Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 2 Issue 1

Wall properties of peristaltic MHD nanofluid flow through porous channel

Nabil T M El dabe, G M Moatimid, Mohamed A Hassan, Wessam A Godh

Department of Mathematics, Faculty of Education, Ain Shams University, Egypt

Correspondence: Wessam A Godh, Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt, Tel +00 966562098390

Received: August 24, 2017 | Published: February 28, 2018

Citation: El-dabe NTM, Moatimid GM, Hassan MA et al. Wall properties of peristaltic MHD Nanofluid flow through porous channel. Fluid Mech Res Int. 2018;2(1): 00019. DOI: 10.15406/fmrij.2018.02.00019

Download PDF

Abstract

In this article, the magnetohydrodynamic (MHD) peristaltic transport of a nanofluid through porous medium is investigated. The effects of the slip conditions together with the wall properties are taken into account. The traveling wave technique is used to obtain the stream function distribution. Also, the homotopy perturbation method (HPM) is utilized to present the other distributions like; temperature and concentration. Finally, several diagrams are plotted to discuss and interpret the effects of various physical parameters of the considered problem. One of the important results of this paper is the behavior of the nanoparticle concentration with different values of Reynolds number, slip parameter, elasticity parameters, thermophoresis parameter, Hartman number and the Brownian motion parameter.

Keywords: nanofluid, Peristalsis, slip conditions, wall properties, porous medium, Homotopy Perturbation Method (HPM), traveling wave solution.

Introduction

In many physiological situations, peristalsis is used by the body to propel or mix the contents of a tube, for example, in a ureter, gastrointestinal tract, the bile duct and the other glandular ducts. One of the importances of using peristaltic pumping is avoiding use any internal moving parts such as pistons, in the pumping process. Specifically, in the fluid mechanics, the peristaltic motion is the dynamic interaction of flexible boundary with the fluid. Latham1 and Shapiro et al.2 introduced a large amount of information on the peristalsis via theoretical and experimental approaches.

The latest studies in the peristaltic motion can be seen through several articles. Sankad & Patil3 studied the peristaltic flow of Herschel Bulkley fluid in a non-uniform channel with porous lining. Hayat et al.4 studied the effects of homogeneous-heterogeneous reactions with convective boundary conditions on peristaltic transport of third order fluid in a channel. Hayat et al.5 studied the mixed convective peristaltic flow with the effects of Hall current. Kavitha et al.6 analyzed the peristaltic transport of a Jeffrey fluid. Hayat et al.7 studied the effects of convective heat and mass conditions in the peristaltic transport.

Due to vast applications of nanofluids with a high rate of heat transfer in engineering and industrial processes, they have gained the attention of researchers. These kinds of fluids occur in liquids which are containing suspensions of nanoparticles. These particles contain carbides, metals, oxides, carbon nanotubes etc. Initially, the term nanofluid presented by Choi8 as a description of a new approach to enhance the energy performance. Lee et al.9 explained that by an inclusion of nanoparticles in base fluids the nanofluids are devised as an advanced class of fluids such as propylene glycol, ethylene glycol, water, oils, silk fibroin, lubricants, and biofluids. Some of the important applications of nanofluids are in heat transfer, pharmaceutical processes, nuclear reactor coolant, space technology and nuclear reactor coolant. Thus, under different assumptions, the works on nanofluids have been progressed by many researchers.10−12

The slip parameter, according to Navier13, is the proportionality constant between the difference of the velocities of fluid and of the boundary and the shear stress at that boundary. Fluids exhibiting such behavior are related to many applications such as the polishing of artificial heart valves and internal cavities. Recently effects of slip conditions have been investigated by Aly & Ebaid14, and Hayat et al..15 The flow in a compliant channel has many physiological applications. Such as blood flow in arteries and veins, urine flow in the urethras and air flow in the lungs. Hina16 studied peristaltic transport of Eyring–Powell fluid with heat/mass transfer, wall properties and slip conditions. There are several investigations to study the effect of the magnetohydrodynamic (MHD) peristaltic flow of a fluid is of interest in connection with certain problems of the movement of conductive physiological fluids e.g. the blood and blood pump machines. Many researchers have studied MHD peristaltic flow by using different fluids in channel/tubes. Representative attempts in this direction can be mentioned by Refs.17,18

The purpose of the present work is to study the effects of slip conditions, wall properties and porous medium on a magnetohydrodynamic (MHD) peristaltic transport of a nanofluid. The velocity, streamlines, temperature, and nanoparticles concentration distributions were solved through two methods of solutions. The equation of streamlines is solved by using the traveling wave solution method while the equations of the temperature and nanoparticles concentration are solved by using homotopy perturbation method. The results of the streamlines and velocity are compared with the previous results obtained by Srinivas and Gayathri19 graphically. The structure of the present work is as follows: In section 2 we formulate the problem. In section 3 we present steps of solutions by using two methods of solution (3.1 traveling wave solutions and 3.2 homotopy perturbation method). Our discussion of results was presented in Section 4. Finally, in Section 5, we give concluding remarks for this study.

Formulation of the problem

We consider a two-dimensional flexible porous channel of a uniform thickness.
The walls of the channel are taken as a stretched membrane, on which the traveling sinusoidal wave of moderate amplitude is imposed. The following assumptions are made in this investigation:

  1. A magnetic field of strength B0 is considered to be applied parallel to the y-axis.
  2. The fluid is assumed to be of Newtonian, viscous, incompressible and nanofluid.
  3. The motion is assumed to be axisymmetric.
  4. We assume that the characteristic properties of this two-dimensional flow depend on the coordinates(x,y), where the flow direction is taken as the x-axis and the y-axis is vertical.
  5. The motion is assumed to be horizontal and the gravity of earth is neglected to facilitate the solution.
  6. As shown in Figure 1 at the steady state y=±d( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiabg2da9iabgglaXkaadsgadaqadaWdaeaapeGaamiEaaGa ayjkaiaawMcaaaaa@3DE7@ , while in the unsteady state y=±η( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiabg2da9iabgglaXkabeE7aOnaabmaapaqaa8qacaWG4bGa aiilaiaadshaaiaawIcacaGLPaaaaaa@4053@ and the channel wall geometry is represented as:

η( x,t )=d( x )+asin 2π λ * ( x c * t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdG2aaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaa wMcaaiabg2da9iaadsgadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaiabgUcaRiaadggaciGGZbGaaiyAaiaac6gadaWcaaWdaeaapeGa aGOmaiabec8aWbWdaeaapeGaeq4UdW2damaaCaaaleqabaWdbiaacQ caaaaaaOWaaeWaa8aabaWdbiaadIhacqGHsislcaWGJbWdamaaCaaa leqabaWdbiaacQcaaaGccaWG0baacaGLOaGaayzkaaGaaiilaaaa@523B@                                                                         (1)
Where d(x)=d+ Q * x, Q * <<1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaacIcacaWG4bGaaiykaiabg2da9iaadsgacqGHRaWkcaWG rbWdamaaCaaaleqabaWdbiaacQcaaaGccaWG4bGaaiilaiaadgfapa WaaWbaaSqabeaapeGaaiOkaaaakiabgYda8iabgYda8iaaigdacaGG Uaaaaa@454D@
Under the previous assumptions, the basic equations governing the motion for the problem are:
The incompressibility conditions yields
u x + v y =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadIha aaGaey4kaSYaaSaaa8aabaWdbiabgkGi2kaadAhaa8aabaWdbiabgk Gi2kaadMhaaaGaeyypa0JaaGimaiaacYcaaaa@43DD@   (2)
The conversation of momentum gives
ρ[ u t +u u x +v u y ]= p x +μ[ 2 u x 2 + 2 u y 2 ]σ B 0 2 u μ K u, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaWG1baa paqaa8qacqGHciITcaWG0baaaiabgUcaRiaadwhadaWcaaWdaeaape GaeyOaIyRaamyDaaWdaeaapeGaeyOaIyRaamiEaaaacqGHRaWkcaWG 2bWaaSaaa8aabaWdbiabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadM haaaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiab gkGi2kaadchaa8aabaWdbiabgkGi2kaadIhaaaGaey4kaSIaeqiVd0 2aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaa peGaaGOmaaaakiaadwhaa8aabaWdbiabgkGi2kaadIhapaWaaWbaaS qabeaapeGaaGOmaaaaaaGccqGHRaWkdaWcaaWdaeaapeGaeyOaIy7d amaaCaaaleqabaWdbiaaikdaaaGccaWG1baapaqaa8qacqGHciITca WG5bWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLBbGaayzxaaGa eyOeI0Iaeq4WdmNaamOqa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbi aaikdaaaGccaWG1bGaeyOeI0YaaSaaa8aabaWdbiabeY7aTbWdaeaa peGaam4saaaacaWG1bGaaiilaaaa@73DD@                                (3)
And
ρ[ v t +u v x +v v y ]= p y +μ[ 2 v x 2 + 2 v y 2 ] μ K v, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaWG2baa paqaa8qacqGHciITcaWG0baaaiabgUcaRiaadwhadaWcaaWdaeaape GaeyOaIyRaamODaaWdaeaapeGaeyOaIyRaamiEaaaacqGHRaWkcaWG 2bWaaSaaa8aabaWdbiabgkGi2kaadAhaa8aabaWdbiabgkGi2kaadM haaaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiab gkGi2kaadchaa8aabaWdbiabgkGi2kaadMhaaaGaey4kaSIaeqiVd0 2aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaa peGaaGOmaaaakiaadAhaa8aabaWdbiabgkGi2kaadIhapaWaaWbaaS qabeaapeGaaGOmaaaaaaGccqGHRaWkdaWcaaWdaeaapeGaeyOaIy7d amaaCaaaleqabaWdbiaaikdaaaGccaWG2baapaqaa8qacqGHciITca WG5bWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLBbGaayzxaaGa eyOeI0YaaSaaa8aabaWdbiabeY7aTbWdaeaapeGaam4saaaacaWG2b Gaaiilaaaa@6D88@                                              (4)
The conversation of energy results
T t +u T x +v T y =  ( k ρ c f )[ 2 T x 2 + 2 T y 2 ]+( ρ p c p ρ c f )[ D B ( C x T x + C y T y )+ D T T 0 ( ( T x ) 2 + ( T y ) 2 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIyRaamivaaWdaeaapeGaeyOaIyRa amiDaaaacqGHRaWkcaWG1bWaaSaaa8aabaWdbiabgkGi2kaadsfaa8 aabaWdbiabgkGi2kaadIhaaaGaey4kaSIaamODamaalaaapaqaa8qa cqGHciITcaWGubaapaqaa8qacqGHciITcaWG5baaaiabg2da9aqaai aacckadaqadaWdaeaapeWaaSaaa8aabaWdbiaadUgaa8aabaWdbiab eg8aYjaadogapaWaaSbaaSqaa8qacaWGMbaapaqabaaaaaGcpeGaay jkaiaawMcaamaadmaapaqaa8qadaWcaaWdaeaapeGaeyOaIy7damaa CaaaleqabaWdbiaaikdaaaGccaWGubaapaqaa8qacqGHciITcaWG4b WdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSYaaSaaa8aabaWd biabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamivaaWdaeaape GaeyOaIyRaamyEa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaay5w aiaaw2faaiabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaeqyWdi 3damaaBaaaleaapeGaamiCaaWdaeqaaOWdbiaadogapaWaaSbaaSqa a8qacaWGWbaapaqabaaakeaapeGaeqyWdiNaam4ya8aadaWgaaWcba WdbiaadAgaa8aabeaaaaaak8qacaGLOaGaayzkaaWaamWaa8aabaWd biaadseapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeWaaeWaa8aaba Wdbmaalaaapaqaa8qacqGHciITcaWGdbaapaqaa8qacqGHciITcaWG 4baaamaalaaapaqaa8qacqGHciITcaWGubaapaqaa8qacqGHciITca WG4baaaiabgUcaRmaalaaapaqaa8qacqGHciITcaWGdbaapaqaa8qa cqGHciITcaWG5baaamaalaaapaqaa8qacqGHciITcaWGubaapaqaa8 qacqGHciITcaWG5baaaaGaayjkaiaawMcaaiabgUcaRmaalaaapaqa a8qacaWGebWdamaaBaaaleaapeGaamivaaWdaeqaaaGcbaWdbiaads fapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaOWdbmaabmaapaqaa8qa daqadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2kaadsfaa8aabaWdbi abgkGi2kaadIhaaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa ikdaaaGccqGHRaWkdaqadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2k aadsfaa8aabaWdbiabgkGi2kaadMhaaaaacaGLOaGaayzkaaWdamaa CaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDb aacaGGSaaaaaa@A15D@  (5)
The concentration equation presents
C t +u C x +v C y = D B ( 2 C x 2 + 2 C y 2 )+ D T T 0 ( 2 T x 2 + 2 T y 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeaa8aabaWdbiabgkGi2kaadsha aaGaey4kaSIaamyDamaalaaapaqaa8qacqGHciITcaWGdbaapaqaa8 qacqGHciITcaWG4baaaiabgUcaRiaadAhadaWcaaWdaeaapeGaeyOa IyRaam4qaaWdaeaapeGaeyOaIyRaamyEaaaacqGH9aqpcaWGebWdam aaBaaaleaapeGaamOqaaWdaeqaaOWdbmaabmaapaqaa8qadaWcaaWd aeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWGdbaapa qaa8qacqGHciITcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGa ey4kaSYaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYa aaaOGaam4qaaWdaeaapeGaeyOaIyRaamyEa8aadaahaaWcbeqaa8qa caaIYaaaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qaca WGebWdamaaBaaaleaapeGaamivaaWdaeqaaaGcbaWdbiaadsfapaWa aSbaaSqaa8qacaaIWaaapaqabaaaaOWdbmaabmaapaqaa8qadaWcaa WdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWGubaa paqaa8qacqGHciITcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaey4kaSYaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaI YaaaaOGaamivaaWdaeaapeGaeyOaIyRaamyEa8aadaahaaWcbeqaa8 qacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacYcaaaa@72E6@                                   (6)
In according with the axisymmetric motion of the flexible wall, the theory of stretched membrane with viscous damping force is considered. Mitra & Prasad20 suggested the dynamic boundary conditions x L * ( η )= p x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaaeiEaaaacaqG mbWdamaaCaaaleqabaWdbiaabQcaaaGcdaqadaWdaeaapeGaae4Tda GaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacqGHciITcaqGWbaa paqaa8qacqGHciITcaqG4baaaaaa@4541@  at y=±η( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyEaiabg2da9iabgglaXkaabE7adaqadaWdaeaapeGaaeiEaiaa cYcacaqG0baacaGLOaGaayzkaaaaaa@3FDE@ , where L * ( η )=p p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaahaaWcbeqaa8qacaGGQaaaaOWaaeWaa8aabaWdbiab eE7aObGaayjkaiaawMcaaiabg2da9iaadchacqGHsislcaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaaaa@4081@ , and L * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaahaaWcbeqaa8qacaGGQaaaaaaa@3832@  is an operator, which is used to represent the motion of stretched membrane with viscosity damping forces such that L * =τ 2 x 2 + m 1 * 2 t 2 + C v t , τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape qbaeqabeGaaaqaaiaadYeapaWaaWbaaSqabeaapeGaaiOkaaaakiab g2da9iabgkHiTiabes8a0naalaaapaqaa8qacqGHciITpaWaaWbaaS qabeaapeGaaGOmaaaaaOWdaeaapeGaeyOaIyRaamiEa8aadaahaaWc beqaa8qacaaIYaaaaaaakiabgUcaRiaad2gapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaGGQaaaaOWaaSaaa8aabaWdbiabgkGi2+aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGHciITcaWG0bWdamaaCa aaleqabaWdbiaaikdaaaaaaOGaey4kaSIaam4qa8aadaWgaaWcbaWd biaadAhaa8aabeaak8qadaWcaaWdaeaapeGaeyOaIylapaqaa8qacq GHciITcaWG0baaaiaacYcacaaMc8UaaGPaVdqaa8aacqaHepaDaaaa aa@58EB@  is the elastic tension in the membrane,  m 1 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaacQcaaaaaaa@392D@  is the mass per unit area,  C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@3884@ is the coefficient of viscous damping forces and p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3870@  is the pressure on the outside surface of the wall due to tension in the muscles. This tension may be obtained through the constitutive relation of the muscles when the displacements are known. For simplicity, we may ignore the parameter p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3870@ .
Using Eq. (3), we get the compliant wall condition as:
x L * ( η )= p x =μ[ 2 u x 2 + 2 u y 2 ]ρ[ u t +u u x +v u y ]σ B 0 2 u μ K u,at(y=±η) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiEaaaacaWG mbWdamaaCaaaleqabaWdbiaacQcaaaGcdaqadaWdaeaapeGaeq4TdG gacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiabgkGi2kaadcha a8aabaWdbiabgkGi2kaadIhaaaGaeyypa0JaeqiVd02aamWaa8aaba Wdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaa kiaadwhaa8aabaWdbiabgkGi2kaadIhapaWaaWbaaSqabeaapeGaaG OmaaaaaaGccqGHRaWkdaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqa baWdbiaaikdaaaGccaWG1baapaqaa8qacqGHciITcaWG5bWdamaaCa aaleqabaWdbiaaikdaaaaaaaGccaGLBbGaayzxaaGaeyOeI0IaeqyW di3aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaWG1baapaqaa8 qacqGHciITcaWG0baaaiabgUcaRiaadwhadaWcaaWdaeaapeGaeyOa IyRaamyDaaWdaeaapeGaeyOaIyRaamiEaaaacqGHRaWkcaWG2bWaaS aaa8aabaWdbiabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadMhaaaaa caGLBbGaayzxaaGaeyOeI0Iaeq4WdmNaamOqa8aadaqhaaWcbaWdbi aaicdaa8aabaWdbiaaikdaaaGccaWG1bGaeyOeI0YaaSaaa8aabaWd biabeY7aTbWdaeaapeGaam4saaaacaWG1bGaaiilaiaaykW7caGGHb GaaiiDaiaaykW7caGGOaGaamyEaiabg2da9iabgglaXkabeE7aOjaa cMcaaaa@892B@               (7)
To complete the considered boundary-value problem, we must present the appropriate boundary conditions:

T= T 0 ,C= C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc caaMc8Uaaiila8qacaWGdbGaeyypa0Jaam4qa8aadaWgaaWcbaWdbi aaicdaa8aabeaaaaa@4032@ at y= η( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiabg2da9iabgkHiTiaacckacqaH3oaAdaqadaWdaeaapeGa amiEaiaacYcacaWG0baacaGLOaGaayzkaaaaaa@4076@  and T= T 1 ,C= C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIXaaapaqabaGc caaMc8UaaGPaVlaacYcacaaMc8UaaGPaV=qacaWGdbGaeyypa0Jaam 4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@44D5@ , at y= η( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiabg2da9iaacckacqaH3oaAdaqadaWdaeaapeGaamiEaiaa cYcacaWG0baacaGLOaGaayzkaaaaaa@3F89@ . Also we have slip conditions at the walls are defined as:
u=h u y  at y=±η( x,t )=±[ d+ Q * x+asin 2π λ * ( x c * t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyDaiabg2da9iabloHiTjaabIgadaWcaaWdaeaapeGaeyOaIyRa aeyDaaWdaeaapeGaeyOaIyRaaeyEaaaacaqGGcGaaeyyaiaabshaca qGGcGaaeyEaiabg2da9iabgglaXkaabE7adaqadaWdaeaapeGaaeiE aiaacYcacaqG0baacaGLOaGaayzkaaGaeyypa0JaeyySae7aamWaa8 aabaWdbiaabsgacqGHRaWkcaqGrbWdamaaCaaaleqabaWdbiaabQca aaGccaqG4bGaey4kaSIaaeyyaiGacohacaGGPbGaaiOBamaalaaapa qaa8qacaaIYaGaaeiWdaWdaeaapeGaae4Ud8aadaahaaWcbeqaa8qa caqGQaaaaaaakmaabmaapaqaa8qacaqG4bGaeyOeI0Iaae4ya8aada ahaaWcbeqaa8qacaqGQaaaaOGaaeiDaaGaayjkaiaawMcaaaGaay5w aiaaw2faaaaa@666B@                           (8)
In the above equations and conditions u and v are the velocity components along the x and y directions respectively. d is the mean half width of the channel, a is the amplitude, λ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaCaaaleqabaWdbiaacQcaaaaaaa@3915@ is the wavelength, c * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaahaaWcbeqaa8qacaGGQaaaaaaa@3849@ is the phase speed of the wave, Q * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaahaaWcbeqaa8qacaGGQaaaaaaa@3837@ is the dimensional non-uniformity of channel, ρ,  ρ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaaiilaiaacckacqaHbpGCpaWaaSbaaSqaa8qacaWGWbaa paqabaaaaa@3D0A@  are the density of the fluid and the particle respectively, c f , c p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaGGSaGaam4y a8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3B95@ are the volumetric volume expansion of the fluid and the particle respectively, p is the pressure, μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@381D@  is the coefficient of viscosity of the fluid, σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@382A@  is the fluid electrical conductivity, B0 is the applied magnetic field, K is the permeability of the porous medium, k is the thermal conductivity of the fluid, T is the temperature, DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, the heat transfer and nanoparticle processes are maintained by considering temperatures T0,T1and nanoparticle phenomena C 0 ,  C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaaiiO aiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@3C0E@  to the walls of the channel at y=ηandη MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiabg2da9iabeE7aOjaaykW7caaMc8Uaamyyaiaad6gacaWG KbGaaGPaVlaaykW7caGGtaIaeq4TdGgaaa@4568@ , respectively, and h is the dimensional slip parameter.

Introducing a stream function ψasu= ψ y andv= ψ x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKNaaGPaVlaaykW7caqGHbGaae4CaiaaykW7caqG1bGaeyyp a0ZaaSaaa8aabaWdbiabgkGi2kabeI8a5bWdaeaapeGaeyOaIyRaae yEaaaacaaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8Ua aeODaiabg2da9iabgkHiTmaalaaapaqaa8qacqGHciITcqaHipqEa8 aabaWdbiabgkGi2kaabIhaaaaaaa@5849@  and by using the following non-dimensional quantities:
x = x λ * ,     y = y d ,    ψ = ψ  c * d ,   θ= T T 0 T 1 T 0 ,   Ω= C C 0 C 1 C 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqba8qacqGH9aqpdaWcaaWdaeaapeGaamiEaaWdaeaa peGaeq4UdW2damaaCaaaleqabaWdbiaacQcaaaaaaOGaaiilaiaacc kacaGGGcGaaiiOaiaacckaceWG5bWdayaafaWdbiabg2da9maalaaa paqaa8qacaWG5baapaqaa8qacaWGKbaaaiaacYcacaGGGcGaaiiOai aacckacuaHipqEpaGbauaapeGaeyypa0ZaaSaaa8aabaWdbiabeI8a 5jaacckaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaaiOkaaaaki aadsgaaaGaaiilaiaacckacaGGGcGaaiiOaiabeI7aXjabg2da9maa laaapaqaa8qacaWGubGaeyOeI0Iaamiva8aadaWgaaWcbaWdbiaaic daa8aabeaaaOqaa8qacaWGubWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgkHiTiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaO WdbiaacYcacaGGGcGaaiiOaiaaykW7caaMc8UaaiiOaiaabM6acqGH 9aqpdaWcaaWdaeaapeGaam4qaiabgkHiTiaadoeapaWaaSbaaSqaa8 qacaaIWaaapaqabaaakeaapeGaam4qa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHsislcaWGdbWdamaaBaaaleaapeGaaGimaaWdae qaaaaak8qacaGGSaaaaa@7607@
η = η d ,    p = d 2 p c * λ * μ ,    K ' = K d 2 ,   α= k ρ c f ,    N b = ρ c p D B ( C 1 C 0 ) ρ c f α ,β= h d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafq4TdG2dayaafaWdbiabg2da9maalaaapaqaa8qacqaH3oaAa8aa baWdbiaadsgaaaGaaiilaiaacckacaGGGcGaaiiOaiqadchapaGbau aapeGaeyypa0ZaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaapeGa aGOmaaaakiaadchaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaai OkaaaakiabeU7aS9aadaahaaWcbeqaa8qacaGGQaaaaOGaeqiVd0ga aiaacYcacaGGGcGaaiiOaiaacckacaWGlbWdamaaCaaaleqabaWdbi aacEcaaaGccqGH9aqpdaWcaaWdaeaapeGaam4saaWdaeaapeGaamiz a8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaacYcacaGGGcGaaiiOai aacckacqaHXoqycqGH9aqpdaWcaaWdaeaapeGaam4AaaWdaeaapeGa eqyWdiNaam4ya8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaGcpeGaai ilaiaacckacaGGGcGaaGPaVlaaykW7caGGGcGaamOta8aadaWgaaWc baWdbiaadkgaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaeqyWdi Naam4ya8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacaWGebWdamaa BaaaleaapeGaamOqaaWdaeqaaOWdbmaabmaapaqaa8qacaWGdbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadoeapaWaaSba aSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacq aHbpGCcaWGJbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabeg7a HbaacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlabek7aIjabg2da9m aalaaapaqaa8qacaWGObaapaqaa8qacaWGKbaaaiaacYcaaaa@8B5B@
N t = ρ c p D T ( T 1 T 0 ) ρ c f α T 0 ,     M 2 = σ B 0 2 d 2 μ ,   ν= μ ρ ,   Pr= ν α ,   Sc= ν D B ,   R= c * dρ μ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeqyWdiNaam4ya8aadaWgaaWcbaWdbiaadchaa8aabe aak8qacaWGebWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbmaabmaa paqaa8qacaWGubWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgk HiTiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGa ayzkaaaapaqaa8qacqaHbpGCcaWGJbWdamaaBaaaleaapeGaamOzaa WdaeqaaOWdbiabeg7aHjaadsfapaWaaSbaaSqaa8qacaaIWaaapaqa baaaaOWdbiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaamyta8aada ahaaWcbeqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiabeo8a ZjaadkeapaWaa0baaSqaa8qacaaIWaaapaqaa8qacaaIYaaaaOGaam iza8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqaH8oqBaaGa aiilaiaacckacaGGGcGaaiiOaiabe27aUjabg2da9maalaaapaqaa8 qacqaH8oqBa8aabaWdbiabeg8aYbaacaGGSaGaaiiOaiaacckacaGG GcGaamiuaiaadkhacqGH9aqpdaWcaaWdaeaapeGaeqyVd4gapaqaa8 qacqaHXoqyaaGaaiilaiaacckacaGGGcGaaiiOaiaadofacaWGJbGa eyypa0ZaaSaaa8aabaWdbiabe27aUbWdaeaapeGaamira8aadaWgaa WcbaWdbiaadkeaa8aabeaaaaGcpeGaaiilaiaacckacaGGGcGaaiiO aiaaykW7caWGsbGaeyypa0ZaaSaaa8aabaWdbiaadogapaWaaWbaaS qabeaapeGaaiOkaaaakiaadsgacqaHbpGCa8aabaWdbiabeY7aTbaa caGGSaaaaa@8DFB@
ε= a d ,  δ= d λ * ,   E 1 = τ d 3 λ * 3 μ c * ,  E 2 = m 1 * c * d 3 λ * 3 μ ,   E 3 = C v d 3 λ * 2 μ  and Q= λ * Q * d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0ZaaSaaa8aabaWdbiaadggaa8aabaWdbiaadsga aaGaaiilaiaacckacaGGGcGaeqiTdqMaeyypa0ZaaSaaa8aabaWdbi aadsgaa8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacaGGQaaaaaaa kiaacYcacaGGGcGaaiiOaiaadweapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaeyypa0ZaaSaaa8aabaWdbiabgkHiTiabes8a0jaadsga paWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaapeGaeq4UdW2damaaCa aaleqabaWdbiaacQcaaaGcpaWaaWbaaSqabeaapeGaaG4maaaakiab eY7aTjaadogapaWaaWbaaSqabeaapeGaaiOkaaaaaaGccaGGSaGaai iOaiaadweapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0Za aSaaa8aabaWdbiaad2gapaWaa0baaSqaa8qacaaIXaaapaqaa8qaca GGQaaaaOGaam4ya8aadaahaaWcbeqaa8qacaGGQaaaaOGaamiza8aa daahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacqaH7oaBpaWaaWbaaS qabeaapeGaaiOkaaaak8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqiV d0gaaiaacYcacaGGGcGaaiiOaiaadweapaWaaSbaaSqaa8qacaaIZa aapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaadoeapaWaaSbaaSqa a8qacaWG2baapaqabaGcpeGaamiza8aadaahaaWcbeqaa8qacaaIZa aaaaGcpaqaa8qacqaH7oaBpaWaaWbaaSqabeaapeGaaiOkaaaak8aa daahaaWcbeqaa8qacaaIYaaaaOGaeqiVd0gaaiaacckacaqGHbGaae OBaiaabsgacaqGGcGaamyuaiabg2da9maalaaapaqaa8qacqaH7oaB paWaaWbaaSqabeaapeGaaiOkaaaakiaadgfapaWaaWbaaSqabeaape GaaiOkaaaaaOWdaeaapeGaamizaaaacaGGUaaaaa@85D2@                           (9)
Where ε,δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaaiilaiabes7aKbaa@3A63@  are geometric parameters, R is the Reynolds number, M is the Hartman number, E1,E2,E3 are the non-dimensional elasticity parameters, Pr is the Prandtl number, Q is non-uniformity parameter, β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3808@  is the Knudsen number (slip parameter), Sc Schmidt number, Nb is the Brownian motion parameter, Nt is the thermophoresis parameter and K is the permeability parameter.

Figure 1 Geometry of the problem.

Now, in analogy with the definition of the stream function ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@3835@  together with the dimensionless quantities as given in (9), the governing equations of motion given:
Rδ[ 2 ψ ty + ψ y 2 ψ xy ψ x 2 ψ y 2 ]= p x + δ 2 3 ψ x 2 y + 3 ψ y 3 N 2 ψ y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabes7aKnaadmaapaqaa8qadaWcaaWdaeaapeGaeyOaIy7d amaaCaaaleqabaWdbiaaikdaaaGccaqGipaapaqaa8qacqGHciITca qG0bGaeyOaIyRaaeyEaaaacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRa aeiYdaWdaeaapeGaeyOaIyRaaeyEaaaadaWcaaWdaeaapeGaeyOaIy 7damaaCaaaleqabaWdbiaaikdaaaGccaqGipaapaqaa8qacqGHciIT caqG4bGaeyOaIyRaaeyEaaaacqGHsisldaWcaaWdaeaapeGaeyOaIy RaaeiYdaWdaeaapeGaeyOaIyRaaeiEaaaadaWcaaWdaeaapeGaeyOa Iy7damaaCaaaleqabaWdbiaaikdaaaGccaqGipaapaqaa8qacqGHci ITcaqG5bWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLBbGaayzx aaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiabgkGi2kaadchaa8aaba WdbiabgkGi2kaadIhaaaGaey4kaSIaaeiTd8aadaahaaWcbeqaa8qa caaIYaaaaOWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qaca aIZaaaaOGaaeiYdaWdaeaapeGaeyOaIyRaaeiEa8aadaahaaWcbeqa a8qacaaIYaaaaOGaeyOaIyRaaeyEaaaacqGHRaWkdaWcaaWdaeaape GaeyOaIy7damaaCaaaleqabaWdbiaaiodaaaGccaqGipaapaqaa8qa cqGHciITcaqG5bWdamaaCaaaleqabaWdbiaaiodaaaaaaOGaeyOeI0 IaaeOta8aadaahaaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiab gkGi2kaabI8aa8aabaWdbiabgkGi2kaabMhaaaGaaiilaaaa@8622@                (10)
R δ 3 [ 2 ψ tx + ψ y 2 ψ x 2 ψ x 2 ψ xy ]= p x + δ 2 [ δ 2 3 ψ y 3 + 3 ψ x y 2 ] δ 2 K ψ y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaabs7apaWaaWbaaSqabeaapeGaaG4maaaakmaadmaapaqa a8qadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaa GccaqGipaapaqaa8qacqGHciITcaqG0bGaeyOaIyRaaeiEaaaacqGH RaWkdaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIyRaae yEaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikda aaGccaqGipaapaqaa8qacqGHciITcaqG4bWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiabgkGi2kaabI8aa8aa baWdbiabgkGi2kaabIhaaaWaaSaaa8aabaWdbiabgkGi2+aadaahaa Wcbeqaa8qacaaIYaaaaOGaaeiYdaWdaeaapeGaeyOaIyRaaeiEaiab gkGi2kaabMhaaaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0YaaSaaa8 aabaWdbiabgkGi2kaadchaa8aabaWdbiabgkGi2kaadIhaaaGaey4k aSIaaeiTd8aadaahaaWcbeqaa8qacaaIYaaaaOWaamWaa8aabaWdbi aabs7apaWaaWbaaSqabeaapeGaaGOmaaaakmaalaaapaqaa8qacqGH ciITpaWaaWbaaSqabeaapeGaaG4maaaakiaabI8aa8aabaWdbiabgk Gi2kaabMhapaWaaWbaaSqabeaapeGaaG4maaaaaaGccqGHRaWkdaWc aaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaiodaaaGccaqGip aapaqaa8qacqGHciITcaqG4bGaeyOaIyRaaeyEa8aadaahaaWcbeqa a8qacaaIYaaaaaaaaOGaay5waiaaw2faaiabgkHiTmaalaaapaqaa8 qacaqG0oWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaabUea aaWaaSaaa8aabaWdbiabgkGi2kaabI8aa8aabaWdbiabgkGi2kaabM haaaGaaiilaaaa@8CAA@                                             (11)
RP r δ( θ t + ψ y θ x ψ x θ y )= δ 2 ( 2 θ x 2 + N b Ω x θ x + N t ( θ x ) 2 )+( 2 θ y 2 + N b Ω y θ y +  N t ( θ y ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabcfapaWaaSbaaSqaa8qacaqGYbaapaqabaGcpeGaaeiT dmaabmaapaqaa8qadaWcaaWdaeaapeGaeyOaIyRaaeiUdaWdaeaape GaeyOaIyRaaeiDaaaacqGHRaWkdaWcaaWdaeaapeGaeyOaIyRaaeiY daWdaeaapeGaeyOaIyRaaeyEaaaadaWcaaWdaeaapeGaeyOaIyRaae iUdaWdaeaapeGaeyOaIyRaaeiEaaaacqGHsisldaWcaaWdaeaapeGa eyOaIyRaaeiYdaWdaeaapeGaeyOaIyRaaeiEaaaadaWcaaWdaeaape GaeyOaIyRaaeiUdaWdaeaapeGaeyOaIyRaaeyEaaaaaiaawIcacaGL PaaacqGH9aqpcaqG0oWdamaaCaaaleqabaWdbiaaikdaaaGcdaqada WdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaI YaaaaOGaaeiUdaWdaeaapeGaeyOaIyRaaeiEa8aadaahaaWcbeqaa8 qacaaIYaaaaaaakiabgUcaRiaab6eapaWaaSbaaSqaa8qacaqGIbaa paqabaGcpeWaaSaaa8aabaWdbiabgkGi2kaabM6aa8aabaWdbiabgk Gi2kaabIhaaaWaaSaaa8aabaWdbiabgkGi2kaabI7aa8aabaWdbiab gkGi2kaabIhaaaGaey4kaSIaaeOta8aadaWgaaWcbaWdbiaabshaa8 aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2kaabI7a a8aabaWdbiabgkGi2kaabIhaaaaacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaa peWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaO GaaeiUdaWdaeaapeGaeyOaIyRaaeyEa8aadaahaaWcbeqaa8qacaaI YaaaaaaakiabgUcaRiaab6eapaWaaSbaaSqaa8qacaqGIbaapaqaba GcpeWaaSaaa8aabaWdbiabgkGi2kaabM6aa8aabaWdbiabgkGi2kaa bMhaaaWaaSaaa8aabaWdbiabgkGi2kaabI7aa8aabaWdbiabgkGi2k aabMhaaaGaey4kaSIaaeiOaiaab6eapaWaaSbaaSqaa8qacaqG0baa paqabaGcpeWaaeWaa8aabaWdbmaalaaapaqaa8qacqGHciITcaqG4o aapaqaa8qacqGHciITcaqG5baaaaGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaaaa@A21A@  (12)
RScδ( Ω t + Ω x ψ y Ω y ψ x )= δ 2 ( 2 Ω x 2 + N t N b 2 θ x 2 )+( 2 Ω y 2 + N t N b 2 θ y 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabofacaqGJbGaaeiTdmaabmaapaqaa8qadaWcaaWdaeaa peGaeyOaIyRaaeyQdaWdaeaapeGaeyOaIyRaaeiDaaaacqGHRaWkda WcaaWdaeaapeGaeyOaIyRaaeyQdaWdaeaapeGaeyOaIyRaaeiEaaaa daWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIyRaaeyEaa aacqGHsisldaWcaaWdaeaapeGaeyOaIyRaaeyQdaWdaeaapeGaeyOa IyRaaeyEaaaadaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaey OaIyRaaeiEaaaaaiaawIcacaGLPaaacqGH9aqpcaqG0oWdamaaCaaa leqabaWdbiaaikdaaaGcdaqadaWdaeaapeWaaSaaa8aabaWdbiabgk Gi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaaeyQdaWdaeaapeGaeyOa IyRaaeiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRmaala aapaqaa8qacaqGobWdamaaBaaaleaapeGaaeiDaaWdaeqaaaGcbaWd biaab6eapaWaaSbaaSqaa8qacaqGIbaapaqabaaaaOWdbmaalaaapa qaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaabI7aa8aa baWdbiabgkGi2kaabIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaki aawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeWaaSaaa8aabaWdbiab gkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaaeyQdaWdaeaapeGaey OaIyRaaeyEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRmaa laaapaqaa8qacaqGobWdamaaBaaaleaapeGaaeiDaaWdaeqaaaGcba Wdbiaab6eapaWaaSbaaSqaa8qacaqGIbaapaqabaaaaOWdbmaalaaa paqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaabI7aa8 aabaWdbiabgkGi2kaabMhapaWaaWbaaSqabeaapeGaaGOmaaaaaaaa kiaawIcacaGLPaaaaaa@886A@                                            (13)
In addition, the related boundary conditions yield:
ψ y =β 2 ψ y 2      at    y=±η( x,t )=±[1+Qx+εsin2π( xt )], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kabeI8a5bWdaeaapeGaeyOaIyRaamyE aaaacqGH9aqpcqWItisBcqaHYoGydaWcaaWdaeaapeGaeyOaIy7dam aaCaaaleqabaWdbiaaikdaaaGccqaHipqEa8aabaWdbiabgkGi2kaa dMhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaadggacaWG0bGaaiiOaiaacckacaGGGcGaaiiO aiaadMhacqGH9aqpcqGHXcqScqaH3oaAdaqadaWdaeaapeGaamiEai aacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaeyySaeRaai4waiaa igdacqGHRaWkcaWGrbGaamiEaiabgUcaRiabew7aLjGacohacaGGPb GaaiOBaiaaikdacqaHapaCdaqadaWdaeaapeGaamiEaiabgkHiTiaa dshaaiaawIcacaGLPaaacaGGDbGaaiilaaaa@7379@                                                            (14)
δ 2 3 ψ x 2 y + 3 ψ y 3 ( 2 ψ ty + ψ y 2 ψ xy ψ x 2 ψ y 2 ) N 2 ψ y =[ E 1 3 x 3 + E 2 3 x t 2 E 3 2 xt ]η( x,t ) aty=±η( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqG0oWdamaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaa peGaeyOaIy7damaaCaaaleqabaWdbiaaiodaaaGccaqGipaapaqaa8 qacqGHciITcaqG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHciIT caqG5baaaiabgUcaRmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabe aapeGaaG4maaaakiaabI8aa8aabaWdbiabgkGi2kaabMhapaWaaWba aSqabeaapeGaaG4maaaaaaGccqGHsislcaqGsbGaaeiTdmaabmaapa qaa8qadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikda aaGccaqGipaapaqaa8qacqGHciITcaqG0bGaeyOaIyRaaeyEaaaacq GHRaWkdaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIyRa aeyEaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaik daaaGccaqGipaapaqaa8qacqGHciITcaqG4bGaeyOaIyRaaeyEaaaa cqGHsisldaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIy RaaeiEaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaa ikdaaaGccaqGipaapaqaa8qacqGHciITcaqG5bWdamaaCaaaleqaba WdbiaaikdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaaeOta8aadaah aaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiabgkGi2kaabI8aa8 aabaWdbiabgkGi2kaabMhaaaGaeyypa0ZaamWaa8aabaWdbiaabwea paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeWaaSaaa8aabaWdbiabgk Gi2+aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacqGHciITcaqG 4bWdamaaCaaaleqabaWdbiaaiodaaaaaaOGaey4kaSIaaeyra8aada WgaaWcbaWdbiaaikdaa8aabeaak8qadaWcaaWdaeaapeGaeyOaIy7d amaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiabgkGi2kaabIhacq GHciITcaqG0bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaeyra8aa daWgaaWcbaWdbiaaiodaa8aabeaak8qadaWcaaWdaeaapeGaeyOaIy 7damaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkGi2kaabIha cqGHciITcaqG0baaaaGaay5waiaaw2faaiaabE7adaqadaWdaeaape GaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaaabaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaaeyyaiaabshaca aMc8UaaGPaVlaadMhacqGH9aqpcqGHXcqScqaH3oaAdaqadaWdaeaa peGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaaGPaVdaaaa@D2D4@     (15)
where N 2 = M 2 + 1 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0Jaamyta8aa daahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaSaaa8aabaWdbiaaig daa8aabaWdbiaabUeaaaaaaa@3DEF@ . More, it is assumed that the zero value of the streamline at the line y=0,19
ψ( x,y,t )=0    at     y=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0JaaGimaiaacckacaGGGcGaaiiOai aacckacaWGHbGaamiDaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa amyEaiabg2da9iaaicdacaGGSaaaaa@4F82@ (16)
θ( x,y,t )=Ω( x,y,t )=0       at   y=η( x,t )        θ( x,y,t )=Ω( x,y,t )=1        at   y=η( x,t )           MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqaceaaae aaqaaaaaaaaaWdbiabeI7aXnaabmaapaqaa8qacaWG4bGaaiilaiaa dMhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iabfM6axnaabm aapaqaa8qacaWG4bGaaiilaiaadMhacaGGSaGaamiDaaGaayjkaiaa wMcaaiabg2da9iaaicdacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaamyyaiaadshacaGGGcGaaiiOaiaacckacaWG5bGa eyypa0JaeyOeI0Iaeq4TdG2aaeWaa8aabaWdbiaadIhacaGGSaGaam iDaaGaayjkaiaawMcaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckaa8aabaWdbiabeI7aXnaabmaapaqaa8qacaWG4bGaai ilaiaadMhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iabfM6a xnaabmaapaqaa8qacaWG4bGaaiilaiaadMhacaGGSaGaamiDaaGaay jkaiaawMcaaiabg2da9iaaigdacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaadggacaWG0bGaaiiOaiaacckaca GGGcGaamyEaiabg2da9iabeE7aOnaabmaapaqaa8qacaWG4bGaaiil aiaadshaaiaawIcacaGLPaaacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaaaa@9A97@                                                                                (17)
The eliminating of pressure between equations (10), (11) and evaluating (15) yield the following equations:
Rδ 3 ψ t y 2 R δ 3 3 ψ t x 2 +Rδ ψ y 3 ψ x y 2 R δ 3 3 ψ x 3 Rδ ψ x 3 ψ y 3 +R δ 3 ψ x 3 ψ x 2 y =    4 ψ y 4 δ 4    4 ψ x 4 N 2 2 ψ y 2 + δ 2 K 2 ψ xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGsbGaeqiTdq2aaSaaa8aabaWdbiabgkGi2+aadaahaaWc beqaa8qacaaIZaaaaOGaaeiYdaWdaeaapeGaeyOaIyRaaeiDaiabgk Gi2kaabMhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHsislcaWG sbGaaeiTd8aadaahaaWcbeqaa8qacaaIZaaaaOWaaSaaa8aabaWdbi abgkGi2+aadaahaaWcbeqaa8qacaaIZaaaaOGaaeiYdaWdaeaapeGa eyOaIyRaaeiDaiabgkGi2kaabIhapaWaaWbaaSqabeaapeGaaGOmaa aaaaGccqGHRaWkcaWGsbGaeqiTdq2aaSaaa8aabaWdbiabgkGi2kab eI8a5bWdaeaapeGaeyOaIyRaamyEaaaadaWcaaWdaeaapeGaeyOaIy 7damaaCaaaleqabaWdbiaaiodaaaGccaqGipaapaqaa8qacqGHciIT caqG4bGaeyOaIyRaaeyEa8aadaahaaWcbeqaa8qacaaIYaaaaaaaki abgkHiTiaadkfacaqG0oWdamaaCaaaleqabaWdbiaaiodaaaGcdaWc aaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaiodaaaGccaqGip aapaqaa8qacqGHciITcaqG4bWdamaaCaaaleqabaWdbiaaiodaaaaa aOGaeyOeI0IaamOuaiabes7aKnaalaaapaqaa8qacqGHciITcqaHip qEa8aabaWdbiabgkGi2kaadIhaaaWaaSaaa8aabaWdbiabgkGi2+aa daahaaWcbeqaa8qacaaIZaaaaOGaaeiYdaWdaeaapeGaeyOaIyRaae yEa8aadaahaaWcbeqaa8qacaaIZaaaaaaakiabgUcaRiaadkfacaqG 0oWdamaaCaaaleqabaWdbiaaiodaaaGcdaWcaaWdaeaapeGaeyOaIy RaeqiYdKhapaqaa8qacqGHciITcaWG4baaamaalaaapaqaa8qacqGH ciITpaWaaWbaaSqabeaapeGaaG4maaaakiaabI8aa8aabaWdbiabgk Gi2kaabIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkGi2kaabMha aaGaeyypa0dabaGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaacckadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqa baWdbiaaisdaaaGccaqGipaapaqaa8qacqGHciITcaqG5bWdamaaCa aaleqabaWdbiaaisdaaaaaaOGaeyOeI0IaaeiTd8aadaahaaWcbeqa a8qacaaI0aaaaOGaaiiOaiaacckadaWcaaWdaeaapeGaeyOaIy7dam aaCaaaleqabaWdbiaaisdaaaGccaqGipaapaqaa8qacqGHciITcaqG 4bWdamaaCaaaleqabaWdbiaaisdaaaaaaOGaeyOeI0IaamOta8aada ahaaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiabgkGi2+aadaah aaWcbeqaa8qacaaIYaaaaOGaaeiYdaWdaeaapeGaeyOaIyRaaeyEa8 aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRmaalaaapaqaa8qa caqG0oWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadUeaaa WaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGa aeiYdaWdaeaapeGaeyOaIyRaaeiEaiabgkGi2kaabMhaaaaaaaa@7CC7@   (18)
δ 2 3 ψ x 2 y + 3 ψ y 3 ( 2 ψ ty + ψ y 2 ψ xy ψ x 2 ψ y 2 ) N 2 ψ y = 8 π 3 ϵ( E 1 + E 2 )cos2π( xt )+4 π 2 ϵ E 3 sin2π( xt )aty=±η) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqG0oWdamaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaa peGaeyOaIy7damaaCaaaleqabaWdbiaaiodaaaGccaqGipaapaqaa8 qacqGHciITcaqG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHciIT caqG5baaaiabgUcaRmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabe aapeGaaG4maaaakiaabI8aa8aabaWdbiabgkGi2kaabMhapaWaaWba aSqabeaapeGaaG4maaaaaaGccqGHsislcaqGsbGaaeiTdmaabmaapa qaa8qadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikda aaGccaqGipaapaqaa8qacqGHciITcaqG0bGaeyOaIyRaaeyEaaaacq GHRaWkdaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIyRa aeyEaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaik daaaGccaqGipaapaqaa8qacqGHciITcaqG4bGaeyOaIyRaaeyEaaaa cqGHsisldaWcaaWdaeaapeGaeyOaIyRaaeiYdaWdaeaapeGaeyOaIy RaaeiEaaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaa ikdaaaGccaqGipaapaqaa8qacqGHciITcaqG5bWdamaaCaaaleqaba WdbiaaikdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaaeOta8aadaah aaWcbeqaa8qacaaIYaaaaOWaaSaaa8aabaWdbiabgkGi2kaabI8aa8 aabaWdbiabgkGi2kaabMhaaaGaeyypa0dabaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHsislcaaI4aGaeqiWda3damaaCaaaleqabaWdbiaaio daaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGakiab =v=aYpaabmaapaqaa8qacaWGfbWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiabgUcaRiaadweapaWaaSbaaSqaa8qacaaIYaaapaqabaaa k8qacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaaGOmaiabec8aWn aabmaapaqaa8qacaWG4bGaeyOeI0IaamiDaaGaayjkaiaawMcaaiab gUcaRiaaisdacqaHapaCpaWaaWbaaSqabeaapeGaaGOmaaaakiab=v =aYlaadweapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaci4Caiaa cMgacaGGUbGaaGOmaiabec8aWnaabmaapaqaa8qacaWG4bGaeyOeI0 IaamiDaaGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGHbGaamiDaiaaykW7caaMc8UaamyE aiabg2da9iabgglaXkabeE7aOjaacMcaaaaa@F505@                                                  (19)

Now, the previous system of equations (12-19) will be solved in the next sections.

Method of solution

Traveling wave solutions

The main advantage of this method is that we can construct exact solutions of higher order nonlinear evolution equations more effectively in comparison with other methods21. To obtain the solution of the streamlines in Eq. (18) we seek the traveling wave solution in the form
ψ( x,y,t )=f( ξ )   :   ξ=x+yλt,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0JaamOzamaabmaapaqaa8qacqaH+o aEaiaawIcacaGLPaaacaGGGcGaaiiOaiaacckacaGG6aGaaiiOaiaa cckacaGGGcGaeqOVdGNaeyypa0JaamiEaiabgUcaRiaadMhacqGHsi slcqaH7oaBcaWG0bGaaiilaiaacckaaaa@5637@                                                                                                      (20)
Where λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381B@  is the wave speed.
Then
ψ x = df dξ ξ x = f ( ξ ),    ψ y = df dξ ξ y = f ( ξ ),    ψ t = df dξ ξ t =λ f ( ξ ),  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3damaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaWGKbGaamOzaaWdaeaapeGaamizaiabe67a4baada WcaaWdaeaapeGaeyOaIyRaeqOVdGhapaqaa8qacqGHciITcaWG4baa aiabg2da9iqadAgapaGbauaapeWaaeWaa8aabaWdbiabe67a4bGaay jkaiaawMcaaiaacYcacaGGGcGaaiiOaiaacckacqaHipqEpaWaaSba aSqaa8qacaWG5baapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaads gacaWGMbaapaqaa8qacaWGKbGaeqOVdGhaamaalaaapaqaa8qacqGH ciITcqaH+oaEa8aabaWdbiabgkGi2kaadMhaaaGaeyypa0JabmOza8 aagaqba8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaaGaaiil aiaacckacaGGGcGaaiiOaiabeI8a59aadaWgaaWcbaWdbiaadshaa8 aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaamizaiaadAgaa8aabaWd biaadsgacqaH+oaEaaWaaSaaa8aabaWdbiabgkGi2kabe67a4bWdae aapeGaeyOaIyRaamiDaaaacqGH9aqpcqGHsislcqaH7oaBceWGMbWd ayaafaWdbmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacaGGSa GaaiiOaaaa@806A@                                                 (21)
From Eq. (20), (21) in Eq. (11) we obtain an ordinary differential equation as follows:
f '''' ( ξ )+A f ( ξ )+B f ( ξ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaGGNaGaai4jaiaacEcacaGGNaaa aOWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaiabgUcaRiaadg eaceWGMbWdayaasaWdbmaabmaapaqaa8qacqaH+oaEaiaawIcacaGL PaaacqGHRaWkcaWGcbGabmOza8aagaGba8qadaqadaWdaeaapeGaeq OVdGhacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@4BE0@                                                                                                               (22)
Choose V( ξ )such that V( ξ )= d 2 f d ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacaqGZbGa aeyDaiaabogacaqGObGaaeiOaiaabshacaqGObGaaeyyaiaabshaca qGGcGaamOvamaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaWcaaWdaeaapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaO GaamOzaaWdaeaapeGaamizaiabe67a49aadaahaaWcbeqaa8qacaaI Yaaaaaaaaaa@50A3@  and substituting into Eq. (22) we get
V ( ξ )+A V ( ξ )+BV( ξ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOva8aagaGba8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaGaey4kaSIaamyqaiqadAfapaGbauaapeWaaeWaa8aabaWdbiabe6 7a4bGaayjkaiaawMcaaiabgUcaRiaadkeacaWGwbWaaeWaa8aabaWd biabe67a4bGaayjkaiaawMcaaiabg2da9iaaicdaaaa@48A1@                                                                                                                (23)
which have the solution
V(ξ)= M 1 e m1ξ + M 2 e m2ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaacIcacqaH+oaEcaGGPaGaeyypa0JaamytamaaBaaaleaa caaIXaaabeaakiaadwgadaahaaWcbeqaaiaad2gajeaqcaaIXaWccq aH+oaEaaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaamyz amaaCaaaleqabaGaamyBaKqaajaaikdaliabe67a4baaaaa@498F@ (24)
Where
m 1 = A+ A 2 4B 2 ,  m 2 = A A 2 4B 2  , A= λRδ 1+ δ 2 , B= N 2 + δ 2 K 1 δ 4 , δ 2 1,  A 2 >4B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeyOeI0IaamyqaiabgUcaRmaakaaapaqaa8qacaWGbb WdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaI0aGaamOqaaWc beaaaOWdaeaapeGaaGOmaaaacaGGSaGaaiiOaiaad2gapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiabgkHi TiaadgeacqGHsisldaGcaaWdaeaapeGaamyqa8aadaahaaWcbeqaa8 qacaaIYaaaaOGaeyOeI0IaaGinaiaadkeaaSqabaaak8aabaWdbiaa ikdaaaGaaiiOaiaacYcacaGGGcGaamyqaiabg2da9maalaaapaqaa8 qacqaH7oaBcaWGsbGaeqiTdqgapaqaa8qacaaIXaGaey4kaSIaaeiT d8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaacYcacaGGGcGaamOqai abg2da9maalaaapaqaa8qacqGHsislcaWGobWdamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkdaWcaaWdaeaapeGaaeiTd8aadaahaaWcbe qaa8qacaaIYaaaaaGcpaqaa8qacaWGlbaaaaWdaeaapeGaaGymaiab gkHiTiaabs7apaWaaWbaaSqabeaapeGaaGinaaaaaaGccaGGSaGaae iTd8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyiyIKRaaGymaiaacYca caGGGcGaamyqa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOpa4JaaG inaiaadkeaaaa@76D4@   (25)

Integrating Eq. (24) with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@382A@  since V( ξ )= d 2 f d ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam OzaaWdaeaapeGaamizaiabe67a49aadaahaaWcbeqaa8qacaaIYaaa aaaaaaa@429B@  then we get
f( ξ )= M 1 m 1 2 e m1ξ + M 2 m 2 2 e m2ξ + M 3 ξ+ M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaamyta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO qaa8qacaWGTbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaa aaGccaWGLbWdamaaCaaaleqabaWdbiaad2gajeaqcaaIXaWccqaH+o aEaaGccqGHRaWkdaWcaaWdaeaapeGaamyta8aadaWgaaWcbaWdbiaa ikdaa8aabeaaaOqaa8qacaWGTbWdamaaDaaaleaapeGaaGOmaaWdae aapeGaaGOmaaaaaaGccaWGLbWdamaaCaaaleqabaWdbiaad2gajeaq caaIYaWccqaH+oaEaaGccqGHRaWkcaWGnbWdamaaBaaaleaapeGaaG 4maaWdaeqaaOWdbiabe67a4jabgUcaRiaad2eapaWaaSbaaSqaa8qa caaI0aaapaqabaaaaa@5842@
Substituting from the previous Eq. into Eq. (20) we get
ψ( x,y,t )= M 1 m 1 2 e m1( x+yλt ) + M 2 m 2 2 e m2( x+yλt ) + M 3 ( x+yλt )+ M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaad2eapaWaaS baaSqaa8qacaaIXaaapaqabaaakeaapeGaamyBa8aadaqhaaWcbaWd biaaigdaa8aabaWdbiaaikdaaaaaaOGaamyza8aadaahaaWcbeqaa8 qacaWGTbqcbaKaiaiPigdalmaabmaapaqaa8qacaWG4bGaey4kaSIa amyEaiabgkHiTiabeU7aSjaadshaaiaawIcacaGLPaaaaaGccqGHRa WkdaWcaaWdaeaapeGaamyta8aadaWgaaWcbaWdbiaaikdaa8aabeaa aOqaa8qacaWGTbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaa aaaaGccaWGLbWdamaaCaaaleqabaWdbiaad2gajeaqcGaAyIOmaSWa aeWaa8aabaWdbiaadIhacqGHRaWkcaWG5bGaeyOeI0Iaeq4UdWMaam iDaaGaayjkaiaawMcaaaaakiabgUcaRiaad2eapaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacqGHRaWkcaWG5b GaeyOeI0Iaeq4UdWMaamiDaaGaayjkaiaawMcaaiabgUcaRiaad2ea paWaaSbaaSqaa8qacaaI0aaapaqabaaaaa@70FE@                   (26)
By using the boundary conditions (14), (16) and (19) to find the values of M1,M2,M3,M4, we finally get:

ψ( x,y,t )= ( F 5 ( x,t )± F 5 2 ( x,t )4 F 4 ( x,t ) F 6 ( x,t ) 2 F 4 ( x,t ) )( F 1 ( x,t ) m 1 2 e m1( x+yλt ) + 1 m 2 2 e m2( x+yλt ) + F 2 ( x,t )( x+yλt )+ F 3 ( x,t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaHipqEdaqadaWdaeaapeGaamiEaiaacYcacaWG5bGaaiil aiaadshaaiaawIcacaGLPaaacqGH9aqpaeaadaqadaWdaeaapeWaaS aaa8aabaWdbiabgkHiTiaadAeapaWaaSbaaSqaa8qacaaI1aaapaqa baGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawM caaiabgglaXoaakaaapaqaa8qacaWGgbWdamaaDaaaleaapeGaaGyn aaWdaeaapeGaaGOmaaaakmaabmaapaqaa8qacaWG4bGaaiilaiaads haaiaawIcacaGLPaaacqGHsislcaaI0aGaamOra8aadaWgaaWcbaWd biaaisdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0b aacaGLOaGaayzkaaGaamOra8aadaWgaaWcbaWdbiaaiAdaa8aabeaa k8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaa aaleqaaaGcpaqaa8qacaaIYaGaamOra8aadaWgaaWcbaWdbiaaisda a8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOa GaayzkaaaaaaGaayjkaiaawMcaamaabmaapaqaa8qadaWcaaWdaeaa peGaamOra8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdae aapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWG TbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGccaWGLb WdamaaCaaaleqabaWdbiaad2gajeaqcGaAKIymaSWaaeWaa8aabaWd biaadIhacqGHRaWkcaWG5bGaeyOeI0Iaeq4UdWMaamiDaaGaayjkai aawMcaaaaakiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG TbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaaaaGccaWGLb WdamaaCaaaleqabaWdbiaad2gajeaqcGaDKIOmaSWaaeWaa8aabaWd biaadIhacqGHRaWkcaWG5bGaeyOeI0Iaeq4UdWMaamiDaaGaayjkai aawMcaaaaakiabgUcaRiaadAeapaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawM caamaabmaapaqaa8qacaWG4bGaey4kaSIaamyEaiabgkHiTiabeU7a SjaadshaaiaawIcacaGLPaaacqGHRaWkcaWGgbWdamaaBaaaleaape GaaG4maaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadsha aiaawIcacaGLPaaaaiaawIcacaGLPaaaaaaa@A645@ (27)

As a special case by using the long wavelength approximation and neglecting the wave number along with low-Reynolds number, i.e. R= δ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaacckacqaH0oazcqGH9aqpcaaIWaaaaa@3CCD@  one can find that
ψ( x,y,t )=( F 6 ( x,t ) F 5 ( x,t ) )( F 1 ( x,t ) m 1 2 e m1( x+yλt ) + 1 m 2 2 e m2( x+yλt ) + F 2 ( x,t )( x+yλt )+ F 3 ( x,t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8 qacqGHsislcaWGgbWdamaaBaaaleaapeGaaGOnaaWdaeqaaOWdbmaa bmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaa8aaba WdbiaadAeapaWaaSbaaSqaa8qacaaI1aaapaqabaGcpeWaaeWaa8aa baWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaaaaaiaawIcaca GLPaaadaqadaWdaeaapeWaaSaaa8aabaWdbiaadAeapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaam iDaaGaayjkaiaawMcaaaWdaeaapeGaamyBa8aadaqhaaWcbaWdbiaa igdaa8aabaWdbiaaikdaaaaaaOGaamyza8aadaahaaWcbeqaa8qaca WGTbqcbaKaiqhMigdalmaabmaapaqaa8qacaWG4bGaey4kaSIaamyE aiabgkHiTiabeU7aSjaadshaaiaawIcacaGLPaaaaaGccqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaamyBa8aadaqhaaWcbaWdbiaa ikdaa8aabaWdbiaaikdaaaaaaOGaamyza8aadaahaaWcbeqaa8qaca WGTbqcbaKaiGgPikdalmaabmaapaqaa8qacaWG4bGaey4kaSIaamyE aiabgkHiTiabeU7aSjaadshaaiaawIcacaGLPaaaaaGccqGHRaWkca WGgbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qa caWG4bGaaiilaiaadshaaiaawIcacaGLPaaadaqadaWdaeaapeGaam iEaiabgUcaRiaadMhacqGHsislcqaH7oaBcaWG0baacaGLOaGaayzk aaGaey4kaSIaamOra8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qada qadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaaacaGL OaGaayzkaaaaaa@8DFA@         (28)
Where, the functions M i ( x,t ) and   F i ( x,t ),  i=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaa peGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaaiiOaiaadggaca WGUbGaamizaiaacckacaGGGcGaamOra8aadaWgaaWcbaWdbiaadMga a8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOa GaayzkaaGaaiilaiaacckacaGGGcGaamyAaiabg2da9iaaigdacaGG SaGaaGOmaiaacYcacaaIZaGaaiilaiabgAci8caa@5450@  are defined in the Appendix.

In order to assess the accuracy of the solution of the streamline and velocity distribution in our problem, the special case (28) was compared with the previous results of Srinivas and Gayathri19 graphically. There is a good agreement between them, as shown in Figures 2& 3 .

Homotopy Perturbation method

To find the solution of temperature and nanoparticles concentration in Eqs. (12) and (13), we use the homotopy perturbation method. This technique is a combination of the perturbation method and the homotopy method which eliminates the drawbacks of the traditional perturbation methods while keeping all their advantages. On the basis of the homotopy perturbation method22−24 we can write (12) and (13) as follows:
H( θ,q )=( 1q )[ I( θ )I( θ ˜ 0 ) ]+ q[ I( θ )RPrδ( θ t + ψ y θ x ψ x θ y )+ δ 2 θ xx + δ 2 N b Ω x θ x + δ 2 N t θ x 2 + N b Ω y θ y + N t θ y 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqGibWaaeWaa8aabaWdbiaabI7acaGGSaGaaeyCaaGaayjk aiaawMcaaiabg2da9maabmaapaqaa8qacaaIXaGaeyOeI0IaaeyCaa GaayjkaiaawMcaamaadmaapaqaa8qacaqGjbWaaeWaa8aabaWdbiaa bI7aaiaawIcacaGLPaaacqGHsislcaqGjbWaaeWaa8aabaGafqiUde NbaGaadaWgaaWcbaGaaGimaaqabaaak8qacaGLOaGaayzkaaaacaGL BbGaayzxaaGaey4kaScabaGaaeyCamaadmaapaqaa8qacaqGjbWaae Waa8aabaWdbiaabI7aaiaawIcacaGLPaaacqGHsislcaWGsbGaaeiu aiaabkhacqaH0oazdaqadaWdaeaapeGaaeiUd8aadaWgaaWcbaWdbi aabshaa8aabeaak8qacqGHRaWkcaqGipWdamaaBaaaleaapeGaaeyE aaWdaeqaaOWdbiaabI7apaWaaSbaaSqaa8qacaqG4baapaqabaGcpe GaeyOeI0IaaeiYd8aadaWgaaWcbaWdbiaabIhaa8aabeaak8qacaqG 4oWdamaaBaaaleaapeGaaeyEaaWdaeqaaaGcpeGaayjkaiaawMcaai abgUcaRiabes7aK9aadaahaaWcbeqaa8qacaaIYaaaaOGaaeiUd8aa daWgaaWcbaWdbiaabIhacaqG4baapaqabaGcpeGaey4kaSIaeqiTdq 2damaaCaaaleqabaWdbiaaikdaaaGccaWGobWdamaaBaaaleaapeGa amOyaaWdaeqaaOWdbiaabM6apaWaaSbaaSqaa8qacaqG4baapaqaba GcpeGaaeiUd8aadaWgaaWcbaWdbiaabIhaa8aabeaak8qacqGHRaWk cqaH0oazpaWaaWbaaSqabeaapeGaaGOmaaaakiaad6eapaWaaSbaaS qaa8qacaWG0baapaqabaGcpeGaaeiUd8aadaqhaaWcbaWdbiaabIha a8aabaWdbiaaikdaaaGccqGHRaWkcaWGobWdamaaBaaaleaapeGaam OyaaWdaeqaaOWdbiaabM6apaWaaSbaaSqaa8qacaqG5baapaqabaGc peGaaeiUd8aadaWgaaWcbaWdbiaabMhaa8aabeaak8qacqGHRaWkca WGobWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiaabI7apaWaa0ba aSqaa8qacaqG5baapaqaa8qacaaIYaaaaaGccaGLBbGaayzxaaGaai ilaaaaaa@95D6@      (29)
H( Ω,q )=( 1q )[ I( Ω )I( Ω ̃ 0 ) ]+q[ I( Ω )RScδ( Ω t + ψ y Ω x ψ x Ω y )+ δ 2 Ω xx + δ 2 N t N b θ xx + N t N b θ yy ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeisamaabmaapaqaa8qacaqGPoGaaiilaiaabghaaiaawIcacaGL PaaacqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiaabghaaiaawI cacaGLPaaadaWadaWdaeaapeGaaeysamaabmaapaqaa8qacaqGPoaa caGLOaGaayzkaaGaeyOeI0IaaeysamaabmaapaqaamaaxacabaWdbi aabM6aaSWdaeqabaWdbiabloWaLaaak8aadaWgaaWcbaWdbiaaicda a8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkca qGXbWaamWaa8aabaWdbiaabMeadaqadaWdaeaapeGaaeyQdaGaayjk aiaawMcaaiabgkHiTiaadkfacaqGtbGaae4yaiabes7aKnaabmaapa qaa8qacaqGPoWdamaaBaaaleaapeGaaeiDaaWdaeqaaOWdbiabgUca RiaabI8apaWaaSbaaSqaa8qacaqG5baapaqabaGcpeGaaeyQd8aada WgaaWcbaWdbiaabIhaa8aabeaak8qacqGHsislcaqGipWdamaaBaaa leaapeGaaeiEaaWdaeqaaOWdbiaabM6apaWaaSbaaSqaa8qacaqG5b aapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqiTdq2damaaCaaa leqabaWdbiaaikdaaaGccaqGPoWdamaaBaaaleaapeGaaeiEaiaabI haa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaeqiTdq2damaaCaaa leqabaWdbiaaikdaaaGccaWGobWdamaaBaaaleaapeGaamiDaaWdae qaaaGcbaWdbiaad6eapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaOWd biaabI7apaWaaSbaaSqaa8qacaqG4bGaaeiEaaWdaeqaaOWdbiabgU caRmaalaaapaqaa8qacaWGobWdamaaBaaaleaapeGaamiDaaWdaeqa aaGcbaWdbiaad6eapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaOWdbi aabI7apaWaaSbaaSqaa8qacaqG5bGaaeyEaaWdaeqaaaGcpeGaay5w aiaaw2faaiaacYcaaaa@87F8@       (30)
Here, I( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeysamaabmaapaqaa8qacaqG4oaacaGLOaGaayzkaaaaaa@3A19@ and I( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeysamaabmaapaqaa8qacaqGPoaacaGLOaGaayzkaaaaaa@3A0A@  give the linear operator chosen as 2 y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaa8qacqGHciITcaqG5bWdamaaCaaaleqabaWdbiaaikdaaaaaaa aa@3C97@ . The initial approximations θ ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia WaaSbaaSqaaiaaicdaaeqaaaaa@38F1@  and Ω ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfM6axzaaia WaaSbaaSqaaabaaaaaaaaapeGaaGimaaWdaeqaaaaa@38F9@  can be defined as
θ ˜ 0 ( x,y,t )= 1 2η( x,t ) ( y+η( x,t ) )= Ω ˜ 0 ( x,y,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia WaaSbaaSqaaiaaicdaaeqaaOaeaaaaaaaaa8qadaqadaWdaeaapeGa aeiEaiaacYcacaqG5bGaaiilaiaabshaaiaawIcacaGLPaaacqGH9a qpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiaabE7adaqadaWd aeaapeGaaeiEaiaacYcacaqG0baacaGLOaGaayzkaaaaamaabmaapa qaa8qacaqG5bGaey4kaSIaae4Tdmaabmaapaqaa8qacaqG4bGaaiil aiaabshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqppaGafu yQdCLbaGaadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaaeiEaiaacYcacaqG5bGaaiilaiaabshaaiaawIcacaGLPaaaaa a@5A38@  (31)
Let us define
θ( y,q )= θ 0 +q θ 1 + q 2 θ 2 +, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3aaeWaa8aabaWdbiaadMhacaGGSaGaamyCaaGaayjkaiaa wMcaaiabg2da9iabeI7aX9aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHRaWkcaWGXbGaeqiUde3damaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgUcaRiaadghapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI 7aX9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcqGHMacV caGGSaaaaa@4E00@ (32)
Ω( y,q )= Ω 0 +q Ω 1 + q 2 Ω 2 +, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQdmaabmaapaqaa8qacaWG5bGaaiilaiaadghaaiaawIcacaGL PaaacqGH9aqpcaqGPoWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi abgUcaRiaadghacaqGPoWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biabgUcaRiaadghapaWaaWbaaSqabeaapeGaaGOmaaaakiaabM6apa WaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaeyOjGWRaaiil aaaa@4BE4@ (33)

Incorporating Eqs. (32), (33) into Eqs. (29), (30) (with deriving ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@3835@ from Eq. (27) with respect to x and y) and then equating like powers of q, one observes the system of equations along with the relative boundary conditions. According to the scheme of the HPM, we have the final solutions for temperature and nanoparticles concentration when q1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaiabgkziUkaaigdaaaa@3A05@  as.

θ( x,y,t )= s 23 ( x,t ) y 7 + s 24 ( x,t ) y 6 + s 25 ( x,t ) y 5 + s 26 ( x,t ) y 4 + s 27 ( x,t ) y 3 + s 28 ( x,t ) y 2 + s 29 ( x,t )y                   + s 30 ( x,t ) e m1y + s 31 ( x,t ) e m2y + s 32 ( x,t ) e m1y y+ s 33 ( x,t ) e m2y y+ s 34 ( x,t ) e m1y y 2                   + s 35 ( x,t ) e m2y y 2 + s 36 ( x,t ) e m1y y 3 + s 37 ( x,t ) e m2y y 3 + s 38 ( x,t ) e m1y y 4                  + s 39 ( x,t ) e m2y y 4 + s 40 ( x,t ) e 2m1y + s 41 ( x,t ) e 2m2y + s 42 ( x,t ) e 2m1y y+ s 43 ( x,t ) e 2m2y y                   + s 44 ( x,t ) e (m1+m2)y + s 45 ( x,t ) e (m1+m2)y y+ s 46 ( x,t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaH4oqCdaqadaWdaeaapeGaamiEaiaacYcacaWG5bGaaiil aiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGZbWdamaaBaaaleaape GaaGOmaiaaiodaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYca caWG0baacaGLOaGaayzkaaGaamyEa8aadaahaaWcbeqaa8qacaaI3a aaaOGaey4kaSIaam4Ca8aadaWgaaWcbaWdbiaaikdacaaI0aaapaqa baGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawM caaiaadMhapaWaaWbaaSqabeaapeGaaGOnaaaakiabgUcaRiaadoha paWaaSbaaSqaa8qacaaIYaGaaGynaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWG5bWdamaaCaaa leqabaWdbiaaiwdaaaGccqGHRaWkcaWGZbWdamaaBaaaleaapeGaaG OmaiaaiAdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG 0baacaGLOaGaayzkaaGaamyEa8aadaahaaWcbeqaa8qacaaI0aaaaO Gaey4kaSIaam4Ca8aadaWgaaWcbaWdbiaaikdacaaI3aaapaqabaGc peWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaai aadMhapaWaaWbaaSqabeaapeGaaG4maaaakiabgUcaRiaadohapaWa aSbaaSqaa8qacaaIYaGaaGioaaWdaeqaaOWdbmaabmaapaqaa8qaca WG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWG5bWdamaaCaaaleqa baWdbiaaikdaaaGccqGHRaWkcaWGZbWdamaaBaaaleaapeGaaGOmai aaiMdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0baa caGLOaGaayzkaaGaamyEaaqaaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabgUcaRiaadohapa WaaSbaaSqaa8qacaaIZaGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qa caWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaale qabaWdbiaad2gajeaqcGaDmIymaSGaamyEaaaakiabgUcaRiaadoha paWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaa leqabaWdbiaad2gajeaqcGaDmIOmaSGaamyEaaaakiabgUcaRiaado hapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCa aaleqabaWdbiaad2gajeaqcGaGmIymaSGaamyEaaaakiaadMhacqGH RaWkcaWGZbWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qada qadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyz a8aadaahaaWcbeqaa8qacaWGTbqcbaKaiqhJikdaliaadMhaaaGcca WG5bGaey4kaSIaam4Ca8aadaWgaaWcbaWdbiaaiodacaaI0aaapaqa baGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawM caaiaadwgapaWaaWbaaSqabeaapeGaamyBaKqaajac0HjIXaWccaWG 5baaaOGaamyEa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckapaGaey4kaSYdbiaadohapaWaaSbaaSqaa8qacaaIZaGa aGynaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaai aawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaad2gajeaqcGaD mIOmaSGaamyEaaaakiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaaki abgUcaRiaadohapaWaaSbaaSqaa8qacaaIZaGaaGOnaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaca WGLbWdamaaCaaaleqabaWdbiaad2gajeaqcGaDmIymaSGaamyEaaaa kiaadMhapaWaaWbaaSqabeaapeGaaG4maaaakiabgUcaRiaadohapa WaaSbaaSqaa8qacaaIZaGaaG4naaWdaeqaaOWdbmaabmaapaqaa8qa caWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaale qabaWdbiaad2gajeaqcGaDmIOmaSGaamyEaaaakiaadMhapaWaaWba aSqabeaapeGaaG4maaaakiabgUcaRiaadohapaWaaSbaaSqaa8qaca aIZaGaaGioaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaa dshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaad2gaje aqcGaDmIymaSGaamyEaaaakiaadMhapaWaaWbaaSqabeaapeGaaGin aaaaaOWdaeaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaaMc8UaaGPaVlabgUcaRiaadohapaWaaS baaSqaa8qacaaIZaGaaGyoaaWdaeqaaOWdbmaabmaapaqaa8qacaWG 4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqaba Wdbiaad2gajeaqcGaDmIOmaSGaamyEaaaakiaadMhapaWaaWbaaSqa beaapeGaaGinaaaakiabgUcaRiaadohapaWaaSbaaSqaa8qacaaI0a GaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadsha aiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaaikdacaWGTb qcbaKaiqhMigdaliaadMhaaaGccqGHRaWkcaWGZbWdamaaBaaaleaa peGaaGinaiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacY cacaWG0baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qacaaI YaGaamyBaKqaajac0XiIYaWccaWG5baaaOGaey4kaSIaam4Ca8aada WgaaWcbaWdbiaaisdacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaa dIhacaGGSaGaamiDaaGaayjkaiaawMcaaiaadwgapaWaaWbaaSqabe aapeGaaGOmaiaad2gajeaqcGaDyIymaSGaamyEaaaakiaadMhacqGH RaWkcaWGZbWdamaaBaaaleaapeGaaGinaiaaiodaa8aabeaak8qada qadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyz a8aadaahaaWcbeqaa8qacaaIYaGaamyBaKqaajac0XiIYaWccaWG5b aaaOGaamyEaaqaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiabgUcaRiaadohapaWaaSbaaSqa a8qacaaI0aGaaGinaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaai ilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaa cIcacaWGTbqcbaKaiqhMigdaliabgUcaRiaad2gajeaqcGaDmIOmaS GaaiykaiaadMhaaaGccqGHRaWkcaWGZbWdamaaBaaaleaapeGaaGin aiaaiwdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0b aacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qacaGGOaGaamyB aKqaajac0HjIXaWccqGHRaWkcaWGTbqcbaKaiqhJikdaliaacMcaca WG5baaaOGaamyEaiabgUcaRiaadohapaWaaSbaaSqaa8qacaaI0aGa aGOnaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaai aawIcacaGLPaaacaGGSaaaaaa@D6AD@   (34)

Ω( x,y,t )= R 20 ( x,t ) y 6 + R 21 ( x,t ) y 5 + R 22 ( x,t ) y 4 + R 41 ( x,t ) y 3 + R 42 ( x,t ) y 2 + R 43 ( x,t )y+ R 44 ( x,t ) + R 27 ( x,t ) e m1y y 3 + R 28 ( x,t ) e m2y y 3 + R 29 ( x,t ) e m1y y 2 + R 30 ( x,t ) e m2y y 2 + R 45 ( x,t ) e m1y y+ R 46 ( x,t ) e mm2y y+ R 33 ( x,t ) e 2m1y y+ R 34 ( x,t ) e 2m2y y + R 35 ( x,t ) e (m1+m2)y y+ R 47 ( x,t ) e m1y + R 48 ( x,t ) e m2y + R 38 ( x,t ) e 2m1y + R 39 ( x,t ) e 2m2y + R 40 ( x,t ) e (m1+m2)y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaqGPoWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYca caWG0baacaGLOaGaayzkaaGaeyypa0JaamOua8aadaWgaaWcbaWdbi aaikdacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGa amiDaaGaayjkaiaawMcaaiaadMhapaWaaWbaaSqabeaapeGaaGOnaa aakiabgUcaRiaadkfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqa aOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPa aacaWG5bWdamaaCaaaleqabaWdbiaaiwdaaaGccqGHRaWkcaWGsbWd amaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qadaqadaWdaeaape GaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyEa8aadaahaaWc beqaa8qacaaI0aaaaOGaey4kaSIaamOua8aadaWgaaWcbaWdbiaais dacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiD aaGaayjkaiaawMcaaiaadMhapaWaaWbaaSqabeaapeGaaG4maaaaki abgUcaRiaadkfapaWaaSbaaSqaa8qacaaI0aGaaGOmaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaca WG5bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaWGsbWdamaa BaaaleaapeGaaGinaiaaiodaa8aabeaak8qadaqadaWdaeaapeGaam iEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyEaiabgUcaRiaadkfa paWaaSbaaSqaa8qacaaI0aGaaGinaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaaeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl abgUcaRiaadkfapaWaaSbaaSqaa8qacaaIYaGaaG4naaWdaeqaaOWd bmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaca WGLbWdamaaCaaaleqabaWdbiaad2gajeaqcGaDmIymaSGaamyEaaaa kiaadMhapaWaaWbaaSqabeaapeGaaG4maaaakiabgUcaRiaadkfapa WaaSbaaSqaa8qacaaIYaGaaGioaaWdaeqaaOWdbmaabmaapaqaa8qa caWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaale qabaWdbiaad2gajeaqcGaDmIOmaSGaamyEaaaakiaadMhapaWaaWba aSqabeaapeGaaG4maaaakiabgUcaRiaadkfapaWaaSbaaSqaa8qaca aIYaGaaGyoaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaa dshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaad2gaje aqcGaDmIymaSGaamyEaaaakiaadMhapaWaaWbaaSqabeaapeGaaGOm aaaakiabgUcaRiaadkfapaWaaSbaaSqaa8qacaaIZaGaaGimaaWdae qaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGL PaaacaWGLbWdamaaCaaaleqabaWdbiaad2gajeaqcGaDmIOmaSGaam yEaaaakiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7cqGHRaWkcaWGsbWdamaaBaaaleaapeGaaGinaiaaiwda a8aabeaak8qadaqadaWdaeaapeGaamiEaiaacYcacaWG0baacaGLOa GaayzkaaGaamyza8aadaahaaWcbeqaa8qacaWGTbqcbaKaiqhJigda liaadMhaaaGccaWG5bGaey4kaSIaamOua8aadaWgaaWcbaWdbiaais dacaaI2aaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiD aaGaayjkaiaawMcaaiaadwgapaWaaWbaaSqabeaapeGaamyBaiaad2 gajeaqcGaDmIOmaSGaamyEaaaakiaadMhacqGHRaWkcaWGsbWdamaa BaaaleaapeGaaG4maiaaiodaa8aabeaak8qadaqadaWdaeaapeGaam iEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqa a8qacaaIYaGaamyBaKqaajac0XiIXaWccaWG5baaaOGaamyEaiabgU caRiaadkfapaWaaSbaaSqaa8qacaaIZaGaaGinaaWdaeqaaOWdbmaa bmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaWGLb WdamaaCaaaleqabaWdbiaaikdacaWGTbqcbaKaiqhJikdaliaadMha aaGccaWG5baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGsbWdamaaBaaaleaa peGaaG4maiaaiwdaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaacY cacaWG0baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qacaGG OaGaamyBaKqaajac0XiIXaWccqGHRaWkcaWGTbqcbaKaiqhJikdali aacMcacaWG5baaaOGaamyEaiabgUcaRiaadkfapaWaaSbaaSqaa8qa caaI0aGaaG4naaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaad2ga jeaqcGaDmIymaSGaamyEaaaakiabgUcaRiaadkfapaWaaSbaaSqaa8 qacaaI0aGaaGioaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiil aiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaad2 gajeaqcGaDmIOmaSGaamyEaaaakiabgUcaRiaadkfapaWaaSbaaSqa a8qacaaIZaGaaGioaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaai ilaiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaa ikdacaWGTbqcbaKaiqhJigdaliaadMhaaaaak8aabaWdbiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaey4kaSIaamOua8aadaWgaaWcbaWdbiaaiodacaaI5aaapaqaba GcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawMca aiaadwgapaWaaWbaaSqabeaapeGaaGOmaiaad2gajeaqcGaDmIOmaS GaamyEaaaakiabgUcaRiaadkfapaWaaSbaaSqaa8qacaaI0aGaaGim aaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawI cacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaacIcacaWGTbqcbaKa iqhJigdaliabgUcaRiaad2gajeaqcGaDmIOmaSGaaiykaiaadMhaaa GccaGGSaaaaaa@F752@  (35)

Where, all functions s i ( x,t ),  i=146 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaa peGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaaiilaiaacckaca GGGcGaamyAaiabg2da9iaaigdacqGHsgIRcaaI0aGaaGOnaaaa@4621@  and R i ( x,t ),  i=148 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaa peGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaaiilaiaacckaca GGGcGaamyAaiabg2da9iaaigdacqGHsgIRcaaI0aGaaGioaaaa@4602@  are defined in the Appendix. In calculating and plotting the functions we used the Mathematical program.

Results and discussion

This section elucidates the behavior of velocity profile, nanoparticle concentration, temperature profile and streamlines configuration on different involved parameters and also it contains a comparison between the present results of the velocity and streamlines and the previous results of Srinivas and Gayathri19 which is considered as a special case of our work by using the long wavelength approximation and neglecting the wave number along with low-Reynolds number. The results are compared in Table 1 and graphically in Figure 2 and Figure 3. There is an excellent match between the two solutions as shown in the table and figures.

y

Srinivas and Gayathri19

Our article

u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3761@

u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3761@

-1

4.9505

4.9288

-0.8

6.7301

6.7005

-0.6

7.6817

7.6479

-0.4

8.1785

8.1426

-0.2

8.4154

8.3784

0

8.4852

8.4479

0.2

8.4154

8.3784

0.4

8.1785

8.1426

0.6

7.6817

7.6479

0.8

6.7301

6.7005

1

4.9505

4.9288

Table 1 Comparison between the present results of the velocity u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3761@ for various values of yand the previous results of Srinivas and Gayathri19 which is considered as a special case of our work at R=0; δ=0; M=3; k=2;Q=0.1;  E 1 =2; E 2 =0.7;  E 3 =0.1; Pr=0;  N b =0; N t =0; ϵ=0.15; β=0.2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaaicdacaGG7aGaaiiOaiabes7aKjabg2da9iaa icdacaGG7aGaaiiOaiaad2eacqGH9aqpcaaIZaGaai4oaiaacckaca WGRbGaeyypa0JaaGOmaiaacUdacaWGrbGaeyypa0JaaGimaiaac6ca caaIXaGaai4oaiaacckacaWGfbWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiabg2da9iaaikdacaGG7aGaamyra8aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGH9aqpcaaIWaGaaiOlaiaaiEdacaGG7aGaai iOaiaadweapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyypa0Ja aGimaiaac6cacaaIXaGaai4oaiaacckacaWGqbGaamOCaiabg2da9i aaicdacaGG7aGaaiiOaiaad6eapaWaaSbaaSqaa8qacaWGIbaapaqa baGcpeGaeyypa0JaaGimaiaacUdacaWGobWdamaaBaaaleaapeGaam iDaaWdaeqaaOWdbiabg2da9iaaicdacaGG7aGaaiiOamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaeyypa0JaaG imaiaac6cacaaIXaGaaGynaiaacUdacaGGGcGaeqOSdiMaeyypa0Ja aGimaiaac6cacaaIYaGaaiOlaaaa@87D7@

Figure 2 Plots of Streamline ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@3834@ distribution 
a) In the special case in our problem.                             
b) In previous results of S Srinivas and R Gayathri27 at
R=0; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0; k= 0.05; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.2;  β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.5; Nt =0.6.

Figure 3 Velocity u distributions
ــــــــــــــ In the special case in our problem,
−−−−−−−−−−−−−− In previous results of S Srinivas and R Gayathri27 at
R=0; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0; k= 0.5; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.2;  β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.3; E1=0.5; E2=0.5; E3=0.1; Pr=0.01; Nb=0.5; Nt =0.6.

The velocity profile

Figure 4 has been plotted to see the impact of the Slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  on velocity profile. As the resistance is reduced due to the deviation of fluid in a channel which enhances the velocity profile (Figure 4). It is noted from Figure 5 that the velocity profiles is strictly decreasing for increasing values of the porous parameter. It is illustrated that the presence of porous medium is to enhance increase the resistance to the flow. Which retards the fluid velocity and this associated with a decrease in the momentum boundary layer thickness. Magnetic field applied in a transverse direction acts as a retarding force for the fluid flow and thus the velocity profile decreases for increasing values of Hartman number M as shown in Figure 6.

Figure 4 Plots of velocity u versus y for the effects of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  at
R=0.1; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.05; M=4; k=0.2; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; E1=0.6; E2=0.4; E3=0.1

Figure 5 Plots of velocity u versus y for the effects of K at
R=0.1; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.05; M=4; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =10; E1=0.6; E2=0.4; E3=0.1

Figure 6 Plots of velocity u versus y for the effects of M at
R=0.1;    δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.05; k=0.2; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q= 0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1= 0.6; E2= 0.4; E3= 0.1

The nanoparticle concentration

The effect of Hartman number M on nanoparticle concentration is presented in Figure 7. The reduction in the nanoparticle concentration Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@37F4@  is noticed is response to growing values of the Hartman number M. Because the large values of the Hartman number M support the magnetic field strength which appears to be retarding force for the flow.

Figure 7 Plots of nanoparticle concentration versus y for the effects of M at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.2; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

Figure 8 shows the effect of the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ on nanoparticle concentration. The results show that nanoparticle concentration reduces in a particular domain with enhancing the Slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ . After that domain, the behavior of the nanoparticle concentration Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@37F4@  is different, where it increases with increasing the Slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ .

Figure 8 Plots of nanoparticle concentration versus y for the effects of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

The influence of the permeability parameter k on the nanoparticle concentration is analyzed in Figure 9. It is clear from this figures that enhance of the permeability parameter k from 1 to 1000 (which taken as k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabgkziUkabg6HiLcaa@3AB4@ ) leads to an increase in nanoparticle concentration.

Figure 9 Plots of nanoparticle concentration versus y for the effects of k at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.2; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

We next move to analyze the effects of the Brownian motion parameter Nb and the thermophoresis parameter Nt on the nanoparticle concentration through the Figure 10 and Figure 11 respectively. It is demonstrated that by increasing of the thermophoresis parameter Nt, the volume fraction of nanoparticle increases. On the other hand, an opposite trend has been observed as the Brownian motion parameter Nb varies. This is because, the random motion of nanoparticles getting increased with an increase in Brownian motion parameter, which in turn an enhancement of fluid temperature and reduction of the nanoparticle diffusion.

Figure 10 Plots of nanoparticle concentration versus y for the effects of Nb at
R= 0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nt=0.8; Sc=0.6

Figure 11 Plots of nanoparticle concentration versus y for the effects of Nt at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.1; Sc=0.6

Figure 12 represents the impact of Reynolds number R on nanoparticle concentration. It is observed from this figure that the nanoparticle concentration increases when Reynolds number R is increased.

Figure 12 Plots of nanoparticle concentration versus y for the effects of R at
δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

Figures 13−15 describe the effects of variation for non-dimensional elasticity parameters E1, E2 and E3 on nanoparticle concentration. The results reveal that elasticity of walls E1, E2 and E3 enhance the nanoparticle concentration.

Figure 13 Plots of nanoparticle concentration versus y for the effects of E1 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.1; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

Figure 14  Plots of nanoparticle concentration versus y for the effects of E2 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

Figure 15 Plots of nanoparticle concentration versus y for the effects of E3 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.4; E2=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.6

The temperature profile

Figure 16 shows that the larger values of the Hartman number M produce strong magnetic field that takes out the fluid heat to generate current and so magnetic field tends to act like a retarding force which causes reduction in temperature.

Figure 16 Plots of temperature profile versus y for the effects of M at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.6; Nt=0.8; Sc=0.05

Figure 17 shows the effect of the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  on nanoparticle concentration. The results show that decreasing in temperature profile presences in a specific domain with increasing the Slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ . After that domain, the relationship is reflected with the Slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ .

Figure 17 Plots of temperature profile versus y for the effects of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

The influence of the permeability parameter k on the temperature profile is analyzed in Figure 18. It is clear from this figure that enhances of the permeability parameter k from 5×10-8 to 1000 in (which taken as k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabgkziUkabg6HiLcaa@3AB4@ ) leads to an increase in temperature profiles. This means that when the holes of the porous medium are very large the loss of the temperature from the fluid to the porous medium by conduction reduces and hence the temperature of the fluid increases.

Figure 18 Plots of temperature profile versus y for the effects of k at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.04; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

We next move to analyze the effects of the Brownian motion parameter Nb and the thermophoresis parameter Nt on the temperature profile through the Figures 19−20 respectively. It is demonstrated that the temperature of the fluid increased with an increase in the Brownian motion parameter Nb and the thermophoresis parameter Nt. This is because, the random motion of nanoparticles getting increased with an increase in Brownian motion parameter, which in turn an enhancement of fluid temperature.

Figure 19  Plots of temperature profile versus y for the effects of Nb at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nt=0.8; Sc=0.05

Figure 20 Plots of temperature profile versus y for the effects of Nt
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.5; Sc=0.05

Figure 21 represents the impact of Reynolds number R on temperature profile. It is observed from this figure that the temperature profile increases when Reynolds number R is increased.

Figure 21 Plots of temperature profile versus y for the effects of R at
δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

Figures 22−24 describe the influence of non-dimensional elasticity parameters E1, E2 and E3 on temperature profile. It is observed that temperature is the increasing functions of E1, and E2 while it decreases for E3 due to damping effect of the peristaltic walls.

Figure 22 Plots of temperature profile versus y for the effects of E1 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E2=0.1; E3=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

Figure 23 Plots of temperature profile versus y for the effects of E2 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.4; E3=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

Figure 24 Plots of temperature profile versus y for the effects of E3 at
R=0.5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=20; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.4; E2=0.1; Pr=0.01; Nb=0.5; Nt=0.8; Sc=0.05

Streamlines configuration

The behavior of the trapping with the permeability parameter k is explained in Figure 25. It shows that the volume of the trapped bolus increases with increasing the permeability parameter k and more trapped bolus appears with increasing the permeability parameter k.

  • Figure 25 (A−B) Plots of Streamline ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@3834@ distribution for the effects of k at
    R=5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.1; E1=0.6; E2=0.4; E3=0.1

The effect of slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  on the trapping is illustrated in Figure 26. We observe that streamlines closed loops creating a cellular flow pattern in the channel and more trapped bolus appears with increasing slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ .

Figure 26 (A−D) Plots of Streamline ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@3834@ distribution for the effects of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  at
R=5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; M=4; k=0.5; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.04; Q=0.2; E1=0.6; E2=0.4; E3=0.1

Figure 27 highlights of the streamline patterns and trapping for different values of the Hartman number M. It is observed that the volume of the bolus decreases with increase of the Hartman number M and slowly disappears for the large value of the Hartman number M, where the fluid moves as a bulk.

Figure 27 (A−D) Plots of Streamline ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaqtbeaaaaaa aaa8qacqaHipqEaaa@391B@ distribution for the effects of M at
R=5; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@380B@ =0.5; k=0.05; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@381A@ =0.2; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@380D@ =0.1; Q=0.1; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ =0.3; E1=0.6; E2=0.4; E3=0.1

Conclusion

The main results of our study can be epitomized in the following points:

  1. The velocity u is the increasing function of the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  and the non-dimensional elasticity parameters E1, and E2 while it decreases for the Hartman number M, the permeability of the porous medium k and non-dimensional elasticity parameters E3.
  2. The temperature θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@381C@  is the increasing function of the non-dimensional elasticity parameters E1, E2 the porous medium k, the Reynolds number R, the Brownian motion parameter Nb and the thermophoresis parameter Nt while it decreases for the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ , the Hartman number M, and non-dimensional elasticity parameters E3.
  3. The nanoparticle concentration is the increasing function of the permeability of the porous medium k, the thermophoresis parameter Nt, the Reynolds number R and the non-dimensional elasticity parameters E1, E2, E3 while it decreases for the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@ , the Hartman number M, and the Brownian motion parameter N_b.
  4. The value of trapped bolus is increases with increasing of the slip parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3807@  and the permeability of the porous medium k while it decreases with increasing of the Hartman number M.

Finally, the comparison was made between the present results of the velocity and streamlines and the previous results of Srinivas and Gayathri19 which is considered as a special case of our work and the results were compared graphically and the graphical comparisons showed an excellent compatible between the curves.

Acknowledgements

None.

Conflict of interest

Authors declare there is no conflict of interest in publishing the article.

Nomenclature

Nomenclature

a

Amplitude.

pr

Prandtl number.

B0

Magnetic field.

Q * , Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaacckacaWG rbaaaa@3AEB@

Dimensional and non-dimensional non-uniformity of channel respectively.

C

Nanoparticle concentration.

R

Reynolds number.

Cv

Coefficient of viscous damping forces.

Sc

Schmidt number.

cf

Volumetric volume expansion of the fluid.

T

Temperature.

cp

Volumetric volume expansion of the particle.

t

Time.

C*

Phase speed.

u,v

Components of velocity along x, y directions.

d

Mean half width of the channel.

β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3808@

Knudsen number (Slip parameter).

DB

Brownian diffusion coefficient.

ρ,  ρ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaaiilaiaacckacqaHbpGCpaWaaSbaaSqaa8qacaWGWbaa paqabaaaaa@3D0A@

Density of the fluid and the particle respectively.

DT

Thermophoretic diffusion coefficient.

ε, δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaaiilaiaacckacqaH0oazaaa@3B87@

Geometric parameters.

E1, E2, E3

Non-dimensional elasticity parameters.

λ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaCaaaleqabaWdbiaacQcaaaaaaa@3915@

Wave length.

K

Permeability of the porous medium.

Wave speed.

k

Thermal conductivity of the fluid.

μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@381D@

Coefficient of viscosity of the fluid.

M

Hartman number.

ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@381F@

Kinematic viscosity.

m 1 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaacQcaaaaaaa@392D@

Mass per unit area.

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@381D@

Dimensionless temperature.

Nb

Brownian motion parameter.

σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@382A@

Fluid electrical conductivity.

Nt

Thermophoresis parameter.

Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQdaaa@3796@

Dimensionless nanoparticle concentration.

p

Pressure.

β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@3808@

Knudsen number (Slip parameter).

p0

Pressure on the outside surface of the wall due to the tension in the muscles.

References

  1. Latham LW. Fluid motion in peristaltic pumps. MS. thesis, Dept. of Mechanical Engineering, MIT, Cambridge, UK; 1996.
  2. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37(4):799−825.
  3. Sankad GC, Patil AB. Peristaltic flow of Herschel Bulkley fluid in a nonuniform channel with porous lining. Pro Eng. 2015;127:686−693.
  4. Hayat T, Bibi A, Yasmin H, et al. Simultaneous effects of Hall current and homogeneous/heterogeneous reactions on peristalsis. J Taiwan Inst Chem Eng. 2016;58:28−38.
  5. Hayat T, Zahir H, Tanveer A, et al. Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid. Journal of Magnetism and Magnetic Materials. 2016;407:321−327.
  6. Kavitha A, Reddy RH, Saravana R, et al. Peristaltic transport of a Jeffrey fluid in contact with a Newtonian fluid in an inclined channel. Ain Shams Eng J. 2015;8(4):683−687.
  7. Hayat T, Quratulain M, Rafiq, et al. Soret and Dufour effects on peristaltic transport in curved channel with radial magnetic field and convective conditions. Journal of Magnetism and Magnetic Materials. 2016;405:358−369.
  8. Choi US, Eastman JA. Enhancing thermal conductivity of nanofluids with nanoparticles. ASME, International mechanical engineering congress and exhibition, San Francisco, USA, 1995; 8p.
  9. Choi SUS, Lee S, Li S, et al. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer. 1999;121(2):280−289.
  10. Rahman SU, Ellahi R, Nadeem S, et al. Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq. 2016;218:484−493.
  11. Akram S. Nanofluid effects on peristaltic transport of a fourth grade fluid in the occurrence of inclined magnetic field. Scientia Iranica Transaction F Nanotechnology. 2016;23(3):1502−1516.
  12. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu−H2O nanofluid on entropy generation. Int J Heat Mass Transfer. 2015;81:449−456.
  13. Navier CLMH. Sur les lois de lequilibre et dumouvement des corps solides elastiques. Bulletin des Sciences par la Societe Philomatique de Paris. 1823;177−181.
  14. Aly EH, Ebaid A. Effect of the velocity second slip boundary condition on the peristaltic flow of nanofluids in an asymmetric channel: exact solution. Abstract and Applied Analysis. 2014;191876:1−11.
  15. Hayat T, Nisar Z, Ahmad B, et al. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. Journal of Magnetism and Magnetic Materials. 2015;395:48−58.
  16. Hina S. MHD peristaltic transport of Eyring−Powell fluid with heat/mass transfer, wall properties and slip conditions. Journal of Magnetism and Magnetic Materials. 2016;404:148−158.
  17. Hayat T, Quratulain M, Alsaadi Rafiq, et al. Soret and Dufour effects on peristaltic transport in curved channel with radial magnetic field and convective conditions. Journal of Magnetism and Magnetic Materials. 2016;405:358−369.
  18. Ellahi R, Hussain F. Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffrey fluid in a rectangular duct. Journal of Magnetism and Magnetic Materials. 2015;393:284−292.
  19. Srinivas S, Gayathri R, Kothandapani M. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Computer Physics Communications. 2009;180(11):2115−2122.
  20. Mittra TK, Prasad SN. On the influence of wall properties and Poiseuille flow in peristalsis. J Biomech. 1973;6(6):681−693.
  21. Lee J, Sakthivel R. Exact travelling wave solutions for some important nonlinear physical models. Pramana journal of physics. 2013;80(5):757−769.
  22. Ji Huan He. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering. 1998;167(1−2):57−68.
  23. Ji Huan He. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering. 1999;178:257−262.
  24. Ji Huan He. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons and Fractals. 2005;26(3):695−700.
Creative Commons Attribution License

©2018 El-dabe, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.