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Abstract

In present communication, the Bianchi type-III, viscous string cosmological models have
been investigated in scalar-tensor Brans-Dicke gravity. To obtain an exact solution of the
Einstein field equations (EFE), it is assumed that the viscosity is the power function of
energy density and the deceleration parameter (DP) as a function of cosmic time with
suitable relation i.c. a(¢£)=[sinh(at)]"" , here o, n # 0 are constants. It is observed that
the power index has the important significance on the evolution of string cosmological
models. It is also noticed that the string tension density (1) is increasing function of time
whereas the energy density () and the cosmological constant (A) are decreasing with
time and converges to a small value at late time. For better understanding of the model, we
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have also presented the kinematic and geometric properties of the models.
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Introduction

The early universe is well described by homogeneous and an
isotropic cosmological model as it has only ordinary matter and
gravity. Here the ordinary matter means, a matter with non negative
pressure and ordinary gravity is based on the four-dimensional
Einstein-Hilbert action. Recently observational data indicates that
the discrepancy arises at late time, when the age of the universe is
some billions years. In this context the Friedmann-Robertson- Walker
model is a unique correspondence between the expansion rate and
the distance scale. Although general theory of relativity (GTR) is the
most suitable theory for describing universe as a whole, but still there
are some physical phenomena which are to be addressed by GTR.
For this purpose there is a need either to modify the theory or to
introduce alternate theory which is suitable to address the universe
in all aspects. During the investigations of research findings it have
been noticed that many alternate/modified theories of gravity were
proposed by cosmologists as and when required. Among all the
available alternative theories, the scalar-tensor Brans-Dicke theory
(BD)' of gravity is the most promising existing theory which has very
effectively solves the problems of early time inflation and late time
accelerating behaviour of the universe.? According to BD theory, the
gravitational constant G is not a constant but it varies with space and
time. The Brans-Dicke gravity also relates the gravitation constant G
with scalar field ¢ along with relation ¢=G™"). The action principle
for the Brans-Dicke gravity is given as

3
_ ¢ —1 v 4
A —16ﬂjm(¢R+w¢ #' PN —gd x+A(1)
The variation of A for small changes of g*” leads to the field

equations
1 _ 87 (2] 1 5 1
Ryv_Eg,uvR__jT‘uv_7(¢y¢v_5guv¢ ¢5]_;(¢;‘uv_gpv|]¢)(2)
¢ @
where R, is the Ricci curvature tensor,7,, is the energy

momentum tensor, R is the curvature scalar, ] is the Brans-Dicke
dimensionless coupling constant, [1is the trace of energy momentum
tensor and[Jis wave operator. Also the law of conservation of
momentum may be expressed as

T"=03)

Here ‘semicolon’ indicates co-variant derivative and ‘comma’
indicates partial derivatives.

Similarly, the variation of ¢ leads to the following equation for ¢ :
R
2¢0¢—¢,4" =;¢2 (4)

This latter equation can be simplified by substituting for R from
the contracted form of Equation (2). We finally get

Op=—"—1(5)
4 Qo+3)c? .

Equation (5) leads to the anticipated scalar wave equation for ¢
with sources in matter. Because it contains a scalar field ¢ in addition
to the metric tensor g, , the BD theory is often referred to as the
scalar-tensor theory of gravitation. BD theory is explained by a scalar
function ¢ and a constant coupling constant @ , often known as the
BD parameter. This can be obtained from general theory of relativity
by letting w— and ¢=constant .}

The recent cosmic observational results authenticate the fact that
our universe is undergoing a late-time accelerated expansion phase.**
To find the reason behind this late-time accelerating expansion of
the universe is one of the most challenging problems in modern
Cosmology and Astrophysics. We also believes that an unknown form
of energy, commonly known as ’Dark Energy’ (DE), is responsible
for this phase and it constitutes near about 70% of the total universe.
There are several proposals regarding DE, Cosmological Constant,
Quintessence, Dark Energy’'* being some of the competent
candidates.

Viscosities play an important role in early stage evolution of the
universe. Also it is well known that at early stage of the universe when
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neutrino decoupling occurred, the matter behaves like viscous fluid'
and coefficient of viscosity ¢  decreases with time as universe
expands. Recently viscous string cosmological models have been
studied by several authors'®?® in the context of general relativity, also
many authors’’3? had discussed bulk viscous string cosmological
models in BD theory. Very recently®** have been investigated the
Bianchi type viscous cosmic string cosmological models in BD theory.

Motivated from above mention research work, in present paper,
we had studied the bulk viscous string cosmological models with
time dependent g and cosmological constant A in scalar-tensor
BD theory of gravity. This paper has been divided in five different
sections, including the introduction presented in section 1. In section
2, the metric and field equations governing the cosmological models
are described, section 3 deals with exact solution of field equations.
Section 4, the physical and kinematic behavior of the models has been
presented in both the cases. Finally results, discussion and conclusions
are summarized in last section i.e. section 5.

Metric and field equations

In present communication, we consider a spatially homogeneous
and an anisotropic Bianchi type-III space-time metric as given below

ds*=—dt* + 4> (t)dx’ +e > B> (t)dy* +C* (t)dz" (6)

Here potential A, B and C are the functions of cosmic time '#' only
andr,is a constant.

The energy-momentum tensor 7, for a cloud of strings in the
presence of bulk viscous fluid containing one dimensional cosmic
string is given by
-Av,,(7)

T =(p+p)u i, +Dguy=AV,V,
Ais the string tension density, p is effective pressure, p is the
proper energy density for cloud strings with particles attached to them,
 1s the four-velocity vector and x* is a unit space -like vector along
the dlrectlon of string. The vectors u, and x satisty the conditions

—= ko k
wut=1=—x,x* , u¥x,=0.

7;1=17—/7-,T22=7;3=[7,1;4=,0,

=T=T+ T+ T35+ T, =3p—p—A(8)

Above p, 4 and A are the functions of cosmic time’t’ only. The
particle density (p,) of the configuration is given as

P=Pp*29)

The string tension density A, may takes positive or negative
values. It is also published by some authors*** that a negative value
of A represents the universe filled with no string, whereas positive
value of p indicate the universe filled with string particles. Here the
effective pressure p may be define as

ﬁ=p—3§H,(10)

Where & is the bulk viscosity coefficient and H Hubble

parameter.

For the metric given in equation (6) the field equation (2) may be
expressed as:

A B 4B §’ ¢'w¢ ¢A B
T et iy s H(p-2)+A(11)
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C,ACA G of $AC

C+A A ¢ e ¢(A C) —87p~ p+A(12)
§ E BC ¢ g ¢ _ -
A ¢ 2 ¢( ) —87p™ p+A,(13)

T
AB BC CA s of +¢{é+§ g)——87r¢§ p+A(14)
AB BC CA g 242 ¢4 B C

A B_
A )
A B C_ 8x(3p-p-A)
¢ ¢(A+§ E)*W,(l)

Where an over head dot denote derivatives with respect to cosmic
time (v.

We may introduce cosmological parameters such as the spatial
volume (V') , the Hubble’s parameter (A ) , the expansion scalar (6)
, the deceleration parameter (¢), the anisotropy parameter (4,,) and
the shear scalar (o) for the metric (6) connected as,

V=a’=ABC,(17)
O=ul,=3H=H +H,+H, (18)

A B c
Here 7 IZZ’H 2 :E’H 37 ¢ are the directional Hubble parameters

in directions of x,y and z axis respectively.

q=_“i"=_(1+sz.(19)

_13(AHY

i=1

02=;[ %H}—wz],(zl)

i=1

Here AH = H —H,i=1,2,3.
;- H

1
Now we required the solution of above stated field equations 11-
16. This is presented in next section.

Solution of the field equations
On integrating equation (15), we have
A=1,B,(22)

Here /, is a constant of integration it can be taken as unity to avoid
further complication, therefore

B:A.(23)
Putting ‘¢’ into the field equations (11)-(14) and (16), we get

following set of field equations,

AL 5§ o A _
2A+A2 A2+¢ iy +2A¢ 879 (p—A)+A,(24)
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'+2__a2)52 z( Z+C)7 87r¢_]p+A,(26)

FrgA C)87CP-P-2) A (27)
A C (3+2w)

The field equations 24-27 have a system of four independent
equations along with seven unknown parameters A4, C, A, p, p, ¢
and A therefore we need at least three more constraints related to these
parameters for explicit solution of this system of equations. For the
explicit solution of above stated equations, we may apply following

assumptions:

It is assumed that the bulk viscosity function £(#) is proportional
to some power of energy density p (see,”* i.c.

§ocpﬂ,(28)
§=6,p"(29)

Here ¢, is proportional constant and >0 is a constant. Now with
the help of equations (8), (25), (26) and (27) we get,

AC;}fACa):ﬁ ¢

AC¢A02¢2

¢( A+ C)* 876 [1p—&,p"01+A(30)

In this context we have discuss two cases i.e. =0 and S=I.

Case 1: If =0, then £=¢;

A4.C ¢ AC of* $ 4 C

=-8 +A+87&,0
AC¢AC2¢ ¢AC) g yp+ A8, 0p7 (31)
On subtracting equation (26) from equation (31), we have
A.C § AC wf A4 A
AC ¢ AC p Ap 4

)2+L22:8;;¢*‘ (1-y) p+879 ' £,0(32)
A

On substituting the value of 87zpg~' from equation (32) into
equation (26), we have expression for cosmological constant A as

A(l—y)=—874 ' &0+ +E+Z+(l 2;/) +(l+y) of? +(1-2y) ¢—7—+(1 7) ¢+7—(33)
24

Ag Cg

Case 2: If =1, then &=& p
¢ AC ¢ & AC of 4P 5

= F— : + 34
P e gl A C e o ac g apt oY
1 4¢ ¢ 4> AC a)¢ A¢ 52 ]+( ) AC 52 wéz;é(ZﬂiC‘)(Ss)
[7—1 509]14 C ¢ g AC Ve Ap 4 AC £ oo 64 C
The deceleration parameter g is taken as a function of cosmic
time ‘¢’ i.e. B i
ad +
q——z——[ 5 ]—b(t)(say)(36)
a

As recent observations confirmed that the universe is expanding
with an accelerating rate at present whereas it was decelerating at
early time (see**®). Theoretically, we may say that the value of scale
factor a(¢) vary with cosmic time. Also rate of expansion measured
by Hubble’s parameter H and the DP, H , since H and g are the
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functions of the scale factor ¢ , therefore the study of various
models with time dependent DP indicate new sector in theoretical
Cosmology. Moreover, time-dependent ¢ dictates the expansion rate
of the universe and also sign of the DP ¢ , galaxy number variation
may be increasing (decelerated expansion), or decreasing (accelerated
expansion).* Recent past several researchers including our research
group’® have been studied many cosmological models of the universe
with time varying ¢ , in different context.**

Now, the general solution of equation (36) is derived by our
rescarch team,® where we have defined g=b(t)=—adi/a*. The
motivation to choose this type of DP is behind the fact that universe
has an accelerating expanding phase at present time as observed by
SNela supernova observations*® and decelerated expansion in the past
but in present scenario DP must show signature flipping,>*** so in
general DP is not a constant but time variable so that above equation
(36) may be re written as b=b(a(?)) in order to solve above equation,
we may assume b=b(a(t)) as a is also time dependent function, this
only possible when we should avoid singularities like Big-Bang and
Big-Rip because both the function (cosmic time & scale factor) are

increasing functions therefore after some simplification we get,
1

a(t)=(sinh(a))x (37)
Where a(¢) is a scale factor. Here & and n are positive constants.

The shear scalaro is proportional to scalar expansion € as
suggested by,*® we may also taken as

A=C",(38)

Here m is non zero constant, which may takes care of the
anisotropy of the space.

We consider the power law relation between scale factor a(¢) and
BD scalar field G. As we know that the BD theory is a modification of
Einstein’s GTR, where purely metric coupling of matter with gravity
is preserved. Also the gravitational constant G is replaced with time
dependent scalar field ¢ as ¢(¢)=187G and this scalar field couples to
gravity with a BD coupling constant @ . It also passes the experimental
tests from solar system®” and able to provide a dynamicity of the
universe.’® In* had investigated Newtonian Cosmology with poca”
.There is another investigation of Cosmology i.e goca? 62 Since
the field equations (11)-(14) and (16) contain « and ¢ and their
derivatives, so without any loss of generality, we shall assume that
the BD scalar field ¢ is some power of . The power law relation
between scale factor and scalar field ¢ has already been used by® in
the context of Robertson Walker Brans-Dicke models. Thus,

d=dla()]’(39)

Where ¢, is a proportionality constant and b is an ordinary
constant. The assumption of a power law between the scalar field ¢
and the cosmological expansion factor a(¢) , it is possible to reduce
the cosmological equations to quadrature for the scalar-tensor theory
with cosmological constant.**¢” Now, from equations (17), (36) and
(37), we have following expression for the metric potentials A, B and
C,

3m

A=B=[sinh(at)]»@n+1) (40)

3
C=[sinh(at)]nm+1) (41)
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The directional Hubble parameters may be expressed as

3ma
H,=H,=——coth(at),(42
b n(2m+1)CO (@ )( )
3a
H,=———coth(at),(43
} n(2m+1)co (a)( )

The relation between scale factor a(¢#) and red shift parameter z
may be written as,

l4+2z= ]’obs =a([0)’(44)
}”emit a(t)

Where a(t,) is the present value of scale factor and it takes as
unity. The scale factor a(¢) is stable under metric perturbation, so that

redshift parameter in term of scale factor given as,
1 | , =
a=—=z=—l+——=z=—14Hsinh(at)] n(45)
14z a(t)

3 5 1
z:—1+[at+@+@+“.] n
3! S!

The form of metric (4) after substituting the value of 4, Band C,

6m "

ds*=—dr* +[sinh(at)]n@m+1) (dx2 +e’2"dy2 Y+ sinh(at)]n@m +1) dzz(46)

Also we can write the metric (4) in terms of red shift parameter
aszas

—6m -6
ds*=—di* +[1+2]2m1 (dx* +e > dy* Y+ 1+z]ame1 dz*(47)

The some parameters such as spatial volume, Hubble parameter,
deceleration parameter (¢) , expansion scalar (8) , shear scalar o and
anisotropy parameter 4, are expressed as

:
V=ABC=[sinh(at)].,(48)

6’=3H=3—acoth(at),(49)
n

q=—1+n.sech2 (Oﬂ))a(SO)

Also we have derived the relation between DP g and red shift z for
our considerable model 1, which is given by
I+ n(l+z)*"

(51
1+(1+2)*" (1)

=
If n=1, then

2242z

e FEEDvided Fie(s2)

2 2
Also the Maclaurin’s series expansion of g is,

q:—%+%z—%zz+0[z3],(53)
For n=—

1 z+3
=——[=—=], provided z#-2(54
=k p (54)
For present age of the universe #,=13.78Gyr with present value

of DP g,=—0.73 ® equation (50) yields the following relationship
between the constants & andn :
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oz:lsechf1 qo—H(SS)
t \' »n

From equation (50), we analyze that for ¢ is negative for n<1 and
changing sing positive to negative for n>1 with corresponding value
of « . In Figure 1, we depict the variation between red shift parameter
z with DP ¢ , the two most important parameters in cosmology. It is
clear from concern that universe is accelerating for n<l and show
transition phase (i.e. early time deceleration to late time acceleration)
for n>1. This type behavior of DP ¢ indicates that the universe has
decelerated in past and at present time undergoes an accelerating
phase, which is good agreement with observational findings.

1 T T T T T T

——n= 0.6, a= 0.0694

osF == n= 1.0, a= 0.0925 [
- = =n= 1.4, a= 0.1065
06F 1

04| |

02r

Deceleration Parameter (q)
=]
T

o 0.8 16 24 3.2 4.0 4.8
Redshift Parameter(z)

Figure | Plot of redshift parameter z versus deceleration parameter q .

211 3a(m-1) 2
o 3 7n(2m+1)coth(at)] .(56)

_2 3m’+2m+1

3 ey ]=constant,(57)
m+

m

Provided m;ﬁ—%

Above equation (57) indicates that 4, is constant throughout
evolution of the universe. This means universe never approaches to
isotropy. Also %:consmm , this agreed with Collins et al. [54] results.

Physical and kinematical properties of the
model

In this section we discuss the some physical and kinematic
properties of the model represented by equation (46). The string
tension density (1) , the energy density (p) , the particle density (p,,)
and the cosmological constant (A) for f=0,1 may be expressed as

b —6m

8nz:M[3a2{6m2-2m2n—mn—3m+n-3+hk (m=1)}M2+3a>nk (m=1)—sn*k2.M,"™ |(58)
Zkz 1 1 1 1 2
nr

Here
M ,=sinh(at) M,=sinh(at) ; k1 =2m+1; [ =bk,+bkjw—6m ;
L=b"ky+3m+3; 1,=3m>+bk, +3.
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Case 1: =0
b “om
n 2 2 — 2
$rp=toM2 @ Uk (P onb)WYME 2y iy @y 24madMy s
1-y e nk, (1=y)n
b
S — M [az{kl(bll—nlz)+9} ye o (3(1=y){(n=3)(2m* —m—1)+bk,(m-1)} } "
’Dp 1-y nzklz T nzklz 1
—6m
@’ {l=3(m=1)(1-7)} 2wy 24108 M,
+T+(27;’)s M, yw,(m)
f —6m
M o {k (bl,—nl))+9} M} Ty a’l 24 M
8”p_7 2 [a k(D] —nl,)+9} +52M2"k' +a 31 madyy 1,(61
-y nzkl2 nk, (I=y)n
b
(y—l)A:M—%{sz—6m2n—3n+9mn+9+bzk12(h—n)+9m—18ym+w
n n’ki

—6m

, “om

—9ymz+3mbk1(1—2;/)+3bk1(1—7)}—%:1"&—7SZM2M‘ 1(62)
1

Case 2: f=1
E —6m
n _ 2
Srpm MAME ROhnb)9) 0 @l g ooy
{n(1=y)+35M,} n’k? nKy
i ~6m b
87, = ngyMy [kl(b117n12)+9).M12+ﬁ ret M o
{n(1=y)+35M,} n2i? nk; ki

—6m

A(n=3)2m* —m—1)+bk (m—1)} M +30>nk, (m—1)—s>n?k2 .M, 1,(64)

~6m ~6m

- 2
As n [k,(bll ’112)+9),M12+SZM2M‘ +L13]+
{n(y-1)-35M,} nk} nky

a’M,
nZ

K

From Figure 2, we observe that the string tension density 4 is an
increasing function of time, which is always negative and approaches
to zero at late time. As suggested by Letelier PS*! the string tension
density 4 may have positive or negative values, corresponding to 1>0
the string dominant over particle whereas in case of 1<0the string
disappear from universe. In our case the particles density dominate

over the string tension density at present epoch. It is self exploratory
from Figures 3 & 4 the energy density p and particle density ;_,are

decreasing function of cosmic time for both cases f=0and =1 .

L S E— e——
0.1 ’
-02F
-03
-04F
< _osf!
-06
-07
08|

-0.9|

-1
o 2 4 6 8 10 12 14 16 18 20

Figure 2 Plot of string tension density A4 versus time, . For b=—1, w=1

, $p=1.

2
L[m(9m+2)-bk? (wb+6)]-sM,™ (65)
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Figure 3 Plot of energy density p versus timet . For f=0,1, =1, b=-1

L h=6=1.

' — = —=p=0,n=1.0, a= 0.0925
——f=1,n=1.0, #=0,0925 |]

Figure 4 Plot of particle density p, versustime? .For f=0,1,p=-1,b=-1
h=&=1.

In Figure 5 we have plotted cosmological constant A with cosmic
time t. It may be seen from figure that cosmological constant A is
decreasing function of time and approaches to small value at late
time. This type of behavior of A is good agreement with recent cosmic
observations.

1000

= = = B=0, n=1.0, 0= 0.0925
— B=1, n=1.0, 0= 0.0925 [

900 -

800

700+

600 -

400

Figure 5 Plot of cosmological constant ¢ versus time? . For =1, 0=1

b=—1,4,=E,=1.
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We analyze from Figures 6 & 7 that the particle density is p,, is
always greater than string density for =0 and f=1 at n=l1, also the
energy density decreasing with time.

= = =p, B=0, n= 1.0, o= 0.0925
o B=0, n= 1.0, a= 0.0925

ceeeee 2, B0, n= 1.0, 0= 0.0925

0 2 4 6 8 10 12 14 16 18 20

Figure 6 Plot of energy density p , particle density p,, and string tension
density ¢ versus timet .For =0, w=1,b=-1, ¢0=§0 =]1.

100 I I T 1
= = =p,B=1,n=1, a= 0.0925
sof — Py B=t.n=10=00025 | |
------- A, B=1, n=1, a=0.0925
601 -
40r -
20t ]
oF ==
-20f 4
-401 _
-60 _
-80+ 4
-100— L Il Il Il Il 1 Il Il i
0o 2 4 6 8 10 12 14 16 18 20

Figure 7 Plot of energy density p , particle density p,, and string tension
density A versus timet .For =1, w=1,b=-1 ,¢0=§0=1 .

In Figure 8 we have presented the Variation& with cosmic time
t, the concern figure indicate that if n<l thenMﬁhe particle density
dominant over string tension density, but if #>1 then the string density
dominant over particle density at early time (deceleration phase) but
for acceleration phase the particle density greater than string density
A.
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B=0, n= 1.0, a= 0.0924
— — — B=1,n= 1.0, 0= 0.0924

Figure 8 Plot of % versus time ... For =0,1, w=1, b=—1, ¢,=&,=1.
Concluding remarks

As discussed in this paper the Bianchi-III space-time viscous
string cosmological models have been investigated in scalar-tensor
BD theory of gravity with time dependent DP g and dynamical
cosmological constant A. The exact solution of EFE have been
obtained by assuming viscosity as a some power function of energy
density p and the DPg as a time function lalong with suitable
assumptions on scale factor a(¢)=[sinh(at)]» , heren and o are
positive constants. We have presented a class of models with different
choice of »n and £ . The main findings of the study are listed below:

As discussed in section 3, (see equation 48)) the universe
starts evolving from zero volume at —0and thereafter expanding
continuously from early decelerating phase to present accelerating
phase. As t—0, the expansion scalar #—o (see equation (49)), which
indicates the early inflationary phase of the universe. Therefore we
can say that the universe grow up from Big-Bang.

It may also be pointed out that the universe was accelerating for
n<l1 and show transition phase i.e. early deceleration phase to current
acceleration phase for n>1.

It is also observed form Figures 6 & 7 that for both the cases =0
and f=1, the string tension density Ais negative whereas particle
density p, is positive at early time. At late time both are converges to
zero. Hence, the string disappears from universe.

The cosmological constant A is a decreasing function of time and
it converges to a small positive value at late time (Figure 5). This
type of behavior of cosmological constant A is supported by recent
observations data.
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