Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 1 Issue 5

Viscous string cosmological models in alternative theory of gravity

Mishra RK, Chand A

Department of Mathematics, Deemed University, India

Correspondence: RK Mishra, Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Deemed University, Under MHRD, Government of India, Longowal-148 106, Punjab, India

Received: December 07, 2017 | Published: December 8, 2017

Citation: Mishra RK, Chand A. Viscous string cosmological models in alternative theory of gravity. Phys Astron Int J. 2017;1(5):180-187. DOI: 10.15406/paij.2017.01.00031

Download PDF

Abstract

In present communication, the Bianchi type-III, viscous string cosmological models have been investigated in scalar-tensor Brans-Dicke gravity. To obtain an exact solution of the Einstein field equations (EFE), it is assumed that the viscosity is the power function of energy density and the deceleration parameter (DP) as a function of cosmic time with suitable relation i.e. a(t)=[sinh(αt )] 1/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaai2dacaaIBbGaam4CaiaadMgacaWGUbGa amiAaiaaiIcacqaHXoqycaWG0bGaaGykaiaai2falmaaCaaajuaGbe qaaKqzadGaaGymaiaac+cacaWGUbaaaaaa@4868@ , here α,n0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGilaiaad6gacqGHGjsUcaaIWaaaaa@3C4D@ are constants. It is observed that the power index has the important significance on the evolution of string cosmological models. It is also noticed that the string tension density (λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeU7aSjaaiMcaaaa@399D@ is increasing function of time where as the energy density (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYjaaiMcaaaa@39A9@  and the cosmological constant (Λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abfU5amjaaiMcaaaa@395E@  are decreasing with time and converges to a small value at late time. For better understanding of the model, we have also presented the kinematic and geometric properties of the models.

Keywords: brans-dicke gravity, cosmological constant, variable deceleration parameter

Abbreviations

EFE, Einstein field equations; DP, deceleration parameter; GTR, general theory of relativity; BD, brans-dicke; DE, dark energy.

Introduction

The early universe is well described by homogeneous and an isotropic cosmological model as it has only ordinary matter and gravity. Here the ordinary matter means, a matter with non negative pressure and ordinary gravity is based on the four-dimensional Einstein-Hilbert action. Recently observational data indicates that the discrepancy arises at late time, when the age of the universe is some billions years. In this context the Friedmann-Robertson- Walker model is a unique correspondence between the expansion rate and the distance scale. Although general theory of relativity (GTR) is the most suitable theory for describing universe as a whole, but still there are some physical phenomena which are to be addressed by GTR. For this purpose there is a need either to modify the theory or to introduce alternate theory which is suitable to address the universe in all aspects. During the investigations of research findings it have been noticed that many alternate/modified theories of gravity were proposed by cosmologists as and when required. Among all the available alternative theories, the scalar-tensor Brans-Dicke theory (BD)1 of gravity is the most promising existing theory which has very effectively solves the problems of early time inflation and late time accelerating behaviour of the universe.2 According to BD theory, the gravitational constantis not a constant but it varies with space and time. The Brans-Dicke gravity also relates the gravitation constant G  with scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@  along with relation ϕ G 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyyrIaKaam4ramaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaaaaa@3D43@ ). The action principle for the Brans-Dicke gravity is given as

A= c 3 16π (ϕR+ω ϕ 1 ϕ ν ϕ ν ) g d 4 x+Λ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFaeFqcaaI9aWa aSaaaeaacaWGJbWaaWbaaKqbGeqabaGaaG4maaaaaKqbagaacaaIXa GaaGOnaiabec8aWbaadaWdraqabeaacqGHCeIWaeqacqGHRiI8aiaa iIcacqaHvpGzcaWGsbGaey4kaSIaeqyYdCNaeqy1dy2cdaahaaqcfa yabeaajugWaiabgkHiTiaaigdaaaqcfaOaeqy1dy2cdaahaaqcfaya beaajugWaiabe27aUbaajuaGcqaHvpGzdaWgaaqaaKqzadGaeqyVd4 gajuaGbeaacaaIPaWaaOaaaeaacqGHsislcaWGNbaabeaacaWGKbWc daahaaqcfayabeaajugWaiaaisdaaaqcfaOaamiEaiabgUcaRiabfU 5amnaabmaabaaeaaaaaaaaa8qacaaIXaaapaGaayjkaiaawMcaaaaa @6F91@

The variation of A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGcqWFaeFqaaa@41C5@  for small changes of g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaCaaabeqaaKqzadGaeqiVd0MaeqyVd4gaaaaa@3C2E@  leads to the field equations

R μν 1 2 g μν R= 8π c ϕ 4 T μν ω ϕ 2 ( ϕ μ ϕ ν 1 2 g μν ϕ δ ϕ δ ) 1 ϕ ( ϕ ;μν g μν ϕ)( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaeqiVd0MaeqyVd4gajuaGbeaacqGHsisldaWcaaqa aiaaigdaaeaacaaIYaaaaiaadEgadaWgaaqcfasaaiabeY7aTjabe2 7aUbqabaqcfaOaamOuaiaai2dacqGHsisldaWcaaqaaiaaiIdacqaH apaCaeaacaWGJbWaa0baaKqbGeaacqaHvpGzaeaacaaI0aaaaaaaju aGcaWGubWaaSbaaKqbGeaacqaH8oqBcqaH9oGBaeqaaKqbakabgkHi TmaalaaabaGaeqyYdChabaGaeqy1dy2aaWbaaKqbGeqabaGaaGOmaa aaaaqcfa4aaeWaaeaacqaHvpGzdaWgaaqcfasaaiabeY7aTbqcfaya baGaeqy1dy2aaSbaaKqbGeaacqaH9oGBaeqaaKqbakabgkHiTmaala aabaGaaGymaaqaaiaaikdaaaGaam4zamaaBaaajuaibaGaeqiVd0Ma eqyVd4gajuaGbeaacqaHvpGzdaahaaqabKqbGeaacqaH0oazaaqcfa Oaeqy1dy2aaSbaaKqbGeaacqaH0oazaKqbagqaaaGaayjkaiaawMca aiabgkHiTmaalaaabaGaaGymaaqaaiabew9aMbaacaaIOaGaeqy1dy 2aaSbaaeaacaaI7aqcLbmacqaH8oqBcqaH9oGBaKqbagqaaiabgkHi TiaadEgadaWgaaqaaKqzadGaeqiVd0MaeqyVd4gajuaGbeaarqqr1n gBPrgifHhDYfgaiuaacqWFHwYvcqaHvpGzcaaIPaWaaeWaaeaacaaI YaaacaGLOaGaayzkaaaaaa@90B4@

where R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaS WaaSbaaKqbagaajugWaiabeY7aTjabe27aUbqcfayabaaaaa@3D3F@ is the Ricci curvature tensor, T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacqaH8oqBcqaH9oGBaKqbagqaaaaa@3CA8@ is the energy momentum tensor, R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@ is the curvature scalar, ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  is the Brans-Dicke dimensionless coupling constant, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivaa aa@375D@ is the trace of energy momentum tensor andis wave operator. Also the law of conservation of momentum may be expressed as

T ;k μν =0.( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivaS Waa0baaKqbagaajugWaiaaiUdacaWGRbaajuaGbaqcLbmacqaH8oqB cqaH9oGBaaqcfaOaaGypaiaaicdacaaIUaWaaeWaaeaacaaIZaaaca GLOaGaayzkaaaaaa@4532@

Here ‘semicolon’ indicates co-variant derivative and ‘comma’ indicates partial derivatives.

Similarly, the variation of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@  leads to the following equation for ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ :

2ϕϕ ϕ μ ϕ μ = R ω ϕ 2 .( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai abew9aMfbbfv3ySLgzGueE0jxyaGqbaiab=fAjxjabew9aMjabgkHi Tiabew9aMnaaBaaabaqcLbmacqaH8oqBaKqbagqaaiabew9aMnaaCa aabeqaaKqzadGaeqiVd0gaaKqbakaai2dadaWcaaqaaiaadkfaaeaa cqaHjpWDaaGaeqy1dy2aaWbaaeqabaqcLbmacaaIYaaaaKqbakaai6 cadaqadaqaaiaaisdaaiaawIcacaGLPaaaaaa@578E@

This latter equation can be simplified by substituting for R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@  from the contracted form of Equation (2). We finally get

ϕ= 8π (2ω+3) c 4 T,( 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaqcfaOae8xOLCLaeqy1dyMaaGypamaalaaabaGaaGio aiabec8aWbqaaiaaiIcacaaIYaGaeqyYdCNaey4kaSIaaG4maiaaiM cacaWGJbWcdaahaaqcfayabeaajugWaiaaisdaaaaaaKqbakaadsfa caaISaWaaeWaaeaacaaI1aaacaGLOaGaayzkaaaaaa@4F61@

Equation (5) leads to the anticipated scalar wave equation for ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ with sources in matter. Because it contains a scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ in addition to the metric tensor g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zaS WaaSbaaKqbagaajugWaiabeY7aTjabe27aUbqcfayabaaaaa@3D54@ , the BD theory is often referred to as the scalar-tensor theory of gravitation. BD theory is explained by a scalar function ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ and a constant coupling constant ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ , often known as the BD parameter. This can be obtained from general theory of relativity by letting ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaeyOKH4QaeyOhIukaaa@3BAF@  and ϕ=constant MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaamyyaiaad6ga caWG0baaaa@40A5@ .3

The recent cosmic observational results authenticate the fact that our universe is undergoing a late-time accelerated expansion phase.4–8 To find the reason behind this late-time accelerating expansion of the universe is one of the most challenging problems in modern Cosmology and Astrophysics. We also believes that an unknown form of energy, commonly known as ’Dark Energy’ (DE), is responsible for this phase and it constitutes near about  of the total universe. There are several proposals regarding DE, Cosmological Constant, Quintessence, Dark Energy9–14 being some of the competent candidates.

Viscosities play an important role in early stage evolution of the universe. Also it is well known that at early stage of the universe when neutrino decoupling occurred, the matter behaves like viscous fluid15 and coefficient of viscosity  decreases with time as universe expands. Recently viscous string cosmological models have been studied by several authors16–26 in the context of general relativity, also many authors27–32 had discussed bulk viscous string cosmological models in BD theory. Very recently33–40 have been investigated the Bianchi type viscous cosmic string cosmological models in BD theory.

Motivated from above mention research work, in present paper, we had studied the bulk viscous string cosmological models with time dependentand cosmological constant  in scalar-tensor BD theory of gravity. This paper has been divided in five different sections, including the introduction presented in section 1. In section 2, the metric and field equations governing the cosmological models are described, section 3 deals with exact solution of field equations. Section 4, the physical and kinematic behavior of the models has been presented in both the cases. Finally results, discussion and conclusions are summarized in last section i.e. section 5.

Material and methods

In present communication, we consider a spatially homogeneous and an anisotropic Bianchi type-III space-time metric as given below

d s 2 =d t 2 + A 2 (t)d x 2 + e 2sx B 2 (t)d y 2 + C 2 (t)d z 2 ,( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqabKqbGeaacaaIYaaaaKqbakaai2dacqGHsislcaWG KbGaamiDamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaamyqam aaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaamiz aiaadIhadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaadwgada ahaaqcfasabeaacqGHsislcaaIYaGaam4CaiaadIhaaaqcfaOaamOq amaaCaaajuaibeqaaiaaikdaaaqcfaOaaGikaiaadshacaaIPaGaam izaiaadMhadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaadoea daahaaqcfasabeaacaaIYaaaaKqbakaaiIcacaWG0bGaaGykaiaads gacaWG6bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaISaWaaeWaaeaa caaI2aaacaGLOaGaayzkaaaaaa@62FA@

Here potential A, B and C are the functions of cosmic time 't' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4jai aadshacaGGNaaaaa@38D3@ only and s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Caa aa@377C@ is a constant.

The energy-momentum tensor T μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacqaH8oqBcqaH9oGBaKqbagqaaaaa@3CA8@ for a cloud of strings in the presence of bulk viscous fluid containing one dimensional cosmic string is given by

T μν =(ρ+ p ¯ ) u μ u ν + p ¯ g μν λ v μ v ν ,( 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacqaH8oqBcqaH9oGBaKqbagqaaiaai2dacaaIOaGa eqyWdiNaey4kaSIabmiCayaaraGaaGykaiaadwhadaWgaaqaaKqzad GaeqiVd0gajuaGbeaacaWG1bWaaSbaaeaajugWaiabe27aUbqcfaya baGaey4kaSIabmiCayaaraGaam4zamaaBaaabaqcLbmacqaH8oqBcq aH9oGBaKqbagqaaiabgkHiTiabeU7aSjaadAhadaWgaaqaaKqzadGa eqiVd0gajuaGbeaacaWG2bWcdaWgaaqcfasaaKqzadGaeqyVd4gaju aibeaajuaGcaaISaWaaeWaaeaacaaI3aaacaGLOaGaayzkaaaaaa@62EB@

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ is the string tension density, p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aaraaaaa@3791@ is effective pressure, ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ is the proper energy density for cloud strings with particles attached to them, u k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaabaqcLbmacaWGRbaajuaGbeaaaaa@3A4B@ is the four-velocity vector and x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaCaaabeGcbaqcLbmacaWGRbaaaaaa@39CB@ is a unit space-like vector along the direction of string. The vectors u k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaabaqcLbmacaWGRbaajuaGbeaaaaa@3A4B@ and x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaCaaabeGcbaqcLbmacaWGRbaaaaaa@39CB@ satisfy the conditions u k u k =1= x k x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadwhadaWgaaqcfasaaKqzadGaam4AaaqcfayabaGaamyDamaaCaaa juaibeqaaiaadUgaaaqcfaOaaGypaiaaigdacaaI9aGaeyOeI0Iaam iEamaaBaaajuaibaGaam4AaaqabaqcfaOaamiEamaaCaaajuaibeqa aiaadUgaaaaaaa@470B@ , u k x k =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqaaKqzadGaam4AaaaajuaGcaWG4bWcdaWgaaqcfayaaKqz adGaam4AaaqcfayabaGaaGypaiaaicdaaaa@4030@ .

T 11 = p ¯ λ, T 22 = T 33 = p ¯ , T 44 =ρ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacaaIXaGaaGymaaqcfayabaGaaGypaiqadchagaqe aiabgkHiTiabeU7aSjaaiYcacaWGubWaaSbaaeaajugWaiaaikdaca aIYaaajuaGbeaacaaI9aGaamivamaaBaaabaqcLbmacaaIZaGaaG4m aaqcfayabaGaaGypaiqadchagaqeaiaaiYcacaWGubWaaSbaaeaaju gWaiaaisdacaaI0aaajuaGbeaacaaI9aGaeqyWdiNaaGilaaaa@52F9@

T= T 11 + T 22 + T 33 + T 44 =3 p ¯ ρλ( 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyO0H4 Taamivaiaai2dacaWGubWaaSbaaeaajugWaiaaigdacaaIXaaajuaG beaacqGHRaWkcaWGubWaaSbaaeaajugWaiaaikdacaaIYaaajuaGbe aacqGHRaWkcaWGubWaaSbaaeaajugWaiaaiodacaaIZaaajuaGbeaa cqGHRaWkcaWGubWaaSbaaeaajugWaiaaisdacaaI0aaajuaGbeaaca aI9aGaaG4maiqadchagaqeaiabgkHiTiabeg8aYjabgkHiTiabeU7a SnaabmaabaGaaGioaaGaayjkaiaawMcaaaaa@580D@

Above ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ , p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aaraaaaa@3791@  and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@  are the functions of cosmic time’t’ only. The particle density ( ρ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYnaaBaaabaqcLbmacaWGWbaajuaGbeaacaaIPaaaaa@3C7B@  of the configuration is given as

ρ= ρ p +λ,( 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGypaiabeg8aYnaaBaaabaqcLbmacaWGWbaajuaGbeaacqGHRaWk cqaH7oaBcaaISaWaaeWaaeaacaaI5aaacaGLOaGaayzkaaaaaa@4335@

The string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ , may takes positive or negative values. It is also published by some authors41,42 that a negative value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@  represents the universe filled with no string, whereas positive value of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@  indicate the universe filled with string particles. Here the effective pressure p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aaraaaaa@3791@  may be define as

p ¯ =p3ξH,( 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aaraGaaGypaiaadchacqGHsislcaaIZaGaeqOVdGNaamisaiaaiYca daqadaqaaiaaigdacaaIWaaacaGLOaGaayzkaaaaaa@413B@

Where ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@3847@  is the bulk viscosity coefficient and H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaa aa@3751@  Hubble parameter.

For the metric given in equation (6) the field equation (2) may be expressed as:

A ¨ A + B ¨ B + A ˙ B ˙ AB s 2 A 2 + ϕ ¨ ϕ + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + B ˙ B )=8π ϕ 1 ( p ¯ λ)+Λ,( 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabmOqayaa daaabaGaamOqaaaacqGHRaWkdaWcaaqaaiqadgeagaGaaiqadkeaga GaaaqaaiaadgeacaWGcbaaaiabgkHiTmaalaaabaGaam4CamaaCaaa beqaaKqzadGaaGOmaaaaaKqbagaacaWGbbWaaWbaaeqajuaibaGaaG OmaaaaaaqcfaOaey4kaSYaaSaaaeaacuaHvpGzgaWaaaqaaiabew9a MbaacqGHRaWkdaWcaaqaaiabeM8a3jqbew9aMzaacaWaaWbaaKqbGe qabaGaaGOmaaaaaKqbagaacaaIYaGaeqy1dy2aaWbaaeqajuaibaGa aGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacuaHvpGzgaGaaaqaaiabew 9aMbaacaaIOaWaaSaaaeaaceWGbbGbaiaaaeaacaWGbbaaaiabgUca RmaalaaabaGabmOqayaacaaabaGaamOqaaaacaaIPaGaaGypaiabgk HiTiaaiIdacqaHapaCcqaHvpGzdaahaaqabKqbGeaacqGHsislcaaI XaaaaKqbakaaiIcaceWGWbGbaebacqGHsislcqaH7oaBcaaIPaGaey 4kaSIaeu4MdWKaaGilamaabmaabaGaaGymaiaaigdaaiaawIcacaGL Paaaaaa@7253@

C ¨ C + A ¨ A + C ˙ A ˙ CA + ϕ ¨ ϕ + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + C ˙ C )=8π ϕ 1 p ¯ +Λ,( 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGdbGbamaaaeaacaWGdbaaaiabgUcaRmaalaaabaGabmyqayaa daaabaGaamyqaaaacqGHRaWkdaWcaaqaaiqadoeagaGaaiqadgeaga GaaaqaaiaadoeacaWGbbaaaiabgUcaRmaalaaabaGafqy1dyMbamaa aeaacqaHvpGzaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaaS WaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaaiaaikdacqaHvpGz lmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaqcfaOaey4kaSYaaSaaae aacuaHvpGzgaGaaaqaaiabew9aMbaacaaIOaWaaSaaaeaaceWGbbGb aiaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaacaaabaGaam 4qaaaacaaIPaGaaGypaiabgkHiTiaaiIdacqaHapaCcqaHvpGzlmaa CaaajuaGbeqaaKqzadGaeyOeI0IaaGymaaaajuaGceWGWbGbaebacq GHRaWkcqqHBoatcaaISaWaaeWaaeaacaaIXaGaaGOmaaGaayjkaiaa wMcaaaaa@6C30@

B ¨ B + C ¨ C + B ˙ C ˙ BC + ϕ ¨ ϕ + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( B ˙ B + C ˙ C )=8π ϕ 1 p ¯ +Λ,( 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGcbGbamaaaeaacaWGcbaaaiabgUcaRmaalaaabaGabm4qayaa daaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqadkeagaGaaiqadoeaga GaaaqaaiaadkeacaWGdbaaaiabgUcaRmaalaaabaGafqy1dyMbamaa aeaacqaHvpGzaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaaS WaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaaiaaikdacqaHvpGz daahaaqabeaajugWaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGafq y1dyMbaiaaaeaacqaHvpGzaaGaaGikamaalaaabaGabmOqayaacaaa baGaamOqaaaacqGHRaWkdaWcaaqaaiqadoeagaGaaaqaaiaadoeaaa GaaGykaiaai2dacqGHsislcaaI4aGaeqiWdaNaeqy1dy2aaWbaaeqa baqcLbmacqGHsislcaaIXaaaaKqbakqadchagaqeaiabgUcaRiabfU 5amjaaiYcadaqadaqaaiaaigdacaaIZaaacaGLOaGaayzkaaaaaa@6B05@

A ˙ B ˙ AB + B ˙ C ˙ BC + C ˙ A ˙ CA s 2 A 2 ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + B ˙ B + C ˙ C )=8π ϕ 1 ρ+Λ,( 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbaiaaceWGcbGbaiaaaeaacaWGbbGaamOqaaaacqGHRaWk daWcaaqaaiqadkeagaGaaiqadoeagaGaaaqaaiaadkeacaWGdbaaai abgUcaRmaalaaabaGabm4qayaacaGabmyqayaacaaabaGaam4qaiaa dgeaaaGaeyOeI0YaaSaaaeaacaWGZbWaaWbaaeqajuaibaGaaGOmaa aaaKqbagaacaWGbbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOe I0YaaSaaaeaacqaHjpWDcuaHvpGzgaGaamaaCaaajuaibeqaaiaaik daaaaajuaGbaGaaGOmaiabew9aMnaaCaaajuaibeqaaiaaikdaaaaa aKqbakabgUcaRmaalaaabaGafqy1dyMbaiaaaeaacqaHvpGzaaGaaG ikamaalaaabaGabmyqayaacaaabaGaamyqaaaacqGHRaWkdaWcaaqa aiqadkeagaGaaaqaaiaadkeaaaGaey4kaSYaaSaaaeaaceWGdbGbai aaaeaacaWGdbaaaiaaiMcacaaI9aGaeyOeI0IaaGioaiabec8aWjab ew9aMnaaCaaajuaibeqaaiabgkHiTiaaigdaaaqcfaOaeqyWdiNaey 4kaSIaeu4MdWKaaGilamaabmaabaGaaGymaiaaisdaaiaawIcacaGL Paaaaaa@6F3D@

A ˙ A B ˙ B =0,( 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbaiaaaeaacaWGbbaaaiabgkHiTmaalaaabaGabmOqayaa caaabaGaamOqaaaacaaI9aGaaGimaiaaiYcadaqadaqaaiaaigdaca aI1aaacaGLOaGaayzkaaaaaa@3FF7@

ϕ ¨ + ϕ ˙ ( A ˙ A + B ˙ B + C ˙ C )= 8π(3 p ¯ ρλ) (3+2ω) ,( 16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqy1dy MbamaacqGHRaWkcuaHvpGzgaGaaiaaiIcadaWcaaqaaiqadgeagaGa aaqaaiaadgeaaaGaey4kaSYaaSaaaeaaceWGcbGbaiaaaeaacaWGcb aaaiabgUcaRmaalaaabaGabm4qayaacaaabaGaam4qaaaacaaIPaGa aGypamaalaaabaGaaGioaiabec8aWjaaiIcacaaIZaGabmiCayaara GaeyOeI0IaeqyWdiNaeyOeI0Iaeq4UdWMaaGykaaqaaiaaiIcacaaI ZaGaey4kaSIaaGOmaiabeM8a3jaaiMcaaaGaaGilamaabmaabaGaaG ymaiaaiAdaaiaawIcacaGLPaaaaaa@5841@

Where an over head dot denote derivatives with respect to cosmic time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ .

We may introduce cosmological parameters such as the spatial volume (V) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadAfacaaIPaaaaa@38C4@ , the Hubble’s parameter (H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadIeacaaIPaaaaa@38B6@ , the expansion scalar (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeI7aXjaaiMcaaaa@399F@ , the deceleration parameter (q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadghacaaIPaaaaa@38DF@ , the anisotropy parameter ( A m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadgeadaWgaaqaaiaad2gaaeqaaiaaiMcaaaa@39C2@ and the shear scalar (σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeo8aZjaaiMcaaaa@39AC@  for the metric (6) connected as,

V= a 3 =ABC,( 17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aai2dacaWGHbWaaWbaaeqabaqcLbmacaaIZaaaaKqbakaai2dacaWG bbGaamOqaiaadoeacaaISaWaaeWaaeaacaaIXaGaaG4naaGaayjkai aawMcaaaaa@427E@

θ= u ;k k =3H= H 1 + H 2 + H 3 ,( 18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaaGypaiaadwhalmaaDaaakeaajugWaiaaiUdacaWGRbaakeaajugW aiaadUgaaaqcfaOaaGypaiaaiodacaWGibGaaGypaiaadIeadaWgaa qcfasaaiaaigdaaeqaaKqbakabgUcaRiaadIeadaWgaaqcfasaaiaa ikdaaKqbagqaaiabgUcaRiaadIeadaWgaaqcfasaaiaaiodaaKqbag qaaiaaiYcadaqadaqaaiaaigdacaaI4aaacaGLOaGaayzkaaaaaa@4F95@

Here H 1 = A ˙ A , H 2 = B ˙ B , H 3 = C ˙ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaai2dadaWcaaqaaiqa dgeagaGaaaqaaiaadgeaaaGaaGilaiaadIeadaWgaaqaaKqzadGaaG OmaaqcfayabaGaaGypamaalaaabaGabmOqayaacaaabaGaamOqaaaa caaISaGaamisamaaBaaabaqcLbmacaaIZaaajuaGbeaacaaI9aWaaS aaaeaaceWGdbGbaiaaaeaacaWGdbaaaaaa@4A05@ are the directional Hubble parameters in directions ofandaxis respectively.

q= a a ¨ a 2 =( 1+ H ˙ H 2 ).( 19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsisldaWcaaqaaiaadggaceWGHbGbamaaaeaacaWGHbWa aWbaaeqabaqcLbmacaaIYaaaaaaajuaGcaaI9aGaeyOeI0YaaeWaae aacaaIXaGaey4kaSYaaSaaaeaaceWGibGbaiaaaeaacaWGibWaaWba aeqabaqcLbmacaaIYaaaaaaaaKqbakaawIcacaGLPaaacaaIUaWaae WaaeaacaaIXaGaaGyoaaGaayjkaiaawMcaaaaa@4B7A@

A m = 1 3 i=1 3 ( Δ H i H ) 2 ,( 20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajuaibaGaamyBaaqcfayabaGaaGypamaalaaabaGaaGymaaqa aiaaiodaaaWaaabCaeqajuaibaGaamyAaiaai2dacaaIXaaabaGaaG 4maaqcfaOaeyyeIuoadaqadaqaamaalaaabaGaeuiLdqKaamisaSWa aSbaaKqbagaajugWaiaadMgaaKqbagqaaaqaaiaadIeaaaaacaGLOa GaayzkaaWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaaISaWaaeWaaeaa caaIYaGaaGimaaGaayjkaiaawMcaaaaa@4EC8@

σ 2 = 1 2 ( i=1 3 H i 2 3 H 2 ),( 21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaWbaaKqbGeqabaGaaGOmaaaajuaGcaaI9aWaaSaaaeaacaaIXaaa baGaaGOmaaaadaqadaqaamaaqahabeqcfasaaiaadMgacaaI9aGaaG ymaaqaaiaaiodaaKqbakabggHiLdGaamisamaaDaaajuaibaGaamyA aaqaaiaaikdaaaqcfaOaeyOeI0IaaG4maiaadIeadaahaaqabKqbGe aajugWaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGilamaabmaabaGa aGOmaiaaigdaaiaawIcacaGLPaaaaaa@5016@

Here Δ H i = H i H,i=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamisamaaBaaabaqcLbmacaWGPbaajuaGbeaacaaI9aGaamisaSWa aSbaaOqaaKqzadGaamyAaaGcbeaajuaGcqGHsislcaWGibGaaGilai aadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodaaaa@47C5@ .

Now we required the solution of above stated field equations 11-16. This is presented in next section.

Solution of the field equations

On integrating equation (15), we have

A= l 0 B,( 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aai2dacaWGSbWaaSbaaeaajugWaiaaicdaaKqbagqaaiaadkeacaaI SaWaaeWaaeaacaaIYaGaaGOmaaGaayjkaiaawMcaaaaa@4017@

Here l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@3A0C@ is a constant of integration it can be taken as unity to avoid further complication, therefore

B=A.( 23 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqai aai2dacaWGbbGaaGOlamaabmaabaGaaGOmaiaaiodaaiaawIcacaGL Paaaaaa@3C92@

Putting t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGyaIaamiDaiaacMbiaaa@3916@ into the field equations (11)-(14) and (16), we get following set of field equations,

2 A ¨ A + A ˙ 2 A 2 s 2 A 2 + ϕ ¨ ϕ + ω ϕ ˙ 2 2 ϕ 2 +2 A ˙ A ϕ ˙ ϕ =8π ϕ 1 ( p ¯ λ)+Λ,( 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmam aalaaabaGabmyqayaadaaabaGaamyqaaaacqGHRaWkdaWcaaqaaiqa dgeagaGaamaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaWGbbWaaW baaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGZbWa aWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWGbbWaaWbaaeqajuaiba GaaGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacuaHvpGzgaWaaaqaaiab ew9aMbaacqGHRaWkdaWcaaqaaiabeM8a3jqbew9aMzaacaWaaWbaae qajuaibaGaaGOmaaaaaKqbagaacaaIYaGaeqy1dy2aaWbaaKqbGeqa baGaaGOmaaaaaaqcfaOaey4kaSIaaGOmamaalaaabaGabmyqayaaca aabaGaamyqaaaadaWcaaqaaiqbew9aMzaacaaabaGaeqy1dygaaiaa i2dacqGHsislcaaI4aGaeqiWdaNaeqy1dy2cdaahaaqcfasabeaaju gWaiabgkHiTiaaigdaaaqcfaOaaGikaiqadchagaqeaiabgkHiTiab eU7aSjaaiMcacqGHRaWkcqqHBoatcaaISaWaaeWaaeaacaaIYaGaaG inaaGaayjkaiaawMcaaaaa@702D@

A ¨ A + C ¨ C + A ˙ C ˙ AC + ϕ ¨ ϕ + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + C ˙ C )=8π ϕ 1 p ¯ +Λ,( 25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaa daaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqadgeagaGaaiqadoeaga GaaaqaaiaadgeacaWGdbaaaiabgUcaRmaalaaabaGafqy1dyMbamaa aeaacqaHvpGzaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaam aaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaaIYaGaeqy1dy2aaWba aeqabaqcLbmacaaIYaaaaaaajuaGcqGHRaWkdaWcaaqaaiqbew9aMz aacaaabaGaeqy1dygaaiaaiIcadaWcaaqaaiqadgeagaGaaaqaaiaa dgeaaaGaey4kaSYaaSaaaeaaceWGdbGbaiaaaeaacaWGdbaaaiaaiM cacaaI9aGaeyOeI0IaaGioaiabec8aWjabew9aMTWaaWbaaKqbagqa baqcLbmacqGHsislcaaIXaaaaKqbakqadchagaqeaiabgUcaRiabfU 5amjaaiYcadaqadaqaaiaaikdacaaI1aaacaGLOaGaayzkaaaaaa@6B02@

A ˙ 2 A 2 +2 A ˙ C ˙ AC s 2 A 2 ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ (2 A ˙ A + C ˙ C )=8π ϕ 1 ρ+Λ,( 26 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbaiaadaahaaqabeaajugWaiaaikdaaaaajuaGbaGaamyq amaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgUcaRiaaikdadaWcaa qaaiqadgeagaGaaiqadoeagaGaaaqaaiaadgeacaWGdbaaaiabgkHi TmaalaaabaGaam4CamaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam yqamaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgkHiTmaalaaabaGa eqyYdCNafqy1dyMbaiaadaahaaqcfasabeaacaaIYaaaaaqcfayaai aaikdacqaHvpGzdaahaaqabKqbGeaacaaIYaaaaaaajuaGcqGHRaWk daWcaaqaaiqbew9aMzaacaaabaGaeqy1dygaaiaaiIcacaaIYaWaaS aaaeaaceWGbbGbaiaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4q ayaacaaabaGaam4qaaaacaaIPaGaaGypaiabgkHiTiaaiIdacqaHap aCcqaHvpGzdaahaaqcfasabeaacqGHsislcaaIXaaaaKqbakabeg8a YjabgUcaRiabfU5amjaaiYcadaqadaqaaiaaikdacaaI2aaacaGLOa Gaayzkaaaaaa@6CAA@

ϕ ¨ + ϕ ˙ (2 A ˙ A + C ˙ C )= 8π(3 p ¯ ρλ) (3+2ω) .( 27 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqy1dy MbamaacqGHRaWkcuaHvpGzgaGaaiaaiIcacaaIYaWaaSaaaeaaceWG bbGbaiaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaacaaaba Gaam4qaaaacaaIPaGaaGypamaalaaabaGaaGioaiabec8aWjaaiIca caaIZaGabmiCayaaraGaeyOeI0IaeqyWdiNaeyOeI0Iaeq4UdWMaaG ykaaqaaiaaiIcacaaIZaGaey4kaSIaaGOmaiabeM8a3jaaiMcaaaGa aGOlamaabmaabaGaaGOmaiaaiEdaaiaawIcacaGLPaaaaaa@5678@

The field equations 24-27 have a system of four independent equations along with seven unknown parameters A,C,λ,ρ, p ¯ ,ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aaiYcacaaMe8Uaam4qaiaaiYcacaaMe8Uaeq4UdWMaaGilaiaaysW7 cqaHbpGCcaaISaGaaGjbVlqadchagaqeaiaaiYcacaaMe8Uaeqy1dy MaaGjbVdaa@4B37@ and Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ therefore we need at least three more constraints related to these parameters for explicit solution of this system of equations. For the explicit solution of above stated equations, we may apply following assumptions:

  1. It is assumed that the bulk viscosity function ξ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGikaiaadshacaaIPaaaaa@3AA5@ is proportional to some power of energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@  (see,43,44i.e.
  2. ξ ρ β ,( 28 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaeyyhIuRaeqyWdi3cdaahaaqcfayabeaajugWaiabek7aIbaajuaG caaISaWaaeWaaeaacaaIYaGaaGioaaGaayjkaiaawMcaaaaa@435C@

    ξ= ξ 0 ρ β ,( 29 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypaiabe67a4naaBaaabaqcLbmacaaIWaaajuaGbeaacqaHbpGC daahaaqabeaajugWaiabek7aIbaajuaGcaaISaWaaeWaaeaacaaIYa GaaGyoaaGaayjkaiaawMcaaaaa@4665@

Here ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG 3aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3ADE@  is proportional constant and β0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaeyyzImRaaGimaaaa@3AA5@  is a constant. Now with the help of equations (8), (25), (26) and (27) we get,

A ¨ A + C ¨ C + ϕ ¨ ϕ + A ˙ C ˙ AC + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + C ˙ C )=8π ϕ 1 [γρ ξ 0 ρ β θ]+Λ( 30 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaa daaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqbew9aMzaadaaabaGaeq y1dygaaiabgUcaRmaalaaabaGabmyqayaacaGabm4qayaacaaabaGa amyqaiaadoeaaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaam aaCaaabeqcfasaaiaaikdaaaaajuaGbaGaaGOmaiabew9aMnaaCaaa beqcfasaaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGafqy1dyMbai aaaeaacqaHvpGzaaGaaGikamaalaaabaGabmyqayaacaaabaGaamyq aaaacqGHRaWkdaWcaaqaaiqadoeagaGaaaqaaiaadoeaaaGaaGykai aai2dacqGHsislcaaI4aGaeqiWdaNaeqy1dy2cdaahaaqcfayabeaa jugWaiabgkHiTiaaigdaaaqcfaOaaG4waiabeo7aNjabeg8aYjabgk HiTiabe67a4TWaaSbaaKqbagaajugWaiaaicdaaKqbagqaaiabeg8a YTWaaWbaaKqbagqabaqcLbmacqaHYoGyaaqcfaOaeqiUdeNaaGyxai abgUcaRiabfU5amnaabmaabaGaaG4maiaaicdaaiaawIcacaGLPaaa aaa@79DC@

In this context we have discuss two cases i.e. β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@  and β=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdacaaIUaaaaa@3A5F@

  1. Case 1: If β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@ , then ξ= ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypaiabe67a4naaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@3D68@
  2. A ¨ A + C ¨ C + ϕ ¨ ϕ + A ˙ C ˙ AC + ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( A ˙ A + C ˙ C )=8π ϕ 1 γρ+Λ+8π ξ 0 θ ϕ 1 ( 31 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaa daaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqbew9aMzaadaaabaGaeq y1dygaaiabgUcaRmaalaaabaGabmyqayaacaGabm4qayaacaaabaGa amyqaiaadoeaaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaam aaCaaabeqcfasaaiaaikdaaaaajuaGbaGaaGOmaiabew9aMnaaCaaa beqcfasaaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGafqy1dyMbai aaaeaacqaHvpGzaaGaaGikamaalaaabaGabmyqayaacaaabaGaamyq aaaacqGHRaWkdaWcaaqaaiqadoeagaGaaaqaaiaadoeaaaGaaGykai aai2dacqGHsislcaaI4aGaeqiWdaNaeqy1dy2aaWbaaKqbGeqabaGa eyOeI0IaaGymaaaajuaGcqaHZoWzcqaHbpGCcqGHRaWkcqqHBoatcq GHRaWkcaaI4aGaeqiWdaNaeqOVdG3aaSbaaKqbGeaacaaIWaaajuaG beaacqaH4oqCcqaHvpGzlmaaCaaajuaGbeqaaKqzadGaeyOeI0IaaG ymaaaajuaGdaqadaqaaiaaiodacaaIXaaacaGLOaGaayzkaaaaaa@7762@

On subtracting equation (26) from equation (31), we have

A ¨ A + C ¨ C + ϕ ¨ ϕ A ˙ C ˙ AC + ω ϕ ˙ 2 ϕ 2 A ˙ ϕ ˙ Aϕ ( A ˙ A ) 2 + s 2 A 2 =8π ϕ 1 (1γ)ρ+8π ϕ 1 ξ 0 θ( 32 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaa daaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqbew9aMzaadaaabaGaeq y1dygaaiabgkHiTmaalaaabaGabmyqayaacaGabm4qayaacaaabaGa amyqaiaadoeaaaGaey4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaaS WaaWbaaKqbGeqabaqcLbmacaaIYaaaaaqcfayaaiabew9aMnaaCaaa juaibeqaaiaaikdaaaaaaKqbakabgkHiTmaalaaabaGabmyqayaaca Gafqy1dyMbaiaaaeaacaWGbbGaeqy1dygaaiabgkHiTiaaiIcadaWc aaqaaiqadgeagaGaaaqaaiaadgeaaaGaaGykamaaCaaabeqcfasaai aaikdaaaqcfaOaey4kaSYaaSaaaeaacaWGZbWaaWbaaeqajuaibaGa aGOmaaaaaKqbagaacaWGbbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfa OaaGypaiaaiIdacqaHapaCcqaHvpGzdaahaaqcfasabeaacqGHsisl caaIXaaaaKqbakaaiIcacaaIXaGaeyOeI0Iaeq4SdCMaaGykaiabeg 8aYjabgUcaRiaaiIdacqaHapaCcqaHvpGzdaahaaqcfasabeaacqGH sislcaaIXaaaaKqbakabe67a4naaBaaajuaibaGaaGimaaqabaqcfa OaeqiUde3aaeWaaeaacaaIZaGaaGOmaaGaayjkaiaawMcaaaaa@7D9B@

On substituting the value of 8πρ ϕ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjabew9aMnaaCaaabeqaaKqzadGaeyOeI0IaaGym aaaaaaa@3F83@  from equation (32) into equation (26), we have expression for cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@  as

Λ(1γ)=8π ϕ 1 ξ 0 θ+ A ¨ A + C ¨ C + ϕ ¨ ϕ +(12γ) A ˙ C ˙ AC +(1+γ) ω ϕ ˙ 2 2 ϕ 2 +(12γ) A ˙ ϕ ˙ Aϕ γ A ˙ 2 A 2 +(1γ) C ˙ ϕ ˙ Cϕ +γ s 2 A 2 ( 33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaGikaiaaigdacqGHsislcqaHZoWzcaaIPaGaaGypaiabgkHiTiaa iIdacqaHapaCcqaHvpGzdaahaaqcfasabeaacqGHsislcaaIXaaaaK qbakabe67a4naaBaaajuaibaGaaGimaaqcfayabaGaeqiUdeNaey4k aSYaaSaaaeaaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaaba Gabm4qayaadaaabaGaam4qaaaacqGHRaWkdaWcaaqaaiqbew9aMzaa daaabaGaeqy1dygaaiabgUcaRiaaiIcacaaIXaGaeyOeI0IaaGOmai abeo7aNjaaiMcadaWcaaqaaiqadgeagaGaaiqadoeagaGaaaqaaiaa dgeacaWGdbaaaiabgUcaRiaaiIcacaaIXaGaey4kaSIaeq4SdCMaaG ykamaalaaabaGaeqyYdCNafqy1dyMbaiaadaahaaqcfasabeaacaaI YaaaaaqcfayaaiaaikdacqaHvpGzdaahaaqcfasabeaacaaIYaaaaa aajuaGcqGHRaWkcaaIOaGaaGymaiabgkHiTiaaikdacqaHZoWzcaaI PaWaaSaaaeaaceWGbbGbaiaacuaHvpGzgaGaaaqaaiaadgeacqaHvp GzaaGaeyOeI0Iaeq4SdC2aaSaaaeaaceWGbbGbaiaadaahaaqabKqb GeaacaaIYaaaaaqcfayaaiaadgeadaahaaqcfasabeaacaaIYaaaaa aajuaGcqGHRaWkcaaIOaGaaGymaiabgkHiTiabeo7aNjaaiMcadaWc aaqaaiqadoeagaGaaiqbew9aMzaacaaabaGaam4qaiabew9aMbaacq GHRaWkcqaHZoWzdaWcaaqaaiaadohadaahaaqcfasabeaacaaIYaaa aaqcfayaaiaadgeadaahaaqcfasabeaacaaIYaaaaaaajuaGdaqada qaaiaaiodacaaIZaaacaGLOaGaayzkaaaaaa@94C2@

  1. Case 2: If β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@ , then ξ= ξ 0 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypaiabe67a4naaBaaabaqcLbmacaaIWaaajuaGbeaacqaHbpGC aaa@3F28@
  2. 8πρ= ϕ [γ1 ξ 0 θ] [ A ¨ A + C ¨ C + ϕ ¨ ϕ A ˙ 2 A 2 A ˙ C AC + ω ϕ ˙ 2 ϕ 2 A ˙ ϕ ˙ Aϕ + s 2 A 2 ]( 34 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjaai2dadaWcaaqaaiabew9aMbqaaiaaiUfacqaH ZoWzcqGHsislcaaIXaGaeyOeI0IaeqOVdG3cdaWgaaqcfayaaKqzad GaaGimaaqcfayabaGaeqiUdeNaaGyxaaaacaaIBbWaaSaaaeaaceWG bbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabm4qayaadaaaba Gaam4qaaaacqGHRaWkdaWcaaqaaiqbew9aMzaadaaabaGaeqy1dyga aiabgkHiTmaalaaabaGabmyqayaacaWaaWbaaKqbGeqabaGaaGOmaa aaaKqbagaacaWGbbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOe I0YaaSaaaeaaceWGbbGbaiaacaWGdbaabaGaamyqaiaadoeaaaGaey 4kaSYaaSaaaeaacqaHjpWDcuaHvpGzgaGaamaaCaaajuaibeqaaiaa ikdaaaaajuaGbaGaeqy1dy2aaWbaaeqajuaibaGaaGOmaaaaaaqcfa OaeyOeI0YaaSaaaeaaceWGbbGbaiaacuaHvpGzgaGaaaqaaiaadgea cqaHvpGzaaGaey4kaSYaaSaaaeaacaWGZbWaaWbaaeqajuaibaGaaG OmaaaaaKqbagaacaWGbbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOa aGyxamaabmaabaGaaG4maiaaisdaaiaawIcacaGLPaaaaaa@7724@

    Λ= 1 [γ1 ξ 0 θ] [ A ¨ A + C ¨ C + ϕ ¨ ϕ A ˙ 2 A 2 A ˙ C AC + ω ϕ ˙ 2 ϕ 2 A ˙ ϕ ˙ Aϕ + s 2 A 2 ]+ ( A ˙ A ) 2 +2 A ˙ C ˙ AC s 2 A 2 ω ϕ ˙ 2 2 ϕ 2 + ϕ ˙ ϕ ( 2 A ˙ A + C ˙ C )( 35 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaGypamaalaaabaGaaGymaaqaaiaaiUfacqaHZoWzcqGHsislcaaI XaGaeyOeI0IaeqOVdG3cdaWgaaqcfayaaKqzadGaaGimaaqcfayaba GaeqiUdeNaaGyxaaaacaaIBbWaaSaaaeaaceWGbbGbamaaaeaacaWG bbaaaiabgUcaRmaalaaabaGabm4qayaadaaabaGaam4qaaaacqGHRa WkdaWcaaqaaiqbew9aMzaadaaabaGaeqy1dygaaiabgkHiTmaalaaa baGabmyqayaacaWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWGbb WaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaSaaaeaaceWG bbGbaiaacaWGdbaabaGaamyqaiaadoeaaaGaey4kaSYaaSaaaeaacq aHjpWDcuaHvpGzgaGaamaaCaaabeqcfasaaiaaikdaaaaajuaGbaGa eqy1dy2aaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaSaaae aaceWGbbGbaiaacuaHvpGzgaGaaaqaaiaadgeacqaHvpGzaaGaey4k aSYaaSaaaeaacaWGZbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaaca WGbbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaaGyxaiabgUcaRiaa iIcadaWcaaqaaiqadgeagaGaaaqaaiaadgeaaaGaaGykamaaCaaaju aibeqaaiaaikdaaaqcfaOaey4kaSIaaGOmamaalaaabaGabmyqayaa caGabm4qayaacaaabaGaamyqaiaadoeaaaGaeyOeI0YaaSaaaeaaca WGZbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGbbWaaWbaaeqa juaibaGaaGOmaaaaaaqcfaOaeyOeI0YaaSaaaeaacqaHjpWDcuaHvp GzgaGaamaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaaGOmaiabew9a MnaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGafq y1dyMbaiaaaeaacqaHvpGzaaGaaGikamaalaaabaGaaGOmaiqadgea gaGaaaqaaiaadgeaaaGaey4kaSYaaSaaaeaaceWGdbGbaiaaaeaaca WGdbaaaiaaiMcadaqadaqaaiaaiodacaaI1aaacaGLOaGaayzkaaaa aa@98CE@

  1. The deceleration parameter q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@ is taken as a function of cosmic time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGyaIaamiDaiaacMbiaaa@3916@ i.e.
  2. q= a a ¨ a 2 =( H ˙ + H 2 H 2 )=b(t)(say)( 36 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsisldaWcaaqaaiaadggaceWGHbGbamaaaeaacaWGHbWa aWbaaeqabaqcLbmacaaIYaaaaaaajuaGcaaI9aGaeyOeI0YaaeWaae aadaWcaaqaaiqadIeagaGaaiabgUcaRiaadIeadaahaaqabeaajugW aiaaikdaaaaajuaGbaGaamisaSWaaWbaaKqbagqabaqcLbmacaaIYa aaaaaaaKqbakaawIcacaGLPaaacaaI9aGaamOyaiaaiIcacaWG0bGa aGykaiaaiIcacaWGZbGaamyyaiaadMhacaaIPaWaaeWaaeaacaaIZa GaaGOnaaGaayjkaiaawMcaaaaa@5653@

As recent observations confirmed that the universe is expanding with an accelerating rate at present whereas it was decelerating at early time (see4,5,8). Theoretically, we may say that the value of scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ vary with cosmic time. Also rate of expansion measured by Hubble’s parameter (H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadIeacaaIPaaaaa@38B6@ and the DP, (q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadghacaaIPaaaaa@38DF@ , since H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaa aa@3751@  and q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@ are the functions of the scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ , therefore the study of various models with time dependent DP indicate new sector in theoretical Cosmology. Moreover, time-dependent q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@  dictates the expansion rate of the universe and also sign of the DP q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@ , galaxy number variation may be increasing (decelerated expansion), or decreasing (accelerated expansion).45 Recent past several researchers including our research group38 have been studied many cosmological models of the universe with time varying q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@ , in different context.46–53

Now, the general solution of equation (36) is derived by our research team,38 where we have defined q=b(t)=a a ¨ / a ˙ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacaWGIbGaaGikaiaadshacaaIPaGaaGypaiabgkHiTiaadgga ceWGHbGbamaacaGGVaGabmyyayaacaWaaWbaaeqabaqcLbmacaaIYa aaaaaa@42BE@ . The motivation to choose this type of DP is behind the fact that universe has an accelerating expanding phase at present time as observed by SNeIa supernova observations4,8 and decelerated expansion in the past but in present scenario DP must show signature flipping,5,54,55 so in general DP is not a constant but time variable so that above equation (36) may be re written as a a ¨ / a ˙ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai qadggagaWaaiaac+caceWGHbGbaiaadaahaaqabeaajugWaiaaikda aaqcfaOaeyypa0JaaGimaaaa@3E56@ in order to solve above equation, we may assume b=b(a(t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacaWGIbGaaGikaiaadggacaaIOaGaamiDaiaaiMcacaaIPaaa aa@3DC2@ as a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyaa aa@376A@ is also time dependent function, this only possible when we should avoid singularities like Big-Bang and Big-Rip because both the function (cosmic time & scale factor) are increasing functions therefore after some simplification we get,

a(t)=(sinh(αt )) 1 n ,( 37 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaai2dacaaIOaGaci4CaiaacMgacaGGUbGa aiiAaiaaiIcacqaHXoqycaWG0bGaaGykaiaaiMcadaahaaqabeaalm aalaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaWGUbaaaaaajuaG caaISaWaaeWaaeaacaaIZaGaaG4naaGaayjkaiaawMcaaaaa@4D63@

Where a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ is a scale factor. Here α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ are positive constants.

The shear scalar σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@ is proportional to scalar expansion θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ as suggested by,56 we may also taken as

A= C m ,( 38 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aai2dacaWGdbWcdaahaaqcfayabeaajugWaiaad2gaaaqcfaOaaGil amaabmaabaGaaG4maiaaiIdaaiaawIcacaGLPaaaaaa@4000@

Here m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBaa aa@3776@ is non zero constant, which may takes care of the anisotropy of the space.

We consider the power law relation between scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ and BD scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ . As we know that the BD theory is a modification of Einstein’s GTR, where purely metric coupling of matter with gravity is preserved. Also the gravitational constant G is replaced with time dependent scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ as ϕ(t)=18πG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaaGypaiaaigdacaaI4aGaeqiWdaNaam4r aaaa@3F77@  and this scalar field couples to gravity with a BD coupling constant ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ . It also passes the experimental tests from solar system57 and able to provide a dynamicity of the universe.58 In59 had investigated Newtonian Cosmology with G a β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai abg2Hi1kaadggadaahaaqabeaajugWaiabek7aIbaaaaa@3CA7@ . There is another investigation of Cosmology i.e ϕ a β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyyhIuRaamyyamaaCaaabeqaaKqzadGaeqOSdigaaaaa@3DA3@ .60–62 Since the field equations (11)–(14) and (16) contain a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyaa aa@376A@ and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ and their derivatives, so without any loss of generality, we shall assume that the BD scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ is some power of a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ . The power law relation between scale factor and scalar field has ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ already been used by63 in the context of Robertson Walker Brans-Dicke models. Thus,

ϕ= ϕ 0 [a(t)] b ,( 39 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGypaiabew9aMnaaBaaabaqcLbmacaaIWaaajuaGbeaacaaIBbGa amyyaiaaiIcacaWG0bGaaGykaiaai2fadaahaaqabeaajugWaiaadk gaaaqcfaOaaGilamaabmaabaGaaG4maiaaiMdaaiaawIcacaGLPaaa aaa@4906@

Where ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3AE3@  is a proportionality constant and b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyaa aa@376B@  is an ordinary constant. The assumption of a power law between the scalar field ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@  and the cosmological expansion factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ , it is possible to reduce the cosmological equations to quadrature for the scalar-tensor theory with cosmological constant.64–67 Now, from equations (17), (36) and (37), we have following expression for the metric potentials A, B and C,

A=B=[sinh(αt )] 3m n(2m+1) ,( 40 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aai2dacaWGcbGaaGypaiaaiUfacaWGZbGaamyAaiaad6gacaWGObGa aGikaiabeg7aHjaadshacaaIPaGaaGyxamaaCaaabeqaaSWaaSaaaK qbagaajugWaiaaiodacaWGTbaajuaGbaqcLbmacaWGUbGaaGikaiaa ikdacaWGTbGaey4kaSIaaGymaiaaiMcaaaaaaKqbakaaiYcadaqada qaaabaaaaaaaaapeGaaGinaiaaicdaa8aacaGLOaGaayzkaaaaaa@52A9@

C=[sinh(αt )] 3 n(2m+1) ,( 41 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aai2dacaaIBbGaci4CaiaacMgacaGGUbGaaiiAaiaaiIcacqaHXoqy caWG0bGaaGykaiaai2fadaahaaqabeaalmaalaaajuaGbaqcLbmaca aIZaaajuaGbaqcLbmacaWGUbGaaGikaiaaikdacaWGTbGaey4kaSIa aGymaiaaiMcaaaaaaKqbakaaiYcadaqadaqaaabaaaaaaaaapeGaaG inaiaaigdaa8aacaGLOaGaayzkaaaaaa@502A@

The directional Hubble parameters may be expressed as

H 1 = H 2 = 3mα n(2m+1) coth(αt),( 42 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaai2dacaWGibWcdaWg aaqcfayaaKqzadGaaGOmaaqcfayabaGaaGypamaalaaabaGaaG4mai aad2gacqaHXoqyaeaacaWGUbGaaGikaiaaikdacaWGTbGaey4kaSIa aGymaiaaiMcaaaGaci4yaiaac+gacaGG0bGaaiiAaiaaiIcacqaHXo qycaWG0bGaaGykaiaaiYcadaqadaqaaiaaisdacaaIYaaacaGLOaGa ayzkaaaaaa@5486@

H 3 = 3α n(2m+1) coth(αt),( 43 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaaIZaaajuaGbeaacaaI9aWaaSaaaeaacaaIZaGa eqySdegabaGaamOBaiaaiIcacaaIYaGaamyBaiabgUcaRiaaigdaca aIPaaaaiGacogacaGGVbGaaiiDaiaacIgacaaIOaGaeqySdeMaamiD aiaaiMcacaaISaWaaeWaaeaacaaI0aGaaG4maaGaayjkaiaawMcaaa aa@4E38@

The relation between scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@  and red shift parameter z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@  may be written as,

1+z λ obs λ emit = a( t 0 ) a(t) ,( 44 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai abgUcaRiaadQhacqGHHjIUdaWcaaqaaiabeU7aSnaaBaaabaqcLbma caWGVbGaamOyaiaadohaaKqbagqaaaqaaiabeU7aSnaaBaaabaqcLb macaWGLbGaamyBaiaadMgacaWG0baajuaGbeaaaaGaaGypamaalaaa baGaamyyaiaaiIcacaWG0bWaaSbaaeaajugWaiaaicdaaKqbagqaai aaiMcaaeaacaWGHbGaaGikaiaadshacaaIPaaaaiaaiYcadaqadaqa aiaaisdacaaI0aaacaGLOaGaayzkaaaaaa@5662@

Where a( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bWaaSbaaeaajugWaiaaicdaaKqbagqaaiaaiMcaaaa@3C5F@ is the present value of scale factor and it takes as unity. The scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ is stable under metric perturbation, so that redshift parameter in term of scale factor given as,

a= 1 1+z ,z=1+ 1 a(t) ,z=1+ [sinh(αt)] 1 n ( 45 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aai2dadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamOEaaaacaaI SaGaeyO0H4TaamOEaiaai2dacqGHsislcaaIXaGaey4kaSYaaSaaae aacaaIXaaabaGaamyyaiaaiIcacaWG0bGaaGykaaaacaaISaGaeyO0 H4TaamOEaiaai2dacqGHsislcaaIXaGaey4kaSIaaG4waiaadohaca WGPbGaamOBaiaadIgacaaIOaGaeqySdeMaamiDaiaaiMcacaaIDbWc daahaaqcfayabeaajugWaiabgkHiTSWaaSaaaKqbagaajugWaiaaig daaKqbagaajugWaiaad6gaaaaaaKqbaoaabmaabaGaaGinaiaaiwda aiaawIcacaGLPaaaaaa@63A7@

z=1+ [αt+ (αt) 3 3! + (αt) 5 5! +...] 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEai aai2dacqGHsislcaaIXaGaey4kaSIaaG4waiabeg7aHjaadshacqGH RaWkdaWcaaqaaiaaiIcacqaHXoqycaWG0bGaaGykaSWaaWbaaKqbag qabaqcLbmacaaIZaaaaaqcfayaaiaaiodacaaIHaaaaiabgUcaRmaa laaabaGaaGikaiabeg7aHjaadshacaaIPaWaaWbaaeqabaqcLbmaca aI1aaaaaqcfayaaiaaiwdacaaIHaaaaiabgUcaRiaai6cacaaIUaGa aGOlaiaai2falmaaCaaajuaGbeqaaKqzadGaeyOeI0YcdaWcaaqcfa yaaKqzadGaaGymaaqcfayaaKqzadGaamOBaaaaaaaaaa@5CDA@

The form of metric (4) after substituting the value of A,B and C,

d s 2 =d t 2 + [sinh(αt)] 6m n(2m+1) (d x 2 + e 2x d y 2 )+ [sinh(αt)] m n(2m+1) d z 2 ( 46 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohalmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcaaI9aGaeyOe I0IaamizaiaadshadaahaaqabeaajugWaiaaikdaaaqcfaOaey4kaS IaaG4waiaadohacaWGPbGaamOBaiaadIgacaaIOaGaeqySdeMaamiD aiaaiMcacaaIDbWaaWbaaeqabaWcdaWcaaqcfayaaKqzadGaaGOnai aad2gaaKqbagaajugWaiaad6gacaaIOaGaaGOmaiaad2gacqGHRaWk caaIXaGaaGykaaaaaaqcfaOaaGikaiaadsgacaWG4bWaaWbaaeqaju aibaGaaGOmaaaajuaGcqGHRaWkcaWGLbWaaWbaaKqbGeqabaGaeyOe I0IaaGOmaiaadIhaaaqcfaOaamizaiaadMhadaahaaqcfasabeaaca aIYaaaaKqbakaaiMcacqGHRaWkcaaIBbGaam4CaiaadMgacaWGUbGa amiAaiaaiIcacqaHXoqycaWG0bGaaGykaiaai2fadaahaaqabOqaaS WaaSaaaOqaaKqzadGaamyBaaGcbaqcLbmacaWGUbGaaGikaiaaikda caWGTbGaey4kaSIaaGymaiaaiMcaaaaaaKqbakaadsgacaWG6bWcda ahaaqcfayabeaajugWaiaaikdaaaqcfa4aaeWaaeaacaaI0aGaaGOn aaGaayjkaiaawMcaaaaa@81F4@

Also we can write the metric (4) in terms of red shift parameter as Z as

d s 2 =d t 2 + [1+z] 6m 2m+1 (d x 2 + e 2sx d y 2 )+ [1+z] 6 2m+1 d z 2 ( 47 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqcfasabeaacaaIYaaaaKqbakaai2dacqGHsislcaWG KbGaamiDamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaaG4wai aaigdacqGHRaWkcaWG6bGaaGyxamaaCaaabeqaaSWaaSaaaKqbagaa jugWaiabgkHiTiaaiAdacaWGTbaajuaGbaqcLbmacaaIYaGaamyBai abgUcaRiaaigdaaaaaaKqbakaaiIcacaWGKbGaamiEamaaCaaajuai beqaaiaaikdaaaqcfaOaey4kaSIaamyzamaaCaaajuaibeqaaiabgk HiTiaaikdacaWGZbGaamiEaaaajuaGcaWGKbGaamyEamaaCaaajuai beqaaiaaikdaaaqcfaOaaGykaiabgUcaRiaaiUfacaaIXaGaey4kaS IaamOEaiaai2fadaahaaqabeaalmaalaaajuaGbaqcLbmacqGHsisl caaI2aaajuaGbaqcLbmacaaIYaGaamyBaiabgUcaRiaaigdaaaaaaK qbakaadsgacaWG6bWaaWbaaKqbGeqabaGaaGOmaaaajuaGdaqadaqa aiaaisdacaaI3aaacaGLOaGaayzkaaaaaa@7263@

The some parameters such as spatial volume, Hubble parameter, deceleration parameter (q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadghacaaIPaaaaa@38DF@ , expansion scalar (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeI7aXjaaiMcaaaa@399F@ , shear scalarand anisotropy parameter A m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaabaqcLbmacaWGTbaajuaGbeaaaaa@3A19@ are expressed as

V=ABC=[sinh(αt )] 3 n ,( 48 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aai2dacaWGbbGaamOqaiaadoeacaaI9aGaaG4waiGacohacaGGPbGa aiOBaiaacIgacaaIOaGaeqySdeMaamiDaiaaiMcacaaIDbWaaWbaae qabaWcdaWcaaqcfayaaKqzadGaaG4maaqcfayaaKqzadGaamOBaaaa aaqcfaOaaGilamaabmaabaGaaGinaiaaiIdaaiaawIcacaGLPaaaaa a@4E81@

θ=3H= 3α n coth(αt),( 49 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaaGypaiaaiodacaWGibGaaGypamaalaaabaGaaG4maiabeg7aHbqa aiaad6gaaaGaci4yaiaac+gacaGG0bGaaiiAaiaaiIcacqaHXoqyca WG0bGaaGykaiaaiYcadaqadaqaaiaaisdacaaI5aaacaGLOaGaayzk aaaaaa@4A2E@

q=1+n.sec h 2 (αt)),( 50 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsislcaaIXaGaey4kaSIaamOBaiaai6cacaWGZbGaamyz aiaadogacaWGObWaaWbaaeqabaqcLbmacaaIYaaaaKqbakaaiIcacq aHXoqycaWG0bGaaGykaiaaiMcacaaISaWaaeWaaeaacaaI1aGaaGim aaGaayjkaiaawMcaaaaa@4B2F@

Also we have derived the relation between DPq and red shift Z for our considerable model 1, which is given by

q=1+ n (1+z) 2n 1+ (1+z) 2n ,( 51 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsislcaaIXaGaey4kaSYaaSaaaeaacaWGUbGaaGikaiaa igdacqGHRaWkcaWG6bGaaGykamaaCaaabeqaaKqzadGaaGOmaiaad6 gaaaaajuaGbaGaaGymaiabgUcaRiaaiIcacaaIXaGaey4kaSIaamOE aiaaiMcadaahaaqabeaajugWaiaaikdacaWGUbaaaaaajuaGcaaISa WaaeWaaeaacaaI1aGaaGymaaGaayjkaiaawMcaaaaa@5040@

If n=1, then

q= 1 2 [1+ z(z+2) 2 ] 1 provided| z 2 +2z 2 |<1( 52 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiUfacaaI XaGaey4kaSYaaSaaaeaacaWG6bGaaGikaiaadQhacqGHRaWkcaaIYa GaaGykaaqaaiaaikdaaaGaaGyxaSWaaWbaaKqbagqabaqcLbmacqGH sislcaaIXaaaaKqbakaaysW7caaMe8UaamiCaiaadkhacaWGVbGaam ODaiaadMgacaWGKbGaamyzaiaadsgacaaMe8UaaGjbVlaaiYhadaWc aaqaaiaadQhadaahaaqabeaajugWaiaaikdaaaqcfaOaey4kaSIaaG OmaiaadQhaaeaacaaIYaaaaiaaiYhacaaI8aGaaGymamaabmaabaGa aGynaiaaikdaaiaawIcacaGLPaaaaaa@6356@

Also the Maclaurin’s series expansion of q is,

q= 1 2 + 1 2 z 1 2 z 2 +O[ z 3 ],( 53 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRmaa laaabaGaaGymaaqaaiaaikdaaaGaamOEaiabgkHiTmaalaaabaGaaG ymaaqaaiaaikdaaaGaamOEaSWaaWbaaKqbagqabaqcLbmacaaIYaaa aKqbakabgUcaRiaad+eacaaIBbGaamOEamaaCaaabeqaaKqzadGaaG 4maaaajuaGcaaIDbGaaGilamaabmaabaGaaGynaiaaiodaaiaawIca caGLPaaaaaa@4F9A@

For n= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai2dadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@39C5@  

q= 1 2 [ z+3 z+2 ],providedz2( 54 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiUfadaWc aaqaaiaadQhacqGHRaWkcaaIZaaabaGaamOEaiabgUcaRiaaikdaaa GaaGyxaiaaiYcacaaMe8UaaGjbVlaadchacaWGYbGaam4BaiaadAha caWGPbGaamizaiaadwgacaWGKbGaaGjbVlaaysW7caWG6bGaeyiyIK RaeyOeI0IaaGOmamaabmaabaGaaGynaiaaisdaaiaawIcacaGLPaaa aaa@57B0@

For present age of the universe t 0 =13.78Gyr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDam aaBaaabaqcLbmacaaIWaaajuaGbeaacaaI9aGaaGymaiaaiodacaaI UaGaaG4naiaaiIdacaWGhbGaamyEaiaadkhaaaa@414F@ with present value of DP q 0 =0.73 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCam aaBaaabaqcLbmacaaIWaaajuaGbeaacaaI9aGaeyOeI0IaaGimaiaa i6cacaaI3aGaaG4maaaa@3EB5@ ,68 equation (50) yields the following relationship between the constants α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@  and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ :

α= 1 t 0 sec h 1 q 0 +1 n ( 55 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypamaalaaabaGaaGymaaqaaiaadshadaWgaaqaaKqzadGaaGim aaqcfayabaaaaiaadohacaWGLbGaam4yaiaadIgalmaaCaaajuaGbe qaaKqzadGaeyOeI0IaaGymaaaajuaGdaGcaaqaamaalaaabaGaamyC amaaBaaabaqcLbmacaaIWaaajuaGbeaacqGHRaWkcaaIXaaabaGaam OBaaaaaeqaamaabmaabaGaaGynaiaaiwdaaiaawIcacaGLPaaaaaa@4E5F@

From equation (50), we analyze that for q  is negative for n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgsMiJkaaigdaaaa@39E7@  and changing sing positive to negative for n>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai6dacaaIXaaaaa@38FA@  with corresponding value of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ . In Figure 1, we depict the variation between red shift parameter z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@  with DP q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@ , the two most important parameters in cosmology. It is clear from concern that universe is accelerating for n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgsMiJkaaigdaaaa@39E7@  and show transition phase (i.e. early time deceleration to late time acceleration) for n>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai6dacaaIXaaaaa@38FA@ . This type behavior of DP q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@  indicates that the universe has decelerated in past and at present time undergoes an accelerating phase, which is good agreement with observational findings.

σ 2 = 1 3 [ 3α(m1) n(2m+1) coth(αt)] 2 .( 56 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3cdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaaGypamaalaaabaGa aGymaaqaaiaaiodaaaGaaG4wamaalaaabaGaaG4maiabeg7aHjaaiI cacaWGTbGaeyOeI0IaaGymaiaaiMcaaeaacaWGUbGaaGikaiaaikda caWGTbGaey4kaSIaaGymaiaaiMcaaaGaam4yaiaad+gacaWG0bGaam iAaiaaiIcacqaHXoqycaWG0bGaaGykaiaai2fadaahaaqabeaajugW aiaaikdaaaqcfaOaaGOlamaabmaabaGaaGynaiaaiAdaaiaawIcaca GLPaaaaaa@59BC@

A m = 2 3 [ 3 m 2 +2m+1 (2m+1) 2 ]=constant,( 57 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaabaqcLbmacaWGTbaajuaGbeaacaaI9aWaaSaaaeaacaaIYaaa baGaaG4maaaacaaIBbWaaSaaaeaacaaIZaGaamyBaSWaaWbaaKqbag qabaqcLbmacaaIYaaaaKqbakabgUcaRiaaikdacaWGTbGaey4kaSIa aGymaaqaaiaaiIcacaaIYaGaamyBaiabgUcaRiaaigdacaaIPaWaaW baaeqabaqcLbmacaaIYaaaaaaajuaGcaaIDbGaaGypaiaadogacaWG VbGaamOBaiaadohacaWG0bGaamyyaiaad6gacaWG0bGaaGilamaabm aabaGaaGynaiaaiEdaaiaawIcacaGLPaaaaaa@5AB6@

Figure 1 Plot of redshift parameter versus deceleration parameter q.

Provided m 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgcMi5kabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaaaa@3BB1@

Above equation (57) indicates that A m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaabaqcLbmacaWGTbaajuaGbeaaaaa@3A19@ is constant throughout evolution of the universe. This means universe never approaches to isotropy. Also, σ θ =constant MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHdpWCaeaacqaH4oqCaaGaaGypaiaadogacaWGVbGaamOBaiaa dohacaWG0bGaamyyaiaad6gacaWG0baaaa@4266@ this agreed with Collins et al. [54] results.

Physical and kinematical properties of the model

In this section we discuss the some physical and kinematic properties of the model represented by equation (46). The string tension density (λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeU7aSjaaiMcaaaa@399D@ , the energy density (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYjaaiMcaaaa@39A9@ , the particle density ( ρ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abeg8aYnaaBaaabaqcLbmacaWGWbaajuaGbeaacaaIPaaaaa@3C7B@  and the cosmological constant (Λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai abfU5amjaaiMcaaaa@395E@  for β=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaISaGaaGymaaaa@3B17@  may be expressed as

8πλ= ϕ 0 M 2 b n n 2 k 1 2 [3 α 2 {6 m 2 2 m 2 nmn3m+n3+b k 1 (m1)} M 1 2 +3 α 2 n k 1 (m1) s 2 n 2 k 1 2 . M 2 6m n k 1 ]( 58 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeU7aSjaai2dadaWcaaqaaiabew9aMnaaBaaajuaibaGa aGimaaqabaqcfaOaamytamaaDaaajuaibaGaaGOmaaqaaKqbaoaala aajuaibaGaamOyaaqaaiaad6gaaaaaaaqcfayaaiaad6galmaaCaaa jqwba+FabeaajugWaiaaikdaaaqcfaOaam4AamaaDaaajuaibaGaaG ymaaqaaiaaikdaaaaaaKqbakaaiUfacaaIZaGaeqySde2aaWbaaKqb GeqabaGaaGOmaaaajuaGcaaI7bGaaGOnaiaad2gadaahaaqcfasabe aacaaIYaaaaKqbakabgkHiTiaaikdacaWGTbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcaWGUbGaeyOeI0IaamyBaiaad6gacqGHsislcaaIZa GaamyBaiabgUcaRiaad6gacqGHsislcaaIZaGaey4kaSIaamOyaiaa dUgadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiIcacaWGTbGaeyOeI0 IaaGymaiaaiMcacaaI9bGaamytamaaDaaajuaibaGaaGymaaqaaiaa ikdaaaqcfaOaey4kaSIaaG4maiabeg7aHnaaCaaajuaibeqaaiaaik daaaqcfaOaamOBaiaadUgadaWgaaqcfasaaiaaigdaaeqaaKqbakaa iIcacaWGTbGaeyOeI0IaaGymaiaaiMcacqGHsislcaWGZbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaWGUbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcaWGRbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcaaIUa GaamytaSWaa0baaKqbagaajugWaiaaikdaaKqbagaalmaalaaajuaG baqcLbmacqGHsislcaaI2aGaamyBaaqcfayaaKqzadGaamOBaiaadU galmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaaaaiaai2fadaqa daqaaabaaaaaaaaapeGaaGynaiaaiIdaa8aacaGLOaGaayzkaaaaaa@9A52@

Here M 1 =coth(αt); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaai2daciGGJbGaai4B aiaacshacaGGObGaaGikaiabeg7aHjaadshacaaIPaGaaG4oaaaa@43D0@ ; M 2 =sinh(αt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaiaai2daciGGZbGaaiyA aiaac6gacaGGObGaaGikaiabeg7aHjaadshacaaIPaaaaa@4310@ ; k 1 =2m+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb WcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLbsacaaI9aGaaGOm aiaad2gacqGHRaWkcaaIXaaaaa@3F47@ ; l 1 =b k 1 +b k 1 ω6m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaI9aGaamOyaiaadUgalmaa BaaajuaGbaqcLbmacaaIXaaajuaGbeaacqGHRaWkcaWGIbGaam4AaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiabeM8a3jabgkHiTiaa iAdacaWGTbaaaa@4A32@   l 2 = b 2 k 1 +3m+3; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaabaqcLbmacaaIYaaajuaGbeaacaaI9aGaamOyaSWaaWbaaOqa beaajugWaiaaikdaaaqcfaOaam4AaSWaaSbaaKqbagaajugWaiaaig daaKqbagqaaiabgUcaRiaaiodacaWGTbGaey4kaSIaaG4maiaaiUda aaa@4781@   l 3 =3 m 2 +b k 1 +3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaajuaibaGaaG4maaqcfayabaGaaGypaiaaiodacaWGTbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWGIbGaam4AamaaBaaaju aibaGaaGymaaqcfayabaGaey4kaSIaaG4maiaai6caaaa@43C7@

Case 1: β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@              

8πρ= ϕ 0 M 2 b n 1γ [ α 2 { k 1 (b l 1 n l 2 )+9} M 1 2 n 2 k 1 2 + s 2 M 2 6m n k 1 + α 2 l 3 n k 1 ] 24πα ξ 0 M 1 (1γ)n ,( 59 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjaai2dadaWcaaqaaiabew9aMnaaBaaajuaibaGa aGimaaqcfayabaGaamytamaaDaaajuaibaGaaGOmaaqaaKqbaoaala aajuaibaGaamOyaaqaaiaad6gaaaaaaaqcfayaaiaaigdacqGHsisl cqaHZoWzaaGaaG4wamaalaaabaGaeqySde2aaWbaaKqbGeqabaGaaG OmaaaajuaGcaaI7bGaam4AamaaBaaajuaibaGaaGymaaqabaqcfaOa aGikaiaadkgacaWGSbWaaSbaaKqbGeaacaaIXaaajuaGbeaacqGHsi slcaWGUbGaamiBamaaBaaajuaibaGaaGOmaaqcfayabaGaaGykaiab gUcaRiaaiMdacaaI9bGaamytamaaDaaajuaibaGaaGymaaqaaiaaik daaaaajuaGbaGaamOBamaaCaaajuaibeqaaiaaikdaaaqcfaOaam4A amaaDaaajuaibaGaaGymaaqaaiaaikdaaaaaaKqbakabgUcaRiaado hadaahaaqcfasabeaacaaIYaaaaKqbakaad2ealmaaDaaajuaGbaqc LbmacaaIYaaajuaGbaWcdaWcaaqcfayaaKqzadGaeyOeI0IaaGOnai aad2gaaKqbagaajugWaiaad6gacaWGRbWcdaWgaaqcfayaaKqzadGa aGymaaqcfayabaaaaaaacqGHRaWkdaWcaaqaaiabeg7aHnaaCaaabe qcfasaaiaaikdaaaqcfaOaamiBamaaBaaajuaibaGaaG4maaqcfaya baaabaGaamOBaiaadUgadaWgaaqcfasaaiaaigdaaeqaaaaajuaGca aIDbGaeyOeI0YaaSaaaeaacaaIYaGaaGinaiabec8aWjabeg7aHjab e67a4naaBaaajuaibaGaaGimaaqabaqcfaOaamytamaaBaaajuaiba GaaGymaaqabaaajuaGbaGaaGikaiaaigdacqGHsislcqaHZoWzcaaI PaGaamOBaaaacaaISaWaaeWaaeaacaaI1aGaaGyoaaGaayjkaiaawM caaaaa@96CF@

8π ρ p = ϕ 0 M 2 b n 1γ [ α 2 { k 1 (b l 1 n l 2 )+9} n 2 k 1 2 . M 1 2 + α 2 {3(1γ){(n3)(2 m 2 m1)+b k 1 (m1)}} n 2 k 1 2 M 1 2 + α 2 { l 3 3(m1)(1γ)} n k 1 +(2γ) s 2 M 2 6m n k 1 ] 24πα ξ 0 M 1 (1γ)n ,( 60 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca aI4aGaeqiWdaNaeqyWdi3cdaWgaaqcfayaaKqzadGaamiCaaqcfaya baGaaGypamaalaaabaGaeqy1dy2aaSbaaKqbGeaacaaIWaaabeaaju aGcaWGnbWaa0baaKqbGeaacaaIYaaabaqcfa4aaSaaaKqbGeaacaWG IbaabaGaamOBaaaaaaaajuaGbaGaaGymaiabgkHiTiabeo7aNbaaca aIBbWaaSaaaeaacqaHXoqydaahaaqcfasabeaacaaIYaaaaKqbakaa iUhacaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaamOyai aadYgadaWgaaqcfasaaiaaigdaaKqbagqaaiabgkHiTiaad6gacaWG SbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaaIPaGaey4kaSIaaGyoai aai2haaeaacaWGUbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGRbWc daqhaaqcfasaaKqzadGaaGymaaqcfasaaKqzadGaaGOmaaaaaaqcfa OaaGOlaiaad2eadaqhaaqcfasaaiaaigdaaeaacaaIYaaaaKqbakab gUcaRmaalaaabaGaeqySde2aaWbaaKqbGeqabaGaaGOmaaaajuaGca aI7bGaaG4maiaaiIcacaaIXaGaeyOeI0Iaeq4SdCMaaGykaiaaiUha caaIOaGaamOBaiabgkHiTiaaiodacaaIPaGaaGikaiaaikdacaWGTb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaWGTbGaeyOeI0Ia aGymaiaaiMcacqGHRaWkcaWGIbGaam4AamaaBaaajuaibaGaaGymaa qabaqcfaOaaGikaiaad2gacqGHsislcaaIXaGaaGykaiaai2hacaaI 9baabaGaamOBamaaCaaajuaibeqaaiaaikdaaaqcfaOaam4AamaaDa aajuaibaGaaGymaaqaaiaaikdaaaaaaKqbakaad2eadaqhaaqcfasa aiaaigdaaeaacaaIYaaaaaGcbaqcfaOaey4kaSYaaSaaaeaacqaHXo qydaahaaqcfasabeaacaaIYaaaaKqbakaaiUhacaWGSbWaaSbaaKqb GeaacaaIZaaajuaGbeaacqGHsislcaaIZaGaaGikaiaad2gacqGHsi slcaaIXaGaaGykaiaaiIcacaaIXaGaeyOeI0Iaeq4SdCMaaGykaiaa i2haaeaacaWGUbGaam4AamaaBaaajuaibaGaaGymaaqabaaaaKqbak abgUcaRiaaiIcacaaIYaGaeyOeI0Iaeq4SdCMaaGykaiaadohadaah aaqcfasabeaacaaIYaaaaKqbakaad2ealmaaDaaajuaGbaqcLbmaca aIYaaajuaGbaWcdaWcaaqcfayaaKqzadGaeyOeI0IaaGOnaiaad2ga aKqbagaajugWaiaad6gacaWGRbWcdaWgaaqcfayaaKqzadGaaGymaa qcfayabaaaaaaacaaIDbGaeyOeI0YaaSaaaeaacaaIYaGaaGinaiab ec8aWjabeg7aHjabe67a4naaBaaajuaibaGaaGimaaqcfayabaGaam ytamaaBaaajuaibaGaaGymaaqabaaajuaGbaGaaGikaiaaigdacqGH sislcqaHZoWzcaaIPaGaamOBaaaacaaISaWaaeWaaeaacaaI2aGaaG imaaGaayjkaiaawMcaaaaaaa@D9E1@

8πp= γ M 2 b n 1γ [ α 2 { k 1 (b l 1 n l 2 )+9} M 1 2 n 2 k 1 2 + s 2 M 2 6m n k 1 + α 2 l 3 n k 1 ] 24πα ξ 0 γ M 1 (1γ)n ,( 61 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjaadchacaaI9aWaaSaaaeaacqaHZoWzcaWGnbWaa0baaKqb GeaacaaIYaaabaqcfa4aaSaaaKqbGeaacaWGIbaabaGaamOBaaaaaa aajuaGbaGaaGymaiabgkHiTiabeo7aNbaacaaIBbWaaSaaaeaacqaH XoqydaahaaqcfasabeaacaaIYaaaaKqbakaaiUhacaWGRbWaaSbaaK qbGeaacaaIXaaabeaajuaGcaaIOaGaamOyaiaadYgadaWgaaqcfasa aiaaigdaaeqaaKqbakabgkHiTiaad6gacaWGSbWaaSbaaKqbGeaaca aIYaaabeaajuaGcaaIPaGaey4kaSIaaGyoaiaai2hacaWGnbWaa0ba aKqbGeaacaaIXaaabaGaaGOmaaaaaKqbagaacaWGUbWaaWbaaeqaju aibaGaaGOmaaaajuaGcaWGRbWaa0baaKqbGeaacaaIXaaabaGaaGOm aaaaaaqcfaOaey4kaSIaam4CamaaCaaajuaibeqaaiaaikdaaaqcfa OaamytaSWaa0baaKqbagaajugWaiaaikdaaKqbagaalmaalaaajuaG baqcLbmacqGHsislcaaI2aGaamyBaaqcfayaaKqzadGaamOBaiaadU galmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaaaaiabgUcaRmaa laaabaGaeqySde2aaWbaaeqajuaibaGaaGOmaaaajuaGcaWGSbWaaS baaKqbGeaacaaIZaaabeaaaKqbagaacaWGUbGaam4AamaaBaaajuai baGaaGymaaqabaaaaKqbakaai2facqGHsisldaWcaaqaaiaaikdaca aI0aGaeqiWdaNaeqySdeMaeqOVdG3aaSbaaKqbGeaacaaIWaaajuaG beaacqaHZoWzcaWGnbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaeaaca aIOaGaaGymaiabgkHiTiabeo7aNjaaiMcacaWGUbaaaiaaiYcadaqa daqaaiaaiAdacaaIXaaacaGLOaGaayzkaaaaaa@95EC@

(γ1)Λ= 24π ξ 0 M 1 M 2 b n n α 2 M 1 2 n 2 k 1 2 {9 m 2 6 m 2 n3n+9mn+9+ b 2 k 1 2 (bn)+9m18γm+ ω b 2 k 1 2 (1+γ) 2 9γ m 2 +3mb k 1 (12γ)+3b k 1 (1γ)} α 2 (3m+b k 1 +3) n k 1 γ s 2 M 2 6m n k 1 ]( 62 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca aIOaGaeq4SdCMaeyOeI0IaaGymaiaaiMcacqqHBoatcaaI9aWaaSaa aeaacaaIYaGaaGinaiabec8aWjabe67a4naaBaaajuaibaGaaGimaa qabaqcfaOaamytamaaBaaajuaibaGaaGymaaqcfayabaGaamytamaa DaaajuaibaGaaGOmaaqaaKqbaoaalaaajuaibaGaeyOeI0IaamOyaa qaaiaad6gaaaaaaaqcfayaaiaad6gaaaGaeyOeI0YaaSaaaeaacqaH XoqydaahaaqcfasabeaacaaIYaaaaKqbakaad2eadaqhaaqcfasaai aaigdaaeaacaaIYaaaaaqcfayaaiaad6gadaahaaqabKqbGeaacaaI YaaaaKqbakaadUgadaqhaaqcfasaaiaaigdaaeaacaaIYaaaaaaaju aGcaaI7bGaaGyoaiaad2gadaahaaqcfasabeaacaaIYaaaaKqbakab gkHiTiaaiAdacaWGTbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGUb GaeyOeI0IaaG4maiaad6gacqGHRaWkcaaI5aGaamyBaiaad6gacqGH RaWkcaaI5aGaey4kaSIaamOyamaaCaaajuaibeqaaiaaikdaaaqcfa Oaam4AamaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaaGikaiaa dkgacqGHsislcaWGUbGaaGykaiabgUcaRiaaiMdacaWGTbGaeyOeI0 IaaGymaiaaiIdacqaHZoWzcaWGTbGaey4kaSYaaSaaaeaacqaHjpWD caWGIbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaWGRbWaa0baaKqbGe aacaaIXaaabaGaaGOmaaaajuaGcaaIOaGaaGymaiabgUcaRiabeo7a NjaaiMcaaeaacaaIYaaaaaqaaiabgkHiTiaaiMdacqaHZoWzcaWGTb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaaIZaGaamyBaiaa dkgacaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaaGymai abgkHiTiaaikdacqaHZoWzcaaIPaGaey4kaSIaaG4maiaadkgacaWG RbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaaGymaiabgkHiTi abeo7aNjaaiMcacaaI9bGaeyOeI0YaaSaaaeaacqaHXoqydaahaaqa bKqbGeaacaaIYaaaaKqbakaaiIcacaaIZaGaamyBaiabgUcaRiaadk gacaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcaaIZaGa aGykaaqaaiaad6gacaWGRbWaaSbaaKqbGeaacaaIXaaabeaaaaqcfa OaeyOeI0Iaeq4SdCMaam4CamaaCaaajuaibeqaaiaaikdaaaqcfaOa amytamaaDaaajuaibaGaaGOmaaqcfayaaSWaaSaaaKqbagaajugWai abgkHiTiaaiAdacaWGTbaajuaGbaqcLbmacaWGUbGaam4AaSWaaSba aKqbagaajugWaiaaigdaaKqbagqaaaaaaaGaaGyxamaabmaabaGaaG OnaiaaikdaaiaawIcacaGLPaaaaaaa@CFE0@

Case 2: β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@  

8πρ= n ϕ 0 M 2 b n {n(1γ)+3 ξ 0 M 1 } [ k 1 (b l 1 n l 2 )+9) n 2 k 1 2 . M 1 2 + α 2 l 3 n k 1 + s 2 M 2 6m n k 1 ],( 63 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjabeg8aYjaai2dadaWcaaqaaiaad6gacqaHvpGzdaWgaaqc fasaaiaaicdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaaeaaju aGdaWcaaqcfasaaiaadkgaaeaacaWGUbaaaaaaaKqbagaacaaI7bGa amOBaiaaiIcacaaIXaGaeyOeI0Iaeq4SdCMaaGykaiabgUcaRiaaio dacqaH+oaEdaWgaaqcfasaaiaaicdaaeqaaKqbakaad2eadaWgaaqc fasaaiaaigdaaeqaaKqbakaai2haaaGaaG4wamaalaaabaGaam4Aam aaBaaajuaibaGaaGymaaqabaqcfaOaaGikaiaadkgacaWGSbWaaSba aKqbGeaacaaIXaaajuaGbeaacqGHsislcaWGUbGaamiBamaaBaaaju aibaGaaGOmaaqcfayabaGaaGykaiabgUcaRiaaiMdacaaIPaaabaGa amOBamaaCaaajuaibeqaaiaaikdaaaqcfaOaam4AamaaDaaajuaiba GaaGymaaqaaiaaikdaaaaaaKqbakaai6cacaWGnbWaa0baaKqbGeaa caaIXaaabaGaaGOmaaaajuaGcqGHRaWkdaWcaaqaaiabeg7aHnaaCa aajuaibeqaaiaaikdaaaqcfaOaamiBamaaBaaajuaibaGaaG4maaqc fayabaaabaGaamOBaiaadUgadaWgaaqcfasaaiaaigdaaeqaaaaaju aGcqGHRaWkcaWGZbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGnbWa a0baaKqbGeaacaaIYaaabaqcfa4aaSaaaKqbGeaacqGHsislcaaI2a GaamyBaaqaaiaad6gacaWGRbqcfa4aaSbaaKqbGeaacaaIXaaabeaa aaaaaKqbakaai2facaaISaWaaeWaaeaacaaI2aGaaG4maaGaayjkai aawMcaaaaa@8873@

8π ρ p = n ϕ 0 M 2 b n {n(1γ)+3 ξ 0 M 1 } [ k 1 (b l 1 n l 2 )+9) n 2 k 1 2 . M 1 2 + α 2 l 3 n k 1 + s 2 M 2 6m n k 1 ] ϕ 0 M 2 b n n 2 k 1 2 [3 α 2 .{(n3)(2 m 2 m1)+b k 1 (m1)} M 1 2 +3 α 2 n k 1 (m1) s 2 n 2 k 1 2 . M 2 6m n k 1 ],( 64 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca aI4aGaeqiWdaNaeqyWdi3aaSbaaeaajugWaiaadchaaKqbagqaaiaa i2dadaWcaaqaaiaad6gacqaHvpGzdaWgaaqcfasaaiaaicdaaeqaaK qbakaad2ealmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaWcdaWcaaqc fayaaKqzadGaamOyaaqcfayaaKqzadGaamOBaaaaaaaajuaGbaGaaG 4Eaiaad6gacaaIOaGaaGymaiabgkHiTiabeo7aNjaaiMcacqGHRaWk caaIZaGaeqOVdG3aaSbaaKqbGeaacaaIWaaajuaGbeaacaWGnbWaaS baaKqbGeaacaaIXaaabeaajuaGcaaI9baaaiaaiUfadaWcaaqaaiaa dUgadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiIcacaWGIbGaamiBam aaBaaajuaibaGaaGymaaqabaqcfaOaeyOeI0IaamOBaiaadYgadaWg aaqcfasaaiaaikdaaeqaaKqbakaaiMcacqGHRaWkcaaI5aGaaGykaa qaaiaad6gadaahaaqcfasabeaacaaIYaaaaKqbakaadUgadaqhaaqc fasaaiaaigdaaeaacaaIYaaaaaaajuaGcaaIUaGaamytamaaDaaaju aibaGaaGymaaqaaiaaikdaaaqcfaOaey4kaSYaaSaaaeaacqaHXoqy daahaaqabKqbGeaacaaIYaaaaKqbakaadYgadaWgaaqcfasaaiaaio daaeqaaaqcfayaaiaad6gacaWGRbWaaSbaaKqbGeaacaaIXaaabeaa aaqcfaOaey4kaSIaam4CamaaCaaajuaibeqaaiaaikdaaaqcfaOaam ytamaaDaaajuaibaGaaGOmaaqaaKqbaoaalaaajuaibaGaeyOeI0Ia aGOnaiaad2gaaeaacaWGUbGaam4AaKqbaoaaBaaajuaibaGaaGymaa qabaaaaaaajuaGcaaIDbGaeyOeI0YaaSaaaeaacqaHvpGzdaWgaaqc fasaaiaaicdaaeqaaKqbakaad2eadaqhaaqcfasaaiaaikdaaeaaju aGdaWcaaqcfasaaiaadkgaaeaacaWGUbaaaaaaaKqbagaacaWGUbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcaWGRbWaa0baaKqbGeaacaaIXa aabaGaaGOmaaaaaaqcfaOaaG4waiaaiodacqaHXoqydaahaaqcfasa beaacaaIYaaaaaqcfayaaiaai6cacaaI7bGaaGikaiaad6gacqGHsi slcaaIZaGaaGykaiaaiIcacaaIYaGaamyBamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaamyBaiabgkHiTiaaigdacaaIPaGaey4kaS IaamOyaiaadUgadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiIcacaWG TbGaeyOeI0IaaGymaiaaiMcacaaI9bGaamytamaaDaaajuaibaGaaG ymaaqaaiaaikdaaaqcfaOaey4kaSIaaG4maiabeg7aHnaaCaaajuai beqaaiaaikdaaaqcfaOaamOBaiaadUgadaWgaaqcfasaaiaaigdaae qaaKqbakaaiIcacaWGTbGaeyOeI0IaaGymaiaaiMcacqGHsislcaWG ZbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGUbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaWGRbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaa juaGcaaIUaGaamytamaaDaaajuaibaGaaGOmaaqaaKqbaoaalaaaju aibaGaeyOeI0IaaGOnaiaad2gaaeaacaWGUbGaam4AaKqbaoaaBaaa juaibaGaaGymaaqabaaaaaaajuaGcaaIDbGaaGilamaabmaabaGaaG OnaiaaisdaaiaawIcacaGLPaaaaaaa@DF5B@

Λ= n {n(γ1)3 ξ 0 M 1 } [ k 1 (b l 1 n l 2 )+9) n 2 k 1 2 . M 1 2 + s 2 M 2 6m n k 1 + α 2 l 3 n k 1 ]+ α 2 M 1 2 n 2 k 1 2 [m(9m+2)b k 1 2 (ωb+6)] s 2 M 2 6m n k 1 .( 65 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaGypamaalaaabaGaamOBaaqaaiaaiUhacaWGUbGaaGikaiabeo7a NjabgkHiTiaaigdacaaIPaGaeyOeI0IaaG4maiabe67a4naaBaaaju aibaGaaGimaaqabaqcfaOaamytamaaBaaajuaibaGaaGymaaqabaqc faOaaGyFaaaacaaIBbWaaSaaaeaacaWGRbWaaSbaaKqbGeaacaaIXa aabeaajuaGcaaIOaGaamOyaiaadYgadaWgaaqcfasaaiaaigdaaeqa aKqbakabgkHiTiaad6gacaWGSbWaaSbaaKqbGeaacaaIYaaajuaGbe aacaaIPaGaey4kaSIaaGyoaiaaiMcaaeaacaWGUbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcaWGRbWaa0baaKqbGeaacaaIXaaabaGaaGOmaa aaaaqcfaOaaGOlaiaad2eadaqhaaqcfasaaiaaigdaaeaacaaIYaaa aKqbakabgUcaRiaadohadaahaaqcfasabeaacaaIYaaaaKqbakaad2 eadaqhaaqcfasaaiaaikdaaeaajuaGdaWcaaqcfasaaiabgkHiTiaa iAdacaWGTbaabaGaamOBaiaadUgajuaGdaWgaaqcfasaaiaaigdaae qaaaaaaaqcfaOaey4kaSYaaSaaaeaacqaHXoqydaahaaqcfasabeaa caaIYaaaaKqbakaadYgadaWgaaqcfasaaiaaiodaaKqbagqaaaqaai aad6gacaWGRbWaaSbaaKqbGeaacaaIXaaabeaaaaqcfaOaaGyxaiab gUcaRmaalaaabaGaeqySde2aaWbaaKqbGeqabaGaaGOmaaaajuaGca WGnbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaaKqbagaacaWGUbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcaWGRbWaa0baaKqbGeaacaaIXa aabaGaaGOmaaaaaaqcfaOaaG4waiaad2gacaaIOaGaaGyoaiaad2ga cqGHRaWkcaaIYaGaaGykaiabgkHiTiaadkgacaWGRbWaa0baaKqbGe aacaaIXaaabaGaaGOmaaaajuaGcaaIOaGaeqyYdCNaamOyaiabgUca RiaaiAdacaaIPaGaaGyxaiabgkHiTiaadohadaahaaqcfasabeaaca aIYaaaaKqbakaad2eadaqhaaqcfasaaiaaikdaaeaajuaGdaWcaaqc fasaaiabgkHiTiaaiAdacaWGTbaabaGaamOBaiaadUgajuaGdaWgaa qcfasaaiaaigdaaeqaaaaaaaqcfaOaaGOlamaabmaabaGaaGOnaiaa iwdaaiaawIcacaGLPaaaaaa@A986@

From Figure 2, we observe that the string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ is an increasing function of time, which is always negative and approaches to zero at late time. As suggested by Letelier PS41 the string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ may have positive or negative values, corresponding to λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGOpaiaaicdaaaa@39BA@ the string dominant over particle where as in case of λ<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaaGipaiaaicdaaaa@39B8@ the string disappear from universe. In our case the particles density dominate over the string tension density at present epoch. It is self exploratory from Figures 3 & 4 the energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ and particle density ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadchaaKqbagqaaaaa@3B16@ are decreasing function of cosmic time for both cases β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@ and β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@ .

Figure 2 Plot of string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ versus time t. For b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , ϕ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaajugWaiaaicdaaKqbagqaaiaai2dacaaIXaaaaa@3C65@ .

Figure 3 Plot of energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaISaGaaGymaaaa@3B17@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2cdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGaaGypaiabe67a4TWa aSbaaKqbagaajugWaiaaicdaaKqbagqaaiaai2dacaaIXaaaaa@42B8@ .

Figure 4 Plot of particle density ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadchaaKqbagqaaaaa@3B16@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaISaGaaGymaaaa@3B17@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaajugWaiaaicdaaKqbagqaaiaai2dacqaH+oaEdaWgaaqa aKqzadGaaGimaaqcfayabaGaaGypaiaaigdaaaa@4186@ .

In Figure 5 we have plotted cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ with cosmic time t. It may be seen from figure that cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ is decreasing function of time and approaches to small value at late time. This type of behavior of Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ is good agreement with recent cosmic observations.

Figure 5 Plot of cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaISaGaaGymaaaa@3B17@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaajugWaiaaicdaaKqbagqaaiaai2dacqaH+oaEdaWgaaqa aKqzadGaaGimaaqcfayabaGaaGypaiaaigdaaaa@4186@ .

We analyze from Figures 6 & 7 that the particle density is ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadchaaKqbagqaaaaa@3B16@ is always greater than string density for β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@  and β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@  at n=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai2dacaaIXaaaaa@38F9@ , also the energy density decreasing with time.

Figure 6 Plot of energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ , particle density ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadchaaKqbagqaaaaa@3B16@ and string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaSbaaeaajugWaiaaicdaaKqbagqaaiaai2dacqaH+oaEdaWgaaqa aKqzadGaaGimaaqcfayabaGaaGypaiaaigdaaaa@4186@ .

Figure 7 Plot of energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ , particle density ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadchaaKqbagqaaaaa@3B16@ and string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2cdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGaaGypaiabe67a4naa BaaabaqcLbmacaaIWaaajuaGbeaacaaI9aGaaGymaaaa@421F@ .

In Figure 8 we have presented the variation ρ p |λ| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHbpGCdaWgaaqaaKqzadGaamiCaaqcfayabaaabaGaaGiFaiab eU7aSjaaiYhaaaaaaa@3EE6@ with cosmic time t, the concern figure indicate that if n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgsMiJkaaigdaaaa@39E7@  then the particle density dominant over string tension density, but if n>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai6dacaaIXaaaaa@38FA@ then the string density dominant over particle density at early time (deceleration phase) but for acceleration phase the particle density greater than string density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ .

Figure 8 Plot of ρ p |λ| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHbpGCdaWgaaqaaKqzadGaamiCaaqcfayabaaabaGaaGiFaiab eU7aSjaaiYhaaaaaaa@3EE6@ versus time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDaa aa@377D@ . For β=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdacaaISaGaaGymaaaa@3B17@ , ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiaaigdaaaa@39D3@ , b=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aai2dacqGHsislcaaIXaaaaa@39DA@ , ϕ 0 = ξ 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2cdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGaaGypaiabe67a4naa BaaabaqcLbmacaaIWaaajuaGbeaacaaI9aGaaGymaaaa@421F@ .

Concluding remarks

As discussed in this paper the Bianchi-III space-time viscous string cosmological models have been investigated in scalar-tensor BD theory of gravity with time dependent DPq and dynamical cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ . The exact solution of EFE have been obtained by assuming viscosity as a some power function of energy density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ and the DPq  as a time function along with suitable assumptions on scale factor a(t)=[sinh(αt) ] 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaai2dacaaIBbGaam4CaiaadMgacaWGUbGa amiAaiaaiIcacqaHXoqycaWG0bGaaiykaiaai2fadaahaaqabeaalm aalaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaWGUbaaaaaaaaa@497B@  , here n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ are positive constants. We have presented a class of models with different choice n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBaa aa@3777@ of and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi gaaa@3825@ . The main findings of the study are listed below:

  • As discussed in section 3, (see equation 48)) the universe starts evolving from zero volume at t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai aai2dacaaIWaaaaa@38FE@ and thereafter expanding continuously from early decelerating phase to present accelerating phase. As, t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkaaicdaaaa@3A24@ the expansion scalar θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaeyOKH4QaeyOhIukaaa@3B98@ (see equation (49)), which indicates the early inflationary phase of the universe. Therefore we can say that the universe grow up from Big-Bang.
  • It may also be pointed out that the universe was accelerating for n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgsMiJkaaigdaaaa@39E7@ and show transition phase i.e. early deceleration phase to current acceleration phase for.
  • It is also observed form Figures 6 & 7 that for both the cases β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaicdaaaa@39A6@ and β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaGypaiaaigdaaaa@39A7@ , the string tension density λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@ is negative whereas particle density p ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaabaqcLbmacqaHbpGCaKqbagqaaaaa@3B16@ is positive at early time. At late time both are converges to zero. Hence, the string disappears from universe.
  • The cosmological constantis a decreasing function of time and it converges to a small positive value at late time (Figure 5). This type of behavior of cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ is supported by recent observations data.

Acknowledgments

The author(s) are highly thankful to the referees for their constructive comments and suggestions to improve this manuscript.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Brans C, Dicke RH. Mach's Principle and a Relativistic Theory of Gravitation. Physical Review journal Archive. 1961;124(3).
  2. Linde A. Extended chaotic inflation and spatial variations of the gravitational constant. Physics Letters B. 1990;238(2–4):160–165.
  3. Sahoo BK, Singh LP. Cosmic Evolution in Generalised Brans-Dicke Theory. Modern Physics Letters A. 2003;18:1–12.
  4. Riess RG, Filippenko AV, Challis P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal. 1998;116(3):1009–1038.
  5. Riess AG, Nugent PE, Gillil RL, et al. The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration. The Astrophysical Journal. 2001;560(1):49–71.
  6. Riess AG, Strolger LG, Tonry J, et al. Type Ia Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. The Astrophysical Journal. 2004;607(2):665–687.
  7. Riess AG, Strolger LG, Casertano S, et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z >1: Narrowing Constraints on the Early Behavior of Dark Energy. The Astrophysical Journal. 2007;659(1):98–121.
  8. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal. 1990;517(2):565–586.
  9. Spergel DN, Verde L, Peiris HV, et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series. 2003;148(1):175–194.
  10. Spergel S, Bean R, Doré O, et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. The Astrophysical Journal Supplement Series. 2007;170(2):377–408.
  11. Caldwell RR, Dave R, Steinhardt PJ. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters. 1998;80(8):1582–1585.
  12. Al-Rawaf AS, Taha MO. Cosmology of general relativity without energy-momentum conservation. General Relativity and Gravitation. 1996;28(8):935–952.
  13. Sahni V, Starobinsky A. The Case for a Positive Cosmological Lambda-term. International Journal of Modern Physics D. 2000;9:373–444.
  14. Padmanabhan T. Cosmological Constant-the Weight of the Vacuum. Physics Reports. 2003;380(5–6):235–320.
  15. Klimek Z. Entropy per particle in the early Bianchi type-I Universe. Il Nuovo Cimento B. 1976;35(2):249–258.
  16. Weinberg S. Entropy Generation and the Survival of Protogalaxies in an Expanding Universe. The Astrophysical Journal. 1971;168.
  17. Novello M, Arauju RA. Qualitative analysis of homogeneous universes. Physical Review D. 1980;22(2).
  18. Grøn Ø. Viscous inflationary universe models. Astrophysics and Space Science. 1990;173(2):191–225.
  19. Berman MS. Cosmological models with variable gravitational and cosmological “constants”. General Relativity and Gravitation. 1991;23(4):465–469.
  20. Pimentel LO. Exact self-creation cosmological solutions. Astrophysics and Space Science. 1985;116(2):395–399.
  21. Barrow JD. String-driven inflationary and deflationary cosmological models. Nuclear Physics B. 1988;310(3–4):743–763.
  22. Roy SR, Tiwari OP. Some inhomogeneous viscous fluid cosmological models of plane symmetry. Indian Journal of Pure and Applied Mathematics. 1983;14(2):233–243.
  23. Pardhan A, Amirhashchi A, Jaiswal R. A new class of LRS Bianchi type-II dark energy models with variable EoS parameter. Astrophysics and Space Science. 2011;334(2):249–260.
  24. Mohanty G, Pradhan BD. Cosmological mesonic viscous fluid model. International Journal of Theoretical Physics. 1998;31(1):151–160.
  25. Singh JK, Ram S. Plane-symmetric mesonic viscous fluid cosmological model. Astrophysics and Space Science. 1996;236(2):277–284.
  26. Singh JK. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology. Nuovo Cimento. 2005;1208–1251.
  27. Johri VB, Sudharsan R. BD-FRW Cosmology with Bulk Viscosity. Australian Journal of Physics. 1989;42(2):215–222.
  28. Pimental LO. Exact solutions in Brans-Dicke theory with bulk viscosity. International Journal of Theoretical Physics. 1994;33(6):1335–1340.
  29. Banerjee N, Beesham A. Brans-Dicke Cosmology with Causal Viscous Fluid. Australian Journal of Physics. 1996;49:899–903.
  30. Wang XX. Bianchi Type-III String Cosmological Model with Bulk Viscosity in General Relativity. Chinese Physics Letters. 2005;22(1).
  31. Bali R, Pradhan A. Bianchi type-III string cosmological models with time dependent bulk viscosity. Chinese Physics Letters. 2007;24(2):585–588.
  32. Adhav KS, Nimkar AS, Dawande MV. N-dimensional string cosmological model in Brans–Dicke theory of gravitation. Astrophysics and Space Science. 2007;310(3–4):231–235.
  33. Tiwari RK, Sharma S. Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term. Chinese Physics Letters. 2011;28(9).
  34. Reddy DRK, Naidu RL, Naidu KD, et al. Kaluza-Klein universe with cosmic strings and bulk viscosity in f(R,T) gravity. Astrophysics and Space Science. 2013;346(1):261–265.
  35. Reddy DRK, Naidu RL, Naidu KD, et al. LRS Bianchi type-II universe with cosmic strings and bulk viscosity in a modified theory of gravity. Astrophysics and Space Science. 2013;346(1):219–223.
  36. Naidu RL, Reddy DRK, Ramprasad T, et al. Bianchi type-V bulk viscous string cosmological model in f(R,T) gravity. Astrophysics and Space Science. 2013;348(1):247–252.
  37. Sagar TV, Rao CP, Vijaya RB, et al. Bianchi type-III bulk viscous string cosmological model in Brans-Dicke theory of gravitation. Astrophysics and Space Science. 2014;349(1):479–483.
  38. Chawla C, Mishra RK, Pradhan A. String cosmological models from early deceleration to current acceleration phase with varying G and Λ. The European Physical Journal Plus. 2012;127.
  39. Kiran M, Reddy DRK. Non-existence of Bianchi type-III bulk viscous string cosmological model in f(R,T) gravity. Astrophysics and Space Science. 2013;346(2):521–524.
  40. Kiran M, Reddy DRK, Rao VUM. Bianchi type-III minimally interacting holographic dark energy model with linearly varying deceleration parameter in Brans-Dicke theory. Astrophysics and Space Science. 2015;360:54.
  41. Letelier PS. String cosmologies. Physical Review D. 1983;28(10).
  42. Berman MS, Som MM. Brans-Dicke models with time-dependent cosmological term. International Journal of Theoretical Physics. 1990;29(12):1411–1414.
  43. Murphy GL. Big-Bang Model Without Singularities. Physical Review D. 1973;8(12).
  44. Barrow JD. The deflationary universe: An instability of the de Sitter universe. Physics Letters B. 1987;180(4):335–339.
  45. Bolotin YL, Cherkaskiy VA, Lemets OA, et al. Cosmology In Terms of the Deceleration Parameter. Part I. Cornell University Library, USA. 2015.
  46. Mishra RK, Pradhan A, Chawla C. Anisotropic Viscous Fluid Cosmological Models from Deceleration to Acceleration in String Cosmology. International Journal of Theoretical Physics. 2013;52(8):2546–2559.
  47. Mishra RK, Chand A, Pradhan A. Dark Energy Models in f(R, T) Theory with Variable Deceleration Parameter. International Journal of Theoretical Physics. 2016;55(2):1241–1256.
  48. Mishra RK, Chand A, Pradhan A. FRW cosmological models in Brans-Dicke theory of gravity with variable q and dynamical Λ-term. Astrophysics and Space Science. 2016;361:81.
  49. Mishra RK, Chand A. Cosmological models in alternative theory of gravity with bilinear deceleration parameter. Astrophysics and Space Science. 2016;361(8):259.
  50. Mishra RK, Chand A. A comparative study of cosmological models in alternative theory of gravity with LVDP & BVDP. Astrophysics and Space Science. 2017;362(8).
  51. Singh CP, Singh V. FRW models with perfect fluid and scalar field in higher derivative theory.Modern Physics Letters A. 2011;26(20):1495–1507.
  52. Aguirregabiria JM, Chimento LP. Exact Bianchi type I models for an exponential-potential scalar field. Classical & Quantum Gravity. 1996;13(12).
  53. El-Nabulsi RA. Asymptotically Static Universe Dominated by Phantom Energy. Zeitschrift für Naturforschung A. 2015;70(2):101–108.
  54. Padmanabhan T, RoychowdhuryT. A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy. Monthly Notices of the Royal Astronomical Society. 2003;344(3):823–834.
  55. Amendola L. Acceleration at z > 1? Monthly Notices of the Royal Astronomical Society. 2003;342(1):221–226.
  56. Collins CB, Glass EN, Wilkinson DA. Exact spatially homogeneous cosmologies. General Relativity and Gravitation. 1980;12(10):805–823.
  57. Bertotti B, Iess L, Tortora P. A test of general relativity using radio links with the Cassini spacecraft. Nature. 2003;425:374–376.
  58. Mathiazhagan C, Johri VB. An inflationary universe in Brans-Dicke theory: a hopeful sign of theoretical estimation of the gravitational constant. Classical and Quantum Gravity. 1984;1(2).
  59. Landsberg PT, Bishop NT. A Principle of Impotence Allowing for Newtonian Cosmologies with a time-Dependent Gravitational Constant. Monthly Notices of the Royal Astronomical Society. 1975;171(2):279–286.
  60. Dehnen H, Obregon O. Exact cosmological solutions in Brans and Dicke's scalar-tensor theory, I. Astrophysics and Space Science. 1971;14(2):454–459.
  61. Dehnen H, Obregon O. Exact cosmological solutions in Brans and Dicke's scalar-tensor theory, II. Astrophysics and Space Science. 1972;15(2):326–333.
  62. Dehnen H, Obregon O. Cosmological vacuum solutions in Brans and Dicke's scalar-tensor theory. Astrophysics and Space Science. 1972;17(2):338–342.
  63. Johri VB, Desikan K. Cosmological models with constant deceleration parameter in Brans-Dicke theory. General Relativity and Gravitation. 1994;26(12):1217–1232.
  64. Pimentel LO. Exact cosmological solutions in the scalar-tensor theory with cosmological constant. Astrophysics and Space Science. 1985;112(1):175–183.
  65. Gonzalez-Diaz PF, Ghosh DK, Moretti S. Diphoton signature of Higgs bosons in gauge mediated supersymmetry breaking models at the CERN LHC. Physical Review D. 2003;68(1).
  66. Singh KM, Singh KP. String cosmological models in the Brans-Dicke theory for five-dimensional space-time. Research in Astronomy and Astrophysics. 2012;12(1).
  67. Maurya D, Zia R, Pradhan A. Anisotropic string cosmological model in Brans-Dicke theory of gravitation with time-dependent deceleration parameter. Journal of Experimental and Theoretical Physics. 2016;150(4).
  68. Cunha JV. Kinematic constraints to the transition redshift from supernovae type Ia union data. Physical Review D. 2009;79(4).
Creative Commons Attribution License

©2017 Mishra, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.