Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 5 Issue 4

Discrete shanker distribution and its derived distributions

Munindra Borah, Junali Hazarika

Department of Mathematical Sciences, Tezpur University, India

Correspondence: Junali Hazarika, Department of Mathematical Sciences, Tezpur University, Napaam, Tezpur, Assam, India

Received: January 26, 2017 | Published: April 7, 2017

Citation: Borah M, Hazarika J. Discrete shanker distribution and its derived distributions. Biom Biostat Int J. 2017;5(4):146-153. DOI: 10.15406/bbij.2017.05.00140

Download PDF

Introduction

One parameter continuous Shanker distribution introduced by Shanker (2015 b) with parameter  is defined by its probability density function (pdf).

f( x:θ )=  θ 2 θ 2 +1  ( θ+x )  e θx .  x>0. θ>0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGG6aGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaaiiOamaalaaapaqaa8qacqaH4oqCpaWaaW baaeqabaqcLbmapeGaaGOmaaaaaKqba+aabaWdbiabeI7aX9aadaah aaqabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaaigdaaaGaaiiOam aabmaapaqaa8qacqaH4oqCcqGHRaWkcaWG4baacaGLOaGaayzkaaGa aiiOaiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdeNaam iEaaaajuaGcaGGUaGaaiiOaiaacckacaWG4bGaeyOpa4JaaGimaiaa c6cacaGGGcGaeqiUdeNaeyOpa4JaaGimaiaac6caaaa@6361@ (1.1)

Discretization of continuous distribution

Discretization of continuous distribution can be done using different methodologies. In this paper we deal with the derivation of a new discrete distribution which takes values in { 0,1, . . . }  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aaqaaaaaaaaaWdbiaaicdacaGGSaGaaGymaiaacYcacaqGGaGaaiOl aiaabccacaGGUaGaaeiiaiaac6caa8aacaGL7bGaayzFaaWdbiaacc kaaaa@40ED@ . This new distribution is generated by discretizing the continuous survival function of the Shanker distribution, which is may be obtained as

S( x )= x f( x:θ )dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH 9aqpdaGfWbqab8aabaqcLbmapeGaamiEaaqcfa4daeaajugWa8qacq GHEisPaKqba+aabaWdbiabgUIiYdaacaWGMbWaaeWaa8aabaWdbiaa dIhacaGG6aGaeqiUdehacaGLOaGaayzkaaGaamizaiaadIhaaaa@4BAE@

=  θ 2 +1+ θx θ 2 +1   e θx ,    x>0.  θ>0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaGGGcWaaSaaa8aabaWdbiabeI7aXTWdamaaCaaa juaGbeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaiabgUcaRi aacckacqaH4oqCcaWG4baapaqaa8qacqaH4oqCpaWaaWbaaeqabaqc LbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaaaaiaacckacaWGLbWcpa WaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdeNaamiEaaaajuaG caGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaadIhacqGH+aGpcaaIWa GaaiOlaiaacckacaGGGcGaeqiUdeNaeyOpa4JaaGimaiaac6caaaa@61EE@ (2.1)

S( x+1 )=  θ 2 +1+ θ( x+1 ) θ 2 +1   e θ( x+1 ) ,    x>0.  θ>0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWaaeWaa8aabaWdbiaadIhacqGHRaWkcaaIXaaacaGL OaGaayzkaaGaeyypa0JaaiiOamaalaaapaqaa8qacqaH4oqCl8aada ahaaqcfayabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaaigdacqGH RaWkcaGGGcGaeqiUde3aaeWaa8aabaWdbiaadIhacqGHRaWkcaaIXa aacaGLOaGaayzkaaaapaqaa8qacqaH4oqCpaWaaWbaaeqabaqcLbma peGaaGOmaaaajuaGcqGHRaWkcaaIXaaaaiaacckacaWGLbWcpaWaaW baaKqbagqabaqcLbmapeGaeyOeI0IaeqiUde3cdaqadaqcfa4daeaa jugWa8qacaWG4bGaey4kaSIaaGymaaqcfaOaayjkaiaawMcaaaaaca GGSaGaaiiOaiaacckacaGGGcGaaiiOaiaadIhacqGH+aGpcaaIWaGa aiOlaiaacckacaGGGcGaeqiUdeNaeyOpa4JaaGimaiaac6caaaa@6F59@ (2.2)

The probability mass function (pmf) of discrete Shanker distribution may be obtained as

P( X=x )=S( x )S( x+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadIfacqGH9aqpcaWG4baacaGL OaGaayzkaaGaeyypa0Jaam4uamaabmaapaqaa8qacaWG4baacaGLOa GaayzkaaGaeyOeI0Iaam4uamaabmaapaqaa8qacaWG4bGaey4kaSIa aGymaaGaayjkaiaawMcaaaaa@468C@
= ( θ 2 +1+ θx)( 1  e θ )θ  e θ θ 2 +1 e (θx) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyypa0 ZaaSaaaeaaqaaaaaaaaaWdbiaacIcacqaH4oqCpaWaaWbaaeqabaqc LbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaGaey4kaSIaaiiOaiabeI 7aXjaadIhacaGGPaWaaeWaa8aabaWdbiaaigdacqGHsislcaGGGcGa amyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaaaK qbakaawIcacaGLPaaacqGHsislcqaH4oqCcaGGGcGaamyzaSWdamaa CaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqba+aabaWdbi abeI7aX9aadaahaaqabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaa igdaaaGaamyza8aadaahaaqabeaapeGaaiikaKqzadGaeyOeI0Iaeq iUdeNaamiEaKqbakaacMcaaaGaaiilaaaa@6714@ x=0, 1,2, 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0JaaGimaiaacYcacaGGGcGaaGymaiaacYca caaIYaGaaiilaiaacckacaaIZaaaaa@3FED@ (2.3)

Probability recurrence relation 

Probability recurrence relation of discrete Shanker distribution may be obtained as

P (r+2) = e θ (2 P r+1   e θ P r ) , r  1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWcpaWaaSbaaKqbagaajugWa8qacaGGOaGaamOCaiab gUcaRiaaikdacaGGPaaajuaGpaqabaWdbiabg2da9iaadwgal8aada ahaaqcfayabeaajugWa8qacqGHsislcqaH4oqCaaqcfaOaaiikaiaa ikdacaWGqbWcpaWaaSbaaKqbagaajugWa8qacaWGYbGaey4kaSIaaG ymaaqcfa4daeqaa8qacqGHsislcaGGGcGaamyzaSWdamaaCaaajuaG beqaaKqzadWdbiabgkHiTiabeI7aXbaajuaGcaWGqbWcpaWaaSbaaK qbagaajugWa8qacaWGYbaajuaGpaqabaWdbiaacMcacaqGGcGaaiil aiaabckacaWGYbGaaeiOaiaabckacqGHLjYScaaIXaaaaa@62DE@ (2.5)

Where P 0 = ( θ 2 +1)( 1  e θ )θ  e θ θ 2 +1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWcpaWaaSbaaKqbagaajugWa8qacaaIWaaajuaGpaqa baWdbiabg2da9maalaaapaqaa8qacaGGOaGaeqiUde3cpaWaaWbaaK qbagqabaqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaGaaiykamaa bmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaadwgapaWaaWbaaeqaba qcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaayjkaiaawMcaaiabgkHi TiabeI7aXjaacckacaWGLbWdamaaCaaabeqaaKqzadWdbiabgkHiTi abeI7aXbaaaKqba+aabaWdbiabeI7aXTWdamaaCaaajuaGbeqaaKqz adWdbiaaikdaaaqcfaOaey4kaSIaaGymaaaaaaa@5E2E@ ,  and

P 1 = ( θ 2 +1+ θ)( 1  e θ )θ  e θ θ 2 +1   e θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWdamaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeGaaiikaiabeI7aX9aadaahaaqabeaaju gWa8qacaaIYaaaaKqbakabgUcaRiaaigdacqGHRaWkcaGGGcGaeqiU deNaaiykamaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaadwgal8 aadaahaaqcfayabeaajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGL OaGaayzkaaGaeyOeI0IaeqiUdeNaaiiOaiaadwgapaWaaWbaaeqaba qcLbmapeGaeyOeI0IaeqiUdehaaaqcfa4daeaapeGaeqiUde3damaa CaaabeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaaaacaGGGc GaamyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaa aaa@6772@ (2.6)

Factorial moment recurrence relation 

Factorial moment generating function (fmgf) may be obtained as

M( t )=G( 1+t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWGhbWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWG0baacaGLOa Gaayzkaaaaaa@4028@

= ( θ 2 +1 )( 1  e θ )θ ( θ 2 +1 )( 1 e θ   e θ t ) + θ( 1  e θ ) ( θ 2 +1 ) ( 1 e θ   e θ t ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiabeI7aXTWdamaaCaaa juaGbeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaaGaayjkai aawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaadwgapaWa aWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaayjkaiaawM caaiabgkHiTiabeI7aXbWdaeaapeWaaeWaa8aabaWdbiabeI7aXTWd amaaCaaajuaGbeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaa GaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0IaamyzaSWd amaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaajuaGcqGHsi slcaGGGcGaamyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiab eI7aXbaacaWG0baajuaGcaGLOaGaayzkaaaaaiabgUcaRmaalaaapa qaa8qacqaH4oqCdaqadaWdaeaapeGaaGymaiabgkHiTiaacckacaWG LbWdamaaCaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbakaawI cacaGLPaaaa8aabaWdbmaabmaapaqaa8qacqaH4oqCpaWaaWbaaeqa baqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaaacaGLOaGaayzkaa WaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaabeqaa8qa cqGHsislcqaH4oqCaaGaeyOeI0IaaiiOaiaadwgal8aadaahaaqcfa yabeaajugWa8qacqGHsislcqaH4oqCaaGaamiDaaqcfaOaayjkaiaa wMcaaSWdamaaCaaajuaGbeqaaKqzadWdbiaaikdaaaaaaaaa@8E75@     (2.7)

 The more general form of factorial moment may also be written as

    μ [ r ] ' = r!  e θr [ ( θ 2 +1 )( 1 e θ )+θr ] ( θ 2 +1 ) ( 1 e θ ) r+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaa0baaeaapeWaamWaa8aabaWdbiaadkhaaiaa wUfacaGLDbaaa8aabaWdbiaacEcaaaGaeyypa0ZaaSaaa8aabaWdbi aadkhacaGGHaGaaiiOaiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOe I0IaeqiUdeNaamOCaaaajuaGdaWadaWdaeaapeWaaeWaa8aabaWdbi abeI7aX9aadaahaaqabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaa igdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadw gal8aadaahaaqcfayabeaajugWa8qacqGHsislcqaH4oqCaaaajuaG caGLOaGaayzkaaGaey4kaSIaeqiUdeNaamOCaaGaay5waiaaw2faaa WdaeaapeWaaeWaa8aabaWdbiabeI7aX9aadaahaaqabeaajugWa8qa caaIYaaaaKqbakabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaWdae aapeGaaGymaiabgkHiTiaadwgal8aadaahaaqcfayabeaajugWa8qa cqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzkaaWdamaaCaaabeqcga yaaKqzadWdbiaadkhacqGHRaWkcaaIXaaaaaaaaaa@7383@     (2.8)

Size- biased discrete shanker (SBDJ) distribution

If a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGybaaaa@3781@  have discrete Shanker distribution with parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385B@ then the pmf of the size-biased distribution may be derived as

f s ( x;θ )= x P x μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXbGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacaWG4bGaamiua8aadaWgaaqaaKqz adWdbiaadIhaaKqba+aabeaaaeaapeGaeqiVd0gaaaaa@482B@ , x=1, 2, 3,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0JaaGymaiaacYcacaqGGaGaaGOmaiaacYca caqGGaGaaG4maiaacYcacaqGGaGaeyOjGWlaaa@4062@  (3.1)

Where P x   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWdamaaBaaabaqcLbmapeGaamiEaaqcfa4daeqaa8qa caGGGcaaaa@3BB6@ and μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBaaa@385B@  denote respectively pmf and the mean of discrete Shanker distribution. 

The pmf f s ( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXbGaayjkaiaawM caaaaa@4056@ of size- biased discrete Shanker distribution with parameters θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385B@ may be derived from (3.1) as

f s ( x,α )= x p x μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG4bGaaiilaiabeg7aHbGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacaWG4bGaamiCa8aadaWgaaqaaKqz adWdbiaadIhaaKqba+aabeaaaeaapeGaeqiVd0gaaaaa@4825@

=x e θ( x1 ) [ ( θ 2 +1+ θx)( 1  e θ )θ  e θ ] ( 1 e θ ) 2 [ ( θ 2 +1 )( 1 e θ )+θ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWG4bGaamyzaSWdamaaCaaajuaGbeqaaKqzadWd biabgkHiTiabeI7aXTWaaeWaaKqba+aabaqcLbmapeGaamiEaiabgk HiTiaaigdaaKqbakaawIcacaGLPaaaaaWaaSaaa8aabaWdbmaadmaa paqaa8qacaGGOaGaeqiUde3damaaCaaabeqaaKqzadWdbiaaikdaaa qcfaOaey4kaSIaaGymaiabgUcaRiaacckacqaH4oqCcaWG4bGaaiyk amaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaadwgapaWaaWbaae qabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaayjkaiaawMcaaiab gkHiTiabeI7aXjaacckacaWGLbWcpaWaaWbaaKqbagqabaqcLbmape GaeyOeI0IaeqiUdehaaaqcfaOaay5waiaaw2faamaabmaapaqaa8qa caaIXaGaeyOeI0IaamyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgk HiTiabeI7aXbaaaKqbakaawIcacaGLPaaal8aadaahaaqcfayabeaa jugWa8qacaaIYaaaaaqcfa4daeaapeWaamWaa8aabaWdbmaabmaapa qaa8qacqaH4oqCpaWaaWbaaeqabaqcLbmapeGaaGOmaaaajuaGcqGH RaWkcaaIXaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsi slcaWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdeha aaqcfaOaayjkaiaawMcaaiabgUcaRiabeI7aXbGaay5waiaaw2faaa aaaaa@89D9@ x=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaioda caGGSaGaeyOjGWlaaa@3E79@  (3.2)

Recurrence relation of size- biased discrete shanker distribution

Probability generating function G s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbWdamaaBaaabaqcLbmapeGaam4Caaqcfa4daeqaa8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3D25@ for Size- biased Discrete Shanker Distribution may be obtained as

G s ( t )= x=0 t x P x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Zaay bCaeqapaqaaKqzadWdbiaadIhacqGH9aqpcaaIWaaajuaGpaqaaKqz adWdbiabg6HiLcqcfa4daeaapeGaeyyeIuoaaiaadshapaWaaWbaae qabaqcLbmapeGaamiEaaaajuaGcaWGqbWdamaaBaaabaqcLbmapeGa amiEaaqcfa4daeqaaaaa@50C9@

     =t [ ( θ 2 +1 )( 1  e θ )θ  e θ ] ( 1  e θ ) 2 ( 1  e θ t )+θ ( 1  e θ ) 3 ( 1+ e θ t ) [ ( θ 2 +1 )( 1  e θ )+θ ] ( 1  e θ t ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWG0bWaaSaaa8aabaWdbmaadmaapaqaa8qadaqa daWdaeaapeGaeqiUde3cpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaa aajuaGcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaa igdacqGHsislcaGGGcGaamyza8aadaahaaqabeaajugWa8qacqGHsi slcqaH4oqCaaaajuaGcaGLOaGaayzkaaGaeyOeI0IaeqiUdeNaaiiO aiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfa Oaay5waiaaw2faamaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaa dwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaay jkaiaawMcaa8aadaahaaqabeaajugWa8qacaaIYaaaaKqbaoaabmaa paqaa8qacaaIXaGaeyOeI0IaaiiOaiaadwgal8aadaahaaqcfayabe aajugWa8qacqGHsislcqaH4oqCaaGaamiDaaqcfaOaayjkaiaawMca aiabgUcaRiabeI7aXnaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOai aadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOa ayjkaiaawMcaaSWdamaaCaaajuaGbeqaaKqzadWdbiaaiodaaaqcfa 4aaeWaa8aabaWdbiaaigdacqGHRaWkcaWGLbWcpaWaaWbaaKqbagqa baqcLbmapeGaeyOeI0IaeqiUdehaaKqbakaadshaaiaawIcacaGLPa aaa8aabaWdbmaadmaapaqaa8qadaqadaWdaeaapeGaeqiUde3cpaWa aWbaaKqbagqabaqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaGGGcGaamyz a8aadaahaaqabeaajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOa GaayzkaaGaey4kaSIaeqiUdehacaGLBbGaayzxaaWaaeWaa8aabaWd biaaigdacqGHsislcaGGGcGaamyzaSWdamaaCaaajuaGbeqaaKqzad WdbiabgkHiTiabeI7aXbaacaWG0baajuaGcaGLOaGaayzkaaWdamaa CaaabeqaaKqzadWdbiaaiodaaaaaaaaa@ADDF@ (3.3)

Probability recurrence relation for size- biased discrete  shanker distribution

Probability recurrence relation of Size- biased Discrete Shanker Distribution distribution may be obtained as

P r = e θ [ 3 P r1 3 e θ P r2 + e θ P r3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWdamaaBaaabaqcLbmapeGaamOCaaqcfa4daeqaa8qa cqGH9aqpcaWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0Iaeq iUdehaaKqbaoaadmaapaqaa8qacaaIZaGaamiuaSWdamaaBaaajuaG baqcLbmapeGaamOCaiabgkHiTiaaigdaaKqba+aabeaapeGaeyOeI0 IaaG4maiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdeha aKqbakaadcfapaWaaSbaaeaajugWa8qacaWGYbGaeyOeI0IaaGOmaa qcfa4daeqaa8qacqGHRaWkcaWGLbWdamaaCaaabeqaaKqzadWdbiab gkHiTiabeI7aXbaajuaGcaWGqbWdamaaBaaabaqcLbmapeGaamOCai abgkHiTiaaiodaaKqba+aabeaaa8qacaGLBbGaayzxaaaaaa@636C@ for r>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyOpa4JaaGOmaaaa@3960@  (3.4)

where

P 1 = [ ( θ 2 +1+ θ)( 1  e θ )θ  e θ ] ( 1 e θ ) 2 [ ( θ 2 +1 )( 1 e θ )+θ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaGpaqa baWdbiabg2da9maalaaapaqaa8qadaWadaWdaeaapeGaaiikaiabeI 7aX9aadaahaaqabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaaigda cqGHRaWkcaGGGcGaeqiUdeNaaiykamaabmaapaqaa8qacaaIXaGaey OeI0IaaiiOaiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiU dehaaaqcfaOaayjkaiaawMcaaiabgkHiTiabeI7aXjaacckacaWGLb WdamaaCaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbakaawUfa caGLDbaadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgal8aadaahaa qcfayabeaajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzk aaWcpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaaaaaKqba+aabaWdbm aadmaapaqaa8qadaqadaWdaeaapeGaeqiUde3cpaWaaWbaaKqbagqa baqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaaacaGLOaGaayzkaa WaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaabeqaaKqz adWdbiabgkHiTiabeI7aXbaaaKqbakaawIcacaGLPaaacqGHRaWkcq aH4oqCaiaawUfacaGLDbaaaaaaaa@7F53@ and (3.5)

P 2 =2 e [ ( θ 2 +1+2θ)( 1  e θ )θ  e θ ] ( 1 e θ ) 2 [ ( θ 2 +1 )( 1 e θ )+θ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWcpaWaaSbaaKqbagaajugWa8qacaaIYaaajuaGpaqa baWdbiabg2da9iaaikdacaWGLbWdamaaCaaabeqaa8qacqGHsislaa WaaSaaa8aabaWdbmaadmaapaqaa8qacaGGOaGaeqiUde3cpaWaaWba aKqbagqabaqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaGaey4kaS IaaGOmaiabeI7aXjaacMcadaqadaWdaeaapeGaaGymaiabgkHiTiaa cckacaWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUde haaaqcfaOaayjkaiaawMcaaiabgkHiTiabeI7aXjaacckacaWGLbWc paWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaay 5waiaaw2faamaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaah aaqabeaajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzkaa WdamaaCaaabeqaaKqzadWdbiaaikdaaaaajuaGpaqaa8qadaWadaWd aeaapeWaaeWaa8aabaWdbiabeI7aX9aadaahaaqabeaajugWa8qaca aIYaaaaKqbakabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaWdaeaa peGaaGymaiabgkHiTiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0 IaeqiUdehaaaqcfaOaayjkaiaawMcaaiabgUcaRiabeI7aXbGaay5w aiaaw2faaaaaaaa@81C0@

Factorial moment recurrence relation for size- biased discrete  shanker distribution

Factorial moment generating function M s ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3DC4@ of Size- biased discrete Shanker distribution may be obtained as

M s ( t )= G s ( 1+t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWcpaWaaSbaaKqbagaajugWa8qacaWGZbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaam 4ra8aadaWgaaqaaKqzadWdbiaadohaaKqba+aabeaapeWaaeWaa8aa baWdbiaaigdacqGHRaWkcaWG0baacaGLOaGaayzkaaaaaa@46E7@

M( t )=( 1+t ) [ ( θ 2 +1 )( 1  e θ )θ  e θ ] ( 1  e θ ) 2 ( 1  e θ e θ t )+θ ( 1  e θ ) 3 ( 1+ e θ + e θ t ) [ ( θ 2 +1 )( 1  e θ )+θ ] ( 1 e θ   e θ t ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGnbWaaeWaa8aabaWdbiaabshaaiaawIcacaGLPaaacqGH 9aqpdaqadaWdaeaapeGaaGymaiabgUcaRiaadshaaiaawIcacaGLPa aadaWcaaWdaeaapeWaamWaa8aabaWdbmaabmaapaqaa8qacqaH4oqC l8aadaahaaqcgauabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaaig daaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaaccka caWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaa qcfaOaayjkaiaawMcaaiabgkHiTiabeI7aXjaacckacaWGLbWdamaa CaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbakaawUfacaGLDb aadaqadaWdaeaapeGaaGymaiabgkHiTiaacckacaWGLbWcpaWaaWba aKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaayjkaiaawM caa8aadaahaaqabeaajugWa8qacaaIYaaaaKqbaoaabmaapaqaa8qa caaIXaGaeyOeI0IaaiiOaiaadwgal8aadaahaaqcfayabeaajugWa8 qacqGHsislcqaH4oqCaaqcfaOaeyOeI0IaamyzaSWdamaaCaaajyaG beqaaKqzadWdbiabgkHiTiabeI7aXbaajuaGcaWG0baacaGLOaGaay zkaaGaey4kaSIaeqiUde3aaeWaa8aabaWdbiaaigdacqGHsislcaGG GcGaamyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXb aaaKqbakaawIcacaGLPaaal8aadaahaaqcfayabeaajugWa8qacaaI ZaaaaKqbaoaabmaapaqaa8qacaaIXaGaey4kaSIaamyza8aadaahaa qabeaajugWa8qacqGHsislcqaH4oqCaaqcfaOaey4kaSIaamyza8aa daahaaqabeaajugWa8qacqGHsislcqaH4oqCaaqcfaOaamiDaaGaay jkaiaawMcaaaWdaeaapeWaamWaa8aabaWdbmaabmaapaqaa8qacqaH 4oqCl8aadaahaaqcfayabeaajugWa8qacaaIYaaaaKqbakabgUcaRi aaigdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaa cckacaWGLbWdamaaCaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaaaK qbakaawIcacaGLPaaacqGHRaWkcqaH4oqCaiaawUfacaGLDbaadaqa daWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaeqabaqcLbmape GaeyOeI0IaeqiUdehaaKqbakabgkHiTiaacckacaWGLbWcpaWaaWba aKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaKqbakaadshaaiaawI cacaGLPaaal8aadaahaaqcfayabeaajugWa8qacaaIZaaaaaaaaaa@CA13@ (3.6)

More general form  μ [ r ] = r!  e θ( r1 ) [ ( θ 2 +1 )( 1 e θ )( r+ e θ )+θ( r 2 e θ ) ] [ ( θ 2 +1 )( 1  e θ )+θ ] ( 1 e θ ) r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaaSbaaeaapeWaamWaa8aabaWdbiaadkhaaiaa wUfacaGLDbaaa8aabeaapeGaeyypa0ZaaSaaa8aabaWdbiaadkhaca GGHaGaaiiOaiaadwgal8aadaahaaqcfayabeaajugWa8qacqGHsisl cqaH4oqClmaabmaajuaGpaqaaKqzadWdbiaadkhacqGHsislcaaIXa aajuaGcaGLOaGaayzkaaaaamaadmaapaqaa8qadaqadaWdaeaapeGa eqiUde3cpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaaaajuaGcqGHRa WkcaaIXaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsisl caWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaa qcfaOaayjkaiaawMcaamaabmaapaqaa8qacaWGYbGaey4kaSIaamyz aSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbak aawIcacaGLPaaacqGHRaWkcqaH4oqCdaqadaWdaeaapeGaamOCa8aa daahaaqabeaajugWa8qacaaIYaaaaKqbakabgkHiTiaadwgal8aada ahaaqcfayabeaajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOaGa ayzkaaaacaGLBbGaayzxaaaapaqaa8qadaWadaWdaeaapeWaaeWaa8 aabaWdbiabeI7aXTWdamaaCaaajuaGbeqaaKqzadWdbiaaikdaaaqc faOaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaapaqaa8qacaaIXa GaeyOeI0IaaiiOaiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0Ia eqiUdehaaaqcfaOaayjkaiaawMcaaiabgUcaRiabeI7aXbGaay5wai aaw2faamaabmaapaqaa8qacaaIXaGaeyOeI0IaamyzaSWdamaaCaaa juaGbeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbakaawIcacaGLPa aal8aadaahaaqcfayabeaajugWa8qacaWGYbaaaaaaaaa@9BE1@    (3.7)

Factorial moment recurrence relation of Size- biased discrete Shanker distribution may be obtained as

    μ [ r ] ' = e θ A 3 [ 3 A 2 r μ [ r1 ] ' 3Ar( r1 )  e θ   μ [ r2 ] ' +Ar( r1 )( r2 ) e 2θ   μ [ r3 ] ' ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaa0baaeaapeWaamWaa8aabaWdbiaadkhaaiaa wUfacaGLDbaaa8aabaWdbiaacEcaaaGaeyypa0ZaaSaaa8aabaWdbi aadwgapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfa4d aeaapeGaamyqaSWdamaaCaaajuaGbeqaaKqzadWdbiaaiodaaaaaaK qbaoaadmaapaqaa8qacaaIZaGaamyqaSWdamaaCaaajuaGbeqaaKqz adWdbiaaikdaaaqcfaOaamOCaiabeY7aT9aadaqhaaqaa8qadaWada WdaeaapeGaamOCaiabgkHiTiaaigdaaiaawUfacaGLDbaaa8aabaWd biaacEcaaaGaeyOeI0IaaG4maiaadgeacaWGYbWaaeWaa8aabaWdbi aadkhacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiiOaiaadwgal8aa daahaaqcfayabeaajugWa8qacqGHsislcqaH4oqCaaqcfaOaaiiOai abeY7aT9aadaqhaaqaa8qadaWadaWdaeaapeGaamOCaiabgkHiTiaa ikdaaiaawUfacaGLDbaaa8aabaWdbiaacEcaaaGaey4kaSIaamyqai aadkhadaqadaWdaeaapeGaamOCaiabgkHiTiaaigdaaiaawIcacaGL PaaadaqadaWdaeaapeGaamOCaiabgkHiTiaaikdaaiaawIcacaGLPa aacaWGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaGOmaiab eI7aXbaajuaGcaGGGcGaeqiVd02damaaDaaabaWdbmaadmaapaqaa8 qacaWGYbGaeyOeI0IaaG4maaGaay5waiaaw2faaaWdaeaapeGaai4j aaaaaiaawUfacaGLDbaacaGGSaaaaa@8992@  (3.7)

Where A = 1 e θ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbGaaeiiaiabg2da9OGaaiiOaKqbakaaigdacqGHsisl caWGLbWdamaaCaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaajuaGca GGUaaaaa@42B4@

μ [ 1 ] = [ ( θ 2 +1 )( 1+ e θ )+θ ] [ ( θ 2 +1 )( 1  e θ )+θ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaaSbaaeaapeWaamWaa8aabaWdbiaaigdaaiaa wUfacaGLDbaaa8aabeaapeGaeyypa0ZaaSaaa8aabaWdbmaadmaapa qaa8qadaqadaWdaeaapeGaeqiUde3cpaWaaWbaaKqbagqabaqcLbma peGaaGOmaaaajuaGcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaa8 aabaWdbiaaigdacqGHRaWkcaWGLbWdamaaCaaabeqaaKqzadWdbiab gkHiTiabeI7aXbaaaKqbakaawIcacaGLPaaacqGHRaWkcqaH4oqCai aawUfacaGLDbaaa8aabaWdbmaadmaapaqaa8qadaqadaWdaeaapeGa eqiUde3cpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaaaajuaGcqGHRa WkcaaIXaaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsisl caGGGcGaamyzaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiabeI 7aXbaaaKqbakaawIcacaGLPaaacqGHRaWkcqaH4oqCaiaawUfacaGL Dbaaaaaaaa@6A2C@

μ [ 2 ] = 2 e θ [ ( θ 2 +1 )( 1 e θ )( 2+ e θ )+θ( 4 e θ ) ] [ ( θ 2 +1 )( 1  e θ )+θ ] ( 1 e θ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaaSbaaeaapeWaamWaa8aabaWdbiaaikdaaiaa wUfacaGLDbaaa8aabeaapeGaeyypa0ZaaSaaa8aabaWdbiaaikdaca WGLbWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaeqiUdehaaKqb aoaadmaapaqaa8qadaqadaWdaeaapeGaeqiUde3cpaWaaWbaaKqbag qabaqcLbmapeGaaGOmaaaajuaGcqGHRaWkcaaIXaaacaGLOaGaayzk aaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaabeqaaK qzadWdbiabgkHiTiabeI7aXbaaaKqbakaawIcacaGLPaaadaqadaWd aeaapeGaaGOmaiabgUcaRiaadwgapaWaaWbaaeqabaqcLbmapeGaey OeI0IaeqiUdehaaaqcfaOaayjkaiaawMcaaiabgUcaRiabeI7aXnaa bmaapaqaa8qacaaI0aGaeyOeI0Iaamyza8aadaahaaqabeaajugWa8 qacqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzkaaaacaGLBbGaayzx aaaapaqaa8qadaWadaWdaeaapeWaaeWaa8aabaWdbiabeI7aXTWdam aaCaaajuaGbeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaaGa ayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0IaaiiOaiaadw gapaWaaWbaaeqabaqcLbmapeGaeyOeI0IaeqiUdehaaaqcfaOaayjk aiaawMcaaiabgUcaRiabeI7aXbGaay5waiaaw2faamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaahaaqabeaajugWa8qacqGHsisl cqaH4oqCaaaajuaGcaGLOaGaayzkaaWcpaWaaWbaaKqbagqabaqcLb mapeGaaGOmaaaaaaaaaa@8DC9@ (3.8)

μ [ 3 ] = 6  e 2θ [ ( θ 2 +1 )( 1 e θ )( 3+ e θ )+θ( 9 e θ ) ] [ ( θ 2 +1 )( 1  e θ )+θ ] ( 1 e θ ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBpaWaaSbaaeaapeWaamWaa8aabaWdbiaaiodaaiaa wUfacaGLDbaaa8aabeaapeGaeyypa0ZaaSaaa8aabaWdbiaaiAdaca GGGcGaamyza8aadaahaaqabeaajugWa8qacqGHsislcaaIYaGaeqiU dehaaKqbaoaadmaapaqaa8qadaqadaWdaeaapeGaeqiUde3damaaCa aabeqaaKqzadWdbiaaikdaaaqcfaOaey4kaSIaaGymaaGaayjkaiaa wMcaamaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaqabe aajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzkaaWaaeWa a8aabaWdbiaaiodacqGHRaWkcaWGLbWcpaWaaWbaaKqbagqabaqcLb mapeGaeyOeI0IaeqiUdehaaaqcfaOaayjkaiaawMcaaiabgUcaRiab eI7aXnaabmaapaqaa8qacaaI5aGaeyOeI0Iaamyza8aadaahaaqabe aajugWa8qacqGHsislcqaH4oqCaaaajuaGcaGLOaGaayzkaaaacaGL BbGaayzxaaaapaqaa8qadaWadaWdaeaapeWaaeWaa8aabaWdbiabeI 7aX9aadaahaaqabeaajugWa8qacaaIYaaaaKqbakabgUcaRiaaigda aiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaacckaca WGLbWdamaaCaaabeqaaKqzadWdbiabgkHiTiabeI7aXbaaaKqbakaa wIcacaGLPaaacqGHRaWkcqaH4oqCaiaawUfacaGLDbaadaqadaWdae aapeGaaGymaiabgkHiTiaadwgapaWaaWbaaeqabaqcLbmapeGaeyOe I0IaeqiUdehaaaqcfaOaayjkaiaawMcaa8aadaahaaqabeaajugWa8 qacaaIZaaaaaaaaaa@8DEA@

Method of estimation of shanker distribution

The parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385B@ of Shanker distribution has been estimated using Newton’s –Raphson method by considering appropriate initial guest value for θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385B@ . The function of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385B@ can be expressed as

Fitting of discrete shanker distribution

Shanker et al.1 fitted Poisson distribution (PD), Poisson- Lindley distribution (PLD) and Poisson-Akash distribution (PAD) to eleven numbers of data sets covering ecology, genetics and thunderstorms. In this investigation discrete Shanker (DS) distribution has been fitted to all 11 data sets have been considered for a comparison (Tables 1-11).2-36

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

213

213

202.1

234

236.8

1

128

109.15

138

99.4

95.6

2

37

47.44

47.1

40.5

39.9

3

18

19

10.7

16

16.6

4

3

7.25

1.8

6.2

6.7

5

1

2.67

0.2

2.4

2.7

6

0

1.48

0.1

1.5

1.7

Total

400

400

400

400

400

 

Estimated θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.1621

0.6825

1.950236

2.260342

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

7.89

10.08

11.04

14.68

d.f.

3

2

2

2

p- vale

0.0468

0.0065

0.004

0.0006

Table 1 Observed and expected number of Homocytometer yeast cell counts per square observed by Gosset

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

38

38

25.3

35.8

36.3

1

17

22.4

29.1

20.7

20.1

2

10

11.02

16.7

11.4

11.2

3

9

4.97

6.4

6

6.1

4

3

2.13

1.8

3.1

3.2

5

2

0.88

0.4

1.6

1.6

6

1

0.36

0.2

0.8

0.8

7

0

0.14

0.1

0.6

0.7

Total

80

80

80

80

80

Estimated θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.0494

1.15

1.255891

1.620588

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

6.246

18.27

2.47

2.07

d.f.

4

2

3

3

p- vale

0.1815

0.0001

0.4807

0.558

Table 2 Observed and expected number of red mites on Apple leaves

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

188

187.98

169.4

194

196.3

1

83

85.03

109.8

79.5

76.5

2

36

33.03

35.6

31.3

30.8

3

14

11.88

7.8

12

12.4

4

2

4.07

1.2

4.5

4.9

5

1

1.99

0.2

2.7

3.1

Total

324

324

324

324

324

 

Estimated θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.2644

0.648148

2.043252

2.345109

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

0.367

15.19

1.29

2.33

d.f.

3

2

2

2

p- vale

0.9470

0.0005

0.5247

0.3119

Table 3 Observed and expected number of European corn-border of McGuire et al

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

268

268

231.3

257

260.4

1

87

87

92.8

126.7

93.4

2

26

28.23

34.7

32.8

32.1

3

9

8.01

6.3

11.2

11.5

4

4

2.18

0.8

3.8

4.1

5

2

0.58

0.1

1.2

1.4

6

1

0.15

0.1

0.4

0.5

7

3

0.05

0.1

0.2

0.3

Total

400

400

400

400

400

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.4870

0.5475

2.380442

2.659408

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

6.417

38.21

6.21

4.17

d.f.

3

2

3

3

p- vale

0.0930

0

0.1018

0.2437

Table 4 Distribution of number of Chromatid aberrations

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

413

413.01

374

405.7

409.5

1

124

134.97

177.4

133.6

128.7

2

42

38.92

42.1

42.6

42.1

3

15

10.49

6.6

13.3

13.9

4

5

2.71

0.8

4.1

4.6

5

0

0.68

0.1

1.2

1.5

6

2

0.22

0

0.5

0.7

Total

601

601

601

601

601

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.5385

0.47421

2.685373

2.915059

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

5.562

48.17

1.34

0.29

d.f.

3

2

3

3

p- vale

0.1350

0

0.7196

0.9619

Table 5 Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-60 μg/kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBcaWGNbGaai4laiaadUgacaWGNbaaaa@3BD6@

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

200

200.01

172.5

191.8

194.1

1

57

70.01

95.4

70.3

67.6

2

30

21.51

26.4

24.9

24.5

3

7

6.17

4.9

8.6

8.9

4

4

1.69

0.7

2.9

3.2

5

0

0.45

0.1

1

1.1

6

2

0.16

0

0.5

0.6

Total

300

300

300

300

300

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.4798

0.55333

2.35334

2.62674

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

8.191

29.68

3.91

3.12

d.f.

3

2

2

2

p- vale

0.0422

0

0.1415

0.2101

Table 6 Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-75

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

155

155.01

127.8

158.3

160.7

1

83

82.63

109

77.2

74.3

2

33

37.2

46.5

35.9

35.3

3

14

15.41

13.2

16.1

16.5

4

11

6.08

2.8

7.1

7.5

5

3

2.32

0.5

3.1

3.3

6

1

1.35

0.2

2.3

2.4

Total

300

300

300

300

300

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.1301

0.853333

1.617611

1.963313

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

3.432

24.97

1.51

1.98

d.f.

4

2

3

3

p- vale

0.4883

0

0.6799

0.5766

Table 7 Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-90

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

187

187.01

155.6

185.3

187.9

1

77

87.72

117

83.5

80.2

2

40

35.21

43.9

35.9

35.3

3

17

13.07

11

15

15.4

4

6

4.62

2.1

6.1

6.6

5

2

1.58

0.3

2.5

2.7

6

1

0.79

0.1

1.7

1.9

Total

330

330

330

330

330

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.2345

0.751515

1.804268

2.139736

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

3.721

31.93

1.43

1.35

d.f.

4

2

3

3

Table 8 Observed abd expected number of days that experienced X thunderstroms event at Cape Kennedy, Florida for 11-year period of record for the month of June, January 1957 to December 1967

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

177

177.01

142.3

177.7

180

1

80

93.79

124.4

88

84.7

2

47

42.01

54.3

41.5

40.9

3

26

17.32

15.8

18.9

19.4

4

9

7.79

3.5

8.4

8.9

5

2

3.08

0.7

6.5

7.1

Total

341

341

341

341

341

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.1348

0.8739

1.583536

1.938989

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

6.972

39.74

5.15

5.02

d.f.

4

2

3

3

p- vale

0.1374

0

0.1611

0.1703

Table 9 Observed abd expected number of days that experienced X thunderstroms event at Cape Kennedy, Florida for 11-year period of record for the month of July, January 1957 to December 1967

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

185

184.99

151.8

184.8

187.5

1

89

92.42

122.9

87.2

83.9

2

30

39.27

49.7

39.3

38.6

3

24

15.39

13.4

17.1

17.5

4

10

6.74

2.7

7.3

7.6

5

3

2.19

0.5

5.3

5.9

Total

341

341

341

341

341

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.1828

0.809384

1.693425

2.038417

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

8.987

49.49

5.03

4.69

d.f.

4

2

3

3

p- vale

0.0414

0

0.1696

0.196

Table 10 Observed abd expected number of days that experienced X thunderstroms event at Cape Kennedy, Florida for 11-year period of record for the month of August, January 1957 to December 1967

No. of yeast cell per square

Observed

Expected frequency

frequency

DS

PD

PLD

PAD

0

549

549.01

449

547.5

555.1

1

246

274.27

364.8

259

249.2

2

117

117

116.54

148.2

116.9

3

67

45.67

40.1

51.2

52.3

4

25

17.04

8.1

21.9

23.2

5

7

7.16

1.3

9.2

10

6

1

2.31

0.5

6.3

7.3

Total

1012

1012

1012

1012

1012

 

Estimated
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@

1.1828

0.812253

1.68899

2.033715

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWypaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@3987@

16.824

119.45

9.6

9.4

d.f.

5

3

4

4

p- vale

0.0048

0

0.0477

0.0518

Table 11 Observed abd expected number of days that experienced X thunderstroms event at Cape Kennedy, Florida for 11-year period of record for Summer, January 1957 to December 1967

Conclusions

In this article, the discrete Shanker distribution has been introduced by discretizing the continuous Shanker distribution. We have studied some properties of the distributions. Further the applications of the distribution and goodness of fit of the distribution.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Shanker R. Amarendra distribution and its applications. American journal of Mathematics and Statistics. 2016;6(1):44–56.
  2. Adhikari TR, Srivastava RS. A size-biased poisson-lindley distribution. International Journal of Mathematical Modeling and Physical Sciences. 2013;1(3):1–5.
  3. Adhikari TR, Srivastava RS. Poisson-size-biased lindley distribution. International Journal of Scientific and Research Publication. 2014;4(3):1–6.
  4. Borah M.The Genenbauer distribution revisited: Some recurrence relation for moments, cumulants, etc., estimation of parameters and its goodness of fit. Journal of Indian Society of Agricultural Statistics. 1984;36(1):72–78.
  5. Borah M, Begum R. Some properties of Poisson-Lindley and its derive distributions. Journal of the Indian Statistical Association. 2000;4:13–25.
  6. Borah M, Deka Nath A. A study on the inflated poisson lindley distribution. Journal of Indian Soc. Ag. Statistics. 2001;54(3) 317–323.
  7. Dutta P, Bora M. Some properties and application of size-biased poisson- lindley distribution. International Journal of Mathematical Archive. 2014a;5(1):89–96.
  8. Dutta P, Borah M. Zero-modified poisson-lindley distribution. Mathematics and Computers in Simulation. (2014b);79(3):279–287.
  9. Fisher RA. The effects of methods of ascertainment upon the estimation of frequency. Ann Eugenics. 1934;6(1):13–25.
  10. Ghitany ME, Atiech B, Nadarajah S. Lindley distribution and its applications, Mathematics and Computers in Simulation. (2008a);78(4):493–506.
  11. Ghitany ME, Al-Mutari DK. Size-biased Poisson - lindley distribution and its application. Metron-International Journal of Statistics LXVI. 2008b;(3):299–311.
  12. Ghitany ME, Al-Mutairi DK. Estimation methods for the discrete Poisson-Lindley distribution. J Stat Comput Simul. 2009;79(1) 1–9.
  13. Gomez-Deniz E. Another generalization of the geometric distribution. Test. 2010;19(2):399–415.
  14. Gove HJ. Estimation and application of size-biased distributions in forestry. In: Amaro & D. Reed, editors. Modeling Forest systems A. CAB International, Wallingford, UK. 2003;201–212.
  15. Johnson NL, Kemp AW, Kotz S. Univariate discrete distributions. Hoboken NJ and John Wiley & Sons, USA; 2005..
  16. Kemp AW. The discrete half-normal distribution. MA Advances in Mathematical and Statistical Modelling. Birkhauser, Boston, USA; 2008:353–365.
  17. Krishna H, Pundir PS. Discrete Burr and discrete pareto distributions. Stat Methodol. 2009;6:177–188.
  18. Lappi J, Bailey RL. Estimation of diameter increment function or other relations using angle-count samples. Forest Science. 1987;33:725–739.
  19. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20(1):102–107.
  20. Mahmoudi E, Zakerzadeh H. Generalized poisson lindley distribution. Communications in Statistics-Theory and Methods. 2010; 39(10):1785–1798.
  21. Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika. 1997;84(3):641–652.
  22. Nakagawa T, Osaki S.The discrete Weibull distribution. IEE Trans Reliab. 1975;24(5):300–301.
  23. Patil GP, Ord JK. On size-biased sampling and related form-invariant weighted distributions. Sankhya. 1975;38(1):48–61.
  24. Patil GP, Rao CR. The weighted distributions: a survey and their applications. In Applications of Statistics. 1977;383–405.
  25. Patil GP, Rao CR. Weighted distributions and size-biased sampling with applications to wild life populations and human families. Biometrics. 1978;34:179–189.
  26. Rao CR. On discrete distributions arising out of methods on ascertainment, classical and contagious discrete distribution. In: Patil GP, editor. Statistical Publishing Society. 1965;320-332.
  27. Roy D. Discrete rayleigh distribution. IEEE Trans. Reliab. 2004;53(2):255–260.
  28. Sankaran M. The discrete poisson-lindley distribution. Biometrics. 1970;26:145–149.
  29. Shanker R, Mishra A. A two parameter poisson- lindley distribution. International journal of Statistics and Systems. 2014;9(1): 79–85.
  30. Shanker R. Shanker distribution and its Applications. International Journal of Statistics and Applications. 2015;5(6):338–348.
  31. Shanker R, Mishra A. A quasi Lindley distribution. African Journal of Mathematics and Computer Science Research. 2013; 6(4):64–71.
  32. Shanke R, Sharma S, Shanker R. A discrete two-parameter poisson-lindley distribution. Journal of the Ethiopian Statistical Association. 2012;21:15–22.
  33. Shanke R, Sharma S, Shanker R. Janardan distribution and its applications to waiting times data. Indian Journal of Applied research. 2013;3(8):500–502.
  34. Shanker R, Tekie Asehun Leonida. A new quasi poisson- lindley distribution. International Journal of Statistics and Systems. 2014;9(1):87–94.
  35. Shanke, R, Sharma S, Shanker R, et al. The discrete Poisson- Janardan distribution with applications. International Journal of Soft Computing and Engineering. 2014;4(2):31–33.
  36. Van Deusen PC. Fitting assumed distributions to horizontal point sample Diameters. Forest Science. 1986;32(1):146–148.
Creative Commons Attribution License

©2017 Borah, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.