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Introduction
The one dimensional photonic crystal (1D-PC) structures have 

become attractive to optical engineering due to its several beneficial 
features, such as its ability to control and manipulate the propagation 
of electromagnetic waves in limited space.1 These structures have 
a number of useful properties, which are employed as low-loss 
optical waveguides, dielectric reflecting mirrors, optical switches, 
optical limiters, and optical filters etc.2–4 It has been demonstrated 
experimentally and theoretically that (1D-PC) structures have 
complete omnidirectional photonic band gaps (PBGs).5 Therefore 
it is possible to create pass bands within the photonic band-gap by 
introducing of defects layers. When a defect layer is inserted into a one 
dimensional photonic crystal, localized defect mode will be appeared 
in the photonic band gaps (PBG), which are much more similar to the 
defect states generated in the forbidden band in a doped semiconductor. 
Recently, the defect modes inside the photonic band have been widely 
studied due to their properties.6–10 The perfect layer can be realized, 
by changing physical parameters, such as changing the thickness of 
one of the layer, adding another medium to the structure, or removing 
a layer from (1D-PC) structures. The localized defect modes, which 
are also called resonant transmission peaks, can be generated within 
the PBG due to the change of the interference behavior of light. The 
defect models properties can be used to make high quality extremely 
narrowband frequency selective filters.7–11 Selective photonic 
crystal filters have received much research interest in the fields 
of demultiplexers for WDM systems.12 Nowadays, the numerical 
modeling of photonics crystals is based on the calculation of the 
transmission, and the reflection coefficient properties. These methods 
including the plane wave expansion (PWE) method, the generalized 
Rayleigh identity method, the finite-difference time-domain (FDTD) 
method, and the transfer matrix method (TMM). Each method has 
its own limitations for finding some important properties of one 
dimensional defective photonic crystal (1D-DPC). The transfer matrix 
method is most popular because of its simplicity in algorithm and 
capability to model complex structures.13,14 It is recently introduced by 
Pendry and MacKinnon, to calculate the electromagnetic transmission 
through the PBG materials.15 In this paper, the transmission spectrum 
was obtained by applying the transfer matrix formalism to one 
dimensional defective photonic crystal (1D-DPC). The effects of the 
polarization and the angle of incidence on the defect modes in the 

transmission spectra are investigated. Several simulation cases by 
Matlab will be given to show the performance of this approach. The 
accuracy of the analysis is tested by comparing the computed results 
with measurements published data.

Theory
Let us consider first the (1D-PC) structure consisting of alternating 

multilayer of the form (AB)ND (AB)N and (AB)ND (BA)N shown in 
Figure 1, there are 2N+1 layer made up of dielectric materials A and 
B, and dielectric defect layer D. Each layer has to be dl thicknesses, 
and refractive index nl. In order to find the formulation of the structure, 
we supposed that the incident electromagnetic wave from air to In As 
and SiO2 medium. Let the layers be in the x-y plane, the z direction 
being normal to interface of layers. 

The refractive index profile of considered structure can be given as

		  ( ) ( )z zl l dε ε= +  		 (1)

And

		   ( ) ( )z zl l dε ε= +  		  (2)

Where

 L, is number of layer

		  1 2d d d= + , is period

Based on the Maxwell equations and the boundary conditions, 
the TMM has been widely used to calculate the amplitude and phase 
spectra of the light wave propagating in a (1D- PC) structure. We are 
going to suppose that a space time dependence of all the components 
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Figure 1 Structure of one-dimensional photonic crystal containing a defect.

Symmetric defective (1D- DPC); Asymmetric defective (1D- DPC)

Where Al and Bl are the amplitudes of the forward and backward 
travelling waves in the lth layer.

 The transverse components of the E and H fields from Maxwell’s 
equations in the lth layer, for TE polarization, are given by:

( )( ) ( )( ).cos .sin .cos .sin    )l l l l l l l l l li t k Z X i t k Z X
ly l lE A e B eω θ θ ω θ θ− + + += +

 	

						         
(6)

( )( ) ( )( ).cos .sin .cos .sin
( )

cos

i t k Z X i t k Z Xl l l l l l l l l ll
e elx l l

l

H A B
ω θ θ ω θ θη

θ

− + + +
= − −  

						          (7)
( )( ) ( )( ).cos .sin .cos .sin1( )

cos

i t k Z X i t k Z Xl l l l l l l l ll
e elz l l

l

H A B
ω θ θ ω θ θη

θ

− + + +
= +  

						         (8)
Where the wave numbers and intrinsic impedances are:
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When an electromagnetic wave propagates in (1D- PC) structure, 
the incident, reflected and transmitted electric fields are connected 
via the transfer matrix M. By using the boundary conditions and the 
condition of continuity of E and H fields at the interfaces of z 0= and 

1 2  3 z , , . ,  Nd d d d= …… we can find out the relationship between the 
fields (1D- PC) structure consisting of l layer, this relation is already 

exposed.16 
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The matrix Ml-1 of the lth layer can be written in the form.17–19 

						        

     (12)

( )1lδ − and ( )1lγ −  being the matrix parameters and depending on the 
incident angle of light, the optical constants and the layer thickness, 
are expressed as:
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We note that ( )1lθ −  is related to the angle of incidence 0θ  by the 
Snell’s Descart’s low, that is 

		  ( ) ( ) 0 01 1l ln sin n sinθ θ− − =
 		      

(15)

By considering the transmission matrix of each layer, we are able 
to obtain the transmission matrix of whole structure. For l number 
of multilayers; the corresponding transfer matrix can be defined as 
a product of matrices, is obtained for symmetric PBG structure.20,21 

( )
( )

2 1
2 1 11 12

21 221

m m
( ) ( )

m m

N
NN

k A B D A B
k

M M M M M M M
+

+

∏
=

= = =
 
    

						          (16)
And for asymmetric PBG structure.
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Where

MA is the transfer matrix of the first dielectric layer. 

MB is the transfer matrix of the second dielectric layer. 

MD is the transfer matrix of the dielectric layer defect.

These formulas can be modified by using N number of defect, are 
obtained for symmetric PC
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Where L is number of dielectrics layers defect and dielectric layer 

B between the defects. And for asymmetric PC
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 Where m11, m12, m21 & m22 are the complex numbers 

The transmittance t and reflectance r are defined as the ratios of the 
fluxes of the transmitted and reflected waves, respectively, to the flux 
of the incident wave. After some derivations, the total transmission 
and reflection coefficients 

are given by
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Here p0 and ps are the first and last medium of the structure which 
given as 
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Where
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Hence the reflectance R and transmittance T spectrums of can be 
obtained by using the expressions: 
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Numerical calculation and discussion
In this subsection, the transmission spectra have been calculated 

using the theory described in previous section. We consider only normal 
incidence of the electromagnetic wave on the (1D- PC) structure. The 
structure is restructured as (An Bn)

m where n = 1 . . m, m is chosen 
as 8. We have kept constant the refractive index of the layers, are 
fixed to be nInAs = 3.3842, and nSiO2 = 1.4672 at λ=0.43µm. The layer 
thicknesses were taken as dSiO2 =0.0733µm, and dInAs =0.0318µm. 
The transmission spectra in Figure 2 is computed and plotted with 
wavelength centered at 550 nm. According to these results, we are 
able to see that the structure exhibits various band gaps (or stop band) 
where the photonic states are forbidden in the structure, can be seen 
in the transmission spectrum. Furthermore we have observed that the 
phonic band gap which is limited at 342.7nm to 578.3nm. In order to 
check the effects of the defect layer, we introduce a defect layer TiO2 
with refractive index nTiO2=2.8717, and thickness dTiO2=0.0187µm, in 
the (1D-DPC) structures containing InAs and SiO2. The refractives 
index of InAs and SiO2 are nInAs=3.3842, nSiO2=1.4672, and thickness 
d InAs=0.0318µm, dSIO2=0.0733µm. In Figures 3, we have plotted 
the wavelength-dependent transmittance spectra for the symmetric 
and asymmetric (1D- DPC) structures. Because of the existence of 

defect layer, it is found that there exists a very narrow pass band or 
single defect mode within the photonic band gap (PBG) is observed. 
For the asymmetric (1D-DPC) structure with the configuration (Air/
(AB)4D(AB)4/ Air), the bandwidth was calculated as ΔBwp =(601.504-
332.1712) =269.3328nm, and the resonant peak locates at the design 
wavelength of λ=370.2nm. For the symmetric (1D- DPC) structure 
with the configuration (A/(AB)4D(BA)4/Air), the bandwidth was 
calculated as ΔBwp=(604.294-334.252)=270.042nm, the resonant 
peak locates at the design wavelength of λ=532.4nm. Additionally, 
as seen from the figures, in the asymmetric structure the defect modes 
appear in higher frequencies with a small amplitude compared to the 
symmetric structure. Accordingly, this reduction in the amplitude of 
the defect peak becomes more significant for the case of asymmetric 
structure. These behaviors agree very well with those reported by 
work.20–22 The effects of the polarization and the angle of incidence on 
the defect modes in the transmission spectra for TE or TM modes are 
illustrated in Figure 4, Figure5 & Table 1. We have clearly observed 
that the transmittance spectrum of the defect mode is linked to the 
angle of incidence in TE and TM modes. Also, the position of narrow 
pass band is changed, and width of the band increases obviously for 
TE mode, and decrease for TM mode. On the other hand a pick of 
transmission change in the direction of small values when the angle 
incidences increase for TM mode. As shown in Figure 4, a pick 
of transmission occurred at the wavelength 532.4nm when θ=0°, 
519.9nm when θ=30°, 492.2nm when θ=60°, and 481.6nm when 
θ=75° for TE mode. As seen and extracted from the Figure 5, the 
variation of transmission spectra for TM mode, a pick of transmission 
with a weak value occurred at the wavelength 504.6 nm when θ=30°, 
444.2 nm when θ=60°, and 420.8 nm when θ=75°. Moreover, for 
both polarizations the frequency of the defect mode is shifted to the 
higher frequency as the angle increases. In addition, these results 
reveal that as the angle of incidence increases, the peak height of 
the defect mode decreases for TM mode and increases for TE mode. 
A comparative study, between our results and those available in the 
literature, shows the possibilities of the adjustment of transmission 
spectra of InAs and SiO2 mediums in presence of TiO2.The change 
in the angle of incidence and the polarization allows us to obtain 
an adjustable defect mode.9 In Figure 6, we examine the effects of 
the two defect layers, by introducing two defect layer TiO2 having 
thickness dTiO2 = 0.0374µm, in the (1D-DPC) structure symmetric 
and symmetric. It is found that there exists a two defect mode within 
the photonic band gap (PBG) in the(1D-DPC) structure symmetric 
with the configuration ((Air/(AB)4DBD(BA)4/Air)), the bandwidth 
was calculated as ΔBwp=(613.312-331.404) =281.908nm, as well 
as the resonant peak locates at the design wavelength of λ1=364.9 
nm and λ2=523.6nm. For the (1D- DPC) structure asymmetric with 
the configuration (Air/(AB)4DBD(AB)4/Air), the bandwidth was 
calculated as ΔBwp =(600.4 -335.3)= 265.1nm, and the resonant peak 
locates at the design wavelength of ̧  λ1=430.1nm. In Figure 7, we have 
examined the effect the effects of the tree defect layers, by introducing 
tree defect layer TiO2 in the (1D- DPC) structures symmetric and 
asymmetric. It was found that it existed a tree defect mode within 
the photonic band gap (PBG) in the (1D-DPC) structure symmetric 
with the configuration (Air/(AB)4DBDBD(BA)4/Air, the bandwidth 
was calculated as ΔBwp=(605.107-343.632)=261.475nm, the resonant 
peak locates at the design wavelength of ¸ λ1=354.9nm, λ2=429.9nm 
and λ3=545. 3nm. For the (1D- DPC) structure asymmetric with the 
configuration (Air/(AB)4DBD(AB)4/Air), the bandwidth was calculated 
as ΔBwp=(574.54-343.666)=230.874nm, the resonant peak locates at 
the design wavelength of λ1=396.8 nm and λ2=468.9nm. Our results 
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imply that the number of defect mode can be increased by adding the 
layer TiO2 in structure.8  

Figure 2 Transmission spectra of (1D- PC) structure, nInAs=3.3842, 
nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm.

Figure 3 Transmission spectra of symmetric and asymmetric (1D-DPC) 
structure.

(A) Symmetric (1D-DPC) structure; (B) Asymmetric (1D-DPC) structure (Air/ 

(AB)4 D (BA)4/ Air) (Air/ (AB4D (AB)4/ Air)

Figure 4 Transmission spectra of (1D-DPC) structure symmetric (Air/
(AB)4D(BA)4/Air), TE mode (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, 
dSIO2=0.0733µm, nTiO2=2.8717, dTiO2=0.0187µm).

(A)	 θ =0° 				     (B) θ= 30°

	 (C) θ= 60°			        (D) θ = 75°

Figure 5 Transmission spectra of (1D- DPC) structure symmetric (Air/
(AB)4D(BA)4/Air, TM mode

(nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, 
dTiO2=0.0187µm).

(A)	Symmetric (Air/(AB)4DAD(BA)4/Air);  (B) Asymmetric (Air/(AB)4DBD(AB)4/Air) 

Figure 6 Transmission spectra of (1D- DPC) structure (nInAs=3.3842, 
nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2=0.0374µm, 

θ=0°).

(A) Symmetric (Air/(AB)4DADAD(BA)4/Air);       (B)Asymmetric (Air/      		
					     (AB)4DBDBD(AB)4/Air)

Figure 7 Transmission spectra of (1D- DPC) structure (nInAs=3.3842, 
nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2 =2.8717, dTiO2 =0.0748µm, 

θ=0°).
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Table 1 Bandwidth and wavelength with different the angle of incidence and polarization of Transmission spectra of (1D- DPC) structure symmetric (Air/
(AB)4D(BA)4/Air), (nInAs=3.3842, nSiO2=1.4672, d InAs=0.0318µm, dSIO2=0.0733µm, nTiO2=2.8717, dTiO2 = 0.0187µm)

TE mode TM mode

θ ΔBwp(nm) λ(nm) ΔBwp(nm) λ(nm)

0° (604.294-334.252)= 270.042 532.4 (604.294-334.252)=270.042 532.4

30° ( 597.66-318.9)=278.76 519.9 (579.1-325.4)=253.7 504.6

60° (576.5-285.9)=290.6 492.2 (518.1-306.3)=211.8 444.2

75° (574.4 -271.6)=302.8 481.6 (504.9-296.6)=208.3 420.8

Conclusion
In summary, we have used the transfer matrix method to study 

one-dimensional photonic crystal defectives. We have discussed the 
properties of the defect modes for the asymmetric and symmetric 
structures for both TE and TM modes at different incidence angles. 
The results have shown the calculated the transmission with defects 
separated by different layers. When the order of the defect layer 
increased such as m=1, 2, 3 etc, additional modes occurs in photonic 
band gap. We can conclude that when the existence of defect layer, 
there is a very narrow pass band whose pick of transmission is 
observed. The maximum of transmission was obviously observed at 
these wavelengths for TE mode. Besides the dependence on angle of 
incidence of the defect mode, it has been noticed that selection of 
wave mode has significant effect on the peak position and amplitude 
of the defect mode. In other words, defect modes peak is related to the 
angle of incidence. For TM mode, the magnitude of transmission of 
the pass bands decrease for higher angle incidence. However, in TM 
waves, the frequency increases as the angle of incidence increases. 
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