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Abbreviations: GR, grashof number; MA, marangoni number; 
PR, prandtl number.

Introduction
Convection in a horizontal layer of a fluid induced by the horizontal 

gradient of temperature is one of basic problems of heat transfer. 
The global circulation between the equatorial and polar oceanic 
regions occurs mostly due to the horizontal gradient of temperature.1 
Technological applications include shallow water pools used for the 
removal of waste heat, the Czochralski technique of crystal growth2 
and cooling systems for nuclear reactors and solar energy collectors.3  
The problem also is of fundamental interest being a rare case where 
experimental, analytical, and numerical results allow meaningful 
comparison in a wide range of the flow strength, characterized by 
the Grashof number (Tables 1–3).4 This helped understand the flow 
physics and explain the generation of cells by the jet entrainment 
mechanism in the single-fluid convection.5 Our paper shows that 
the jet entrainment mechanism works in the two-fluid convection as 

well. It is striking that these flows are stable for large Gr despite the 
presence of inflection points in the velocity distribution. For small 
and moderate Gr, a single-fluid flow in a rectangular container away 
from its vertical walls excellently agrees with the elegant polynomial 
solution obtained by Ostroumov.6

  ( )3 1 / 2 2( / 27)/ maxu u y y= − ,

where u is the horizontal velocity and umax is its maximal magnitude; 
y is the vertical coordinate, divided by the layer half-height. The 
horizontal walls are located at 1y = ± . Birikh7 generalized this 
solution for the case where the upper surface is free and subject to the 
thermal surface-tension (Marangoni) effect. Multi-fluid convection 
is systematically analyzed in the monograph by Nepomnyashchy et 
al.8 Chapter 5 of book8 describes multi-layer analytical solutions for 
prescribed temperatures of horizontal boundaries. In contrast, our 
paper addresses the adiabatic horizontal walls. The stability features 
are very different in these two cases. 
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Abstract

This paper explores patterns and stability of the air-water thermal gravitational convection 
in a thin and wide horizontal container whose top and bottom walls are adiabatic while 
vertical sidewalls have prescribed different temperatures. A compact polynomial solution 
describes a slow multi-cell motion and a temperature distribution away from the sidewalls. 
The solution explicitly shows how the flow topology depends on the water fraction, thermal 
surface-tension effect, characterized by the Marangoni number Ma, and buoyancy strength 
characterized by the Grashof number Gr. The performed numerical simulations agree with 
the analytical solution for small Gr and Ma and describe changes in the flow topology for 
large Gr and Ma. The flow transforms into a boundary-layer pattern with jets located near 
the interface and container walls. The jet entrainment generates new cells in the bulk water 
flow. As Ma increases, the Marangoni stresses focus near the sidewalls and develop a thin 
thermal boundary layer near the cold wall. The performed stability study reveals that the 
steady convection is stable for Gr and Ma values considered. The stability is due to the 
favorable stratification of water density provided by the adiabatic walls. The results can be 
utilized for the development of efficient heat exchangers. 
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Table 1 Characteristic Reynolds numbers of horizontal flow of water h max
u  and air l max

u  as the Grash of number increases at L=4, Hi=0.5, Ma=0

Grh 10 102 103 104 105 106 107

h max
u 0.0628 0.6198 4.66 17.95 47.2 100.2 242

 
l max

u 0.0033 0.0327 0.246 1.756 20.998 104.5 402

Table 2 Dependence of stability characteristics on Gr for least decaying mode at Ma=0 

Gr
 rω  iω

104 0 -0.623

105 0 -1.7912

106 0 -3.4951
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Table 3 Dependence of stability characteristics on Ma for least decaying mode at Gr=104 

Ma 0 100 300 500 700 900

rω 0 0 0 0 0 0

 iω -0.623 -0.9458 -1.3011 -1.4818 -1.5753 -1.6738

 We show that the flow stability radically depends on boundary 
conditions at the horizontal walls. If temperature is prescribed at 
the walls, the flow becomes unstable for rather small Gr. Birikh9 
considered the stability of flow6 at the Prandtl number  0Pr =
and found that the critical value of the Grashof number is Gr*=495. 
Gershuni et al.,10 explored the stability of flow6 at Pr>0 with respect to 
two-dimensional10 and three-dimensional11 disturbances.

They predicted two kinds of instability:

Shear-layer K-instability related to the existence of inflection point 
in the u(y) profile and 

Thermal R-instability caused by the unstable density stratification 
near the horizontal walls; here K is for Kelvin and R is for Rayleigh. 
As Pr increases, the K-instability disappears for Pr>0.5, but the 
R-instability occurs for any large Pr.

In contrast to these predictions, the experimental studies2,4 reveal 
no instability up to 74 10Gr ≈ × . As Gr increases, the flow transforms 
from that described by solution6 to the boundary-layer pattern with 
jets developing near the container walls and a slow multi-cellular 
motion in the bulk region surrounded by the jets. 

It is paradoxical that no instability occurs despite the u(y) profile 
becomes wavy with a few inflection points.2,4 This paradox was recently 
explained.12 The horizontal walls have prescribed temperatures in the 
stability studies8‒10 while the walls are nearly adiabatic (no heat flux) 
in the experiments.2,4 It is revealed that the R-instability disappears 
if the boundary conditions change from the fixed-temperature to the 
adiabatic ones.12 The physical reason is that the density stratification 
becomes stable in the entire flow domain for the adiabatic conditions. 
This clarifies why no instability is observed in the experiments.2,4 The 
analytical solution6 was generalized for the cylindrical geometry and 
the centrifugal force replacing the gravity. For a small axial gradient 
of temperature, the centrifugal convection in a rotating pipe is also 
described by the polynomial solution:13

2 4 2 3
0 1 0 1( )/  1 4 3   1( )/ ) (w w r r and T T T T r= − + − − = − ;

where r is the distance from the axis divided by the pipe radius. 
Subscripts 0 and 1 denote values of axial velocity w and temperature 
T at the axis and sidewall respectively. There is also analytical (though 
not polynomial) solution for a gap between two co-rotating pipes.13 
For a narrow gap, the cylindrical problem becomes close to that for a 
horizontal layer.6 Birikh et al.,14 generalized the solution13 to describe 
a two-fluid thermal convection with the Marangoni effect taken 
into account. The numerical simulations of the air-water centrifugal 
convection in a cylindrical container15 agree with the analytical 
solutions and help explain the emergence of new flow cells due to the 
Marangoni effect. A similar development occurs in the two-fluid flow 
studied here.

Early theoretical and experimental studies of thermal convection 
in a two-fluid horizontal layer are mostly related to vertical heating.8,16 
To our knowledge, the first experimental study for lateral heating was 
performed by Sparrow et al.,17 for the water-hexanol horizontal layer. 

Villers et al.,18 measured the velocity profiles in each fluid layer as 
a function of the height in a system formed by water and heptanol 
and analyzed the solutions for an elongated layer.19 The polynomial 
solutions6,7 easily can be generalized for a multi-fluid convection 
in a horizontal layer.8 Doi et al.,20 studied theoretically the thermo-
capillary convection under microgravity conditions in two immiscible 
liquid layers with a free upper surface. In addition, they carried out 
numerical simulations in a box of aspect ratio 4 in order to analyze 
the effect of the vertical walls. Numerical simulations in cavities of 
different aspect ratios for coupled thermos-capillary and buoyancy-
driven convection were performed by Liu et al.,21 and an asymptotic 
solution for the velocity in the limit of infinite aspect ratio and zero 
gravity has been derived.22 Madruga et al.,16 investigated flow patterns 
in an unbounded horizontal layer of two liquids and studied the 
flow stability. Our work generalizes their study by also addressing a 
bounded layer and differs from8,16 by the following features: 

i. The horizontal walls are adiabatic here while they have prescribed 
temperatures.8,16 This difference is crucial for the flow stability as 
discussed above. 

ii. We focus on the air-water flow motivated by applications for 
cooling systems3 while the fluids are specific for crystal-growth 
applications in Madruga S16 and the other above cited works. 

iii. A compact form of the base-flow solution is derived. This form 
explicitly shows whether the flow patterns are single-cellular or 
two-cellular in both fluids. 

iv. A pattern map on the parametric plane (the Marangoni number, 
the relative height of the interface) is obtained with analytically 
determined boundaries between regions of different flow 
topologies.

v. Our study also considers the two-dimensional (2D) flow in a 
container of aspect ratio 4 and describes the development of jet-
like boundary layers near the container walls and the interface. 
We argue that eddies emerging in the bulk flow are generated by 
the jet entrainment. 

vi. The stability of the one- and two-dimensional flows is explored. 

vii. In the rest of this paper, we formulate the problem in Section 
5, describe the polynomial solutions in Section 6, the numerical 
technique in Section 7, explore the slow 2D flow in Section 
8, effects of increasing Gr (Section 9) and Ma (Section 10), 
investigate the stability of the core (Section 11) and two-
dimensional (Section 12) flows, and summarize the results in 
Section 13.

Problem formulation 

Flow geometry

Consider a rectangular container of length l and height h 
schematically shown in Figure 1. The origin of horizontal (x) and 
vertical (y) axes is located at the left lower container corner and 
the z-axis is normal to the picture plane in Figure 1. Velocity and 
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temperature of the base flow is time and z-independent. Using h as a 
length scale makes the coordinates dimensionless.

Figure 1 Schematic of the problem.

The container is filled with a heavy fluid (here water) occupying 
the region, 0 /i iy H h h< < = , and with a light fluid (here air) 
occupying the region,  1iH y< < ; g is the gravity acceleration; 

iy H=  is the interface, depicted by the bold dashed line in Figure 1. 
The interface deformation is neglected here based on the experimental 
observation2 that the deformation is very small. The left (right) wall 
has prescribed temperature ( )1 1 2;2T T T T< . The top and bottom 
walls are adiabatic. The temperature difference and gravity circulates 
both fluids. The arrowed contours in Figure 1 depict a possible flow 
pattern which depends on the fluid properties and fractions. 

It is convenient to introduce the dimensionless temperature,

( )1 2 2 1( ) ( ) (/ / 2, /),m m m mϑ ε ε= Τ − Τ Τ Τ = Τ + Τ = Τ − Τ Τ   
                  (1)

With no flow, the temperature distribution is

 0 1 / 2 / ,            0 ,x L x Lϑ ϑ= = − + ≤ ≤              (2)

where L = l/h is an aspect ratio of the container.

Boussinesq approximation

We apply the Boussinesq approximation,

  /  1 ,mρ ρ εβϑ= −             (3)

  
1 / , T Tm mβ ρ ρ− ∂= − ∂             (4)

The quantities, characterizing the heavy (light) fluid, are marked 
hereafter by subscript “h” (“l”). Equations and relations, which serve 
for both fluids, are unmarked. In relations (3) and (4), ρ is a density,  

mρ
 
is its value at ( )2 / 21mT = Τ = Τ + Τ  and β  is a dimensionless 

thermal expansion coefficient. For the Boussinesq approximation to 

be valid, density variations must be small compared with mρ  i.e., 

1εβ << . To this end, we take Tm = 300K = 27°C, T1 = 18°C and T2 = 

36°C. This yields that 2( ) /  0.03m mT T T− = , 1( ) / 0.03m mT T T− = −  

and  0.06ε = . For example,  0.082hβ = at Tm = 300K and 

 0.00492hεβ =  for water and 1 1β = and 
1

0.06εβ =  for air. 

Therefore, the Boussinesq approximation is applicable. The Grashof 

number is 3 2/Gr ghεβ ν= , the Prandtl number is /Pr ν κ= and the 

Rayleigh number is Ra=GrPr; ν  is a kinematic viscosity and κ  is 
a thermal diffusivity of a fluid. We address here a water-air flow. At 
the atmospheric pressure and T=Tm, the fluid properties are listed in 
Table 4.

Table 4 Fluid properties

Fluid Density 
(kg/m3)

Kinematic viscosity 
(m2/s)

Thermal 
diffusivity(m2/s)

Conductivity (W/
(m×K))

Prandtle 
number

Air  1.18lρ = 5 1.58 10lν −= × 5 2.21 10lk −= × 0.0261lλ = Prl = 0.714

Water 996hρ =
 

7 8.33 10hν −= ×
 

7 1.52 10hk −= ×
 

0.615hλ = Prh = 5.49

Governing equations

Using 2 2 2, / , / , /h h h hmνν ν ρ , as scales for length, 
time, velocity, and pressure, respectively, renders all variables 
dimensionless. Then the Boussinesq equations have the form:

        / / /  0,   u x v y w z∂ ∂ + ∂ ∂ + ∂ ∂ =           (6)
2 2 2 2 2 2/ / / /  / / / / ,u t u u x v u y w u z p x u x u y u z∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ = −∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  

               (7)
2 2 2 2 2 2/ / / / / / / /v t u v x v v y w v z Gr p y v x v y v zϑ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ = − ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  

                (8)
2 2 2 2 2 2/ / / /  / / / /w t u w x v w y w w z p z w x w y v z∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ = −∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  

                (9)
2 2 2 2 2 2[/ / / /  / / / /]t u x v y w z x y z Prϑ ϑ ϑ ϑ ϑ ϑ ϑ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂  

              (10)

Where ( , , )u wν  are the velocity components in Cartesian 
coordinates (x, y, z), t is time, and p is pressure reduced by its 

hydrostatic contribution. The term Grϑ in (8) represents the buoyancy 
force. Equations (6)-(10) are applied for both light and heavy fluids 
using values of Gr and Pr corresponding to each fluid.  

We denote the list ( , , , , )u w pν ϑ as V, and look for a solution of 
the system (6)-(10) in the form

( ) ( ) .) , ( .b dy a y exp i x ikz i t c cα ω= + + − +V V V           (11)

for a horizontal base flow away from the vertical walls as L → ∞ 
and in the form

 ( ) ( ), , . ., ( )b dx y a x y exp ikz i t c cω= + − +V V V          (12)

for a two-dimensional base flow for finite L.

Subscripts “b” and “d” denote the base flow and a disturbance, 
respectively; c.c. denotes the complex conjugate of the preceding 
term; 1a <<  is amplitude; real and kα  are wave numbers; and 

r iiω ω ω= +  is a complex number to be found, 
rω  is a frequency 

and iω  is a growth rate of a disturbance. For a decaying (growing) 
disturbance, 

iω  is negative (positive). For neutral disturbances 0ω =  

https://doi.org/10.15406/fmrij.2017.01.00002
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The equations governing the base flows result from substituting (11) 
or (12) in system (6)-(10) and setting a = 0. The terms of order O(A) 
constitute equations governing infinitesimal disturbances. 

Boundary conditions

Equations (6)-(10) are solved under the following boundary 
conditions: 

i. No-slip at all walls: u = v = w = 0 at y = 0, y = 1, x = 0 and x = L.

ii. Fixed temperatures of vertical walls: 
1 / 2,  0  0  1 / 2,  0 .b d b dat x and at x Lϑ ϑ ϑ ϑ= − = = = = =

iii. Adiabatic conditions at the horizontal walls: 
/   0  0  1.y at y and yϑ∂ ∂ = = =

iv. Continuity of temperature and velocity at 
the interface: , ,  0l h h r lu u vνϑ ϑ= = =  and 

   ; /h r l i r l hw w at y Hν ν ν ν= = =  is the light-to-heavy fluid 
kinematic viscosity ratio. 

v. Continuity of heat flux at the interface: /  /h r ly yϑ λ ϑ∂ ∂ = ∂ ∂
, where /r l hλ λ λ=  is the light-to-heavy thermal conductivity 
ratio. 

vi. Continuity of tangent stresses at the interface: 
2

1/ / /h r r l iu y u y Ma x at y Hρ ε ϑν∂ ∂ = ∂ ∂ − ∂ ∂ = , where the 
left-hand-side term is the shear stress of heavy fluid, the first 
right-hand-side term is the shear stress of light fluid and the 
last term is the Marangoni stress; /r l hρ ρ ρ=  is the light-to-
heavy fluid density ratio; and ( ) 2

1 / ( )/m h hMa T d dT hσ ρ ϑ= −  
is the dimensionless value of /d dTσ  which is independent 
of Landε . We use the Marangoni number in the form of

1 /Ma Ma Lε= . Condition (iii)-(vi) are applied for both base 
flow and disturbances.

The interface, y=Hi, is considered undisturbed here because 
this limitation simplifies the analysis and seems a reasonable 
approximation since no significant deformation of the interface was 
observed in the experiment.2 Since equations (11)-(13) and boundary 
conditions for disturbances are uniform, there is the zero solution. For 
a non-zero solution, eigenvalues of ω must be found.

The base flow features away from the container ends 

Reduction of governing equations

The base flow is nearly x-independent near x=L/2 if L>> 1. 
Here, we consider the corresponding limiting case as L→∞ where 
velocity of both fluids is x-directed and depends on y only. In this one-
dimensional problem, equations (6)-(10) reduce to 

  2 2/ / , p x u y∂ ∂ = ∂ ∂      (13)

  / , p y Grϑ∂ ∂ =       (14)

  
2 2. / /Pr u x yϑ ϑ∂ ∂ = ∂ ∂ .      (15)

Differentiating (14) with respect to x yields 2 / /p x y Gr xϑ∂ ∂ ∂ = ∂ ∂
. Differentiating (13) with respect to y and substituting 

2 / /p x y Gr xϑ∂ ∂ ∂ = ∂ ∂  gives

  3 3/ /u y Gr xϑ∂ ∂ = ∂ ∂ .     (16)

There is a solution for temperature in the form,

  ( ) ( )0 1x yϑ ϑ ϑ= + ,      (17)

where 0ϑ  is given by (2) and 1ϑ  must be found. Therefore, 

0/  /  1 /x d dx Lϑ ϑ∂ ∂ = = . Substituting this in (16) yields

  3 3/ /d u dy Gr L= .      (18)

It is convenient to introduce stream function ( ) ,  /Q y u dQ dy= , 
which satisfies the equation,

 ( )4 4/  24 ,  / 24d Q dy A A Gr L= = .       (19)

Parameter 3 2( ) ( / / 4 )2A L ghε β ν=  has the multiplier, / Lε , which 
is a dimensionless horizontal temperature gradient—a characteristic 
common for both fluids. 

The boundary conditions are the no-slip at the walls, y = 0 and y = 
1, and zero flow rate for each fluid: 

 /  0  0  0 h h h iQ dQ dy at y and Q at y H= = = = = .     (20)

 /  0  1   0 l l l iQ dQ dy at y and Q at y H= = = = = .       (21)

The velocity continuity at the interface yields

    h r l iu u at y Hν= = .          (22)

The shear stress continuity at the interface (condition vi), (17) and 
(2) yields

 2/  / ,  /h r r l r l hdu dy du dy Maρ ν ρ ρ ρ= − = .        (23)

Polynomial solution

Integrating (19) four times and satisfying conditions (20) yield that

  2 ( )( )h h i hQ A y y H y y= − − ,       (24a)

where yh is a constant to be found. The line y=yh, where Qh=0, 
separates flow cells. Therefore, the heavy-fluid flow is two-cellular 
if 0< yh< Hi and one-cellular otherwise. Differentiating (24a) yields

 ( ) ( )3 2 4 ]3 2[h h i h i hu y A y y H y yH y= − + +      (24b)

and  ( )2/ 12[ 6 2 ]h h i h i hdu dy A y y H y H y= − + +      (24c)

 Therefore,  ( ) 2 ( )h i h i i hu H A H H y= −        (24d)

And  ( )  ( )/ 6 4h i h i i hdu dy H A H H y= −       (24e)

 Integrating (19) four times and satisfying (21) yield 

         2( ) ( )(1 )l l i lQ A y y H y y= − − − ,       (25a)

where yl is a constant to be found. The light-fluid flow is two-
cellular if Hi < yl < 1 (as in Figure 1) and one-cellular otherwise. 
Differentiating (25a) gives

( )  1 1 2( )[( )( ) ( )( )]2l l i l i lu y A y y y H y y H y y= − − − − − − −    
             (25b)

and differentiating (25b) gives

( )2/  2 6 3 2 1 2 ].[ 2l l i l i l i ldu dy A y y H y H y H y= − + + + + + +  

            (25c)

This yields that ( ) 2( 1 ) ( )l i l i i lu H A H H y= − −        (25d)

 and
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 ( ) 2/   2 3 2 4 2 1   2 1 1 3( ) ( )( )2l i l i i l i l l i i ldu dy H A H H y H y A H H y= − − + + = − − +  

            (25e)

Constants yh and yl follow from conditions (22) and (23). Condition 
(22) results in 

  21 / 1) /( ( )h i r i i l l hy H H H y A Aν= − − −        (26)

Finally, it follows from condition (23) that

( ) ] [2 2 2/ 2 1 1 3 1[ ( ) ( )( ) / 2 / 2 1 1 /( ) )]1(l i h l r i r r i i l r i r r iy H A A H H H Ma A H Hν ρ ν ν ρ ν= + − + − − + − + −

           
 (27)

The relations (24a), (25a), (26) and (27) explicitly describe the 
stream function and velocity profiles as well as the number and 
arrangement of flow cells. 

 One and two-cell light-fluid flows

Since Ah, Al and Ma have the multiplier, / Lε , the flow strength 
in both fluids is proportional to / Lε  while yh and yl are / Lε  
-independent. For Hi close to 1, the motion of both fluids is one-cellular. 
The heavy-fluid circulation is driven by the thermal buoyancy force 
and by the Marangoni stresses. The light-fluid circulation is driven by 
the heavy-fluid motion. The thermal-buoyancy effect is negligible for 
the upper fluid.

However as Hi decreases, the buoyancy contribution rises in 
the light fluid and one more flow cell emerges near the top wall at 
Ma=Mal. The Mal value follows from (27) at yl=1:

2 2 3 2 2 3 1  2 1[ ( ) ( ) ]/ /l l r r i r i i i h lMa A H H H H A Aρ ν ν= − + − − .  
 
            (28)

The light-fluid motion is singe- (two-) cellular for Ma>Mal (Ma< 
Mal). 

Figure 2 depicts profiles of velocity u and flow rate Q in water 
(curves) and air (dots) at Hi=0.5, Ah=1, and at two values of the 
Marangoni number. At Ma=0 (bold curves), the air flow is two-
cellular. The motion in the lower air cell, Hi< y< yl = 0.807, is driven 
by the water flow while the motion in the upper air cell, yl< y<1, 
is driven by air buoyancy as Figure 1 schematically depicts. With 
increasing Ma, the upper air cell shrinks to the top wall and disappears 
at Ma=Mal=0.166 as the thin curves illustrate in Figure 2. 

Comparison of the thin and bold curves in Figure 2 shows that the 
Marangoni effect intensifies the water motion since the buoyancy and 
Marangoni effects cooperate in the water flow. The increased velocity 
magnitude at the interface speeds up the adjacent air flow expands the 
lower air cell and diminishes the upper air cell. For Ma≥Mal, the entire 
air-water motion is driven by water buoyancy and the Marangoni 
effect while the effect of air buoyancy diminishes that results in the 
one-cellular air flow. The agreement between the analytical and two-
dimensional numerical results verifies both of them. The numerical 
results (square and cross symbols in Figure 2) are discussed in more 
detail in Section 8.1.

Temperature distribution 

Substitution of (17) and (2) in (10) yields 2 2
1 / /d dy uPr Lϑ = , 

Taking into account that u = dQ/dy and integrating, we obtain that 

  1 / /d dy QPr Lϑ = ,       (29)

Figure 2 Dependence of (A) velocity u and (B) stream function Q on the vertical 
coordinate y at Hi=0.5 and Ah=1. The solid (dotted) curves correspond to the 
water (air) flow. Values of u and Q in air are multiplied by νr for convenient 
observation. The bold (thin) curves depict the results for Ma= 0 (Ma =0.166). 
Square and cross symbols show numerical results at L=4 and x=L/2.

with the adiabatic condition at the horizontal walls and the 
continuity condition for the heat flux at the interface being satisfied. 
According to equation (29), the heat flux is zero at the interface, i.e., 
no heat transfer occurs between the heavy and light fluids for the 
adiabatic walls. 

Integrating (29) from y = Hi with the initial condition, 
( )1  i iHϑ ϑ=  yields the vertical distribution of temperature in both 

fluids:

  ( ) ( )5 5 4 4 3 3[( ) ( ) ( )/ / 5 / ]4 / 3h i h h i i i h i i hPr A L y H y H H y y H H yϑ ϑ= + − − − + + −            (30)

( ) ( ) ( ) ( )5 5 4 4 3 3 2 2[( ) ( ) ( )/ / 5 2 / 4 1 2 2 / 3 2 / 2( ) ( ) ]l i l l i i i l i i l i l i i l i l i i lPr A L y H y H H y y H H y H y y H H y H y y H H yϑ ϑ= + − − − + + + − + + + − − + + + −          (31 )

Figure 3 depicts the temperature profiles, (30) and (31), for 
the flows shown in Figure 2. In contrast to the problem studied by 
Madruga et al.,16 where the temperature stratification is unstable near 
the bottom, here the stratification is stable: the colder (warmer) water 
is located near the bottom (interface). This feature should make the 
flow stable even for large Gr.12 

The lower air cell at Ma=0 and the entire air domain for lMa Ma≥  
have unstable density stratification (Figure 3 (B)), but the temperature 
variation in the air region is negligibly small compared with that in 
the water region at Hi=0.5. The agreement between the analytical and 
numerical (square and cross symbols in Figure 3) results verifies both 
our analytical and numerical calculations of temperature distributions. 

Map of flow patterns

Figure 4 is a map of flow patterns. Curve 1 in Figure 4 (A) depicts 
relation (28). Above curve 1, water and air flows are one-cellular as the 
upper inset in Figure 4 (A) schematically shows. The air circulation is 
driven by the water circulation. Below curve 1 in Figure 4 (A), the air 
flow is two-cellular as the lower inset in Figure 4 (A) schematically 
shows where the bold dashed line denotes the interface. The new cell 
emerges near the top wall at Ma=Mal. The motion in the lower air cell 
is driven by the water circulation while the motion in the new cell is 
driven by the air buoyancy.  

https://doi.org/10.15406/fmrij.2017.01.00002


Convection in air water layer with side heating 9
Copyright:

©2017 Herrada et al.

Citation: Herrada MA, Shtern VN. Convection in air water layer with side heating. Fluid Mech Res Int. 2017;1(1):4‒15. DOI: 10.15406/fmrij.2017.01.00002

Figure 3 (A) Dependence of temperature, iϑ ϑ− , on the vertical coordinate 
y at Hi=0.5. The solid (dotted) curves correspond to the water (air) flow. 
The bold (thin) curves corresponds to Ma=0 (Ma=0.166). Square and cross 
symbols show numerical results at L=4 and x=L/2. (B) Close-up of (A) in the 
air flow.

As Hi decreases at a fixed Ma, the air flow cell, driven by the water 
motion, shrinks, i.e., yl decreases. At yl=Hi, this cell collapses and the 
velocity at the interface becomes zero according to (25b), i.e., the 
interface affects the flow as a wall. It follows from yl=Hi and (16) 
that yh=Hi. Both air and water motions become one-cellular, each 
being driven by its buoyancy. Substituting yl=Hi in (27) yields the 
corresponding value of Ma=Mah:

  2 2 2( 2 1 ) 2h l r r i h iMa A H A Hρ ν= − −           (32)

Curve 2 in Figure 4 (B) depicts relation (32). Above curve 2, the 
flow topology is the same as below curve 1 in Figure 4 (A). Below 
curve 2, i.e., for Ma<Mah, the water flow becomes two-cellular as 
the middle inset schematically shows in Figure 4 (B) where the bold 
dashed line denotes the interface. Relation (26) yields that if yl<Hi 
than yh<Hi as well. This physically means that the air flow reverses 
the water motion near the interface developing the new water cell, 
yh<y<Hi.

As Hi further decreases at a fixed Ma, the water cell, driven by the 
air motion, expands, i.e., yh decreases down to zero. Substituting yh=0 
in (26) and excluding yl from (26) and (27) yield the corresponding 
value of Ma=Ma0:

  2
0 4 1[ / 1( )]h h i r r i iMa Ma A H H Hρ ν= + + −            (33)

Curve 3 in Figure 4 (B) depicts relation (33). For Ma<Ma0, the 
water and air flows are one-cellular as the lower inset schematically 
shows in Figure 4 (B). The water motion is driven by the air buoyancy. 
The water and air circulations in the region below curve 3 in Figure 
4 (B) are reversed compared with those in the region above curve 1 
in Figure 4 (A): the streamline topologies are identical, but the flow 
directions are opposite.

Stable stratification

At parameter values, corresponding to curve 2 in Figure 4 (B), 
both air and water circulations are anticlockwise that makes the 
density stratification stable in both media. Since the water layer is 
thin compared with the air layer, Hi<0.14, as Figure 4 (B) illustrates, 
the temperature variation in the water is small compared with that in 
the air.

Figure 5 illustrates this feature depicting the vertical profiles of 
velocity and temperature, normalized by their maximal values, at 

Hi=0.1 and Ma=0.63Al. This Ma value follows from relation (32). 
Since the velocity and temperature profiles are hardly visible in the 
water layer, 0<y<0.1, in Figure 5 (A), they are scaled up in Figure 5 
(B). Figure 5 illustrates the stable density stratification in both air and 
water domains (dashed curves). 

Figure 4 Dependence of air-water convection pattern (insets) on water 
fraction Hi and Marangoni number Ma. Curves 1, 2 and 3 depict relations (28), 
(32) and (33) respectively.

Figure 5 Profiles of normalized velocity u and temperatureϑ  at Hi=0.1 and 
Ma=Mah= 0.63Al in (A) air and (B) water.

Numerical technique

To simulate the nonlinear problem for (A) two-dimensional (2D) 
basic flows and (B) the generalized eigenvalue problem for the 
three-dimensional time-dependent infinitesimal disturbances, we 
use a numerical technique which is a variation of that described in 
detail in Herrada MA.23 First, each variable (velocities, pressure and 
temperature) and all its spatial and temporal derivatives, which appear 
in equations (6)-(10) and the boundary conditions, are composed as a 
single symbolic vector.

For example, for the x-velocity in the water flow we create a vector 
having 8 components:

2 2 2 2 2 2 , / ,[ / , / , / , / , / , / ]w w w w w w w w wx u u x u y u z u x u y u z u t= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ .

The next step is to use a symbolic toolbox to calculate the analytical 
Jacobians of all the equations with respect to all the symbolic vectors. 
Using these analytical Jacobians we generate functions which then 
are evaluated point by point in the air and water domains. In this 
procedure, we use the MATLAB procedure matlab Function to 
convert the symbolic Jacobians in MATLAB functions.  

Then, we carry out the spatial and temporal discretization of 
the problem. For the 2D problem, the water and air domains are 
discretized using a set of nh and nl Chebyshev spectral collocation 
points in the vertical direction (along the y-axis in Figure 1). The 
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water and air domains are discretized using a set of nx Chebyshev 
spectral collocation points in the horizontal direction (along the x-axis 
in Figure 1). The second-order backward finite differences are used 
to compute the time derivatives for the basic flow. Since the basic 
flow is 2D, all the derivatives in the z direction are set to zero. For 
disturbances, we obtain the temporal and z-derivatives using the 
representation (12). The most simulations were performed with 
nx=121, nh=nl=25.

For the 1D problem, the water and air domains are discretized using 
the same procedure than for the 2D problem while all the derivatives 
for the basics flow in the z and x directions are set to zero except 
the axial derivative for the temperature which is 1/L according to (2) 
and (17). For disturbances, we obtain the temporal, z-derivatives and 
x-derivatives using the representation (11). 

The final step is to set up the numerical matrices allowing us 
to solve the problem by using a Newton procedure for the basic 
steady flow and by solving a generalized eigen value problem for 
disturbances.23,24 

To summarize, the numeric procedure includes the proper spatial 
and temporal discretization creating the discrete Jacobian matrix for 
the Newton procedure for the basic flow and two more matrices for 
the generalized eigenvalue problem for disturbances. For the basic 
flow, we get the final steady solution though an unsteady process. 
Starting from the rest and selecting a time step, dt, the solution is 
advanced in time until a steady state is reached. Since the nonlinear 
procedure used to compute the basic flow is fully implicit, dt can be 
taken sufficiently large to quickly reach the steady solution. Once 
the base flow is computed, and given z-wavenumber k(for the 2D 
problem) or z-wavenumber k and x-wavenumber α (for 1D problem), 
we use MATLAB subroutine eigs to calculate the eigenvalues of the 
system of discrete linear equations.

Slow two-dimensional basic flow

Comparison with the analytical solution

First, we verify our numerical code comparing its results for 
small Gr and Ma values with the analytical solutions reported in 
Section 6. To this end, we chose L=4, supposing that this aspect 
ratio is sufficiently large for the motion near x=L/2 to be nearly 
one-dimensional. Figure 2, where the square (cross) symbols depict 
the numerical results at x=L/2, Ah=1, Hi=0.5 and Ma=0 (0.166), 
confirms that the numerical (symbols) and analytical (curves) results 
well agree for the horizontal velocity u. Figure 3 (A) shows that the 
agreement of the numerical and analytical results is also good for 
the vertical distribution of temperature. This agreement verifies both 
our analytical and numerical calculations. To visualize flow patterns, 
we use the stream functionψ , / , /u y v xψ ψ= ∂ ∂ = −∂ ∂ , and plot 
streamlines, i.e., contours ψ =constant.

Effect of the end walls 

Figure 6 depicts the 2D flow pattern at the control parameter values 
corresponding to Figure 2 and L=4. It reveals that the streamlines are 
indeed nearly horizontal near x=L/2=2 that explains the agreement 
between the numerical and analytical results in (Figures 2 (A) & 3 
(A)). The water circulation, shown by dark contours, is anticlockwise 
(AC) in Figure 6. 

The air circulation, shown by light contours, has both clockwise 
(C) and AC circulation regions. The C air circulation, which is 
adjacent to the interface, is driven by the water motion while the AC 

air circulation, which is adjacent to the top wall in Figure 6 (A), is 
driven by the buoyancy force. At Ma=0.166, the AC air circulation 
is limited to the sidewall vicinities. Figure 6 (B) depicts two AC cells 
located near the intersections of the top and vertical walls. They are 
generated by buoyancy of air which overcomes the water-induced 
clockwise air circulation near the cold (at x=0) and hot (at x=L) ends. 
As Ma decreases, the AC air cells expand in the horizontal direction 
and merge at x=L/2 for Ma=0.162. Figure 6 (A) depicts the merged 
AC air circulation which is adjacent to the entire top wall. The 
numerical and analytical results only agree for small Gr and Ma. For 
large Gr and Ma they are radically different even near x=L/2 as shown 
in Sections 9 and 10.

Figure 6 (Color online) Streamline patterns at L=4, Hi=0.5, Ah=1 and Ma=0 
(A) and 0.166 (B).

Transformations of two-dimensional basic flow as GR 
increases at ma=0 

Development of boundary layers near sidewalls 

Numerical simulations allow us to separately explore the buoyancy 
and Marangoni effects. Here we put Ma=0 and study the buoyance 
effect alone as Gr increases. Figure 6 (A) shows that streamlines are 
packed near vertical walls even in a slow convection. This packing 
becomes more prominent for large Gr as Figure 7 illustrates. 

Figure 7 depicts flow patterns at Grh=105 (A) and 106 (B) while 
the other control parameters are the same as those in Figure 6 (A) 
for convenient comparison. As Gr increases, the water flow becomes 
horizontal in the nearly entire water domain. The cold down-flow and 
the hot up-flow become limited to boundary layers near the cold, x=0, 
and hot, x=4, walls respectively.

Figure 8 illustrates this by depicting the profile of vertical velocity 
v(x), normalized by its maximal value vm= 3.287 at y=ym=0.2826 
and Grh=104. Here ym is the vertical coordinate of location of the v 
maximum. As it is clear from Figure 8, v is not negligibly small only 
within the boundary layers near the cold and hot vertical walls. The 
v(x) profiles are jet-like in these boundary layers.

To find the limiting boundary-layer features, we plot in Figure 9, 
the v profile near the hot wall, using the scaled distance from the wall

( )1/4
 0.4 2(8 )L x RaLη = − , at Grh = 103 (triangles), 104 (squares), 

105 (circles) and 106 (crosses). The symbols also show the grid points. 
The solid curve in Figure 9 depicts the analytical solution obtained 
by Gill25 in the boundary layer approximation for a single-fluid flow 
near a hot wall,
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( )1/4
(/  3.102 ,  0. 8 )2) (4maxv v exp sin L x RaLη η η= − = − .        (34)

Figure 9 reveals that as Gr increases, the numerical results merge 
into the limiting profile which is rather close to analytical solution 
(34). Figure 9 shows both the jet-like character and the scale of 
boundary layer near the hot wall in the water domain. Thus as Gr 
increases, the water vertical motion becomes limited to thin vicinities 
of the container ends. This occurs due to stable stratification of water 
density.

Figure 7 (Color online) Streamline patterns at L= 4, Hi= 0.5, Ma=0 and Grh= 
105 (A) and 106 (B).

Figure 8 Profile of vertical velocity v visualizes the boundary layers near the 
cold (at x=0) and hot (at x= 4) sidewalls at y=0.2826 and Grh=104.

Figure 9 Boundary-layer profile of vertical velocity v near the hot wall at 
y=0.2826 and Grh=103(triangles), 104(squares), 105(circles) and 106(crosses). 

The solid curve depicts solution (34); ( )1/4
0.48 (2 )L x RaLη = − .

Development of temperature boundary layers near 
sidewalls 

Figure 10 shows the transformation of the temperature profile at 
the interface as the Grashof number Grh increases from 102 to 108. 
At Grh=102, the temperature distribution (solid line in Figure 10) is 
closed to that due to conduction only being nearly linear according 
to relation (2). For larger Grh, the thermal boundary layer develops 
first near the cold wall, x=0, and then near the hot wall, x=4. This 
sequence is physically reasonable since water moves from the hot end 
to the cold end along the interface. As Grh increases, this convection 
transports more heat and thus makes the temperature near the cold 
wall significantly larger than that provided by thermal conduction 
alone. Figure 10 illustrates this development near x=0. 

Figure 10 Distribution of temperature along the interface shows the 
formation of thermal boundary layer near cold, x=0, and hot, x=4, walls as Gr 
increases: Gr=100(solid line), 104(dashes), 105(small dots), 106(bold dots) and 
108(dots and dashes).

Near the hot wall, the interface motion entrains the colder water 
from the depths thus decreasing the temperature below its conduction-
alone value. Figure 10 illustrates this development near x=4. Away 
from the end walls, the temperature remains to be a nearly linear 
function of x, but the / xϑ∂ ∂  value reduces as Grh increases, e.g., 
at x=1 in Figure 10. This change in the temperature distribution 
strengthens (weakens) the buoyancy effect near the vertical walls (in 
the bulk flow), that results in the development first the vertical jets 
discussed above and then jet-like boundary layers near the bottom and 
interface which are discussed below. 

Development of boundary layers near horizontal 
boundaries

The experimental results for single-fluid flows2,4 show that the 
boundary layers also develop near the horizontal walls as Gr increases. 
This development occurs for significantly larger Gr than those at which 
the jets form near the vertical walls. Figure 11 depicts the profile of the 
horizontal velocity u(y) at x=L/2=2 for Grh=100 curve) and 106(dots). 
For convenient comparison of the results at these very different Grh 
values, the velocity is normalized by its magnitude (which is achieved 
at the interface), ( ) i iu u H= where Hi=0.5 here. 

Figure 11 shows that while the u-profiles are remarkably different 
in air, in water they are close for Grh=100 and 106. The air-flow profile 
at Grh=106 agrees with the streamline pattern in Figure 7(B). The 
buoyancy driving dominates over the water driving that makes the 
air velocity maximal magnitude near the top wall close to the water 
velocity maximal magnitude near the bottom. This significant change 
practically does not affects the water velocity showing that the air 
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impact on the water motion is negligible at Hi=0.5. The water u-profile 
at Grh=106 is slightly shifted downward near the bottom compared 
with that at Grh=100. This shift is a precursor of the boundary layer 
development near the bottom for larger Grh described below.

Figure 11 Vertical distribution of normalized horizontal velocity at x = L/2, 
Hi=0.5 and Grh=100 (curve) and 106(dots).

Figure 12 depicts the u-profiles in water only and reveals (A) the 
development of jet-like boundary layers near the bottom and near 
the interface and (B) the velocity reversal near the central stagnation 
point where u=0. These flow features are similar to those observed 
in the experimental2 and numerical5 studies of single-fluid (water) 
convection in a horizontal container. 

Figure 12 Vertical distribution of normalized horizontal velocity in water at 
x=L/2, Hi =0.5 and Grh=107(curve) and 108(dots).

Figure 13 depicts the profile of temperature at x=L/2=2 and 
Grh=100 (curve), 104 (dashes) and 106 (dash-dotted curve) and 
108(dots). Up to Grh=106, the temperature mostly varies in the 
water domain developing a strong stable density stratification as 
Grh increases. Note that as hGr → ∞ , the limiting values of the 
bottom (top) temperature is ( )0.5 0.5ϑ = − . At Grh = 108, the 
vertical variation of temperature in air also becomes remarkable. 
This variation is due to the intensified thermal convection in the air 
domain as Table 1 illustrates. It shows that the characteristic Reynolds 
numbers of horizontal flow of water ( 

max
uh )and air (

max
ul ) are 

moderate even at Grh=107. It is interesting that  h lmax max
u u>>  for 

5 10hGr ≤ , but 6  10h l hmax max
u u at Gr ≥< .

Change in the water flow topology

Figure 14 depicts streamline pattern at Grh=108. The flow topology 
in Figure 14 differs with that shown in Figure 7 (B) in both air and 

water domains. In Figure 7 (B), the air flow has not only the global 
circulation near the domain boundary, but also the eight-figure pattern 
with a saddle stagnation point, connecting the internal circulation 
cells, and two centers within each of the cells. In contrast, the air 
flow is one-cellular in Figure 14. The water flow topology changes 
oppositely: it is one-cellular in Figure 7 (B) while have the eight-
figure pattern in Figure 14. The water pattern shown in Figure 14 is 
topologically identical to that experimentally observed in the single-
fluid convection (Figure 6).4 The emergence of the eight-figure pattern 
in the water flow was numerically described and explained by the jet 
entrainment mechanism.5

Figure 13 Vertical distribution of temperature at x = L/2, Hi =0.5 and 
Grh=100(solid bold line), 104(dashes) and 106(dash-dotted curve) and 108(dots).

Figure 14 (Color online) Streamline patterns at L=4, Hi=0.5, Ma=0 and 
Grh=108.

Flow transformations as ma increases at fixed GR

Here in order to explore the thermal effect of the surface tension, 
we fix Gr=104, L=4,=0.5, and increase Ma.

Peaks of horizontal velocity near the sidewalls 

Figure 15 depicts the horizontal velocity u(x) at the interface 
at Ma=0 (dashed curve) 100(solid curve) and 200 (dots). Since 
the velocity is negative being directed from the hot end to the cold 
end, we show −u for convenient presentation in Figure 15. As Ma 
increases, the velocity magnitude grows away from the sidewalls 
since the Marangoni stresses faster drive the water at the interface. A 
striking feature is that u-velocity peaks develop near the vertical walls 
as Ma increases. 

Temperature boundary layers near the sidewalls

 To better understand physical mechanism of the velocity 
peak development, shown in Figure 15, we depict the temperature 
distribution along the interface in Figure 16. It shows the development 
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of temperature boundary layers near the vertical walls. As Ma 
increases, / xϑ∂ ∂  slightly decreases away from the sidewalls, x = 
0 and x=4, while strongly grows near the sidewalls. The / xϑ∂ ∂  
growth is especially remarkable near the cold wall because the water 
flow transports heat from the hot end to the cold end near the interface. 
This effect of increasing Ma is analogous to that of increasing Gr as 
comparison of Figures 10 & 16 shows. 

Figure 15 Velocity at the interface at Ma =0(dashes) 100(solid curve) and 
200(dots); Grh=104, L=4 and Hi=0.5.

Figure 16 Temperature at the interface at Ma=0(dashed curve) and 100(solid 
curve); Grh=104. L=4 and Hi=0.5.

Since the Marangoni shear stress is proportional to / xϑ∂ ∂  , 
the Marangoni driving focuses near x=0 and x=L resulting in the 
u-velocity peaks shown in Figure 15. The temperature gradient is 
maximal near the cold wall, as Figure 16 illustrates, and accordingly 
the velocity peak near the cold end is larger than that near the hot end 
in Figure 15. Features of the velocity boundary layer near the cold 
wall are discussed below.

Velocity boundary layer near the cold end 

Figure 17 depicts the dependence of the horizontal velocity on the 
interface, normalized by its minimal (maximal-magnitude) value, on 
the scaled distance from the cold sidewall, xMaη = . The results for 
Ma=100 and 200 in the scaled variables nearly merge in a single curve 
in Figure 17 thus revealing the boundary-layer shape and dimension. 
The velocity peak is located at the distance around x=xm=3.4/Ma from 
the cold wall and | |/u x∂ ∂  at x=0 is proportional to Ma2 that limits 
our numerical simulations to moderate Ma values (the symbols in 
Figure 17 also show the grid points).

Figure 17 Merging of the results at Ma=100(squares) and 200(crosses) 
shows the boundary-layer profile of normalized velocity at the interface near 
the cold sidewall.

Transformation of the air flow 

As Ma increases, the water motion intensifies and drives the 
adjacent air flow. This results in the upward expansion of the air cell 
adjusted to the interface and the reduction of the air local cells as 
comparison shows of the streamline patterns at Ma=0 in Figure 18 (A) 
and at Ma=200 in Figure 18 (B).

Figure 18 (Color online) Transformation of flow pattern as Ma increases 
from 0(A) to 200(B).

Stability of the horizontal flow 

First we check our stability code for the horizontal flow by 
comparison of our results with those in Table 2 in Reference26 using 
the same mesh, 131x51, and parameter values, Pr=6.78 and Ax=2.5. 
Our simulations yields Recr1=1548 while Recr1=1430 in Xu J.26 Using 
more grid points does not change our value of Recr1. We estimate this 
check-up as sufficient to the goal of this Section.

It follows from previous studies9,11 that critical Gr is minimal at 
Pr=0. This feature is physically reasonable because temperature 
variation typically results in the stable stratification of density. 
Therefore in order to ease the stability study, we multiply the Pr 
values for air and water by parameter b which varies from 0 to 1. We 
start with b=0, where Pr=0 for both fluids, and eventually increases 
b up to 1.
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We found that at b=0, Ma=0 and Hi=0.5, 
the critical parameters are: Gr=4.75×105, k=0, 

2.88, 20.2, 0,    287r i h max
and uα ω ω= = − = = . Figure 19 

depicts the base-flow velocity ub(y) in the heavy (thin solid curve) and 
light (thin dots) fluid and the critical disturbance kinetic energy Ed(y) 

(bold curve and dots). Here 
22 2 d d dEd u v w= < + + >  where 

the brackets denote averaging with respect to time. Both ub and Ed are 
normalized by their maximal magnitudes for convenient observation 
in one figure. Since Ed significantly drops as y increases from 0.5, 
the instability develops in the heavy-fluid flow. Figure 20 shows that 
the critical value of Gr grows as b increases. For b>0.3, critical GR 
is unbounded. This agrees with the previous results9,11 that the shear-
layer instability is suppressed as Pr increases. We conclude that the 
horizontal flow is stable at this Ma and Hi values.

Figure 19 Profiles of base-flow velocity ub and disturbance kinetic energy Ed 
at critical Gr=4.75×105 at Pr=0, Ma=0 and Hi=0.5.

Figure 20 Growth of critical Gr as Pr increases.

Stability of the two-dimensional convection 

Here we first check our stability code for the two-dimensional 
convection by comparison of our results with those in Table 1.27 Our 
simulations yield Grcr=2917647 for mesh 51 x 51 while Grcr=2908327 
in Ref.27 We consider the agreement being satisfactory.

In the stability study of the two-dimensional convection, we 
fix L=4 and Hi=0.5 to be consistent with the results of Sections 
9 and 10. Figure 21 depicts a typical spectrum of eigenvalues 

6 10r ii at Grω ω ω= + = and Ma=0. The least decaying mode, 
corresponding to the maximal value of iω , has 0rω = , i.e., 
monotonically varies with time (no oscillation). This mode is two-
dimensional, k=0. Table 5 shows that the k=0 mode corresponds to 

the maximal value of iω . Table 2 shows the effect of increasing Gr at 
Ma=0 and k=0. These results look counterintuitive. The value of iω
typically increases with the flow strength resulting in the development 
of instability. In contrast, iω  decreases as Gr increases according 
Table 2. We interpret this paradoxical trend as a result of the stable 
density stratification which strengthens as Gr increases. Based on this 
trend, we do not increase Gr beyond 106 in the stability studies. Table 
3 shows the effect of increasing Ma at Gr=104 and k=0. Here iω  also 
decreases as Ma grows although this trend is weaker than that in the 
case of increasing Gr. The above stability results indicate that the 
convection flow, described in Sections 9 and 10, are stable. 

Table 5 Dependence of stability characteristics on wave number k for the 
monotonic (columns 2 and 3) and time-oscillating (column 4 and 5) least 
decaying modes at Gr=104 

k
 

rω
 

iω
 

rω
 

iω

0 0.00E+00 -0.623 4.5881 -1.5322

1 0.00E+00 -1.982 2.1075 -5.2758

10 0.00E+00 -29.1851 3.0371 -31.328

Table 6 Dependence of ω  eigenvalues on for stationary (columns 4 and 5) 
and oscillatory (columns 6 an 7) disturbances on the grid at Gr=106, Ma=0, 
and k=0 (Table 2) 

nx nyh nyl
 rω

 
 iω

 rω
 iω

141 20 20 0 -3.4943 22.6485 -30.0476

121 25 25 0 -3.495 22.6462 -30.0468

121 20 20 0 -3.4945 22.6485 -30.0478

Table 7 Dependence of  eigenvalues on for stationary (columns 4 and 5) and 
oscillatory (columns 6 an 7) disturbances on the grid at Gr=104, Ma=900, and 
k=0 (Table 3) 

nx nyh nyl
 rω

 iω
 rω

 iω
 141 20 20 0 -1.6582 15.2379 -5.4079

121 20 20 0 -1.6522 15.207 -5.389

121 16 16 0 -1.6738 15.206 -5.2841

Concluding remarks
The main result of this study is that the adiabatic horizontal walls 

make the air-water thermo-gravitational convection stable in the 
horizontally elongated container with lateral heating. To this end, 
we first show that the flow becomes nearly horizontal except in thin 
vicinities of the vertical walls. 

A compact polynomial solution is obtained which describes the 
horizontal convection (Section 6). This solution explicitly shows 
how the number and profile of air and water counter-flows depend 
on (A) the water fraction, (B) the thermal surface-tension effect, 
characterized by the Marangoni number Ma, and (c) the buoyancy 
strength characterized by the Grashof number Gr. 

Next, our numerical simulations describe the development of 
strong vertical jets in the boundary layers near the sidewalls. The 
numerical and analytical results agree away from the sidewalls for 
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small and moderate Gr and Ma (Section 8) that verify both of them. 

Figure 21 Spectrum of eigen values r iiω ω ω= +  at Gr=106 , Ma=0 and 
k=0.

Then jet-like boundary layers develop near the horizontal walls 
as Gr (Section 9) and Ma (Section 10) increase. The jet entrainment 
generates two new cells between the boundary layers in the water 
flow (Section 9). As Ma increases, the Marangoni stresses focus 
near the sidewalls and develop a thin boundary layer near the cold 
end (Section 10). The stability studies of the horizontal (Section 11) 
and two-dimensional (Section 12) flows reveal no instability of the 
steady convection described in Sections 6, 8, 9, and 10. The stability 
is achieved due to the adiabatic walls which provide the favorable 
stratification of water density. The effect of the air motion on the water 
flow is found negligible if the water volume fraction is not very small. 

These results, related to the flow patterns and stability, agree with 
the experimental observations2 and can be utilized for the development 
of efficient heat exchangers. 

Appendix: verification grid‒independence of 
stability results 

To check-up the grid-independence of our stability results, 
we consider two cases presented in Tables 6 & 7. The check-up 
demonstrates that the resolution is good enough providing the 
sufficiently accurate results for the flow stability features.
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