Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 4

A generalized Aradhana distribution with properties and applications

Daniel Welday, Rama Shanker

College of Science, Eritrea Institute of Technology, Eritrea

Correspondence: Rama Shanker, College of Science, Eritrea Institute of Technology, Asmara, Eritrea

Received: August 13, 2018 | Published: August 29, 2018

Citation: Welday D, Shanker R. A generalized Aradhana distribution with properties and applications. Biom Biostat Int J. 2018;7(4):374-385. DOI: 10.15406/bbij.2018.07.00234

Download PDF

Abstract

A two-parameter generalized Aradhana distribution which includes one parameter exponential and Aradhana distributions as special cases has been proposed. Its statistical properties including shapes of probability density function for varying values of parameters, coefficient of variation, skeweness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves and stress-strength reliability have been discussed. Maximum likelihood estimation has been discussed for estimating the parameters of the distribution. Applications of the distribution have been explained with two real life time data.

Keywords: aradhana distribution, statistical properties, maximum likelihood estimation, applications

Introduction

In almost every fields of knowledge including engineering, biomedical science, social science, insurance, finance, etc, the statistical analysis and modeling of real life time data are crucial for researchers and policy makers. The classical one parameter life time distributions, namely exponential and Lindley, introduced by Lindley,1 are not always suitable due to theoretical or applied point of view for real lifetime data. To overcome the shortcomings of these classical one parameter distributions and have a better lifetime distribution, a number of one parameter lifetime distributions have been introduced in statistics literature and the statistics literature is flooded with a number of one parameter life time distributions. Shanker2 has introduced a one parameter lifetime distribution named Aradhana distribution having scale parameter q and defined by its probability density function (pdf) and cumulative distribution function (cdf)

f 1 ( x;θ )= θ 3 θ 2 +2θ+2 ( 1+x ) 2 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaaakeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaGaeqiUdeNaey4kaSIaaGOmaaaadaqadaqaaiaaigdacqGHRaWkca WG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamyzamaa CaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaacUdacaWG4bGaey Opa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@5BDA@ (1.1)

F 1 ( x,θ )=1[ 1+ θx( θx+2θ+2 ) θ 2 +2θ+2 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaadmaabaGaaGymaiabgU caRmaalaaabaGaeqiUdeNaamiEamaabmaabaGaeqiUdeNaamiEaiab gUcaRiaaikdacqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7a XjabgUcaRiaaikdaaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqaba GaeyOeI0IaeqiUdeNaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGim aiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@6503@ (1.2)

         

The rth raw moments (moments about origin), μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3E2D@  of Aradhana distribution obtained by Shanker2 is given by

μ r = r!{ θ 2 +2(r+1)θ+(r+1)(r+2) } θ r ( θ 2 +2θ+2 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaikdacaGGOaGaamOCaiabgUcaRiaaigda caGGPaGaeqiUdeNaey4kaSIaaiikaiaadkhacqGHRaWkcaaIXaGaai ykaiaacIcacaWGYbGaey4kaSIaaGOmaiaacMcaaiaawUhacaGL9baa aeaacqaH4oqCdaahaaWcbeqaaiaadkhaaaGcdaqadaqaaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcqGHRaWk caaIYaaacaGLOaGaayzkaaaaaiaacUdacaWGYbGaeyypa0JaaGymai aacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6cacaGGUaaa aa@6AD5@

Thus, the first four raw moments of Aradhana distribution are obtained as

μ 1 = ( θ 2 +4θ+6 ) θ( θ 2 +2θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI0aGaeqiUdeNaey4kaSIaaGOnaaGaayjkaiaawMcaaaqa aiabeI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeI7aXjabgUcaRiaaikdaaiaawIcacaGLPaaaaaaa aa@530B@             μ 2 = 2( θ 2 +6θ+12 ) θ 2 ( θ 2 +2θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOnaiabeI7aXjabgUcaRiaaigdacaaIYaaacaGL OaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaae aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU deNaey4kaSIaaGOmaaGaayjkaiaawMcaaaaaaaa@5574@

μ 3 = 6( θ 2 +8θ+20 ) θ 3 ( θ 2 +2θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGioaiabeI7aXjabgUcaRiaaikdacaaIWaaacaGL OaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOWaaeWaae aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU deNaey4kaSIaaGOmaaGaayjkaiaawMcaaaaaaaa@557B@          μ 4 = 24( θ 2 +10θ+30 ) θ 4 ( θ 2 +2θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaigdacaaIWaGaeqiUdeNaey4kaSIaaG4m aiaaicdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaais daaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaikdacqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaaaaa@56EB@

Using the relationship between central moments (moments about mean) and the raw moments, the central moments of Aradhana distribution are given by

μ 2 = θ 4 +8 θ 3 +24 θ 2 +24θ+12 θ 2 ( θ 2 +2θ+2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaG 4maaaakiabgUcaRiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCcqGHRaWkcaaIXaGaaG OmaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiU de3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjabgU caRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa @5B08@

μ 3 = 2( θ 6 +12 θ 5 +54 θ 4 +100 θ 3 +108 θ 2 +72θ+24 ) θ 3 ( θ 2 +2θ+2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiVd0 wcfa4aaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiabg2da9Kqbaoaa laaakeaajugibiaaikdajuaGdaqadaGcbaqcLbsacqaH4oqCjuaGda ahaaWcbeqaaKqzGeGaaGOnaaaacqGHRaWkcaaIXaGaaGOmaiabeI7a XLqbaoaaCaaaleqabaqcLbsacaaI1aaaaiabgUcaRiaaiwdacaaI0a GaeqiUdexcfa4aaWbaaSqabeaajugibiaaisdaaaGaey4kaSIaaGym aiaaicdacaaIWaGaeqiUdexcfa4aaWbaaSqabeaajugibiaaiodaaa Gaey4kaSIaaGymaiaaicdacaaI4aGaeqiUdexcfa4aaWbaaSqabeaa jugibiaaikdaaaGaey4kaSIaaG4naiaaikdacqaH4oqCcqGHRaWkca aIYaGaaGinaaGccaGLOaGaayzkaaaabaqcLbsacqaH4oqCjuaGdaah aaWcbeqaaKqzGeGaaG4maaaajuaGdaqadaGcbaqcLbsacqaH4oqCju aGdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaIYaGaeqiUdeNa ey4kaSIaaGOmaaGccaGLOaGaayzkaaaddaahaaqcKfaG=hqabaqcLb kacaaIZaaaaaaaaaa@7A66@

μ 4 = 3( 3 θ 8 +48 θ 7 α+304 θ 6 α 2 +944 θ 5 α 3 +1816 θ 4 α 4 +2304 α 5 θ 3 +1920 α 6 θ 2 +960 α 7 θ+240 α 8 ) θ 4 ( θ 2 +2θ+2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4mamaabmaaeaqa beaacaaIZaGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaG inaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiEdaaaGccqaHXoqycqGH RaWkcaaIZaGaaGimaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaa GccqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI5aGaaGin aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqaHXoqydaahaa WcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGioaiaaigdacaaI2aGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaeqySde2aaWbaaSqabeaaca aI0aaaaOGaey4kaSIaaGOmaiaaiodacaaIWaGaaGinaiabeg7aHnaa CaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGaaG4maaaaaO qaaiabgUcaRiaaigdacaaI5aGaaGOmaiaaicdacqaHXoqydaahaaWc beqaaiaaiAdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaI5aGaaGOnaiaaicdacqaHXoqydaahaaWcbeqaaiaaiEdaaaGc cqaH4oqCcqGHRaWkcaaIYaGaaGinaiaaicdacqaHXoqydaahaaWcbe qaaiaaiIdaaaaaaOGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqa baGaaGinaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiabeI7aXjabgUcaRiaaikdaaiaawIcacaGLPaaa daahaaWcbeqaaiaaisdaaaaaaaaa@8E1D@

Shanker2 has discussed various statistical properties based on moments including coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviation, Bonferoni and Lorenz curves, stress-strength reliability along with estimation of parameter and applications of Aradhana distribution for modeling real lifetime data from engineering and biomedical sciences. A discrete Poisson-Aradhana distribution, a Poisson mixture of Aradhana distribution, has been obtained by Shanker and its statistical properties, estimation of parameter along with applications to model count data are available in Shanker . The Lindley distribution is defined by its pdf and cdf

f 2 ( x;θ )= θ 2 θ+1 ( 1+x ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaik daaaaakeaacqaH4oqCcqGHRaWkcaaIXaaaamaabmaabaGaaGymaiab gUcaRiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsi slcqaH4oqCcaWG4baaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiil aiabeI7aXjabg6da+iaaicdaaaa@569F@ (1.3)

F 2 ( x,θ )=1( 1+ θx θ+1 );x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaabmaabaGaaGymaiabgU caRmaalaaabaGaeqiUdeNaamiEaaqaaiabeI7aXjabgUcaRiaaigda aaaacaGLOaGaayzkaaGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilai abeI7aXjabg6da+iaaicdaaaa@5264@ (1.4)

Ghitany et al.,4 have detailed study on statistical properties, estimation of parameter and application of Lindley distribution for modeling waiting time data in a bank. Shanker et al.,5 have critical and comparative study on modeling of real lifetime data from biomedical sciences and engineering and observed that there are several lifetime data where exponential distribution gives much better fit than Lindley distribution. Recently, Berhane & Shanker6 proposed a discrete Lindley distribution using infinite series approach of discretization and studied its various statistical properties, estimation of parameter and applications.

In this paper a two -parameter generalized Aradhana distribution (GAD) has been proposed which includes exponential and Aradhana distributions. GAD has been found to be more general in nature and wider in scope and possess tremendous capacity to fit observed real lifetime data. Its moments and moments based measures have been obtained and discussed. Statistical properties including hazard rate function, mean residual life function, stochastic ordering, mean deviation, Bonferroni and Lorenz curves and stress -strength parameter of GAD have been discussed. Estimation of parameters has been discussed using the method of maximum likelihood. Applications of the distribution have been explained with two real lifetime data and the fit has been compared with one parameter exponential, Lindley and Aradhana distributions and a generalization of Sujatha distribution (AGSD), proposed by Shanker et al.7

A generalized Aradhana distribution

A generalized Aradhana distribution (GAD) having parameters  and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39CA@  is defined by its pdf and cdf

f 3 ( x;θ,α )= θ 3 θ 2 +2αθ+2 α 2 ( 1+αx ) 2 e θx ;x>0,θ>0,α0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGOmaiabeg7aHjabeI7aXjabgUcaRiaaikdacqaHXo qydaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaaIXaGaey4kaSIa eqySdeMaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaOGa ai4oaiaadIhacqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaic dacaGGSaGaeqySdeMaeyyzImRaaGimaiaac6caaaa@6B07@ (2.1)

       

F 3 ( x;θ,α )=1[ 1+ αθx(2θ+αθx+2α) θ 2 +2θα+2 α 2 ] e θx ; x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9iaaigdacqGHsisldaWada qaaiaaigdacqGHRaWkdaWcaaqaaiabeg7aHjabeI7aXjaadIhacaGG OaGaaGOmaiabeI7aXjabgUcaRiabeg7aHjabeI7aXjaadIhacqGHRa WkcaaIYaGaeqySdeMaaiykaaqaaiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeq ySde2aaWbaaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2faaiaadwga daahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGccaGG7aaeaaaaaa aaa8qacaGGGcGaamiEaiabg6da+iaaicdacaGGSaGaeqiUdeNaeyOp a4JaaGimaaaa@7185@ (2.2)

       

Note that exponential distribution and Aradhana distribution are special cases of GAD for and, respectively. Further, Like Aradhana distribution, GAD is also a three-component mixture of exponential, gamma and distributions. That is

f 3 ( x;θ,α )= p 1 g 1 ( x;θ )+ p 2 g 2 ( x,θ )+(1 p 1 p 2 ) g 3 ( x,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9iaadchadaWgaaWcbaGaaG ymaaqabaGccaaMc8Uaam4zamaaBaaaleaacaaIXaaabeaakmaabmaa baGaamiEaiaacUdacqaH4oqCaiaawIcacaGLPaaacqGHRaWkcaWGWb WaaSbaaSqaaiaaikdaaeqaaOGaam4zamaaBaaaleaacaaIYaaabeaa kmaabmaabaGaamiEaiaacYcacqaH4oqCaiaawIcacaGLPaaacqGHRa WkcaGGOaGaaGymaiabgkHiTiaadchadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaadEgada WgaaWcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdeha caGLOaGaayzkaaaaaa@6480@   (2.3)

                    

where                                                            

p 1 = θ 2 θ 2 +2θα+2 α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqySde2aaWba aSqabeaacaaIYaaaaaaaaaa@4897@

p 2 = 2αθ θ 2 +2θα+2 α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaHXoqycqaH 4oqCaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYa GaeqiUdeNaeqySdeMaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGa aGOmaaaaaaaaaa@4A00@

g 1 ( x;θ )=θ e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaeqiUdeNaamyzamaaCaaaleqabaGaeyOeI0 IaeqiUdeNaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGimaiaacYca cqaH4oqCcqGH+aGpcaaIWaaaaa@4D2B@

g 2 ( x;2,θ )= θ 2 Γ( 2 ) e θx x 21 ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaaGOmaiaacYca cqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaaaOqaaiabfo5ahnaabmaabaGaaGOmaaGaayjk aiaawMcaaaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4b aaaOGaamiEamaaCaaaleqabaGaaGOmaiabgkHiTiaaigdaaaGccaGG 7aGaamiEaiabg6da+iaaicdacaGGSaGaeqiUdeNaeyOpa4JaaGimaa aa@56E0@

g 3 ( x;3,θ )= θ 3 Γ( 3 ) e θx x 31 ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaaG4maiaacYca cqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaaaOqaaiabfo5ahnaabmaabaGaaG4maaGaayjk aiaawMcaaaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4b aaaOGaamiEamaaCaaaleqabaGaaG4maiabgkHiTiaaigdaaaGccaGG 7aGaamiEaiabg6da+iaaicdacaGGSaGaeqiUdeNaeyOpa4JaaGimaa aa@56E5@

The nature of the pdf and the cdf of GAD for various combinations of the parameters θ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCkabaaaaaaaaapeGaaiiOaKqzGeWdaiaabggacaqGUbGaaeizaOWd biaacckajugib8aacqaHXoqyaaa@405E@  presented in Figure 1 & Figure 2, respectively.

Figure 1 Behavior of the pdf of GAD for varying values of parameters and .

Figure 2 Behavior of the cdf of GAD for varying values of parameters and .

Statistical properties of GAD

Moments and moments based measures

The rth raw moment, , of GAD can be obtained as

μ r = r!( θ 2 +2αθ(r+1)+ α 2 (r+2)(r+1) ) θ r ( θ 2 +2θα+2 α 2 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaamOCaiaacgcadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaikdacqaHXoqycqaH4oqCcaGGOaGaamOC aiabgUcaRiaaigdacaGGPaGaey4kaSIaeqySde2aaWbaaSqabeaaca aIYaaaaOGaaiikaiaadkhacqGHRaWkcaaIYaGaaiykaiaacIcacaWG YbGaey4kaSIaaGymaiaacMcaaiaawIcacaGLPaaaaeaacqaH4oqCda ahaaWcbeqaaiaadkhaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYa GaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaiaa cUdacaWGYbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaca GGSaGaaiOlaiaac6cacaGGUaaaaa@7172@

The first four raw moments of GAD are given by

μ 1 = ( θ 2 +4θα+6 α 2 ) θ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI0aGaeqiUdeNaeqySdeMaey4kaSIaaGOnaiabeg7aHnaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabeI7aXnaabm aabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiab eI7aXjabeg7aHjabgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaaik daaaaakiaawIcacaGLPaaaaaaaaa@5A50@

μ 2 = 2( θ 2 +6θα+12 α 2 ) θ 2 ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOnaiabeI7aXjabeg7aHjabgUcaRiaaigdacaaI YaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeqySdeMaey 4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaa wMcaaaaaaaa@5CB9@

μ 3 = 6( θ 2 +8θα+20 α 2 ) θ 3 ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGioaiabeI7aXjabeg7aHjabgUcaRiaaikdacaaI WaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeqySdeMaey 4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaa wMcaaaaaaaa@5CC0@ .

μ 4 = 24( θ 2 +10θα+30 α 2 ) θ 4 ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaigdacaaIWaGaeqiUdeNaeqySdeMaey4k aSIaaG4maiaaicdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawI cacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqa aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4o qCcqaHXoqycqGHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaaaaaaa@5E30@

The central moments of GAD (2.1) are thus obtained as

μ 2 = θ 4 +8α θ 3 +24 α 2 θ 2 +24 α 3 θ+24 α 4 θ 2 ( θ 2 +2αθ+2 α 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaGioaiabeg7aHjabeI7aXnaaCaaale qabaGaaG4maaaakiabgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqa beaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiaaisdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqC cqGHRaWkcaaIYaGaaGinaiabeg7aHnaaCaaaleqabaGaaGinaaaaaO qaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjabeI7aXj abgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa@6777@

μ 3 = 2( θ 6 +12 θ 5 α+54 θ 4 α 2 +100 α 3 θ 3 +108 α 4 θ 2 +72 α 5 θ+24 α 6 ) θ 3 ( θ 2 +2αθ+2 α 2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa eqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymaiaaikdacq aH4oqCdaahaaWcbeqaaiaaiwdaaaGccqaHXoqycqGHRaWkcaaI1aGa aGinaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabeg7aHnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaigdacaaIWaGaaGimaiabeg7aHnaa CaaaleqabaGaaG4maaaakiabeI7aXnaaCaaaleqabaGaaG4maaaaki abgUcaRiaaigdacaaIWaGaaGioaiabeg7aHnaaCaaaleqabaGaaGin aaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiEdaca aIYaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaeqiUdeNaey4kaSIa aGOmaiaaisdacqaHXoqydaahaaWcbeqaaiaaiAdaaaaakiaawIcaca GLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqycq aH4oqCcqGHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa@7B28@

μ 4 = 3( 3 θ 8 +48 θ 7 α+304 θ 6 α 2 +944 θ 5 α 3 +1816 θ 4 α 4 +2304 α 5 θ 3 +1920 α 6 θ 2 +960 α 7 θ+240 α 8 ) θ 4 ( θ 2 +2αθ+2 α 2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4mamaabmaaeaqa beaacaaIZaGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaG inaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiEdaaaGccqaHXoqycqGH RaWkcaaIZaGaaGimaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaa GccqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI5aGaaGin aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqaHXoqydaahaa WcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGioaiaaigdacaaI2aGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaeqySde2aaWbaaSqabeaaca aI0aaaaOGaey4kaSIaaGOmaiaaiodacaaIWaGaaGinaiabeg7aHnaa CaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGaaG4maaaaaO qaaiabgUcaRiaaigdacaaI5aGaaGOmaiaaicdacqaHXoqydaahaaWc beqaaiaaiAdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaI5aGaaGOnaiaaicdacqaHXoqydaahaaWcbeqaaiaaiEdaaaGc cqaH4oqCcqGHRaWkcaaIYaGaaGinaiaaicdacqaHXoqydaahaaWcbe qaaiaaiIdaaaaaaOGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqa baGaaGinaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiabeg7aHjabeI7aXjabgUcaRiaaikdacqaHXoqy daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaisdaaaaaaaaa@9131@

The expressions for various coefficients including coefficient of variation, skewness, kurtosis and index of dispersion  of GAD are obtained as

C.V= σ μ 1 = θ 4 +8 θ 3 α+24 θ 2 α 2 +24θ α 3 +12 α 4 θ 2 +4θα+6 α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiabg2da9maalaaabaGaeq4WdmhabaGaeqiVd02aaSbaaSqa aiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaaaaaiabg2da9m aalaaabaWaaOaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaI4aGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeqySdeMaey 4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqaH XoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiabeI 7aXjabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaI YaGaeqySde2aaWbaaSqabeaacaaI0aaaaaqabaaakeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqiUdeNaeqySdeMa ey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaaGccaaMc8 oaaa@6C46@

β 1 = μ 3 μ 2 3/2 = 2( θ 6 +12 θ 5 α+54 θ 4 α 2 +100 α 3 θ 3 +108 α 4 θ 2 +72 α 5 θ+24 α 6 ) ( θ 4 +8α θ 3 +24 α 2 θ 2 +24 α 3 θ+24 α 4 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiab g2da9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaaca aI2aaaaOGaey4kaSIaaGymaiaaikdacqaH4oqCdaahaaWcbeqaaiaa iwdaaaGccqaHXoqycqGHRaWkcaaI1aGaaGinaiabeI7aXnaaCaaale qabaGaaGinaaaakiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaigdacaaIWaGaaGimaiabeg7aHnaaCaaaleqabaGaaG4maaaaki abeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdacaaIWaGa aGioaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaiEdacaaIYaGaeqySde2aaWbaaSqa beaacaaI1aaaaOGaeqiUdeNaey4kaSIaaGOmaiaaisdacqaHXoqyda ahaaWcbeqaaiaaiAdaaaaakiaawIcacaGLPaaaaeaadaqadaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiIdacqaHXoqycq aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGinaiab eg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaI ZaaaaOGaeqiUdeNaey4kaSIaaGOmaiaaisdacqaHXoqydaahaaWcbe qaaiaaisdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodacaGG VaGaaGOmaaaaaaaaaa@92A8@

β 2 = μ 4 μ 2 2 = 3( 3 θ 8 +48 θ 7 α+304 θ 6 α 2 +944 θ 5 α 3 +1816 θ 4 α 4 +2304 α 5 θ 3 +1920 α 6 θ 2 +960 α 7 θ+240 α 8 ) ( θ 4 +8α θ 3 +24 α 2 θ 2 +24 α 3 θ+12 α 4 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaaG4mamaabmaa eaqabeaacaaIZaGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaS IaaGinaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiEdaaaGccqaHXoqy cqGHRaWkcaaIZaGaaGimaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiA daaaGccqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI5aGa aGinaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqaHXoqyda ahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGioaiaaigdacaaI 2aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaeqySde2aaWbaaSqabe aacaaI0aaaaOGaey4kaSIaaGOmaiaaiodacaaIWaGaaGinaiabeg7a HnaaCaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGaaG4maa aaaOqaaiabgUcaRiaaigdacaaI5aGaaGOmaiaaicdacqaHXoqydaah aaWcbeqaaiaaiAdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI5aGaaGOnaiaaicdacqaHXoqydaahaaWcbeqaaiaaiEda aaGccqaH4oqCcqGHRaWkcaaIYaGaaGinaiaaicdacqaHXoqydaahaa WcbeqaaiaaiIdaaaaaaOGaayjkaiaawMcaaaqaamaabmaabaGaeqiU de3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioaiabeg7aHjabeI 7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI0aGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiaaisdacqaHXoqydaahaaWcbeqaaiaaioda aaGccqaH4oqCcqGHRaWkcaaIXaGaaGOmaiabeg7aHnaaCaaaleqaba GaaGinaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaa aa@A5BD@

γ= σ 2 μ 1 = θ 4 +8α θ 3 +24 α 2 θ 2 +24 α 3 θ+12 α 4 θ( θ 2 +2αθ+2 α 2 )( θ 2 +4θα+6 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGioaiabeg7aHjabeI7aXnaaCaaaleqabaGaaG4maaaaki abgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdacq aHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCcqGHRaWkcaaIXaGa aGOmaiabeg7aHnaaCaaaleqabaGaaGinaaaaaOqaaiabeI7aXnaabm aabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiab eg7aHjabeI7aXjabgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaaik daaaaakiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaisdacqaH4oqCcqaHXoqycqGHRaWkcaaI2a GaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaaaa @7B84@

The behaviors of C.V, skewness, kurtosis and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of GAD for various combination of parameters  and  have been presented in Tables 1-4, respectively.

 q α

0.1

0.2

0.5

1

2

3

4

5

0.1

0.755

0.8535

0.9519

0.9843

0.9955

0.9979

0.9988

0.9992

0.2

0.6755

0.7552

0.8831

0.9519

0.9843

0.9924

0.9955

0.997

0.5

0.6172

0.6568

0.7551

0.8534

0.9341

0.9635

0.9771

0.984

1

0.597

0.6173

0.6756

0.7551

0.8535

0.9049

0.9341

0.952

2

0.587

0.5971

0.6273

0.6756

0.7552

0.8125

0.8535

0.833

3

0.583

0.5904

0.6105

0.6439

0.7048

0.7551

0.7955

0.8277

4

0.582

0.5871

0.6021

0.6273

0.6756

0.7184

0.7551

0.7863

5

0.581

0.5851

0.5971

0.6105

0.6568

0.6934

0.7262

0.755

Table 1 C.V of GAD for varying values of parameters and

 

 q α

0.1

0.2

0.5

1

2

3

4

5

0.1

1.2981

1.5314

2.0638

2.5955

3.1058

3.3467

3.4859

3.5763

0.2

1.1932

1.2981

1.6376

2.0639

2.5955

2.9057

3.1058

3.2448

0.5

1.1589

1.1781

1.2981

1.5313

1.9114

2.1974

2.4194

2.5955

1

1.1553

1.1589

1.1932

1.2981

1.5314

1.7358

1.9114

2.0639

2

1.1548

1.1553

1.1622

1.1932

1.2981

1.417

1.5314

1.6376

3

1.1547

1.1549

1.1573

1.17

1.224

1.2981

1.3775

1.456

4

1.1547

1.1548

1.1559

1.1622

1.1932

1.2414

1.2981

1.3576

5

1.1547

1.1547

1.1553

1.1589

1.1781

1.211

1.2523

1.2981

Table 2 of GAD for varying values of parameters and

 q α

0.1

0.2

0.5

1

2

3

4

5

0.1

5.3806

6.1353

7.163

8.4341

8.8155

8.9103

8.9473

8.9654

0.2

5.0871

5.3806

6.4784

7.613

8.4341

8.7

8.8155

8.8754

0.5

5.0082

5.0507

5.3806

6.1353

7.26

7.8744

8.2225

8.4341

1

5.0012

5.0082

5.0871

5.3806

6.1353

6.779

7.2601

7.613

2

5.0002

5.0012

5.0151

5.087

5.3806

5.7583

6.1353

6.4784

3

5.0001

5.0004

5.005

5.032

5.1673

5.3806

5.6297

5.8864

4

5.00002

5.0002

5.0022

5.015

5.0871

5.2151

5.3806

5.5659

5

5.00001

5.0001

5.0012

5.0082

5.0507

5.1325

5.2459

5.3806

Table 3 Amplitude in mill volts of the Lead-1 of electrocardiography in sheep

*Significant (P≤0.05); NSNot significant (P>0.05)

 q α

0.1

0.2

0.5

1

2

3

4

5

0.1

12.5454

6.5556

2.4981

1.1594

0.5449

0.354

0.2619

0.2077

0.2

11.5851

6.2727

2.619

1.2491

0.5797

0.3717

0.2724

0.2147

0.5

10.6807

5.6548

2.509

1.3111

0.6377

0.4085

0.2969

0.2319

1

10.3402

5.3403

2.317

1.2545

0.6556

0.4336

0.3189

0.2498

2

10.1689

5.1701

2.1692

1.1585

0.6273

0.4325

0.3278

0.2619

3

10.1122

5.1129

2.1136

1.111

0.599

0.4182

0.3219

0.261

4

10.084

5.0844

2.0852

1.0846

0.5793

0.4049

0.3136

0.2562

5

10.067

5.0674

2.068

1.0681

0.5655

0.3944

0.306

0.2509

Table 4 of GAD for varying values of parameters and

For a fixed value of α, C.V increases as the value of  increases. Again for a fixed value of , C.V decrease as the value of  increases.

Clearly for any given values of parameters  and , coefficient of skewness is always positive and this means that it is always positively skewed.

Since β 2 >3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg6da+iaaiodacaGGSaaaaa@3C16@ GAD is always leptokurtic, which means that GAD is more peaked than the normal curve

As long as 0<θ<1and0<α<5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH8a apcqaH4oqCcqGH8aapcaaIXaGaamyyaiaab6gacaqGKbGaaGimaiab gYda8iabeg7aHjabgYda8iaaiwdaaaa@441F@ , GAD is over dispersed  and for θ>2andα>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaikdacaqGHbGaaeOBaiaabsgacqaHXoqycqGH+aGpcaaIWaaa aa@40A5@ , GAD is under-dispersed. The nature of C.V,,and  of GAD for various combinations of parameters  and have been shown graphically in Figures 3-6, respectively.

Figure 3 Coefficient of variation of GAD for different values of parameters and .

Figure 4Coefficient of Skewness of GAD for different values of parameters and .

Figure 5Coefficient of kurtosis of GAD for different values of parameters and .

Figure 6Index of dispersion of GAD for different values of parameters and .

Hazard rate function and mean residual life function The hazard rate function (also known as the failure rate function) and the mean residual life function  of a continuous random variablehaving pdf and cdf are respectively defined as

h( x )= lim Δx0 P( X<x+Δx|X>x ) Δx = f( x ) 1F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWfqaqaaiGacYgacaGG PbGaaiyBaaWcbaGaeyiLdqKaamiEaiabgkziUkaaicdaaeqaaOWaaS aaaeaacaWGqbWaaeWaaeaadaabcaqaaiaadIfacqGH8aapcaWG4bGa ey4kaSIaeyiLdqKaamiEaaGaayjcSdGaamiwaiabg6da+iaadIhaai aawIcacaGLPaaaaeaacqGHuoarcaWG4baaaiabg2da9maalaaabaGa amOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaqaaiaaigdacqGHsi slcaWGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaaaa@5C93@

and  m( x )=E[ Xx|X>x ]= 1 1F( x ) x [ 1F( t ) ] dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabccacaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaamyramaadmaa baWaaqGaaeaacaWGybGaeyOeI0IaamiEaaGaayjcSdGaamiwaiabg6 da+iaadIhaaiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigdaaeaa caaIXaGaeyOeI0IaamOramaabmaabaGaamiEaaGaayjkaiaawMcaaa aadaWdXaqaamaadmaabaGaaGymaiabgkHiTiaadAeadaqadaqaaiaa dshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadIhaaeaacq GHEisPa0Gaey4kIipakiaadsgacaWG0baaaa@5A5E@ Thus, GAD are thus obtained as

h( x )= θ 3 ( 1+αx ) 2 θαx(2θ+αθx+2α)+( θ 2 +2αθ+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaakmaabmaabaGaaGymaiabgUcaRiabeg7aHj aadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacqaH 4oqCcqaHXoqycaWG4bGaaiikaiaaikdacqaH4oqCcqGHRaWkcqaHXo qycqaH4oqCcaWG4bGaey4kaSIaaGOmaiabeg7aHjaacMcacqGHRaWk caGGOaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai abeg7aHjabeI7aXjabgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaa ikdaaaGccaGGPaaaaaaa@638B@
and

m( x )= θ 2 +2θα+2 α 2 { θαx( 2θ+2x+2α )+( θ 2 +2θα+2 α 2 ) } e θx x ( { θαt( 2θ+2t+2α )+( θ 2 +2θα+2 α 2 ) } θ 2 +2θα+2 α 2 ) e θt dt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycq GHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGcbaWaaiWa aeaacqaH4oqCcqaHXoqycaWG4bWaaeWaaeaacaaIYaGaeqiUdeNaey 4kaSIaaGOmaiaadIhacqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzk aaGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIYaGaeqiUdeNaeqySdeMaey4kaSIaaGOmaiabeg7aHnaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haai aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaaaOWaa8qC aeaadaqadaqaamaalaaabaWaaiWaaeaacqaH4oqCcqaHXoqycaWG0b WaaeWaaeaacaaIYaGaeqiUdeNaey4kaSIaaGOmaiaadshacqGHRaWk caaIYaGaeqySdegacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeqyS deMaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYa GaeqySde2aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaa dwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadshaaaGccaWGKbGaam iDaaWcbaGaamiEaaqaaiabg6HiLcqdcqGHRiI8aOGaaiOlaaaa@A2D2@

= ( θ 2 α 2 x 2 +2αθx(2α+θ)+( θ 2 +4θα+6 α 2 ) ) θ( θαx(2θ+2θx+2α)+( θ 2 +2θα+2 α 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqaHXoqy daahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiabeg7aHjabeI7aXjaadIhacaGGOaGaaGOmaiab eg7aHjabgUcaRiabeI7aXjaacMcacqGHRaWkcaGGOaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeI7aXjabeg7aHjab gUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccaGGPaaaca GLOaGaayzkaaaabaGaeqiUde3aaeWaaeaacqaH4oqCcqaHXoqycaWG 4bGaaiikaiaaikdacqaH4oqCcqGHRaWkcaaIYaGaeqiUdeNaamiEai abgUcaRiaaikdacqaHXoqycaGGPaGaey4kaSIaaiikaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycq GHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaaiykaaGa ayjkaiaawMcaaaaaaaa@7C12@

It can be easily verified that h( 0 )=f( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaaeaacaaI WaaacaGLOaGaayzkaaaaaa@3E72@  and m( 0 )= μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqaH8oqBdaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaOGamai4gkdiIcaaaaa@410F@ . The behaviors of  and  of GAD for various combinations of parameters  and have been shown graphically in Figure 7 & Figure 8, respectively. Clearly  is monotonically increasing whereas h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A81@  is monotonically decreasing.

Figure 7 Behaviors of of GAD for varying values of parameters and .

Figure 8 Behaviors of of GAD for varying values of parameters and .

Stochastic orderings
Stochastic ordering of positive continuous random variables is very much useful for judging their comparative behavior. A random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ is said to be smaller than a random variable y in the

  1. stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGZbGaamiDaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E2E@ if F X ( x ) F Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGgbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@419D@ for all x
  2. hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E21@ if h X ( x ) h Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGObWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@41E1@  for all x
  3. mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGTbGaamOCaiaadYgaaeqaaOGaamyw aaGaayjkaiaawMcaaaaa@3F17@ for all x
  4. likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3E25@ if f X ( x ) f Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OzamaaBaaaleaacaWGybaabeaakmaabmaabaGaamiEaaGaayjkaiaa wMcaaaqaaiaadAgadaWgaaWcbaGaamywaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaaaaaaaa@4027@  decreases in x.

The following interrelationship among various stochastic orderings due to Shaker & Shanthikumar8 are well known for establishing stochastic ordering of distributions

X lr YX hr YX mrl Y                      X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiwai abgsMiJoaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0H4Ta amiwaiabgsMiJoaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbGaey O0H4TaamiwaiabgsMiJoaaBaaaleaacaWGTbGaamOCaiaadYgaaeqa aOGaamywaaqaaabaaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapa WaaCbeaeaacqGHthY3aSqaaiaadIfacqGHKjYOdaWgaaadbaGaam4C aiaadshaaeqaaSGaamywaaqabaaaaaa@6C97@

Theorem: Let x GAD ( θ 1 , α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaaaa@3E7E@  and GAD. If α 1 = α 2 and θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaIYaaa beaakiaaykW7caqGHbGaaeOBaiaabsgacaaMc8UaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaeyOpa4JaeqiUde3aaSbaaSqaaiaaikdaaeqa aaaa@4954@ (or θ 1 = θ 2 and α 1 < α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg2da9iabeI7aXnaaBaaaleaacaaIYaaa beaakiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7cq aHXoqydaWgaaWcbaGaaGymaaqabaGccqGH8aapcqaHXoqydaWgaaWc baGaaGOmaaqabaaaaa@4C66@ ), then X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3C9C@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3C98@ , and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3CA5@ .

Proof: We have

f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) = θ 1 3 ( θ 2 2 +2 α 2 θ 2 +2 α 2 2 ) θ 2 3 ( θ 1 2 +2 α 1 θ 1 +2 α 1 2 ) ( 1+ α 1 x 1+ α 2 x ) 2 e ( θ 1 θ 2 )x ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaleaaleaaca WGMbWaaSbaaWqaaiaadIfaaeqaaSWaaeWaaeaacaWG4bGaai4oaiab eI7aXnaaBaaameaacaaIXaaabeaaliaacYcacqaHXoqydaWgaaadba GaaGymaaqabaaaliaawIcacaGLPaaaaeaacaWGMbWaaSbaaWqaaiaa dMfaaeqaaSWaaeWaaeaacaWG4bGaai4oaiabeI7aXnaaBaaameaaca aIYaaabeaaliaacYcacqaHXoqydaWgaaadbaGaaGOmaaqabaaaliaa wIcacaGLPaaaaaGccqGH9aqpdaWcaaqaaiabeI7aXnaaBaaaleaaca aIXaaabeaakmaaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUde3a a0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHn aaBaaaleaacaaIYaaabeaakiabeI7aXnaaBaaaleaacaaIYaaabeaa kiabgUcaRiaaikdacqaHXoqydaqhaaWcbaGaaGOmaaqaaiaaikdaaa aakiaawIcacaGLPaaaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGc daahaaWcbeqaaiaaiodaaaGcdaqadaqaaiabeI7aXnaaDaaaleaaca aIXaaabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqydaWgaaWcbaGa aGymaaqabaGccqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkca aIYaGaeqySde2aa0baaSqaaiaaigdaaeaacaaIYaaaaaGccaGLOaGa ayzkaaaaaiaaykW7daqadaqaamaalaaabaGaaGymaiabgUcaRiabeg 7aHnaaBaaaleaacaaIXaaabeaakiaadIhaaeaacaaIXaGaey4kaSIa eqySde2aaSbaaSqaaiaaikdaaeqaaOGaamiEaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGccaaMc8UaamyzamaaCaaaleqabaGa eyOeI0YaaeWaaeaacqaH4oqCdaWgaaadbaGaaGymaaqabaWccqGHsi slcqaH4oqCdaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaacaaM c8UaamiEaaaakiaaykW7caaMc8Uaai4oaiaadIhacqGH+aGpcaaIWa aaaa@9A2C@

Now ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) =ln( θ 1 3 ( θ 2 2 +2 α 2 θ 2 +2 α 2 2 ) θ 2 3 ( θ 1 2 +2 α 1 θ 1 +2 α 1 2 ) )+2ln( 1+ α 1 x 1+ α 2 x )( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb WaaSqaaSqaaiaadAgadaWgaaadbaGaamiwaaqabaWcdaqadaqaaiaa dIhacaGG7aGaeqiUde3aaSbaaWqaaiaaigdaaeqaaSGaaiilaiabeg 7aHnaaBaaameaacaaIXaaabeaaaSGaayjkaiaawMcaaaqaaiaadAga daWgaaadbaGaamywaaqabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde 3aaSbaaWqaaiaaikdaaeqaaSGaaiilaiabeg7aHnaaBaaameaacaaI YaaabeaaaSGaayjkaiaawMcaaaaakiabg2da9iGacYgacaGGUbWaae WaaeaadaWcaaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakmaaCaaa leqabaGaaG4maaaakmaabmaabaGaeqiUde3aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHnaaBaaaleaacaaIYaaa beaakiabeI7aXnaaBaaaleaacaaIYaaabeaakiabgUcaRiaaikdacq aHXoqydaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaa aeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaio daaaGcdaqadaqaaiabeI7aXnaaDaaaleaacaaIXaaabaGaaGOmaaaa kiabgUcaRiaaikdacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqaH4o qCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYaGaeqySde2aa0ba aSqaaiaaigdaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaaGaayjkai aawMcaaiabgUcaRiaaikdaciGGSbGaaiOBamaabmaabaWaaSaaaeaa caaIXaGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamiEaa qaaiaaigdacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWG 4baaaaGaayjkaiaawMcaaiabgkHiTmaabmaabaGaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaeqiUde3aaSbaaSqaaiaaikdaaeqa aaGccaGLOaGaayzkaaGaamiEaaaa@95B2@ This gives

  d dx { ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) }= ( α 1 α 2 ) ( 1+ α 1 x )( 1+ α 2 x ) ( θ 1 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaamaacmaabaGaciiBaiaac6gadaWcbaWc baGaamOzamaaBaaameaacaWGybaabeaalmaabmaabaGaamiEaiaacU dacqaH4oqCdaWgaaadbaGaaGymaaqabaWccaGGSaGaeqySde2aaSba aWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaabaGaamOzamaaBaaame aacaWGzbaabeaalmaabmaabaGaamiEaiaacUdacqaH4oqCdaWgaaad baGaaGOmaaqabaWccaGGSaGaeqySde2aaSbaaWqaaiaaikdaaeqaaa WccaGLOaGaayzkaaaaaaGccaGL7bGaayzFaaGaeyypa0ZaaSaaaeaa daqadaqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeg 7aHnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaamaabmaa baGaaGymaiabgUcaRiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadI haaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcqaHXoqydaWg aaWcbaGaaGOmaaqabaGccaWG4baacaGLOaGaayzkaaaaaiabgkHiTm aabmaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqiU de3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@7351@ . Thus if α 1 = α 2 and θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIXaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaIYaaa beaakiaaykW7caqGHbGaaeOBaiaabsgacaaMc8UaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaeyOpa4JaeqiUde3aaSbaaSqaaiaaikdaaeqa aaaa@4954@  or , d dx ln f X ( x; θ 1 , α 1 ) f Y ( x; θ 2 , α 2 ) <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaaiGacYgacaGGUbWaaSqaaSqaaiaadAga daWgaaadbaGaamiwaaqabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde 3aaSbaaWqaaiaaigdaaeqaaSGaaiilaiabeg7aHnaaBaaameaacaaI XaaabeaaaSGaayjkaiaawMcaaaqaaiaadAgadaWgaaadbaGaamywaa qabaWcdaqadaqaaiaadIhacaGG7aGaeqiUde3aaSbaaWqaaiaaikda aeqaaSGaaiilaiabeg7aHnaaBaaameaacaaIYaaabeaaaSGaayjkai aawMcaaaaakiabgYda8iaaicdaaaa@5418@ .

This means that X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3C9C@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3C98@ , and. Thus, GAD is ordered with respect to the strongest ‘likelihood ratio ordering’

Deviations from the Mean and the Median
The mean deviation about the mean,  and the mean deviation about the median,  are defined as δ 1 ( X )= 0 | xμ | f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaqWaaeaacaWG4bGaeyOeI0IaeqiVd0gacaGLhW UaayjcSdaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaaMc8Ua amOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaaa@4F52@ and δ 2 ( X )= 0 | xM | f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaqWaaeaacaWG4bGaeyOeI0IaamytaaGaay5bSl aawIa7aaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaaGPaVlaa dAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaaa@4E6F@ , respectively, where μ=E( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iaadweadaqadaqaaiaadIfaaiaawIcacaGLPaaaaaa@3CFA@  and . These expressions can be further simplified as

δ 1 ( X )= 0 μ ( μx ) f( x )dx+ μ ( xμ ) f( x )dx=2μF( μ )2 0 μ x f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaeWaaeaacqaH8oqBcqGHsislcaWG4baacaGLOa GaayzkaaaaleaacaaIWaaabaGaeqiVd0ganiabgUIiYdGccaWGMbWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRaWkda WdXbqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMca aaWcbaGaeqiVd0gabaGaeyOhIukaniabgUIiYdGccaWGMbWaaeWaae aacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGH9aqpcaaIYaGa eqiVd0MaamOramaabmaabaGaeqiVd0gacaGLOaGaayzkaaGaeyOeI0 IaaGOmamaapehabaGaamiEaiaaykW7aSqaaiaaicdaaeaacqaH8oqB a0Gaey4kIipakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaca WGKbGaamiEaaaa@735C@   (3.4.1)

             

and

δ 2 ( X )= 0 M ( Mx ) f( x )dx+ M ( xM ) f( x )dx=μ2 0 M x f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaeWaaeaacaWGnbGaeyOeI0IaamiEaaGaayjkai aawMcaaaWcbaGaaGimaaqaaiaad2eaa0Gaey4kIipakiaadAgadaqa daqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaiabgUcaRmaape habaWaaeWaaeaacaWG4bGaeyOeI0IaamytaaGaayjkaiaawMcaaaWc baGaamytaaqaaiabg6HiLcqdcqGHRiI8aOGaamOzamaabmaabaGaam iEaaGaayjkaiaawMcaaiaadsgacaWG4bGaeyypa0JaeqiVd0MaeyOe I0IaaGOmamaapehabaGaamiEaiaaykW7aSqaaiaaicdaaeaacaWGnb aaniabgUIiYdGccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa amizaiaadIhaaaa@6A23@ (3.4.2)

                   

Using pdf (2.1) and the mean of GAD, we get

0 μ x f( x )dx=μ { θ 3 (μ+2α μ 2 + α 2 μ 3 )+ θ 2 ( 1+4αμ+3 α 2 μ 2 )+θ( 4α+6 α 2 μ )+6 α 2 } e θμ θ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7aSqaaiaaicdaaeaacqaH8oqBa0Gaey4kIipakiaadAga daqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaiabg2da9i abeY7aTjabgkHiTmaalaaabaWaaiWaaeaacaaMc8UaeqiUde3aaWba aSqabeaacaaIZaaaaOGaaiikaiabeY7aTjabgUcaRiaaikdacqaHXo qycqaH8oqBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaah aaWcbeqaaiaaikdaaaGccqaH8oqBdaahaaWcbeqaaiaaiodaaaGcca GGPaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaa caaIXaGaey4kaSIaaGinaiabeg7aHjabeY7aTjabgUcaRiaaiodacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqaH8oqBdaahaaWcbeqaaiaa ikdaaaaakiaawIcacaGLPaaacqGHRaWkcqaH4oqCdaqadaqaaiaais dacqaHXoqycqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaa aOGaeqiVd0gacaGLOaGaayzkaaGaey4kaSIaaGOnaiabeg7aHnaaCa aaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haaiaadwgadaahaaWcbeqa aiabgkHiTiabeI7aXjaaykW7cqaH8oqBaaaakeaacqaH4oqCdaqada qaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH 4oqCcqaHXoqycqGHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaaaaaaa@954C@ (3.4.3)

                       

0 M x f( x )dx=μ { θ 3 ( M+2α M 2 + α 2 M 3 )+ θ 2 ( 1+4αM+3 α 2 M 2 )+θ( 4α+6 α 2 M )+6 α 2 } e θM θ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7aSqaaiaaicdaaeaacaWGnbaaniabgUIiYdGccaWGMbWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGH9aqpcq aH8oqBcqGHsisldaWcaaqaamaacmaabaGaeqiUde3aaWbaaSqabeaa caaIZaaaaOWaaeWaaeaacaWGnbGaey4kaSIaaGOmaiabeg7aHjaad2 eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaahaaWcbeqa aiaaikdaaaGccaWGnbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaay zkaaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaa caaIXaGaey4kaSIaaGinaiabeg7aHjaad2eacqGHRaWkcaaIZaGaeq ySde2aaWbaaSqabeaacaaIYaaaaOGaamytamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiabgUcaRiabeI7aXnaabmaabaGaaGinai abeg7aHjabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGc caWGnbaacaGLOaGaayzkaaGaey4kaSIaaGOnaiabeg7aHnaaCaaale qabaGaaGOmaaaaaOGaay5Eaiaaw2haaiaadwgadaahaaWcbeqaaiab gkHiTiabeI7aXjaaykW7caWGnbaaaaGcbaGaeqiUde3aaeWaaeaacq aH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNa eqySdeMaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaaaaaaa@8CD1@ (3.4.4)

            

Using expressions from (3.4.1), (3.4.2), (3.4.3), and (3.4.4),  and δ 2 ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaaaa @3C0B@ of GAD are

δ 1 ( X )= 2{ θ 2 ( 1+2αμ+ α 2 μ 2 )+4αθ( 1+μ )+6 α 2 } e θμ θ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGOmamaacmaabaGaaGPaVlabeI7aXnaaCaaale qabaGaaGOmaaaakmaabmaabaGaaGymaiabgUcaRiaaikdacqaHXoqy cqaH8oqBcqGHRaWkcqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH8o qBdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaaI 0aGaeqySdeMaeqiUde3aaeWaaeaacaaIXaGaey4kaSIaeqiVd0gaca GLOaGaayzkaaGaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaGOm aaaaaOGaay5Eaiaaw2haaiaadwgadaahaaWcbeqaaiabgkHiTiabeI 7aXjaaykW7cqaH8oqBaaaakeaacqaH4oqCdaqadaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycq GHRaWkcaaIYaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaaaaaaa@75AA@ (3.4.5)

                

δ 2 ( X )= 2{ θ 3 ( M+2α M 2 + α 2 M 3 )+ θ 2 ( 1+4αM+3 α 2 M 2 )+θ( 4α+6 α 2 M )+6 α 2 } e θM θ( θ 2 +2θα+2 α 2 ) μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGOmamaacmaabaGaeqiUde3aaWbaaSqabeaaca aIZaaaaOWaaeWaaeaacaWGnbGaey4kaSIaaGOmaiabeg7aHjaad2ea daahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaahaaWcbeqaai aaikdaaaGccaWGnbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzk aaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaaca aIXaGaey4kaSIaaGinaiabeg7aHjaad2eacqGHRaWkcaaIZaGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaamytamaaCaaaleqabaGaaGOmaa aaaOGaayjkaiaawMcaaiabgUcaRiabeI7aXnaabmaabaGaaGinaiab eg7aHjabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGcca WGnbaacaGLOaGaayzkaaGaey4kaSIaaGOnaiabeg7aHnaaCaaaleqa baGaaGOmaaaaaOGaay5Eaiaaw2haaiaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaaykW7caWGnbaaaaGcbaGaeqiUde3aaeWaaeaacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeq ySdeMaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaacqGHsislcqaH8oqBaaa@86AC@ (3.4.6)

  

Bonferroni and lorenz curves and indices

The Bonferroni and Lorenz curves are proposed by Bonferroni9 which are used in economics to study income and poverty and other fields of knowledge including reliability, demography, insurance and medicine, some among others. The Bonferroni and Lorenz curves are defined as

B( p )= 1 pμ 0 q xf( x ) dx= 1 pμ [ 0 xf( x )dx q xf( x ) dx ]= 1 pμ [ μ q xf( x ) dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGWbGaeqiVd0gaamaapehabaGaamiEaiaaykW7caWGMbWaaeWaae aacaWG4baacaGLOaGaayzkaaGaaGPaVdWcbaGaaGimaaqaaiaadgha a0Gaey4kIipakiaadsgacaWG4bGaeyypa0ZaaSaaaeaacaaIXaaaba GaamiCaiabeY7aTbaadaWadaqaamaapehabaGaamiEaiaaykW7caWG MbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHsi slaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaapehabaGaamiE aiaaykW7caWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaleaaca WGXbaabaGaeyOhIukaniabgUIiYdGccaaMc8UaamizaiaadIhaaiaa wUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGWbGaeqiVd0 gaamaadmaabaGaeqiVd0MaeyOeI0Yaa8qCaeaacaWG4bGaaGPaVlaa dAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaSqaaiaadghaaeaacq GHEisPa0Gaey4kIipakiaaykW7caWGKbGaamiEaaGaay5waiaaw2fa aaaa@85CD@ (3.5.1)

              

and L( p )= 1 μ 0 q xf( x ) dx= 1 μ [ 0 xf( x )dx q xf( x ) dx ]= 1 μ [ μ q xf( x ) dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaH8oqBaaWaa8qCaeaacaWG4bGaaGPaVlaadAgadaqadaqaaiaadI haaiaawIcacaGLPaaaaSqaaiaaicdaaeaacaWGXbaaniabgUIiYdGc caaMc8UaamizaiaadIhacqGH9aqpdaWcaaqaaiaaigdaaeaacqaH8o qBaaWaamWaaeaadaWdXbqaaiaadIhacaaMc8UaamOzamaabmaabaGa amiEaaGaayjkaiaawMcaaiaadsgacaWG4bGaeyOeI0caleaacaaIWa aabaGaeyOhIukaniabgUIiYdGcdaWdXbqaaiaadIhacaaMc8UaamOz amaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aSqaaiaadghaae aacqGHEisPa0Gaey4kIipakiaadsgacaWG4baacaGLBbGaayzxaaGa eyypa0ZaaSaaaeaacaaIXaaabaGaeqiVd0gaamaadmaabaGaeqiVd0 MaeyOeI0Yaa8qCaeaacaWG4bGaaGPaVlaadAgadaqadaqaaiaadIha aiaawIcacaGLPaaaaSqaaiaadghaaeaacqGHEisPa0Gaey4kIipaki aaykW7caWGKbGaamiEaaGaay5waiaaw2faaaaa@82F8@  (3.5.2)

              

The Bonferroni and Gini indices are further simplified as

B=1 0 1 B( p ) dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaaIXaGaeyOeI0Yaa8qCaeaacaWGcbWaaeWaaeaacaWGWbaacaGL OaGaayzkaaaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGPaVl aadsgacaWGWbaaaa@4519@ (3.5.3)

and G=12 0 1 L( p ) dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpcaaIXaGaeyOeI0IaaGOmamaapehabaGaamitamaabmaabaGaamiC aaGaayjkaiaawMcaaiaaykW7aSqaaiaaicdaaeaacaaIXaaaniabgU IiYdGccaWGKbGaamiCaaaa@45E4@  (3.5.4)

Using pdf of GAD (2.1), we get

q xf( x ) dx= { θ 3 ( q+2α q 2 + α 2 q 3 )+ θ 2 ( 1+4αq+3 α 2 q 2 )+θ( 4α+6 α 2 q )+6 α 2 } e θq θ( θ 2 +2θα+2 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7caWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaleaa caWGXbaabaGaeyOhIukaniabgUIiYdGccaaMc8UaamizaiaadIhacq GH9aqpdaWcaaqaamaacmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaa aOWaaeWaaeaacaWGXbGaey4kaSIaaGOmaiabeg7aHjaadghadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaahaaWcbeqaaiaaikda aaGccaWGXbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaey 4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaaIXaGa ey4kaSIaaGinaiabeg7aHjaadghacqGHRaWkcaaIZaGaeqySde2aaW baaSqabeaacaaIYaaaaOGaamyCamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiabgUcaRiabeI7aXnaabmaabaGaaGinaiabeg7aHj abgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccaWGXbaa caGLOaGaayzkaaGaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaG OmaaaaaOGaay5Eaiaaw2haaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaaykW7caWGXbaaaaGcbaGaeqiUde3aaeWaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeqySdeMa ey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaayjkai aawMcaaaaaaaa@8D90@ (3.5.5)

 

Now using equation (3.5.5) in (3.5.1) and (3.5.2), we get

B( p )= 1 p ( 1 { θ 3 (q+2α q 2 + α 2 q 3 )+ θ 2 ( 1+4αq+3 α 2 q 2 )+θ( 4α+6 α 2 q )+6 α 2 } e θq ( θ 2 +4θα+6 α 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGWbaaamaabmaabaGaaGymaiabgkHiTmaalaaabaWaaiWaaeaacq aH4oqCdaahaaWcbeqaaiaaiodaaaGccaGGOaGaamyCaiabgUcaRiaa ikdacqaHXoqycaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq ySde2aaWbaaSqabeaacaaIYaaaaOGaamyCamaaCaaaleqabaGaaG4m aaaakiaacMcacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaaigdacqGHRaWkcaaI0aGaeqySdeMaamyCaiabgUcaRiaa iodacqaHXoqydaahaaWcbeqaaiaaikdaaaGccaWGXbWaaWbaaSqabe aacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaeqiUde3aaeWaaeaa caaI0aGaeqySdeMaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaG OmaaaakiaadghaaiaawIcacaGLPaaacqGHRaWkcaaI2aGaeqySde2a aWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaGaamyzamaaCaaale qabaGaeyOeI0IaeqiUdeNaaGPaVlaadghaaaaakeaadaqadaqaaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacqaH4oqCcq aHXoqycqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaaGc caGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa@85A2@               (3.5.6)

 and

L( p )=1 { θ 3 ( q+2α q 2 + α 2 q 3 )+ θ 2 ( 1+4αq+3 α 2 q 2 )+θ( 4α+6 α 2 q )+6 α 2 } e θq ( θ 2 +4θα+6 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaaSaa aeaadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaabmaaba GaamyCaiabgUcaRiaaikdacqaHXoqycaWGXbWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaOGaamyCam aaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiabgUcaRiabeI7a XnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGymaiabgUcaRiaais dacqaHXoqycaWGXbGaey4kaSIaaG4maiabeg7aHnaaCaaaleqabaGa aGOmaaaakiaadghadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacqGHRaWkcqaH4oqCdaqadaqaaiaaisdacqaHXoqycqGHRaWkcaaI 2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaamyCaaGaayjkaiaawM caaiabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaa wUhacaGL9baacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8 UaamyCaaaaaOqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGinaiabeI7aXjabeg7aHjabgUcaRiaaiAdacqaHXo qydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaaaaa@8293@  (3.5.7)

   

Now using equations (3.5.6) and (3.5.7) in (3.5.3) and (3.5.4), we have

B=1 { θ 3 ( q+2α q 2 + α 2 q 3 )+ θ 2 ( 1+4αq+3 α 2 q 2 )+θ( 4α+6 α 2 q )+6 α 2 } e θq ( θ 2 +4θα+6 α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaaIXaGaeyOeI0YaaSaaaeaadaGadaqaaiabeI7aXnaaCaaaleqa baGaaG4maaaakmaabmaabaGaamyCaiabgUcaRiaaikdacqaHXoqyca WGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqySde2aaWbaaSqa beaacaaIYaaaaOGaamyCamaaCaaaleqabaGaaG4maaaaaOGaayjkai aawMcaaiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaa baGaaGymaiabgUcaRiaaisdacqaHXoqycaWGXbGaey4kaSIaaG4mai abeg7aHnaaCaaaleqabaGaaGOmaaaakiaadghadaahaaWcbeqaaiaa ikdaaaaakiaawIcacaGLPaaacqGHRaWkcqaH4oqCdaqadaqaaiaais dacqaHXoqycqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaa aOGaamyCaaGaayjkaiaawMcaaiabgUcaRiaaiAdacqaHXoqydaahaa WcbeqaaiaaikdaaaaakiaawUhacaGL9baacaWGLbWaaWbaaSqabeaa cqGHsislcqaH4oqCcaaMc8UaamyCaaaaaOqaamaabmaabaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeI7aXjabeg7a HjabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawI cacaGLPaaaaaaaaa@800B@ (3.5.8)

         

G= 2{ θ 3 ( q+2α q 2 + α 2 q 3 )+ θ 2 ( 1+4αq+3 α 2 q 2 )+θ( 4α+6 α 2 q )+6 α 2 } e θq ( θ 2 +4θα+6 α 2 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpdaWcaaqaaiaaikdadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG4m aaaakmaabmaabaGaamyCaiabgUcaRiaaikdacqaHXoqycaWGXbWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaOGaamyCamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaai abgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGym aiabgUcaRiaaisdacqaHXoqycaWGXbGaey4kaSIaaG4maiabeg7aHn aaCaaaleqabaGaaGOmaaaakiaadghadaahaaWcbeqaaiaaikdaaaaa kiaawIcacaGLPaaacqGHRaWkcqaH4oqCdaqadaqaaiaaisdacqaHXo qycqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaamyC aaGaayjkaiaawMcaaiabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaai aaikdaaaaakiaawUhacaGL9baacaWGLbWaaWbaaSqabeaacqGHsisl cqaH4oqCcaaMc8UaamyCaaaaaOqaamaabmaabaGaeqiUde3aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaGinaiabeI7aXjabeg7aHjabgUca RiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aaaaGaeyOeI0IaaGymaaaa@80CC@ (3.5.9)

       

Stress-strength parameter Suppose is the random strength and be the random stress of a component. , the component fails instantly and the component will function satisfactorily till . Therefore, is a measure of component reliability and in statistics it is known as stress-strength parameter. It has applications in almost all areas of knowledge including medical science, sociology, psychology, and engineering, some among others.

 Let be independent strength and stress random variables having GAD (2.1) having parameters  and respectively. Then the stress-strength reliability of GAD (2.1) can be obtained as

R=P( Y<X )= 0 P( Y<X|X=x ) f X ( x )dx                          = 0 f( x; θ 1 , α 1 ) F( x; θ 2 , α 2 )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOuai abg2da9iaadcfadaqadaqaaiaadMfacqGH8aapcaWGybaacaGLOaGa ayzkaaGaeyypa0Zaa8qCaeaacaWGqbWaaeWaaeaacaWGzbGaeyipaW JaamiwaiaacYhacaWGybGaeyypa0JaamiEaaGaayjkaiaawMcaaaWc baGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamOzamaaBaaaleaaca WGybaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG 4baabaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcWdaiabg2da9maapehabaGaamOzamaa bmaabaGaamiEaiaacUdacqaH4oqCdaWgaaWcbaGaaGymaaqabaGcca GGSaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaa leaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGgbWaaeWaaeaaca WG4bGaai4oaiabeI7aXnaaBaaaleaacaaIYaaabeaakiaacYcacqaH XoqydaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaWGKbGaam iEaaaaaa@8B67@

=1 θ 1 3 ( θ 2 6 +2( 2 θ 1 +( 2 α 2 + α 1 ) ) θ 2 5 +2( 3 θ 1 2 +10 α 2 θ 1 +( 3 α 2 2 +6 α 2 α 1 + α 1 2 ) ) θ 2 4 + +( 4 θ 1 3 +( 18 α 2 +6 α 1 ) θ 1 2 +( 18 α 2 2 +28 α 2 α 1 +4 α 1 2 ) θ 1 + ( 24 α 2 2 α 1 +4 α 2 α 1 2 +12 α 2 2 α 1 2 ) ) θ 2 3 + ( θ 1 4 +( 10 α 2 +2 α 1 ) θ 1 3 +( 20 α 2 2 +20 α 2 α 1 +2 α 1 2 ) θ 1 2 +( 40 α 2 2 α 1 +20 α 2 α 1 2 ) θ 1 +( 40 α 2 2 α 1 2 ) ) θ 2 2 + 2( θ 1 3 +( 5 α 2 +2 α 2 α 1 ) θ 1 2 +( 10 α 2 α 1 +2 α 1 2 ) θ 1 +10 α 2 α 1 2 ) α 2 θ 1 θ 2 + 2( θ 1 2 +2 α 1 θ 1 +2 α 1 2 ) α 2 2 θ 1 2 ) ( θ 1 2 +2 θ 1 α 1 +2 α 1 2 )( θ 2 2 +2 θ 2 α 2 +2 α 2 2 ) ( θ 1 + θ 2 ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHsisldaWcaaqaaiabeI7aXnaaDaaaleaacaaIXaaabaGaaG4m aaaakmaabmaaeaqabeaacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaiA daaaGccqGHRaWkcaaIYaWaaeWaaeaacaaIYaGaeqiUde3aaSbaaSqa aiaaigdaaeqaaOGaey4kaSYaaeWaaeaacaaIYaGaeqySde2aaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaaeqa aaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaeqiUde3aa0baaSqaai aaikdaaeaacaaI1aaaaOGaey4kaSIaaGOmamaabmaabaGaaG4maiab eI7aXnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaaigdaca aIWaGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaeqiUde3aaSbaaSqa aiaaigdaaeqaaOGaey4kaSYaaeWaaeaacaaIZaGaeqySde2aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOnaiabeg7aHnaaBaaa leaacaaIYaaabeaakiabeg7aHnaaBaaaleaacaaIXaaabeaakiabgU caRiabeg7aHnaaDaaaleaacaaIXaaabaGaaGOmaaaaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaiabeI7aXnaaDaaaleaacaaIYaaabaGaaG inaaaakiabgUcaRaqaaiabgUcaRmaabmaaeaqabeaacaaI0aGaeqiU de3aa0baaSqaaiaaigdaaeaacaaIZaaaaOGaey4kaSYaaeWaaeaaca aIXaGaaGioaiabeg7aHnaaBaaaleaacaaIYaaabeaakiabgUcaRiaa iAdacqaHXoqydaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacq aH4oqCdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkdaqadaqa aiaaigdacaaI4aGaeqySde2aa0baaSqaaiaaikdaaeaacaaIYaaaaO Gaey4kaSIaaGOmaiaaiIdacqaHXoqydaWgaaWcbaGaaGOmaaqabaGc cqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaI0aGaeqySde 2aa0baaSqaaiaaigdaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeqiU de3aaSbaaSqaaiaaigdaaeqaaOGaey4kaScabaWaaeWaaeaacaaIYa GaaGinaiabeg7aHnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabeg7a HnaaBaaaleaacaaIXaaabeaakiabgUcaRiaaisdacqaHXoqydaWgaa WcbaGaaGOmaaqabaGccqaHXoqydaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcaaIXaGaaGOmaiabeg7aHnaaDaaaleaacaaIYaaaba GaaGOmaaaakiabeg7aHnaaDaaaleaacaaIXaaabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaacaGLOaGaayzkaaGaeqiUde3aa0baaSqaaiaaik daaeaacaaIZaaaaOGaey4kaScabaWaaeWaaeaacqaH4oqCdaqhaaWc baGaaGymaaqaaiaaisdaaaGccqGHRaWkdaqadaqaaiaaigdacaaIWa GaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaiabeg7a HnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabeI7aXnaaDa aaleaacaaIXaaabaGaaG4maaaakiabgUcaRmaabmaabaGaaGOmaiaa icdacqaHXoqydaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkca aIYaGaaGimaiabeg7aHnaaBaaaleaacaaIYaaabeaakiabeg7aHnaa BaaaleaacaaIXaaabeaakiabgUcaRiaaikdacqaHXoqydaqhaaWcba GaaGymaaqaaiaaikdaaaaakiaawIcacaGLPaaacqaH4oqCdaqhaaWc baGaaGymaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaaisdacaaIWa GaeqySde2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeqySde2aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiaaicdacqaHXoqydaWgaa WcbaGaaGOmaaqabaGccqaHXoqydaqhaaWcbaGaaGymaaqaaiaaikda aaaakiaawIcacaGLPaaacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccq GHRaWkdaqadaqaaiaaisdacaaIWaGaeqySde2aa0baaSqaaiaaikda aeaacaaIYaaaaOGaeqySde2aa0baaSqaaiaaigdaaeaacaaIYaaaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaGaeqiUde3aa0baaSqaaiaa ikdaaeaacaaIYaaaaOGaey4kaScabaGaaGOmamaabmaabaGaeqiUde 3aa0baaSqaaiaaigdaaeaacaaIZaaaaOGaey4kaSYaaeWaaeaacaaI 1aGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaiabeg 7aHnaaBaaaleaacaaIYaaabeaakiabeg7aHnaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaiabeI7aXnaaDaaaleaacaaIXaaabaGaaG OmaaaakiabgUcaRmaabmaabaGaaGymaiaaicdacqaHXoqydaWgaaWc baGaaGOmaaqabaGccqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaaIYaGaeqySde2aa0baaSqaaiaaigdaaeaacaaIYaaaaaGccaGL OaGaayzkaaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG ymaiaaicdacqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqaHXoqydaqh aaWcbaGaaGymaaqaaiaaikdaaaaakiaawIcacaGLPaaacqaHXoqyda WgaaWcbaGaaGOmaaqabaGccqaH4oqCdaWgaaWcbaGaaGymaaqabaGc cqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkaeaacaaIYaWaae WaaeaacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWk caaIYaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeqiUde3aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaaGOmaiabeg7aHnaaDaaaleaacaaI XaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabeg7aHnaaDaaaleaaca aIYaaabaGaaGOmaaaakiabeI7aXnaaDaaaleaacaaIXaaabaGaaGOm aaaaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacqaH4oqCdaqhaaWcba GaaGymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUde3aaSbaaSqa aiaaigdaaeqaaOGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaaGOmaiabeg7aHnaaDaaaleaacaaIXaaabaGaaGOmaaaaaOGaayjk aiaawMcaamaabmaabaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaIYa aaaOGaey4kaSIaaGOmaiabeI7aXnaaBaaaleaacaaIYaaabeaakiab eg7aHnaaBaaaleaacaaIYaaabeaakiabgUcaRiaaikdacqaHXoqyda qhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaadaqadaqa aiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI7aXnaaBa aaleaacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGyn aaaaaaaaaa@89BB@

Clearly at ( α 1 = θ 1 , α 2 = θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySde2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeqiUde3aaSbaaSqa aiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaaIYaaabeaaki abg2da9iabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMca aaaa@45C3@  and ( α 1 =0, α 2 =0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySde2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaiaacYcacqaH XoqydaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaacaGLOaGaay zkaaaaaa@41E8@ , the above expression reduces to the corresponding expression of R for Aradhana and exponential distributions.

Parameter estimation

In this section maximum likelihood estimation of parameters of GAD has been discussed. Suppose ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGSa GaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWgaaWcbaGaamOBaaqa baaakiaawIcacaGLPaaaaaa@4560@  be a random sample from GAD (2.1)). The natural log likelihood function is thus obtained as

lnL=3nlnθ+nln( θ 2 +2θα+2 α 2 )+2 i=1 n ln( 1+α x i ) nθ x ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaamitaiabg2da9iaaiodacaWGUbGaciiBaiaac6gacqaH4oqCcqGH RaWkcaWGUbGaciiBaiaac6gadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaI YaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaey 4kaSIaaGOmamaaqahabaGaciiBaiaac6gadaqadaqaaiaaigdacqGH RaWkcqaHXoqycaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoa kiabgkHiTiaad6gacqaH4oqCceWG4bGbaebacaGGSaaaaa@66D2@

where x is the sample mean.

The maximum likelihood estimates (MLE) ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaaaiaawIcacaGLPaaaaaa@3CBC@  of parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C9C@  are the solutions of the following non-linear log likelihood equations

lnL θ = 3n θ 2n( θ+α ) θ 2 +2θα+2 α 2 n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaWGmbaabaGaeyOaIyRaeqiUdehaaiabg2da 9maalaaabaGaaG4maiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaSaaae aacaaIYaGaamOBaiaaykW7daqadaqaaiabeI7aXjabgUcaRiabeg7a HbGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqySde2a aWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaad6gaceWG4bGbaebacq GH9aqpcaaIWaaaaa@5D49@

lnL α = 2n( θ+2α ) θ 2 +2θα+2 α 2 +2 i=1 n x i 1+α x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac6gacaWGmbaabaGaeyOaIyRaeqySdegaaiabg2da 9maalaaabaGaeyOeI0IaaGOmaiaad6gadaqadaqaaiabeI7aXjabgU caRiaaikdacqaHXoqyaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaeqySdeMaey4kaS IaaGOmaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaI YaWaaabCaeaadaWcaaqaaiaadIhadaWgaaWcbaGaamyAaaqabaaake aacaaIXaGaey4kaSIaeqySdeMaaGPaVlaadIhadaWgaaWcbaGaamyA aaqabaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHri s5aOGaeyypa0JaaGimaaaa@6688@

It is difficult to solve these two natural log likelihood equations directly because they are not in closed forms. But these equations can be solved using Fisher’s scoring method. For, we have

2 lnL θ 2 = 3n θ 2 + 2nθ( θ+2α ) ( θ 2 +2θα+2 α 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac6gacaWGmbaabaGa eyOaIyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabgk HiTmaalaaabaGaaG4maiaad6gaaeaacqaH4oqCdaahaaWcbeqaaiaa ikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYaGaamOBaiabeI7aXnaabm aabaGaeqiUdeNaey4kaSIaaGOmaiaaykW7cqaHXoqyaiaawIcacaGL PaaaaeaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaikdacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqySde2aaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaaaaaa@6133@

2 lnL θα = 2n( θ 2 +4θα+2 α 2 ) ( θ 2 +2θα+2 α 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac6gacaWGmbaabaGa eyOaIyRaeqiUdeNaaGPaVlabgkGi2kabeg7aHbaacqGH9aqpdaWcaa qaaiaaikdacaWGUbGaaGPaVpaabmaabaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGinaiabeI7aXjabeg7aHjabgUcaRiaaik dacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaeaa daqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaik dacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqySde2aaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaa a@63BD@

2 lnL α 2 = 8nα(θ+α) ( θ 2 +2θα+2 α 2 ) 2 2 i=1 n x i 2 ( 1+α x i ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac6gacaWGmbaabaGa eyOaIyRaeqySde2aaWbaaSqabeaacaaIYaaaaaaakiabg2da9maala aabaGaaGioaiaad6gacqaHXoqycaGGOaGaeqiUdeNaey4kaSIaeqyS deMaaiykaaqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiabeI7aXjabeg7aHjabgUcaRiaaikdacqaHXoqy daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaaaOGaeyOeI0IaaGOmamaaqahabaWaaSaaaeaacaWG4bWa aSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGcbaWaae WaaeaacaaIXaGaey4kaSIaeqySdeMaamiEamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaabaGaam yAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@6ADB@

The solution of following equations gives MLE’s ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaaaiaawIcacaGLPaaaaaa@3CBC@  of ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C9C@  of GAD

[ 2 lnL θ 2 2 lnL θα 2 lnL θα 2 lnL α 2 ] θ ^ = θ 0 α ^ = α 0 [ θ ^ θ 0 α ^ α 0 ]= [ lnL θ lnL α ] θ ^ = θ 0 α ^ = α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeGacaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc ciGGSbGaaiOBaiaadYeaaeaacqGHciITcqaH4oqCdaahaaWcbeqaai aaikdaaaaaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGcciGGSbGaaiOBaiaadYeaaeaacqGHciITcqaH4oqCcaaMc8Uaey OaIyRaeqySdegaaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaciiBaiaac6gacaWGmbaabaGaeyOaIyRaeqiUdeNaaGPaVl abgkGi2kabeg7aHbaaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiGacYgacaGGUbGaamitaaqaaiabgkGi2kabeg7aHnaaCa aaleqabaGaaGOmaaaaaaaaaaGccaGLBbGaayzxaaWaaSbaaSabaeqa baGafqiUdeNbaKaacqGH9aqpcqaH4oqCdaWgaaadbaGaaGimaaqaba aaleaacuaHXoqygaqcaiabg2da9iabeg7aHnaaBaaameaacaaIWaaa beaaaaWcbeaakmaadmaabaqbaeqabiqaaaqaaiqbeI7aXzaajaGaey OeI0IaeqiUde3aaSbaaSqaaiaaicdaaeqaaaGcbaGafqySdeMbaKaa cqGHsislcqaHXoqydaWgaaWcbaGaaGimaaqabaaaaaGccaGLBbGaay zxaaGaeyypa0ZaamWaaeaafaqabeGabaaabaWaaSaaaeaacqGHciIT ciGGSbGaaiOBaiaadYeaaeaacqGHciITcqaH4oqCaaaabaWaaSaaae aacqGHciITciGGSbGaaiOBaiaadYeaaeaacqGHciITcqaHXoqyaaaa aaGaay5waiaaw2faamaaBaaaleaafaqabeGabaaabaGafqiUdeNbaK aacqGH9aqpcqaH4oqCdaWgaaadbaGaaGimaaqabaaaleaacuaHXoqy gaqcaiabg2da9iabeg7aHnaaBaaameaacaaIWaaabeaaaaaaleqaaa aa@97B8@

where θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@39AA@ and α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIWaaabeaaaaa@3993@ are the initial values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ , respectively. These equations are solved             iteratively till sufficiently close values of θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@38D4@  and α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@38BD@  are obtained.

Applications

The goodness of fit of GAD using maximum likelihood estimates has been discussed with two real lifetime dataset and the fit has been compared with exponential, Lindley and Aradhana distributions and a generalization of Sujatha distribution (AGSD) proposed by Shanker et al.7 It has been observed that GAD is more suitable to positively skewed lifetime data. In general, majority of the real lifetime datasets in medical science and engineering are positively skewed and hence GAD is suitable for positively skewed data in these fields of knowledge. Since GAD is a new distribution, still more research is required to find several applications of the distribution in various fields of knowledge. The real lifetime datasets which are positively skewed are as follows

Data set 1: This data represents the lifetime's data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark.10 1.1         1.4          1.3          1.7         1.9          1.8         1.6          2.2          1.7          2.7          4.1          1.8
1.5         1.2          1.4          3             1.7          2.3         1.6          2             

Data set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al.11 18.830  20.800   21.657   23.030   23.230   24.050   24.321   25.500 25.520 25.800   26.690   26.770   26.780   27.050   27.670   29.900 31.110 33.200   33.730   33.760   33.890   34.760   35.750   35.910 36.980 37.080   37.090   39.580   44.045   45.29      45.381

For comparing the goodness of fit of GAD, AGSD, Aradhana, Lindley and exponential distributions, values of -2ln L , AIC (Akaike Information Criterion), kolmogorove-Smirnov Statistics (K-S Statistics) and p value of these distributions for two real lifetime datasets have been computed and presented in Table 5. Since the best fit of the distribution corresponds to the lower values of -2ln L, AIC, K-S statistics, it is obvious from table 5 that GAD provides better fit than exponential, Lindley, Aradhana and AGSD.

Conclusion

A generalized Aradhana distribution (GAD) has been introduced which includes both Aradhana distribution proposed by Shanker2 and Lindley distribution proposed by Lindley1as particular cases. The nature of probability density function and cumulative distribution function of GAD has been studied. The raw moments and central moments of the distribution have been obtained and behavior of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion of GAD have been studied with varying values of the parameters. Hazard rate function and mean residual life function have been studied with varying values of the parameters. The stochastic ordering, mean deviations, Bonferroni and Lorenz curves, and stress-strength reliability have also been discussed. The method of maximum likelihood has been discussed for estimating parameters. Two examples of real lifetime, one from medical science and one from engineering, have been presented to show the applications and goodness of fit of GAD over exponential, Lindley and Aradhana distributions and AGSD and it has been observed that GAD gives much better fit.

Acknowledgements

None.

Conflict of interests

The author declares there is no conflict of interest.

References

  1. Lindley DV. Fuducial distribution and Bayes theorem.  Journal of the Royal statistical  Society. Series B, 1958;20(1):102–107.
  2. Shanker R. Aradhana distribution and its Applications. International Journal  of  Statistics and Applications. 2016;6(1):23–34.
  3. Shanker R. The discrete Poisson–Aradhana distribution.  Turkiye Klinikleri Journal of Biostatistics, 2017;9(1):12–22.
  4. Ghitany ME, Atieh B, Nadarajah S.  Lindley distribution and its application, Mathematics   and computers in simulation. 2008;78(4):493–506.
  5. Shanker R, Hagos F, Sujatha S. On modeling of lifetime’s data using exponential and Lindley distributions. Biometrics & Biostatistics International  Journal, 2015;2(5):1–9.
  6. Berhane A, Shanker R. A discrete Lindley distribution with Applications in Biological Sciences. Biometrics and Biostatistics International Journal, 2018;7(2):1–5.
  7. Shanker R, Shukla KK, Hagos F. A Generalization of Sujatha distribution and its Applications to Real lifetime data. Journal of Institute of Science and Technology (JIST). 2017;22(1):77–94.
  8. Shaked M, Shanthikumar JG. Stochastic Orders and Their Applications. Academic Press, New York. 1994;37(3).
  9. Bonferroni CE. Elementi di Statistca generale. Seeber, Firenze.1930.
  10. Gross AJ. Clark VA.  Survival Distributions: Reliability Applications in the             Biometrical Sciences. John Wiley, New York. 1975.
  11. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proc. 1994;2286:419–430.
Creative Commons Attribution License

©2018 Welday, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.