaa dsgacaqGGaqcfa4damaaemaakeaajugib8qacaWG1bqcfa4damaaBa aajeaibaqcLbmapeGaamiAaaWcpaqabaaakiaawEa7caGLiWoajuaG daWgaaqcbasaaKqzadWdbiaad2gacaWGHbGaamiEaaWcpaqabaqcLb sapeGaeyypa0JaaeiiaiaaikdacaaI4aGaaG4naaaa@664E@ . Figure 19 depicts the base-flow velocity ub(y) in the heavy (thin solid curve) and light (thin dots) fluid and the critical disturbance kinetic energy Ed(y) (bold curve and dots). Here Ed= < | u d | 2 + | v d | 2 + | w d | 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweacaWGKbGaeyypa0JaaeiiaiabgYda8Kqba+aadaab daGcbaqcLbsapeGaamyDaKqba+aadaWgaaqcbasaaKqzadWdbiaads gaaSWdaeqaaaGccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugW a8qacaaIYaaaaKqzGeGaey4kaSscfa4damaaemaakeaajugib8qaca WG2bqcfa4damaaBaaajeaibaqcLbmapeGaamizaaWcpaqabaqcfa4a aqWaaOqaaKqbaoaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibi abgUcaRaGcpaGaay5bSlaawIa7aKqzGeWdbiaadEhajuaGpaWaaSba aKqaGeaajugWa8qacaWGKbaal8aabeaaaOGaay5bSlaawIa7aKqbao aaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiabg6da+aaa@61DD@  where the brackets denote averaging with respect to time. Both ub and Ed are normalized by their maximal magnitudes for convenient observation in one figure. Since Ed significantly drops as y increases from 0.5, the instability develops in the heavy-fluid flow. Figure 20 shows that the critical value of Gr grows as b increases. For b > 0.3, critical Gr is unbounded. This agrees with the previous results9,11 that the shear-layer instability is suppressed as Pr increases. We conclude that the horizontal flow is stable at this Ma and Hi values.

Figure 19 Profiles of base-flow velocity ub and disturbance kinetic energy Ed at critical Gr = 4.75×105 at Pr = 0, Ma = 0 and Hi = 0.5.

Figure 20 Growth of critical Gr as Pr increases.

Stability of The Two-Dimensional Convection

Here we first check our stability code for the two-dimensional convection by comparison of our results with those in Table 1 in Ref.27 Our simulations yield Grcr = 2917647 for mesh 51 x 51 while Grcr = 2908327 in Ref.27 We consider the agreement being satisfactory.

In the stability study of the two-dimensional convection, we fix L = 4 and Hi = 0.5 to be consistent with the results of Sections 9 and 10. Figure 21 depicts a typical spectrum of eigenvalues ω= ω r +i ω i atGr=  10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3jabg2da9iabeM8a3Lqba+aadaWgaaqcbasaaKqz adWdbiaadkhaaSWdaeqaaKqzGeWdbiabgUcaRiaadMgacqaHjpWDju aGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugibiaaykW7 caaMc8+dbiaadggacaWG0bGaaGPaVlaadEeacaWGYbGaeyypa0Jaae iiaiaaigdacaaIWaqcfa4damaaCaaaleqajeaibaqcLbmapeGaaGOn aaaaaaa@54D8@ and Ma = 0. The least decaying mode, corresponding to the maximal value of ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@ , has ω r =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcKfaG=haajugWa8qacaWGYbaa l8aabeaajugibiabg2da9iaaicdaaaa@3FBB@ , i.e., monotonically varies with time (no oscillation). This mode is two-dimensional, k = 0. Table 5 shows that the k = 0 mode corresponds to the maximal value of ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@ .

Table 2 shows the effect of increasing Gr at Ma = 0 and k = 0. These results look counterintuitive. The value of ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@ typically increases with the flow strength resulting in the development of instability. In contrast, ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@  decreases as Gr increases according Table 2. We interpret this paradoxical trend as a result of the stable density stratification which strengthens as Gr increases. Based on this trend, we do not increase Gr beyond 106 in the stability studies. Table 3 shows the effect of increasing Ma at Gr = 104 and k = 0. Here ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWd aeqaaaaa@3BA0@  also decreases as Ma grows although this trend is weaker than that in the case of increasing Gr. The above stability results indicate that the convection flow, described in Sections 9 and 10, are stable.

Figure 21 Spectrum of eigenvalues ω= ω r +i ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3jabg2da9iabeM8a3Lqba+aadaWgaaqcbasaaKqz adWdbiaadkhaaSWdaeqaaKqzGeWdbiabgUcaRiaadMgacqaHjpWDju aGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaaaaa@45E6@  at Gr = 106 , Ma = 0 and k = 0.

k

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

0

0.00E+00

-0.623

4.5881

-1.5322

1

0.00E+00

-1.982

2.1075

-5.2758

10

0.00E+00

-29.1851

3.0371

-31.328

Table 5 Dependence of stability characteristics on wave number k for the monotonic (columns 2 and 3) andtime-oscillating (column 4 and 5) least decaying modes at Gr = 104

Concluding Remarks

The main result of this study is that the adiabatic horizontal walls make the air-water thermo-gravitational convection stable in the horizontally elongated container with lateral heating. To this end, we first show that the flow becomes nearly horizontal except in thin vicinities of the vertical walls.

A compact polynomial solution is obtained which describes the horizontal convection (Section 6). This solution explicitly shows how the number and profile of air and water counter-flows depend on (a) the water fraction, (b) the thermal surface-tension effect, characterized by the Marangoni number Ma, and (c) the buoyancy strength characterized by the Grashof number Gr.

Next, our numerical simulations describe the development of strong vertical jets in the boundary layers near the sidewalls. The numerical and analytical results agree away from the sidewalls for small and moderate Gr and Ma (Section 8) that verify both of them.

Then jet-like boundary layers develop near the horizontal walls as Gr (Section 9) and Ma (Section 10) increase. The jet entrainment generates two new cells between the boundary layers in the water flow (Section 9). As Ma increases, the Marangoni stresses focus near the sidewalls and develop a thin boundary layer near the cold end (Section 10).

The stability studies of the horizontal (Section 11) and two-dimensional (Section 12) flows reveal no instability of the steady convection described in Sections 6, 8, 9, and 10. The stability is achieved due to the adiabatic walls which provide the favorable stratification of water density. The effect of the air motion on the water flow is found negligible if the water volume fraction is not very small.

These results, related to the flow patterns and stability, agree with the experimental observations2 and can be utilized for the development of efficient heat exchangers.

Appendix: Verification Grid-Independence of Stability Results

To check-up the grid-independence of our stability results, we consider two cases presented in Tables 6 & 7. The check-up demonstrates that the resolution is good enough providing the sufficiently accurate results for the flow stability features.

nx

nyh

nyl

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

141

20

20

0

-3.4943

22.6485

-30.0476

121

25

25

0

-3.4950

22.6462

-30.0468

121

20

20

0

-3.4945

22.6485

-30.0478

Table 6 Dependence of ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3baa@38AF@  eigenvalues on for stationary (columns 4 and 5) and oscillatory (columns 6 an 7) disturbances on the grid at Gr = 106, Ma = 0, and k = 0 (Table 2)

nx

nyh

nyl

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

ω r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaaaa@3BB8@

ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWKdjugibi abeM8a3LqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3BAF@

141

20

20

0

-1.6582

15.2379

-5.4079

121

20

20

0

-1.6522

15.207

-5.3890

121

16

16

0

-1.6738

15.206

-5.2841

Table 7 Dependence of w eigenvalues on for stationary (columns 4 and 5) and oscillatory (columns 6 an 7) disturbances on the grid at Gr = 104, Ma = 900, and k = 0 (Table 3)

Acknowledgment

Partial support from the Ministry of Science and Education (Spain) through Grant No. DPI2016-78887 is gratefully acknowledged.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Hart JE. On the influence of centrifugal buoyancy on rotating convection. J Fluid Mech. 2000;403:133‒151.
  2. Kirdyashkin AG. Thermogravitational and thermocapillary flows in a horizontal temperature gradient. Int J Heat Mass Transfer. 1984;27:1205‒1218.
  3. Daniels PG, Blythe PA, Simpkins PG. Onset of multicellular convection in a shallow laterally heated cavity. Proceedings of the Royal Society of London. 1987;411(1841):327‒350.
  4. Bejan A, Al Homoud AA, Imberger J. Experimental study of high-Rayleigh number convection in a horizontal cavity with differentially end temperature. J Fluid Mech. 1981;109:283‒299.
  5. Herrada MA, Shtern VN. Velocity reversals via bifurcation in thermal convection. Int J Heat Mass Transfer. 2016;92:66‒75.
  6. Ostroumov GA. Free convection under the conditions of the internal problem. NACA TM No. 1407, National Advisory Committee for Aeronautics, USA; 1952. 233 p.
  7. Birikh RV. Thermocapillary convection in a horizontal layer, of liquid. J Appl Mech Tech Phys. 1966;7(3):43‒44.
  8. Nepomnyashchy A, Simanovskii I, Legros JC. Interfacial Convection in Multilayer Systems. 2nd Springer; 2012. 498 p..
  9. Birikh RV. On small perturbations of a plane-parallel with a cubic velocity profile. J Appl Math Mech. 1967;30(2):432‒438.
  10. Gershuni GZ, Zhukhovitsky EM, Myznikov VM. Stability of a plane-parallel convective flow of a liquid in a horizontal layer. J Appl Mech Tech Phys. 1974;15(1):78‒82.
  11. Gershuni GZ, Zhukhovitsky EM, Myznikov VM. Stability of plane-parallel convective flow in a horizontal layer relative to spatial perturbations. J Appl Mech Tech Phys. 1974;15(5):706‒708.
  12. Herrada MA, Shtern VN. Stability of centrifugal convection in a rotating pipe. Phys Fluids. 2015;27(6):064106.
  13. Shtern V, Zimin V, Hussain F. Analysis of centrifugal convection in rotating pipes. Phys Fluids. 2001;13(8):2296‒2308.
  14. Birikh RV, Pukhnachev VV. An axial convective flow in a rotating tube with a longitudinal temperature gradient. Doklady Physics. 2011;56(1):47‒52.
  15. Herrada MA, Shtern VN. Air-water centrifugal convection. Phys Fluids. 2014;26(7):072102.
  16. Madruga S, Pérez-García C, Lebon G. Convective instabilities in two superposed horizontal liquid layers heated laterally. Phys Rev E. 2003;68:041607.
  17. Sparrow EM, Azevedo LFA, Prata AT. Two-fluid and single-fluid natural convection heat transfer in an enclosure. J Heat Transfer. 1986;108(4):848‒852.
  18. Villers D, Platten JK. Thermal convection in superposed immiscible liquid layers. Appl Sci Res. 1988;45(2):145‒152.
  19. Villers D. Platten JK. Influence of interfacial tension gradients on thermal convection in two superposed immiscible liquid layers. Appl Sci Res. 1990;47(2):177‒191.
  20. Doi T, Koster JN. Thermocapillary convection in two immiscible liquid layers with free surface. Phys Fluids A. 1993;5(8):1914‒1927.
  21. Liu QS, Chen G, Roux B. Thermogravitational and thermocapillary convection in a cavity containing two superposed immiscible liquid layers. Int J Heat Mass Transfer. 1993;36:101‒117.
  22. Liu QS, Roux B, Velarde MG. Thermocapillary convection in two-layer systems. Int J Heat Mass Transfer. 1998;41:1499‒1511.
  23. Herrada MA, Montanero JM. A numerical method to study the dynamics of capillary fluid systems. J of Comput Phys. 2016;306:137‒147.
  24. Herrada MA, Shtern VN. Instability of water-spout problem. Phys Fluids. 2016;28:034107.
  25. Gill AE. The boundary-layer regime for convection in a rectangular cavity. J Fluid Mech. 1966;26(3):515‒536.
  26. Xu J, Zebib A. Oscillatory two- and three-dimensional thermocapillary convection. J Fluid Mech. 1998;364:187‒209.
  27. Gelfgat A. Stability of convective flows in cavities: Solution of benchmark problems by a low-order finite volume method. Int J Numer Mech Fluids. 2007;53(3):485‒506.
Creative Commons Attribution License

©2017 Herrada, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.