Submit manuscript...
eISSN: 2641-936X

Electrical & Electronic Technology Open Access Journal

Research Article Volume 2 Issue 1

Numerical method for a one dimensional defective photonic crystal selective filters

Ouarda Barkat, Badreddine Mamri

Department of Electronics, University Frères Mentouri Constantine, Algeria

Correspondence: Ouarda Barkat Department of Electronics, University Frères Mentouri Constantine, Algeria

Received: June 27, 2017 | Published: April 17, 2018

Citation: Barkat O, Mamri B. Numerical method for a one dimensional defective photonic crystal selective filters. Electric Electron Tech Open Acc J. 2018;2(2):9-13. DOI: 10.15406/eetoaj.2018.02.00014

Download PDF

Abstract

In this work, we demonstrate via numerical simulation the general design for one dimensional defective photonic crystal (1D- DPC), the defect was fictionalized with two different dielectric layers. In the design procedure, the transfer matrix method is used to determine the transmission coefficient for both TE (Transverse Electric) and TM (Transverse Magnetic) modes. Then, we focused point on a special class of optical elements, namely selective filters. Simulation results obtained showing the number of defect mode within the photonic band gap (PBG) in the asymmetric (1D- DPC) structure, more than in the symmetric (1D- DPC) structure. The dependences of defect modes on the angle of incidence are illustrated.

Keywords: photonic band gap, transfer matrix method, defect mode, transmission, dispersion

Introduction

The one dimensional photonic crystal (1D-PC) structures have become attractive to optical engineering due to its several beneficial features, such as its ability to control and manipulate the propagation of electromagnetic waves in limited space.1 These structures have a number of useful properties, which are employed as low-loss optical waveguides, dielectric reflecting mirrors, optical switches, optical limiters, and optical filters etc.2–4 It has been demonstrated experimentally and theoretically that (1D-PC) structures have complete omnidirectional photonic band gaps (PBGs).5 Therefore it is possible to create pass bands within the photonic band-gap by introducing of defects layers. When a defect layer is inserted into a one dimensional photonic crystal, localized defect mode will be appeared in the photonic band gaps (PBG), which are much more similar to the defect states generated in the forbidden band in a doped semiconductor. Recently, the defect modes inside the photonic band have been widely studied due to their properties.6–10 The perfect layer can be realized, by changing physical parameters, such as changing the thickness of one of the layer, adding another medium to the structure, or removing a layer from (1D-PC) structures. The localized defect modes, which are also called resonant transmission peaks, can be generated within the PBG due to the change of the interference behavior of light. The defect models properties can be used to make high quality extremely narrowband frequency selective filters.7–11 Selective photonic crystal filters have received much research interest in the fields of demultiplexers for WDM systems.12 Nowadays, the numerical modeling of photonics crystals is based on the calculation of the transmission, and the reflection coefficient properties. These methods including the plane wave expansion (PWE) method, the generalized Rayleigh identity method, the finite-difference time-domain (FDTD) method, and the transfer matrix method (TMM). Each method has its own limitations for finding some important properties of one dimensional defective photonic crystal (1D-DPC). The transfer matrix method is most popular because of its simplicity in algorithm and capability to model complex structures.13,14 It is recently introduced by Pendry and MacKinnon, to calculate the electromagnetic transmission through the PBG materials.15 In this paper, the transmission spectrum was obtained by applying the transfer matrix formalism to one dimensional defective photonic crystal (1D-DPC). The effects of the polarization and the angle of incidence on the defect modes in the transmission spectra are investigated. Several simulation cases by Matlab will be given to show the performance of this approach. The accuracy of the analysis is tested by comparing the computed results with measurements published data.

Theory

Let us consider first the (1D-PC) structure consisting of alternating multilayer of the form (AB)ND (AB)N and (AB)ND (BA)N shown in Figure 1, there are 2N+1 layer made up of dielectric materials A and B, and dielectric defect layer D. Each layer has to be dl thicknesses, and refractive index nl. In order to find the formulation of the structure, we supposed that the incident electromagnetic wave from air to In As and SiO2 medium. Let the layers be in the x-y plane, the z direction being normal to interface of layers.

Figure 1 Structure of one-dimensional photonic crystal containing a defect.
Symmetric defective (1D- DPC); Asymmetric defective (1D- DPC)

The refractive index profile of considered structure can be given as

ε l ={ ε 1              0<z< d 1 ε 2             d 1 <z< d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH1oqzl8aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqaaKqz GeWdbiabg2da9Kqbaoaaceaak8aabaqcLbsafaqabeGabaaakeaaju gib8qacqaH1oqzjuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabc kacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaaIWaGaeyip aWJaamOEaiabgYda8iaabsgal8aadaWgaaqaaKqzadWdbiaaigdaaS WdaeqaaaGcbaqcLbsapeGaeqyTduwcfa4damaaBaaaleaajugWa8qa caaIYaaal8aabeaajugib8qacaqGGcGaaeiOaiaabckacaqGGcGaae iOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqG Kbqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaajugib8qacq GH8aapcaWG6bGaeyipaWJaaeizaSWdamaaBaaabaqcLbmapeGaaGOm aaWcpaqabaaaaaGcpeGaay5Eaaaaaa@7879@  (1)
And
ε l ( z )= ε l ( z+d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH1oqzl8aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqaaKqb a+qadaqadaGcpaqaaKqzGeWdbiaabQhaaOGaayjkaiaawMcaaKqzGe Gaeyypa0JaeqyTduwcfa4damaaBaaaleaajugWa8qacaWGSbaal8aa beaajuaGpeWaaeWaaOWdaeaajugib8qacaqG6bGaey4kaSIaamizaa GccaGLOaGaayzkaaaaaa@4AAB@ (2)

Where
L, is number of layer
d= d 1 + d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqGKbGaeyypa0JaaeizaKqba+aadaWgaaWcbaqcLbmapeGa aGymaaWcpaqabaqcLbsapeGaey4kaSIaaeizaSWdamaaBaaabaqcLb mapeGaaGOmaaWcpaqabaaaaa@4102@ , is period

Based on the Maxwell equations and the boundary conditions, the TMM has been widely used to calculate the amplitude and phase spectra of the light wave propagating in a (1D- PC) structure. We are going to suppose that a space time dependence of all the components of the kin e i( k . r ωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamyAaiaacIcaceWGRbGbaSaacaGGUaGabmOCayaalaGa eyOeI0IaeqyYdCNaamiDaiaacMcaaaaaaa@3FC0@ . The transverse components of the E and H fields from Maxwell’s equations in the lth layer, for TM polarization, are given by:
H ly = A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) +  B l e i( ωt+ k l ( Z l .cos θ l + X l .sin θ l ) )  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibqcfa4damaaBaaaleaajugWa8qacaWGSbGaamyEaaWc paqabaqcLbsapeGaeyypa0JaamyqaSWdamaaBaaabaqcLbmapeGaam iBaaWcpaqabaqcLbmapeGaamyzaSWdamaaCaaabeqaaKqzadWdbiaa dMgalmaabmaapaqaaKqzadWdbiabeM8a3jaadshacqGHsislcaWGRb WcpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaSWdbmaabmaapaqa aKqzadWdbiaadQfal8aadaWgaaadbaqcLbmapeGaamiBaaadpaqaba qcLbmapeGaaiOlaiGacogacaGGVbGaai4CaiabeI7aXTWdamaaBaaa meaajugWa8qacaWGSbaam8aabeaajugWa8qacqGHRaWkcaWGybWcpa WaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqzadWdbiaac6caciGG ZbGaaiyAaiaac6gacqaH4oqCl8aadaWgaaadbaqcLbmapeGaamiBaa adpaqabaaal8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaKqzGeGa ey4kaSIaaiiOaiaadkeal8aadaWgaaqaaKqzadWdbiaadYgaaSWdae qaaKqzadWdbiaadwgajuaGpaWaaWbaaSqabeaajugWa8qacaWGPbWc daqadaWdaeaajugWa8qacqaHjpWDcaWG0bGaey4kaSIaam4AaSWdam aaBaaameaajugWa8qacaWGSbaam8aabeaal8qadaqadaWdaeaajugW a8qacaWGAbWcpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqzad Wdbiaac6caciGGJbGaai4BaiaacohacqaH4oqCl8aadaWgaaadbaqc LbmapeGaamiBaaadpaqabaqcLbmapeGaey4kaSIaamiwaSWdamaaBa aameaajugWa8qacaWGSbaam8aabeaajugWa8qacaGGUaGaci4Caiaa cMgacaGGUbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdae qaaaWcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaaajugibiaaccka caGGPaaaaa@A2BA@ (3)
E lx = η l cos θ l ( A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) B l e i( ωt+ k l ( Z l .cos θ l + X l .sin θ l ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbWcpaWaaSbaaeaajugWa8qacaWGSbGaamiEaaWcpaqa baqcLbsapeGaeyypa0Jaeq4TdG2cpaWaaSbaaeaajugWa8qacaWGSb aal8aabeaajugib8qaciGGJbGaai4BaiaacohacqaH4oqCl8aadaWg aaqaaKqzadWdbiaadYgaaSWdaeqaaKqzGeWdbiaacIcacaWGbbWcpa WaaSbaaeaajugWa8qacaWGSbaal8aabeaajugWa8qacaWGLbWcpaWa aWbaaeqabaqcLbmapeGaamyAaSWaaeWaa8aabaqcLbmapeGaeqyYdC NaamiDaiabgkHiTiaadUgal8aadaWgaaadbaqcLbmapeGaamiBaaad paqabaWcpeWaaeWaa8aabaqcLbmapeGaamOwaSWdamaaBaaameaaju gWa8qacaWGSbaam8aabeaajugWa8qacaGGUaGaci4yaiaac+gacaGG ZbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqzad WdbiabgUcaRiaadIfal8aadaWgaaadbaqcLbmapeGaamiBaaadpaqa baqcLbmapeGaaiOlaiGacohacaGGPbGaaiOBaiabeI7aXTWdamaaBa aameaajugWa8qacaWGSbaam8aabeaaaSWdbiaawIcacaGLPaaaaiaa wIcacaGLPaaaaaqcLbsacqGHsislcaWGcbWcpaWaaSbaaeaajugWa8 qacaWGSbaal8aabeaajugWa8qacaWGLbqcfa4damaaCaaaleqabaqc LbmapeGaamyAaSWaaeWaa8aabaqcLbmapeGaeqyYdCNaamiDaiabgU caRiaadUgal8aadaWgaaadbaqcLbmapeGaamiBaaadpaqabaWcpeWa aeWaa8aabaqcLbmapeGaamOwaSWdamaaBaaameaajugWa8qacaWGSb aam8aabeaajugWa8qacaGGUaGaci4yaiaac+gacaGGZbGaeqiUde3c paWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqzadWdbiabgUcaRi aadIfal8aadaWgaaadbaqcLbmapeGaamiBaaadpaqabaqcLbmapeGa aiOlaiGacohacaGGPbGaaiOBaiabeI7aXTWdamaaBaaameaajugWa8 qacaWGSbaam8aabeaaaSWdbiaawIcacaGLPaaaaiaawIcacaGLPaaa aaqcLbsacaGGPaaaaa@AD12@  (4)
E lz = η l cos θ l ( A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) + B l e i( ωt+ k l ( Z l .cos θ l + X l .sin θ l ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaaleaajugWa8qacaWGSbGaamOEaaWc paqabaqcLbsapeGaeyypa0JaeyOeI0Iaeq4TdGwcfa4damaaBaaale aajugWa8qacaWGSbaal8aabeaajugib8qaciGGJbGaai4Baiaacoha cqaH4oqCjuaGpaWaaSbaaSqaaKqzadWdbiaadYgaaSWdaeqaaKqzGe WdbiaacIcacaWGbbWcpaWaaSbaaeaajugWa8qacaWGSbaal8aabeaa jugWa8qacaWGLbWcpaWaaWbaaeqabaqcLbmapeGaamyAaSWaaeWaa8 aabaqcLbmapeGaeqyYdCNaamiDaiabgkHiTiaadUgal8aadaWgaaad baqcLbmapeGaamiBaaadpaqabaWcpeWaaeWaa8aabaqcLbmapeGaam OwaSWdamaaBaaameaajugWa8qacaWGSbaam8aabeaajugWa8qacaGG UaGaci4yaiaac+gacaGGZbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbi aadYgaaWWdaeqaaKqzadWdbiabgUcaRiaadIfal8aadaWgaaadbaqc LbmapeGaamiBaaadpaqabaqcLbmapeGaaiOlaiGacohacaGGPbGaai OBaiabeI7aXTWdamaaBaaameaajugWa8qacaWGSbaam8aabeaaaSWd biaawIcacaGLPaaaaiaawIcacaGLPaaaaaqcLbsacqGHRaWkcaWGcb WcpaWaaSbaaeaajugWa8qacaWGSbaal8aabeaajugWa8qacaWGLbWc paWaaWbaaeqabaqcLbmapeGaamyAaSWaaeWaa8aabaqcLbmapeGaeq yYdCNaamiDaiabgUcaRiaadUgal8aadaWgaaadbaqcLbmapeGaamiB aaadpaqabaWcpeWaaeWaa8aabaqcLbmapeGaamOwaSWdamaaBaaame aajugWa8qacaWGSbaam8aabeaajugWa8qacaGGUaGaci4yaiaac+ga caGGZbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaK qzadWdbiabgUcaRiaadIfal8aadaWgaaadbaqcLbmapeGaamiBaaad paqabaqcLbmapeGaaiOlaiGacohacaGGPbGaaiOBaiabeI7aXTWdam aaBaaameaajugWa8qacaWGSbaam8aabeaaaSWdbiaawIcacaGLPaaa aiaawIcacaGLPaaaaaqcLbsacaGGPaaaaa@AF12@ (5)
Where Al and Bl are the amplitudes of the forward and backward travelling waves in the lth layer.

The transverse components of the E and H fields from Maxwell’s equations in the lth layer, for TE polarization, are given by:
E ly = A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) +    B l e i( ωt+ k l ( Z l .cos θ l + X l .sin θ l ) )  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadYgacaWG5baapaqabaGcpeGaeyyp a0Jaamyqa8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacaWGLbWdam aaCaaaleqabaWdbiaadMgadaqadaWdaeaapeGaeqyYdCNaamiDaiab gkHiTiaadUgapaWaaSbaaWqaa8qacaWGSbaapaqabaWcpeWaaeWaa8 aabaWdbiaadQfapaWaaSbaaWqaa8qacaWGSbaapaqabaWcpeGaaiOl aiGacogacaGGVbGaai4CaiabeI7aX9aadaWgaaadbaWdbiaadYgaa8 aabeaal8qacqGHRaWkcaWGybWdamaaBaaameaapeGaamiBaaWdaeqa aSWdbiaac6caciGGZbGaaiyAaiaac6gacqaH4oqCpaWaaSbaaWqaa8 qacaWGSbaapaqabaaal8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaa aOGaey4kaSIaaiiOaiaacckacaGGGcGaamOqa8aadaWgaaWcbaWdbi aadYgaa8aabeaak8qacaWGLbWdamaaCaaaleqabaWdbiaadMgadaqa daWdaeaapeGaeqyYdCNaamiDaiabgUcaRiaadUgapaWaaSbaaWqaa8 qacaWGSbaapaqabaWcpeWaaeWaa8aabaWdbiaadQfapaWaaSbaaWqa a8qacaWGSbaapaqabaWcpeGaaiOlaiGacogacaGGVbGaai4CaiabeI 7aX9aadaWgaaadbaWdbiaadYgaa8aabeaal8qacqGHRaWkcaWGybWd amaaBaaameaapeGaamiBaaWdaeqaaSWdbiaac6caciGGZbGaaiyAai aac6gacqaH4oqCpaWaaSbaaWqaa8qacaWGSbaapaqabaaal8qacaGL OaGaayzkaaaacaGLOaGaayzkaaaaaOGaaiiOaiaacMcaaaa@8124@  (6)
H lx = η l cos θ l ( A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) B l e i( ωt+ k l ( Z l .cos θ l + X l .sin θ l ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibqcfa4damaaBaaaleaajugWa8qacaWGSbGaamiEaaWc paqabaqcLbsapeGaeyypa0JaeyOeI0scfa4aaSaaaOWdaeaajugib8 qacqaH3oaAl8aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqaaaGcbaqc LbsapeGaci4yaiaac+gacaGGZbGaeqiUde3cpaWaaSbaaeaajugWa8 qacaWGSbaal8aabeaaaaqcLbsapeGaaiikaiaadgeal8aadaWgaaqa aKqzadWdbiaadYgaaSWdaeqaaKqzadWdbiaadwgal8aadaahaaqabe aajugWa8qacaWGPbWcdaqadaWdaeaajugWa8qacqaHjpWDcaWG0bGa eyOeI0Iaam4AaSWdamaaBaaameaajugWa8qacaWGSbaam8aabeaal8 qadaqadaWdaeaajugWa8qacaWGAbWcpaWaaSbaaWqaaKqzadWdbiaa dYgaaWWdaeqaaKqzadWdbiaac6caciGGJbGaai4BaiaacohacqaH4o qCl8aadaWgaaadbaqcLbmapeGaamiBaaadpaqabaqcLbmapeGaey4k aSIaamiwaSWdamaaBaaameaajugWa8qacaWGSbaam8aabeaajugWa8 qacaGGUaGaci4CaiaacMgacaGGUbGaeqiUde3cpaWaaSbaaWqaaKqz adWdbiaadYgaaWWdaeqaaaWcpeGaayjkaiaawMcaaaGaayjkaiaawM caaaaajugibiabgkHiTiaadkeal8aadaWgaaqaaKqzadWdbiaadYga aSWdaeqaaKqzadWdbiaadwgal8aadaahaaqabeaajugWa8qacaWGPb WcdaqadaWdaeaajugWa8qacqaHjpWDcaWG0bGaey4kaSIaam4AaSWd amaaBaaameaajugWa8qacaWGSbaam8aabeaal8qadaqadaWdaeaaju gWa8qacaWGAbWcpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqz adWdbiaac6caciGGJbGaai4BaiaacohacqaH4oqCl8aadaWgaaadba qcLbmapeGaamiBaaadpaqabaqcLbmapeGaey4kaSIaamiwaSWdamaa BaaameaajugWa8qacaWGSbaam8aabeaajugWa8qacaGGUaGaci4Cai aacMgacaGGUbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaadYgaaWWd aeqaaaWcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaaajugibiaacM caaaa@AF62@ (7)
H lz = η l cos θ l ( A l e i( ωt k l ( Z l .cos θ l + X l .sin θ l ) ) + B l e i( ωt+ k 1 ( Z l .cos θ l + X l .sin θ l ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibWcpaWaaSbaaeaajugWa8qacaWGSbGaamOEaaWcpaqa baqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqaH3oaAl8 aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqaaaGcbaqcLbsapeGaci4y aiaac+gacaGGZbGaeqiUdexcfa4damaaBaaaleaajugWa8qacaWGSb aal8aabeaaaaqcLbsapeGaaiikaiaadgeal8aadaWgaaqaaKqzadWd biaadYgaaSWdaeqaaKqzadWdbiaadwgal8aadaahaaqabeaajugWa8 qacaWGPbWcdaqadaWdaeaajugWa8qacqaHjpWDcaWG0bGaeyOeI0Ia am4AaSWdamaaBaaameaajugWa8qacaWGSbaam8aabeaal8qadaqada WdaeaajugWa8qacaWGAbWcpaWaaSbaaWqaaKqzadWdbiaadYgaaWWd aeqaaKqzadWdbiaac6caciGGJbGaai4BaiaacohacqaH4oqCl8aada WgaaadbaqcLbmapeGaamiBaaadpaqabaqcLbmapeGaey4kaSIaamiw aSWdamaaBaaameaajugWa8qacaWGSbaam8aabeaajugWa8qacaGGUa Gaci4CaiaacMgacaGGUbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaa dYgaaWWdaeqaaaWcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaju gibiabgUcaRiaadkeal8aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqa aKqzadWdbiaadwgal8aadaahaaqabeaajugWa8qacaWGPbWcdaqada WdaeaajugWa8qacqaHjpWDcaWG0bGaey4kaSIaam4AaSWdamaaBaaa meaajugWa8qacaaIXaaam8aabeaal8qadaqadaWdaeaajugWa8qaca WGAbWcpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaKqzadWdbiaa c6caciGGJbGaai4BaiaacohacqaH4oqCl8aadaWgaaadbaqcLbmape GaamiBaaadpaqabaqcLbmapeGaey4kaSIaamiwaSWdamaaBaaameaa jugWa8qacaWGSbaam8aabeaajugWa8qacaGGUaGaci4CaiaacMgaca GGUbGaeqiUde3cpaWaaSbaaWqaaKqzadWdbiaadYgaaWWdaeqaaaWc peGaayjkaiaawMcaaaGaayjkaiaawMcaaaaajugibiaacMcaaaa@AE36@  (8)

Where the wave numbers and intrinsic impedances are:
k l =ω ε 0 μ 0 ε l μ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbWcpaWaaSbaaeaajugWa8qacaWGSbaal8aabeaajugi b8qacqGH9aqpcqaHjpWDjuaGdaGcaaGcpaqaaKqzGeWdbiaabw7aju aGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaabY7a l8aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaabw7al8 aadaWgaaqaaKqzadWdbiaabYgaaSWdaeqaaKqzGeWdbiaabY7al8aa daWgaaqaaKqzadWdbiaabYgaaSWdaeqaaaWdbeqaaaaa@4FEA@  (9)
η l = k l ωε l ε 0 = μ 0 μ l ε 0 ε l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqG3oWcpaWaaSbaaeaajugWa8qacaqGSbaal8aabeaajugi b8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaabUgal8aadaWgaa qaaKqzadWdbiaabYgaaSWdaeqaaaGcbaqcLbsapeGaaeyYdiaabw7a l8aadaWgaaqaaKqzadWdbiaabYgaaSWdaeqaaKqzGeWdbiaabw7al8 aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaaaajugib8qacqGH9aqp juaGdaGcaaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaabY7al8 aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaabY7al8aa daWgaaqaaKqzadWdbiaabYgaaSWdaeqaaaGcbaqcLbsapeGaaeyTdS WdamaaBaaabaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGaaeyTdKqb a+aadaWgaaWcbaqcLbmapeGaaeiBaaWcpaqabaaaaaWdbeqaaaaa@5F80@  (10)

When an electromagnetic wave propagates in (1D- PC) structure, the incident, reflected and transmitted electric fields are connected via the transfer matrix M. By using the boundary conditions and the condition of continuity of E and H fields at the interfaces of z=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqG6bGaeyypa0JaaGimaaaa@3958@ and z= d 1  ,  d 2  ,  d 3  .  d N  ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqG6bGaeyypa0JaamizaSWdamaaBaaabaqcLbmapeGaaGym aiaacckaaSWdaeqaaKqzGeWdbiaacYcacaGGGcGaamizaSWdamaaBa aabaqcLbmapeGaaGOmaiaacckaaSWdaeqaaKqzGeWdbiaacYcacaGG GcGaamizaSWdamaaBaaabaqcLbmapeGaaG4maiaacckaaSWdaeqaaK qzGeWdbiabgAci8kabgAci8kaac6cacaGGGcGaamizaKqba+aadaWg aaWcbaqcLbmapeGaamOtaKqzGeGaaiiOaaWcpaqabaqcLbsapeGaai ilaiaacckaaaa@582C@ we can find out the relationship between the fields (1D- PC) structure consisting of l layer, this relation is already exposed.16

[ E 1 H 1 ]= M 1 M 2 M N M d . M 2N M 2N+1 [ E l H l ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaamWaaOWdaeaajugibuaabeqaceaaaOqaaKqzGeWdbiaadwea l8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaaGcbaqcLbsapeGaam isaSWdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaaaaaGcpeGaay5w aiaaw2faaKqzGeGaeyypa0JaaeytaSWdamaaBaaabaqcLbmapeGaaG ymaaWcpaqabaqcLbsapeGaaeytaSWdamaaBaaabaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaeyOjGWRaeyOjGWRaaeytaKqba+aadaWgaa WcbaqcLbmapeGaaeOtaaWcpaqabaqcLbsapeGaaeytaSWdamaaBaaa baqcLbmapeGaaeizaaWcpaqabaqcLbsapeGaeyOjGWRaaiOlaiaab2 eajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaqGobaal8aabeaajugi b8qacaqGnbqcfa4damaaBaaaleaajugWa8qacaaIYaGaaeOtaiabgU caRiaaigdaaSWdaeqaaKqba+qadaWadaGcpaqaaKqzGeqbaeqabiqa aaGcbaqcLbsapeGaamyraSWdamaaBaaabaqcLbmapeGaamiBaaWcpa qabaaakeaajugib8qacaWGibqcfa4damaaBaaaleaajugWa8qacaWG Sbaal8aabeaaaaaak8qacaGLBbGaayzxaaqcLbsacaqGGcaaaa@705E@  (11)

The matrix Ml-1 of the lth layer can be written in the form.17–19
M ( l1 ) =[ cos( δ ( l1 ) ) ( l1 )  sin( δ ( l1 ) ) i γ ( l1 ) 1 sin( δ ( l1 ) ) cos( δ ( l1 ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqGnbWcpaWaaSbaaeaapeWaaeWaa8aabaqcLbmapeGaaeiB aiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGeWdbiabg2 da9Kqbaoaadmaak8aabaqcLbsafaqabeGacaaakeaajugib8qaciGG JbGaai4BaiaacohajuaGdaqadaGcpaqaaKqzGeWdbiaabs7ajuaGpa WaaSbaaSqaa8qadaqadaWdaeaajugWa8qacaqGSbGaeyOeI0IaaGym aaWccaGLOaGaayzkaaaapaqabaaak8qacaGLOaGaayzkaaaapaqaaK qzGeWdbiaabMgacaqGZoWcpaWaaSbaaeaapeWaaeWaa8aabaqcLbma peGaaeiBaiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGe WdbiaabckacaqGZbGaaeyAaiaab6gacaGGOaGaaeiTdSWdamaaBaaa baWdbmaabmaapaqaaKqzadWdbiaabYgacqGHsislcaaIXaaaliaawI cacaGLPaaaa8aabeaajugib8qacaGGPaaak8aabaqcLbsapeGaaeyA aiaabckacaqGZoWcpaWaaSbaaeaapeWaaeWaa8aabaqcLbmapeGaae iBaiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqbaoaaCaaa leqabaqcLbmapeGaeyOeI0IaaGymaaaajugibiGacohacaGGPbGaai OBaiaacIcacaqG0oWcpaWaaSbaaeaapeWaaeWaa8aabaqcLbmapeGa aeiBaiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGeWdbi aacMcaaOWdaeaajugib8qaciGGJbGaai4BaiaacohajuaGdaqadaGc paqaaKqzGeWdbiaabs7al8aadaWgaaqaa8qadaqadaWdaeaajugWa8 qacaqGSbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaaak8qa caGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@8DB5@ (12)
δ ( l1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH0oazjuaGpaWaaSbaaSqaa8qadaqadaWdaeaajugWa8qa caWGSbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaaaaa@3EA2@ and γ ( l1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHZoWzl8aadaWgaaqaa8qadaqadaWdaeaajugWa8qacaWG SbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaaaaa@3E16@  being the matrix parameters and depending on the incident angle of light, the optical constants and the layer thickness, are expressed as:
  δ ( l1 ) = k ( l1 ) . d ( l1 ) .cos θ ( l1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaeqiTdq2cpaWaaSbaaeaapeWaaeWaa8aabaqcLbma peGaamiBaiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGe Wdbiabg2da9iaadUgal8aadaWgaaqaa8qadaqadaWdaeaajugWa8qa caWGSbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaqcLbsape GaaiOlaiaadsgal8aadaWgaaqaa8qadaqadaWdaeaajugWa8qacaWG SbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaqcLbsapeGaai OlaiGacogacaGGVbGaai4CaiabeI7aXTWdamaaBaaabaWdbmaabmaa paqaaKqzadWdbiaadYgacqGHsislcaaIXaaaliaawIcacaGLPaaaa8 aabeaaaaa@5B5D@  (13)
γ ( l1 ) ={     η ( l1 ) cos θ ( l1 )             TE   mode   η ( l1 ) cos θ ( l1 )         TM  mode MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHZoWzl8aadaWgaaqaa8qadaqadaWdaeaajugWa8qacaWG SbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaqcLbsapeGaey ypa0tcfa4aaiqaaOWdaeaajugibuaabeqaceaaaOqaaKqzGeWdbiaa cckacaGGGcGaaiiOaKqbaoaalaaak8aabaqcLbsapeGaeq4TdG2cpa WaaSbaaeaapeWaaeWaa8aabaqcLbmapeGaamiBaiabgkHiTiaaigda aSGaayjkaiaawMcaaaWdaeqaaaGcbaqcLbsapeGaci4yaiaac+gaca GGZbGaeqiUde3cpaWaaSbaaeaapeWaaeWaa8aabaqcLbmapeGaamiB aiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaaaajugib8qaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaWGubGaamyraiaacckacaGGGcGaai iOaiaad2gacaWGVbGaamizaiaadwgaaOWdaeaajugib8qacaqGGcGa eq4TdGwcfa4damaaBaaaleaapeWaaeWaa8aabaqcLbmapeGaamiBai abgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGeWdbiGacoga caGGVbGaai4CaiabeI7aXTWdamaaBaaabaWdbmaabmaapaqaaKqzad WdbiaadYgacqGHsislcaaIXaaaliaawIcacaGLPaaaa8aabeaajugi b8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaadsfacaWGnbGaaiiOaiaacckacaWGTbGaam4BaiaadsgacaWG LbaaaaGccaGL7baaaaa@977A@ (14)
We note that θ ( l1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCl8aadaWgaaqaa8qadaqadaWdaeaajugWa8qacaWG SbGaeyOeI0IaaGymaaWccaGLOaGaayzkaaaapaqabaaaaa@3E25@ is related to the angle of incidence θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCl8aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaaaa @3A9E@  by the Snell’s Descart’s low, that is
n ( l1 ) sin θ ( l1 ) = n 0 sin θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbWcpaWaaSbaaeaapeWaaeWaa8aabaqcLbmapeGaamiB aiabgkHiTiaaigdaaSGaayjkaiaawMcaaaWdaeqaaKqzGeWdbiaado hacaWGPbGaamOBaiabeI7aXTWdamaaBaaabaWdbmaabmaapaqaaKqz adWdbiaadYgacqGHsislcaaIXaaaliaawIcacaGLPaaaa8aabeaaju gib8qacqGH9aqpcaWGUbWcpaWaaSbaaeaajugWa8qacaaIWaaal8aa beaajugib8qacaWGZbGaamyAaiaad6gacqaH4oqCl8aadaWgaaqaaK qzadWdbiaaicdaaSWdaeqaaaaa@54C4@ (15)

By considering the transmission matrix of each layer, we are able to obtain the transmission matrix of whole structure. For l number of multilayers; the corresponding transfer matrix can be defined as a product of matrices, is obtained for symmetric PBG structure.20,21
M= k=1 ( 2N+1 ) M k = ( M A M B ) N M D ( M B M A ) ( 2N+1 ) =[ m 11 m 12 m 21 m 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbGaeyypa0ZcdaGfWbGcbeWcpaqaaKqzadWdbiaadUga cqGH9aqpcaaIXaaal8aabaWdbmaabmaapaqaaKqzadWdbiaaikdaca WGobGaey4kaSIaaGymaaWccaGLOaGaayzkaaaan8aabaqcLbmapeGa ey4dIunaaKqzGeGaamytaSWdamaaBaaabaqcLbmapeGaam4AaaWcpa qabaqcLbsapeGaeyypa0Jaaiikaiaad2eal8aadaWgaaqaaKqzadWd biaadgeaaSWdaeqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaKqzad WdbiaadkeaaSWdaeqaaKqzGeWdbiaacMcal8aadaahaaqabeaajugW a8qacaWGobaaaKqzGeGaamytaSWdamaaBaaabaqcLbmapeGaamiraa WcpaqabaqcLbsapeGaaiikaiaad2eal8aadaWgaaqaaKqzadWdbiaa dkeaaSWdaeqaaKqzGeWdbiaad2eal8aadaWgaaqaaKqzadWdbiaadg eaaSWdaeqaaKqzGeWdbiaacMcal8aadaahaaqabeaapeWaaeWaa8aa baqcLbmapeGaaGOmaiaad6eacqGHRaWkcaaIXaaaliaawIcacaGLPa aaaaqcLbsacqGH9aqpjuaGdaWadaGcpaqaaKqzGeqbaeqabiGaaaGc baqcLbsapeGaaeyBaKqba+aadaWgaaWcbaqcLbmapeGaaGymaiaaig daaSWdaeqaaaGcbaqcLbsapeGaaeyBaSWdamaaBaaabaqcLbmapeGa aGymaiaaikdaaSWdaeqaaaGcbaqcLbsapeGaaeyBaKqba+aadaWgaa WcbaqcLbmapeGaaGOmaiaaigdaaSWdaeqaaaGcbaqcLbsapeGaaeyB aSWdamaaBaaabaqcLbmapeGaaGOmaiaaikdaaSWdaeqaaaaaaOWdbi aawUfacaGLDbaaaaa@83C6@  (16)
And for asymmetric PBG structure.
M= k=1 ( 2N+1 ) M k = ( M A M B ) N M D ( M A M B ) ( 2N+1 ) =[ m 11 m 12 m 21 m 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbGaeyypa0ZcdaGfWbGcbeWcpaqaaKqzadWdbiaadUga cqGH9aqpcaaIXaaal8aabaWdbmaabmaapaqaaKqzadWdbiaaikdaca WGobGaey4kaSIaaGymaaWccaGLOaGaayzkaaaan8aabaqcLbmapeGa ey4dIunaaKqzGeGaamytaSWdamaaBaaabaqcLbmapeGaam4AaaWcpa qabaqcLbsapeGaeyypa0Jaaiikaiaad2eal8aadaWgaaqaaKqzadWd biaadgeaaSWdaeqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaKqzad WdbiaadkeaaSWdaeqaaKqzGeWdbiaacMcal8aadaahaaqabeaajugW a8qacaWGobaaaKqzGeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaam iraaWcpaqabaqcLbsapeGaaiikaiaad2eal8aadaWgaaqaaKqzadWd biaadgeaaSWdaeqaaKqzGeWdbiaad2eal8aadaWgaaqaaKqzadWdbi aadkeaaSWdaeqaaKqzGeWdbiaacMcal8aadaahaaqabeaapeWaaeWa a8aabaqcLbmapeGaaGOmaiaad6eacqGHRaWkcaaIXaaaliaawIcaca GLPaaaaaqcLbsacqGH9aqpjuaGdaWadaGcpaqaaKqzGeqbaeqabiGa aaGcbaqcLbsapeGaaeyBaSWdamaaBaaabaqcLbmapeGaaGymaiaaig daaSWdaeqaaaGcbaqcLbsapeGaaeyBaSWdamaaBaaabaqcLbmapeGa aGymaiaaikdaaSWdaeqaaaGcbaqcLbsapeGaaeyBaSWdamaaBaaaba qcLbmapeGaaGOmaiaaigdaaSWdaeqaaaGcbaqcLbsapeGaaeyBaKqb a+aadaWgaaWcbaqcLbmapeGaaGOmaiaaikdaaSWdaeqaaaaaaOWdbi aawUfacaGLDbaaaaa@83C6@  (17)

Where
MA is the transfer matrix of the first dielectric layer.
MB is the transfer matrix of the second dielectric layer.
MD is the transfer matrix of the dielectric layer defect.
These formulas can be modified by using N number of defect, are obtained for symmetric PC

M= ( M A M B ) N M D . M B . M D .. ( M B M A ) ( 2N+L ) =[ m 11 m 12 m 21 m 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbGaeyypa0Jaaiikaiaad2eajuaGpaWaaSbaaSqaaKqz adWdbiaadgeaaSWdaeqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaK qzadWdbiaadkeaaSWdaeqaaKqzGeWdbiaacMcajuaGpaWaaWbaaSqa beaajugib8qacaWGobaaaiaad2eal8aadaWgaaqaaKqzadWdbiaads eaaSWdaeqaaKqzGeWdbiaac6cacaWGnbWcpaWaaSbaaeaajugWa8qa caWGcbaal8aabeaajugib8qacaGGUaGaamytaSWdamaaBaaabaqcLb mapeGaamiraaWcpaqabaqcLbsapeGaeyOjGWRaaiOlaiaac6cacaGG OaGaamytaSWdamaaBaaabaqcLbmapeGaamOqaaWcpaqabaqcLbsape GaamytaKqba+aadaWgaaWcbaqcLbmapeGaamyqaaWcpaqabaqcLbsa peGaaiykaKqba+aadaahaaWcbeqaa8qadaqadaWdaeaajugWa8qaca aIYaGaamOtaiabgUcaRiaadYeaaSGaayjkaiaawMcaaaaajugibiab g2da9Kqbaoaadmaak8aabaqcLbsafaqabeGacaaakeaajugib8qaca qGTbWcpaWaaSbaaeaajugWa8qacaaIXaGaaGymaaWcpaqabaaakeaa jugib8qacaqGTbWcpaWaaSbaaeaajugWa8qacaaIXaGaaGOmaaWcpa qabaaakeaajugib8qacaqGTbWcpaWaaSbaaeaajugWa8qacaaIYaGa aGymaaWcpaqabaaakeaajugib8qacaqGTbqcfa4damaaBaaaleaaju gWa8qacaaIYaGaaGOmaaWcpaqabaaaaaGcpeGaay5waiaaw2faaaaa @7CEE@  (18)

Where L is number of dielectrics layers defect and dielectric layer B between the defects. And for asymmetric PC
M= ( M A M B ) N M D . M B . M D .. ( M A M B ) ( 2N+L ) =[ m 11 m 12 m 21 m 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbGaeyypa0Jaaiikaiaad2eajuaGpaWaaSbaaSqaaKqz adWdbiaadgeaaSWdaeqaaKqzGeWdbiaad2eajuaGpaWaaSbaaSqaaK qzadWdbiaadkeaaSWdaeqaaKqzGeWdbiaacMcal8aadaahaaqabeaa jugWa8qacaWGobaaaKqzGeGaamytaSWdamaaBaaabaqcLbmapeGaam iraaWcpaqabaqcLbsapeGaaiOlaiaad2eajuaGpaWaaSbaaSqaaKqz GeWdbiaadkeaaSWdaeqaaKqzGeWdbiaac6cacaWGnbWcpaWaaSbaae aajugWa8qacaWGebaal8aabeaajugib8qacqGHMacVcaGGUaGaaiOl aiaacIcacaWGnbWcpaWaaSbaaeaajugWa8qacaWGbbaal8aabeaaju gib8qacaWGnbWcpaWaaSbaaeaajugWa8qacaWGcbaal8aabeaajugi b8qacaGGPaWcpaWaaWbaaeqabaWdbmaabmaapaqaaKqzadWdbiaaik dacaWGobGaey4kaSIaamitaaWccaGLOaGaayzkaaaaaKqzGeGaeyyp a0tcfa4aamWaaOWdaeaajugibuaabeqaciaaaOqaaKqzGeWdbiaab2 gajuaGpaWaaSbaaSqaaKqzadWdbiaaigdacaaIXaaal8aabeaaaOqa aKqzGeWdbiaab2gal8aadaWgaaqaaKqzadWdbiaaigdacaaIYaaal8 aabeaaaOqaaKqzGeWdbiaab2gajuaGpaWaaSbaaSqaaKqzadWdbiaa ikdacaaIXaaal8aabeaaaOqaaKqzGeWdbiaab2gal8aadaWgaaqaaK qzadWdbiaaikdacaaIYaaal8aabeaaaaaak8qacaGLBbGaayzxaaaa aa@7CEF@ (19)

Where m11, m12, m21 & m22 are the complex numbers
The transmittance t and reflectance r are defined as the ratios of the fluxes of the transmitted and reflected waves, respectively, to the flux of the incident wave. After some derivations, the total transmission and reflection coefficients
are given by
r= ( m 11 + p s 1 m 12  ) p 0 1 ( m 21 + p s 1 m 22  ) ( m 11 + p s 1 m 12  ) p 0 1 +( m 21 + p s 1 m 22  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGYbGaeyypa0tcfa4aaSaaaOWdaeaajuaGpeWaaeWaaOWd aeaajugib8qacaWGTbWcpaWaaSbaaeaajugWa8qacaaIXaGaaGymaa WcpaqabaqcLbsapeGaey4kaSIaamiCaSWdamaaDaaabaqcLbmapeGa am4CaaWcpaqaaKqzadWdbiabgkHiTiaaigdaaaqcLbsacaWGTbWcpa WaaSbaaeaajugWa8qacaaIXaGaaGOmaiaacckaaSWdaeqaaaGcpeGa ayjkaiaawMcaaKqzGeGaamiCaSWdamaaDaaabaqcLbmapeGaaGimaa WcpaqaaKqzadWdbiabgkHiTiaaigdaaaqcLbsacqGHsisljuaGdaqa daGcpaqaaKqzGeWdbiaad2gajuaGpaWaaSbaaSqaaKqzadWdbiaaik dacaaIXaaal8aabeaajugib8qacqGHRaWkcaWGWbWcpaWaa0baaeaa jugWa8qacaWGZbaal8aabaqcLbmapeGaeyOeI0IaaGymaaaajugibi aad2gajuaGpaWaaSbaaSqaaKqzadWdbiaaikdacaaIYaGaaiiOaaWc paqabaaak8qacaGLOaGaayzkaaaapaqaaKqba+qadaqadaGcpaqaaK qzGeWdbiaad2gal8aadaWgaaqaaKqzadWdbiaaigdacaaIXaaal8aa beaajugib8qacqGHRaWkcaWGWbWcpaWaa0baaeaajugWa8qacaWGZb aal8aabaqcLbmapeGaeyOeI0IaaGymaaaajugibiaad2gajuaGpaWa aSbaaSqaaKqzadWdbiaaigdacaaIYaGaaiiOaaWcpaqabaaak8qaca GLOaGaayzkaaqcLbsacaWGWbWcpaWaa0baaeaajugWa8qacaaIWaaa l8aabaqcLbmapeGaeyOeI0IaaGymaaaajugibiabgUcaRKqbaoaabm aak8aabaqcLbsapeGaamyBaSWdamaaBaaabaqcLbmapeGaaGOmaiaa igdaaSWdaeqaaKqzGeWdbiabgUcaRiaadchal8aadaqhaaqaaKqzad WdbiaadohaaSWdaeaajugWa8qacqGHsislcaaIXaaaaKqzGeGaamyB aKqba+aadaWgaaWcbaqcLbmapeGaaGOmaiaaikdajugibiaacckaaS WdaeqaaaGcpeGaayjkaiaawMcaaaaaaaa@9E92@ (20)
t= 2. p 0 1 ( m 11 + p s 1 m 12  ) p 0 1 +( m 21 + p s 1 m 22  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIYaGa aiOlaiaadchal8aadaqhaaqaaKqzadWdbiaaicdaaSWdaeaajugWa8 qacqGHsislcaaIXaaaaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWd biaad2gal8aadaWgaaqaaKqzadWdbiaaigdacaaIXaaal8aabeaaju gib8qacqGHRaWkcaWGWbWcpaWaa0baaeaajugWa8qacaWGZbaal8aa baqcLbmapeGaeyOeI0IaaGymaaaajugibiaad2gajuaGpaWaaSbaaS qaaKqzadWdbiaaigdacaaIYaGaaiiOaaWcpaqabaaak8qacaGLOaGa ayzkaaqcLbsacaWGWbWcpaWaa0baaeaajugWa8qacaaIWaaal8aaba qcLbmapeGaeyOeI0IaaGymaaaajugibiabgUcaRKqbaoaabmaak8aa baqcLbsapeGaamyBaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaiaaig daaSWdaeqaaKqzGeWdbiabgUcaRiaadchal8aadaqhaaqaaKqzadWd biaadohaaSWdaeaajugWa8qacqGHsislcaaIXaaaaKqzGeGaamyBaS WdamaaBaaabaqcLbmapeGaaGOmaiaaikdacaGGGcaal8aabeaaaOWd biaawIcacaGLPaaaaaaaaa@73ED@  (21)

Here p0 and ps are the first and last medium of the structure which given as
p 0 1 ={     η 0 cos θ 0 Z 0             TE   mode   η 0 Z 0 cos θ 0         TM  mode MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGWbWcpaWaa0baaeaajugWa8qacaaIWaaal8aabaqcLbma peGaeyOeI0IaaGymaaaajugibiabg2da9Kqbaoaaceaak8aabaqcLb safaqabeGabaaakeaajugib8qacaGGGcGaaiiOaiaacckajuaGdaWc aaGcpaqaaKqzGeWdbiabeE7aOTWdamaaBaaabaqcLbmapeGaaGimaa WcpaqabaqcLbsapeGaci4yaiaac+gacaGGZbGaeqiUde3cpaWaaSba aeaajugWa8qacaaIWaaal8aabeaaaOqaaKqzGeWdbiaadQfal8aada WgaaqaaKqzadWdbiaaicdaaSWdaeqaaaaajugib8qacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaWGubGaamyraiaacckacaGGGcGaaiiOaiaad2ga caWGVbGaamizaiaadwgaaOWdaeaajugib8qacaqGGcqcfa4aaSaaaO Wdaeaajugib8qacqaH3oaAl8aadaWgaaqaaKqzadWdbiaaicdaaSWd aeqaaaGcbaqcLbsapeGaamOwaSWdamaaBaaabaqcLbmapeGaaGimaa WcpaqabaqcLbsapeGaci4yaiaac+gacaGGZbGaeqiUde3cpaWaaSba aeaajugWa8qacaaIWaaal8aabeaaaaqcLbsapeGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGubGaamytaiaa cckacaGGGcGaamyBaiaad+gacaWGKbGaamyzaaaaaOGaay5Eaaaaaa@9064@  (22)
p 0 1 ={     η 0 cos θ 0 Z 0             TE   mode   η 0 Z 0 cos θ 0         TM  mode MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGWbWcpaWaa0baaeaajugWa8qacaaIWaaal8aabaqcLbma peGaeyOeI0IaaGymaaaajugibiabg2da9Kqbaoaaceaak8aabaqcLb safaqabeGabaaakeaajugib8qacaGGGcGaaiiOaiaacckajuaGdaWc aaGcpaqaaKqzGeWdbiabeE7aOTWdamaaBaaabaqcLbmapeGaaGimaa WcpaqabaqcLbsapeGaci4yaiaac+gacaGGZbGaeqiUde3cpaWaaSba aeaajugWa8qacaaIWaaal8aabeaaaOqaaKqzGeWdbiaadQfajuaGpa WaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaaajugib8qacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaWGubGaamyraiaacckacaGGGcGaaiiOaiaa d2gacaWGVbGaamizaiaadwgaaOWdaeaajugib8qacaqGGcqcfa4aaS aaaOWdaeaajugib8qacqaH3oaAl8aadaWgaaqaaKqzadWdbiaaicda aSWdaeqaaaGcbaqcLbsapeGaamOwaSWdamaaBaaabaqcLbmapeGaaG imaaWcpaqabaqcLbsapeGaci4yaiaac+gacaGGZbGaeqiUdexcfa4d amaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaqcLbsapeGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGubGa amytaiaacckacaGGGcGaamyBaiaad+gacaWGKbGaamyzaaaaaOGaay 5Eaaaaaa@9180@  (23)
Where
Z 0 = μ 0 ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbWcpaWaaSbaaeaajugWa8qacaaIWaaal8aabeaajugi b8qacqGH9aqpjuaGdaGcaaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGe WdbiabeY7aTLqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa keaajugib8qacqaH1oqzl8aadaWgaaqaaKqzadWdbiaaicdaaSWdae qaaaaaa8qabeaaaaa@46C7@
Hence the reflectance R and transmittance T spectrums of can be obtained by using the expressions:
T= | t | 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGubGaeyypa0tcfa4aaqWaaOWdaeaajugib8qacaWG0baa kiaawEa7caGLiWoajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaa aa@40A9@  (24)

  R= | r | 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaaiiOaiaadkfacqGH9aqpjuaGdaabdaGcpaqaaKqz GeWdbiaadkhaaOGaay5bSlaawIa7aSWdamaaCaaabeqaaKqzadWdbi aaikdaaaaaaa@425F@  (25)

Numerical calculation and discussion

In this subsection, the transmission spectra have been calculated using the theory described in previous section. We consider only normal incidence of the electromagnetic wave on the (1D- PC) structure. The structure is restructured as (An Bn)m where n = 1 . . m, m is chosen as 8. We have kept constant the refractive index of the layers, are fixed to be nInAs = 3.3842, and nSiO2 = 1.4672 at λ=0.43µm. The layer thicknesses were taken as dSiO2 =0.0733µm, and dInAs =0.0318µm. The transmission spectra in Figure 2 is computed and plotted with wavelength centered at 550 nm. According to these results, we are able to see that the structure exhibits various band gaps (or stop band) where the photonic states are forbidden in the structure, can be seen in the transmission spectrum. Furthermore we have observed that the phonic band gap which is limited at 342.7nm to 578.3nm. In order to check the effects of the defect layer, we introduce a defect layer TiO2 with refractive index nTiO2=2.8717, and thickness dTiO2=0.0187µm, in the (1D-DPC) structures containing InAs and SiO2. The refractives index of InAs and SiO2 are nInAs=3.3842, nSiO2=1.4672, and thickness d InAs=0.0318µm, dSIO2=0.0733µm. In Figures 3, we have plotted the wavelength-dependent transmittance spectra for the symmetric and asymmetric (1D- DPC) structures. Because of the existence of defect layer, it is found that there exists a very narrow pass band or single defect mode within the photonic band gap (PBG) is observed. For the asymmetric (1D-DPC) structure with the configuration (Air/(AB)4D(AB)4/ Air), the bandwidth was calculated as ΔBwp =(601.504-332.1712) =269.3328nm, and the resonant peak locates at the design wavelength of λ=370.2nm. For the symmetric (1D- DPC) structure with the configuration (A/(AB)4D(BA)4/Air), the bandwidth was calculated as ΔBwp=(604.294-334.252)=270.042nm, the resonant peak locates at the design wavelength of λ=532.4nm. Additionally, as seen from the figures, in the asymmetric structure the defect modes appear in higher frequencies with a small amplitude compared to the symmetric structure. Accordingly, this reduction in the amplitude of the defect peak becomes more significant for the case of asymmetric structure. These behaviors agree very well with those reported by work.20–22 The effects of the polarization and the angle of incidence on the defect modes in the transmission spectra for TE or TM modes are illustrated in Figure 4, Figure5 & Table 1. We have clearly observed that the transmittance spectrum of the defect mode is linked to the angle of incidence in TE and TM modes. Also, the position of narrow pass band is changed, and width of the band increases obviously for TE mode, and decrease for TM mode. On the other hand a pick of transmission change in the direction of small values when the angle incidences increase for TM mode. As shown in Figure 4, a pick of transmission occurred at the wavelength 532.4nm when θ=0°, 519.9nm when θ=30°, 492.2nm when θ=60°, and 481.6nm when θ=75° for TE mode. As seen and extracted from the Figure 5, the variation of transmission spectra for TM mode, a pick of transmission with a weak value occurred at the wavelength 504.6 nm when θ=30°, 444.2 nm when θ=60°, and 420.8 nm when θ=75°. Moreover, for both polarizations the frequency of the defect mode is shifted to the higher frequency as the angle increases. In addition, these results reveal that as the angle of incidence increases, the peak height of the defect mode decreases for TM mode and increases for TE mode. A comparative study, between our results and those available in the literature, shows the possibilities of the adjustment of transmission spectra of InAs and SiO2 mediums in presence of TiO2.The change in the angle of incidence and the polarization allows us to obtain an adjustable defect mode.9 In Figure 6, we examine the effects of the two defect layers, by introducing two defect layer TiO2 having thickness dTiO2 = 0.0374µm, in the (1D-DPC) structure symmetric and symmetric. It is found that there exists a two defect mode within the photonic band gap (PBG) in the(1D-DPC) structure symmetric with the configuration ((Air/(AB)4DBD(BA)4/Air)), the bandwidth was calculated as ΔBwp=(613.312-331.404) =281.908nm, as well as the resonant peak locates at the design wavelength of λ1=364.9 nm and λ2=523.6nm. For the (1D- DPC) structure asymmetric with the configuration (Air/(AB)4DBD(AB)4/Air), the bandwidth was calculated as ΔBwp =(600.4 -335.3)= 265.1nm, and the resonant peak locates at the design wavelength of ¸ λ1=430.1nm. In Figure 7, we have examined the effect the effects of the tree defect layers, by introducing tree defect layer TiO2 in the (1D- DPC) structures symmetric and asymmetric. It was found that it existed a tree defect mode within the photonic band gap (PBG) in the (1D-DPC) structure symmetric with the configuration (Air/(AB)4DBDBD(BA)4/Air, the bandwidth was calculated as ΔBwp=(605.107-343.632)=261.475nm, the resonant peak locates at the design wavelength of ¸ λ1=354.9nm, λ2=429.9nm and λ3=545. 3nm. For the (1D- DPC) structure asymmetric with the configuration (Air/(AB)4DBD(AB)4/Air), the bandwidth was calculated as ΔBwp=(574.54-343.666)=230.874nm, the resonant peak locates at the design wavelength of λ1=396.8 nm and λ2=468.9nm. Our results imply that the number of defect mode can be increased by adding the layer TiO2 in structure.8

TE mode

TM mode

θ

ΔBwp(nm)

λ(nm)

ΔBwp(nm)

λ(nm)

(604.294-334.252)= 270.042

532.4

(604.294-334.252)=270.042

532.4

30°

( 597.66-318.9)=278.76

519.9

(579.1-325.4)=253.7

504.6

60°

(576.5-285.9)=290.6

492.2

(518.1-306.3)=211.8

444.2

75°

(574.4 -271.6)=302.8

481.6

(504.9-296.6)=208.3

420.8

Table 1 Bandwidth and wavelength with different the angle of incidence and polarization of Transmission spectra of (1D- DPC) structure symmetric (Air/(AB)4D(BA)4/Air), (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2 = 0.0187µm)

Figure 2 Transmission spectra of (1D- PC) structure, nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm.

  • Figure 3 Transmission spectra of symmetric and asymmetric (1D-DPC) structure.
    (A) Symmetric (1D-DPC) structure; (B) Asymmetric (1D-DPC) structure (Air/ (AB)4 D (BA)4/ Air) (Air/ (AB4D (AB)4/ Air)

  • (A) θ=0°,                     (B) θ=30°

    (C)θ= 60°,                      (D) θ = 75°

    Figure 4 Transmission spectra of (1D-DPC) structure symmetric (Air/(AB)4D(BA)4/Air), TE mode (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2=0.0187µm).

  • (A) θ =0°                      (B) θ= 30°

    (C)θ= 60°,                      (D) θ = 75°

    Figure 5 Transmission spectra of (1D- DPC) structure symmetric (Air/(AB)4D(BA)4/Air, TM mode

    (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2=0.0187µm).

  • (A) Symmetric (Air/(AB)4DAD(BA)4/Air);             (B) Asymmetric (Air/(AB)4DBD(AB)4/Air)

    Figure 6 Transmission spectra of (1D- DPC) structure (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2=0.0374µm, θ=0°).

  • (A) Symmetric (Air/(AB)4DADAD(BA)4/Air);  (B) Asymmetric (Air/(AB)4DBDBD(AB)4/Air)

    Figure 7 Transmission spectra of (1D- DPC) structure (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2 =2.8717, dTiO2 =0.0748µm, θ=0°).

Conclusion

In summary, we have used the transfer matrix method to study one-dimensional photonic crystal defectives. We have discussed the properties of the defect modes for the asymmetric and symmetric structures for both TE and TM modes at different incidence angles. The results have shown the calculated the transmission with defects separated by different layers. When the order of the defect layer increased such as m=1, 2, 3 etc, additional modes occurs in photonic band gap. We can conclude that when the existence of defect layer, there is a very narrow pass band whose pick of transmission is observed. The maximum of transmission was obviously observed at these wavelengths for TE mode. Besides the dependence on angle of incidence of the defect mode, it has been noticed that selection of wave mode has significant effect on the peak position and amplitude of the defect mode. In other words, defect modes peak is related to the angle of incidence. For TM mode, the magnitude of transmission of the pass bands decrease for higher angle incidence. However, in TM waves, the frequency increases as the angle of incidence increases

Acknowledgements

None.

Conflict of interest

Authors have declared no conflict of interests.

References

  1. Sakoda K. Optical properties of Photonic Crystals. New York: Springer Berlin Heidlberg; 2005.
  2. Gondek E, Karasiński P. One-dimensional photonic crystals as selective back reflectors. Optics & Laser Technology. 2013;48:438–446.
  3. Kumar V, Suthar B, Kumar A, et al. Silicon based one dimensional photonic crystal as a TM-mode filter. Springer science Silicon. 2014;6(1):73–78.
  4. Young L, Cristal EG. Low-Pass and High-Pass Filters Consisting of Multilayer Dielectric Stacks. IEEE Transactions on Microwave Theory and Techniques. 1966;14(2):75–80.
  5. Shadrivov V, Sukhorukov AA, Kivshar YS. Complete band gaps in one-dimensional left-handed periodic structures. Physical Review Letters. 2005;95:14.
  6. Ya Vetrov S, Shabanov AV, Shustitskiĭ EV. Control of the transmission spectrum of a photonic crystal with lattice defects. Optics and Spectroscopy. 2006;100(3):409–413.
  7. Hadjira A, Badaoui, Abri M. One-dimensional photonic crystal selective filters design using simulated annealing optimization technique. Progress in electromagnetic research B. 2013;53:107–125.
  8. Tang L, Gao L, Xing FJ. Characterization for defect modes of one-dimensional photonic crystals containing Metamaterials. Chinese optics letters. 2008;6(3):201–203.
  9. Lotfi E, Jamshidi GK, Moslem F, et al. Comparison of photonic crystal narrow filters with metamaterials and dielectric defects. The European Physical Journal D. 2010;60(2):369–372.
  10. Němec H, Kužel P, Garet F, et al. Time-domain terahertz study of defect formation in one-dimensional photonic crystals. OSA Publishing, Applied Optics. 2004;43(9):1965–1970.
  11. Gaspar JA. Photonic crystal to photonic crystal surface modes: narrow-band pass filters. Optics express. 2004;12(11):2338–2355.
  12. Ghoch R, Ghoch KK, Chakraborty R. Narrow band filter using 1D periodic structure with defects for DWDM systems. Optics communications. 2013;289:75–80.
  13. Lin MC, Jao RF, Huang KH. Transfer matrix approach to study light scattering in complex layered media. Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves, and 12th International Conference on Terahertz Electronics. 2004.
  14. Oraizi H, Abdolali A. Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures. IET Microw Antennas Propag. 2010;4(11):1870–1879.
  15. Pendr JB, Mackinnon A. Calculation of photon dispersion. Phys Rev Lett. 1992;69(19):2772–2775.
  16. Scotognella F. Four-material one dimensional photonic crystals. Elsevier: Optical Materials. 2012;34(9):1610–1613.
  17. Xiao-Qin H, Yi-Ping C. Degeneracy and Split of Defect States in Photonic Crystals. Chinese Physics Letters. 2003;20(10).
  18. Kumar V, Suthar B, Kumar A, et al. Silicon Based One-Dimensional Photonic Crystal as a TM-Mode Filter. Springer Silicon. 2014;6(1):73–78.
  19. Villa F, Gaspar AJA. Photonic crystal to photonic crystal surface modes: narrow-bandpass filters. Optics Express. 2004;12(11):2338–2355.
  20. Wu CJ, Wang ZH. properties of defect modes in one-dimensional photonic crystals. Progress In Electromagnetics Research. 2010;103:169–184.
  21. Tameh TA, Memarzadeh BI, Granpayeh N, et al. Analysis and optimization of optical bistability in one-dimensional nonlinear photonic crystal with (HL)p(D)q(LH)p and (LH)p(D)q(HL)p structures. Elsevier Optik. 2010;121(19):1729–1734.
  22. Kumar V, Suthar B, Kumar A, et al. Design of a wavelength division demultiplexer using Si-based one-dimensional photonic crystal with a defect. Elsevier Optik. 2013;124(16):2527–2530.
Creative Commons Attribution License

©2018 Barkat, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.