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Abbreviations: EFE, Einstein field equations; DP, deceleration 
parameter; GTR, general theory of relativity; BD, brans-dicke; DE, 
dark energy.

Introduction
The early universe is well described by homogeneous and an 

isotropic cosmological model as it has only ordinary matter and 
gravity. Here the ordinary matter means, a matter with non negative 
pressure and ordinary gravity is based on the four-dimensional 
Einstein-Hilbert action. Recently observational data indicates that 
the discrepancy arises at late time, when the age of the universe is 
some billions years. In this context the Friedmann-Robertson- Walker 
model is a unique correspondence between the expansion rate and 
the distance scale. Although general theory of relativity (GTR) is the 
most suitable theory for describing universe as a whole, but still there 
are some physical phenomena which are to be addressed by GTR. 
For this purpose there is a need either to modify the theory or to 
introduce alternate theory which is suitable to address the universe 
in all aspects. During the investigations of research findings it have 
been noticed that many alternate/modified theories of gravity were 
proposed by cosmologists as and when required. Among all the 
available alternative theories, the scalar-tensor Brans-Dicke theory 
(BD)1 of gravity is the most promising existing theory which has very 
effectively solves the problems of early time inflation and late time 
accelerating behaviour of the universe.2 According to BD theory, the 
gravitational constant G is not a constant but it varies with space and 
time. The Brans-Dicke gravity also relates the gravitation constant G  
with scalar field φ  along with relation 1Gφ −≅ ). The action principle 
for the Brans-Dicke gravity is given as 

                     
( )

3
1 4= ( )

16
1c R gd xν

νφ ωφ φ φ
π

−+ − +Λ∫ℜ

The variation of   for small changes of gµν  leads to the field 
equations 
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where Rµν is the Ricci curvature tensor, Tµν is the energy 

momentum tensor, R is the curvature scalar, 


 is the Brans-Dicke 
dimensionless coupling constant,  is the trace of energy momentum 
tensor and is wave operator. Also the law of conservation of 
momentum may be expressed as 

                                      ( ); =0. 3kT µν

Here ‘semicolon’ indicates co-variant derivative and ‘comma’ 
indicates partial derivatives.

Similarly, the variation of φ  leads to the following equation forφ : 

                                
( )22 = . 4Rµ

µφ φ φ φ φ
ω

−

This latter equation can be simplified by substituting for R  from 
the contracted form of Equation (2). We finally get 

                                   
( )
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T
c

πφ
ω+



Equation (5) leads to the anticipated scalar wave equation forφ
with sources in matter. Because it contains a scalar fieldφ in addition 
to the metric tensor gµν , the BD theory is often referred to as the 
scalar-tensor theory of gravitation. BD theory is explained by a scalar 
functionφ and a constant coupling constantω , often known as the 
BD parameter. This can be obtained from general theory of relativity 
by letting ω→∞  and =constantφ .3

The recent cosmic observational results authenticate the fact that 
our universe is undergoing a late-time accelerated expansion phase.4–8 
To find the reason behind this late-time accelerating expansion of 
the universe is one of the most challenging problems in modern 
Cosmology and Astrophysics. We also believes that an unknown form 
of energy, commonly known as ’Dark Energy’ (DE), is responsible 
for this phase and it constitutes near about 70%  of the total universe. 
There are several proposals regarding DE, Cosmological Constant, 
Quintessence, Dark Energy9–14 being some of the competent 
candidates.

Viscosities play an important role in early stage evolution of the 
universe. Also it is well known that at early stage of the universe when 
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In present communication, the Bianchi type-III, viscous string cosmological models have 
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neutrino decoupling occurred, the matter behaves like viscous fluid15 
and coefficient of viscosity q  decreases with time as universe 
expands. Recently viscous string cosmological models have been 
studied by several authors16–26 in the context of general relativity, also 
many authors27–32 had discussed bulk viscous string cosmological 
models in BD theory. Very recently33–40 have been investigated the 
Bianchi type viscous cosmic string cosmological models in BD theory.

Motivated from above mention research work, in present paper, 
we had studied the bulk viscous string cosmological models with 
time dependent q and cosmological constant Λ  in scalar-tensor 
BD theory of gravity. This paper has been divided in five different 
sections, including the introduction presented in section 1. In section 
2, the metric and field equations governing the cosmological models 
are described, section 3 deals with exact solution of field equations. 
Section 4, the physical and kinematic behavior of the models has been 
presented in both the cases. Finally results, discussion and conclusions 
are summarized in last section i.e. section 5.

Metric and field equations
In present communication, we consider a spatially homogeneous 

and an anisotropic Bianchi type-III space-time metric as given below 

       ( )2 2 2 2 2 2 2 2 2= ( ) ( ) ( ) , 6sxds dt A t dx e B t dy C t dz−− + + +

Here potential A, B and C are the functions of cosmic time ' 't only 
andTµνis a constant.

The energy-momentum tensor Tµν for a cloud of strings in the 
presence of bulk viscous fluid containing one dimensional cosmic 
string is given by

                        ( )=( ) , 7T p u u pg v vµν µ ν µν µ νρ λ+ + −

λ is the string tension density, p is effective pressure, ρ is the 
proper energy density for cloud strings with particles attached to them,

kx is the four-velocity vector and kx is a unit space-like vector along 
the direction of string. The vectors ku and kx satisfy the conditions 

=1=k k
k ku u x x− , =0k

ku x .

              
11 22 33 44

= , = = , = ,T p T T p Tλ ρ−

               ( )11 22 33 44= =3 8T T T T T p ρ λ⇒ + + + − −

 Above ρ , λ  and λ  are the functions of cosmic time’t’ only. The 
particle density ( )pρ  of the configuration is given as 

                                   ( )= , 9pρ ρ λ+

The string tension density λ , may takes positive or negative 
values. It is also published by some authors41,42 that a negative value 
of λ  represents the universe filled with no string, whereas positive 
value of p  indicate the universe filled with string particles. Here the 
effective pressure p  may be define as 

                                     ( )= 3 , 10p p Hξ−

Where ξ  is the bulk viscosity coefficient and H  Hubble 
parameter.

For the metric given in equation (6) the field equation (2) may be 
expressed as:   
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Where an over head dot denote derivatives with respect to cosmic 
time ( )V.

We may introduce cosmological parameters such as the spatial 
volume ( )V , the Hubble’s parameter ( )H , the expansion scalar ( )θ
, the deceleration parameter ( )q , the anisotropy parameter ( )Am and 
the shear scalar ( )σ  for the metric (6) connected as, 

                      ( )3= = , 17V a ABC

            

( ); 1 2 3= =3 = , 18k
ku H H H Hθ + +

Here 1 2 3= , = , =A B CH H H
A B C

 

are the directional Hubble parameters 
in directions of ,x y and z axis respectively. 
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Here = , = 1, 2, 3
i i

H H H i∆ − .

Now we required the solution of above stated field equations 11-
16. This is presented in next section.

Solution of the field equations
On integrating equation (15), we have 

                                      ( )0= , 22A l B

 Here 0l is a constant of integration it can be taken as unity to avoid 
further complication, therefore 

                                            ( )= . 23B A

 Putting ‘ ’t into the field equations (11)-(14) and (16), we get 
following set of field equations, 
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The field equations 24-27 have a system of four independent 
equations along with seven unknown parameters , , , , ,A C pλ ρ φ  
and Λ therefore we need at least three more constraints related to these 
parameters for explicit solution of this system of equations. For the 
explicit solution of above stated equations, we may apply following 
assumptions:

It is assumed that the bulk viscosity function ( )tξ  is proportional 
to some power of energy density ρ  (see,43,44 i.e.

                                      ( ), 28βξ ρ∝

                                    ( )0= , 29βξ ξ ρ

Here 0ξ  is proportional constant and 0β≥  is a constant. Now with 
the help of equations (8), (25), (26) and (27) we get,

( )
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1
02

( )= 8 [ ] 30
2
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βφ ωφ φ πφ γρ ξ ρ θ
φ φφ
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In this context we have discuss two cases i.e. =0β  and =1.β

Case 1: If =0β , then 0=ξ ξ
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On subtracting equation (26) from equation (31), we have 
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On substituting the value of 18πρφ−  from equation (32) into 
equation (26), we have expression for cosmological constant Λ  as 

( )
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Case 2: If =1β , then 0=ξ ξ ρ  
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The deceleration parameter q  is taken as a function of cosmic 
time‘ ’t i.e. 
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
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As recent observations confirmed that the universe is expanding 
with an accelerating rate at present whereas it was decelerating at 
early time (see4,5,8). Theoretically, we may say that the value of scale 
factor ( )a t vary with cosmic time. Also rate of expansion measured 
by Hubble’s parameter H and the DP, H , since H  and q are the 

functions of the scale factor q , therefore the study of various 
models with time dependent DP indicate new sector in theoretical 
Cosmology. Moreover, time-dependent q  dictates the expansion rate 
of the universe and also sign of the DP q , galaxy number variation 
may be increasing (decelerated expansion), or decreasing (accelerated 
expansion).45 Recent past several researchers including our research 
group38 have been studied many cosmological models of the universe 
with time varying q , in different context.46–53

Now, the general solution of equation (36) is derived by our 
research team,38 where we have defined 2= ( )= /q b t aa a−   . The 
motivation to choose this type of DP is behind the fact that universe 
has an accelerating expanding phase at present time as observed by 
SNeIa supernova observations4,8 and decelerated expansion in the past 
but in present scenario DP must show signature flipping,5,54,55 so in 
general DP is not a constant but time variable so that above equation 
(36) may be re written as = ( ( ))b b a t in order to solve above equation, 
we may assume = ( ( ))b b a t as a is also time dependent function, this 
only possible when we should avoid singularities like Big-Bang and 
Big-Rip because both the function (cosmic time & scale factor) are 
increasing functions therefore after some simplification we get,

                           ( )
1

( )=(sinh( )) , 37na t tα
Where ( )a t is a scale factor. Hereα and n are positive constants.

The shear scalarσ is proportional to scalar expansion θ  as 
suggested by,56 we may also taken as

                                      ( )= , 38mA C

Here m  is non zero constant, which may takes care of the 
anisotropy of the space.

We consider the power law relation between scale factor ( )a t and 
BD scalar field G. As we know that the BD theory is a modification of 
Einstein’s GTR, where purely metric coupling of matter with gravity 
is preserved. Also the gravitational constant G  is replaced with time 
dependent scalar fieldφ as ( )=18t Gφ π  and this scalar field couples to 
gravity with a BD coupling constantω . It also passes the experimental 
tests from solar system57 and able to provide a dynamicity of the 
universe.58 In59 had investigated Newtonian Cosmology with aβφ∝
.There is another investigation of Cosmology i.e aβφ∝ .

60–62 Since 
the field equations (11)–(14) and (16) contain a andφ and their 
derivatives, so without any loss of generality, we shall assume that 
the BD scalar fieldφ is some power ofφ . The power law relation 
between scale factor and scalar field φ has already been used by63 in 
the context of Robertson Walker Brans-Dicke models. Thus,

                                    ( )0= [ ( )] , 39ba tφ φ

Where 0φ  is a proportionality constant and b  is an ordinary 
constant. The assumption of a power law between the scalar field φ  
and the cosmological expansion factor ( )a t , it is possible to reduce 
the cosmological equations to quadrature for the scalar-tensor theory 
with cosmological constant.64–67 Now, from equations (17), (36) and 
(37), we have following expression for the metric potentials A, B and 
C,

                        ( )
3

(2 1)= =[ ( )] 40,
m

n mA B sinh tα +

                            ( )
3

(2 1)=[sinh( )] , 41n mC tα +
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The directional Hubble parameters may be expressed as 

              
( )1 2
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mH H t
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3= coth( ), 43

(2 1)
H t

n m
α α
+

The relation between scale factor ( )a t  and red shift parameter z  
may be written as, 

                     
( )0( )1 = , 44
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a tz
a t

λ
λ
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Where 0( )a t is the present value of scale factor and it takes as 
unity. The scale factor ( )a t is stable under metric perturbation, so that 
redshift parameter in term of scale factor given as, 

             
( )

1
1 1= , = 1 , = 1 [ ( )] 45

1 ( )
na z z sinh t

z a t
α

−
⇒ − + ⇒ − +
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n
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−
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The form of metric (4) after substituting the value of A , B and C , 

( )
6

2 2 2 2 2 2(2 1) (2 1)= [ ( )] ( ) [ ( )] 46

m
m

xn m n mds dt sinh t dx e dy sinh t dzα α−+ +− + + +

Also we can write the metric (4) in terms of red shift parameter 
as z as 

    ( )
6 6

2 2 2 2 2 2
2 1 2 1= [1 ] ( ) [1 ] 47

m
sx

m mds dt z dx e dy z dz
− −

−
+ +− + + + + +

The some parameters such as spatial volume, Hubble parameter, 
deceleration parameter ( )q , expansion scalar ( )θ , shear scalarσ and 
anisotropy parameter mA are expressed as 

                      ( )
3

= =[sinh( )] , 48nV ABC tα

                        
( )3=3 = coth( ), 49H t

n
αθ α

 

                        
( )2= 1 . ( )), 50q n sech tα− +

Also we have derived the relation between DP q and red shift z for 
our considerable model 1, which is given by 

                       
( )

2

2

(1 )= 1 , 51
1 (1 )

n

n

n zq
z

+
− +

+ +
If =1n , then 

        ( )
2

11 ( 2) 2= [1 ] | |<1 52
2 2 2

z z z zq provided−+ +
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Also the Maclaurin’s series expansion of q is, 

                      
( )2 31 1 1= [ ], 53

2 2 2
q z z O z− + − +

For 1=
2

n  

                  
( )1 3= [ ], 2 54

2 2
zq provided z
z
+

− ≠−
+

For present age of the universe 0 =13.78t Gyr with present value 
of DP 0 = 0.73q − ,

68 equation (50) yields the following relationship 
between the constants α  and n : 

                      
( )1 0

0

1 1= 55qsech
t n

α − +

 From equation (50), we analyze that for q  is negative for 1n≤  and 
changing sing positive to negative for >1n  with corresponding value 
ofα . In Figure 1, we depict the variation between red shift parameter 
z  with DP q , the two most important parameters in cosmology. It is 

clear from concern that universe is accelerating for 1n≤  and show 
transition phase (i.e. early time deceleration to late time acceleration) 
for >1n . This type behavior of DP q  indicates that the universe has 
decelerated in past and at present time undergoes an accelerating 
phase, which is good agreement with observational findings. 

Figure 1 Plot of redshift parameter z versus deceleration parameter q .

                
( )2 21 3 ( 1)= [ ( )] . 56

3 (2 1)
m coth t

n m
ασ α−

+
 

             
( )

2

2

2 3 2 1= [ ]= , 57
3 (2 1)

m
m mA constant

m

+ +

+

Provided 1
2

m≠−

Above equation (57) indicates that mA is constant throughout 
evolution of the universe. This means universe never approaches to 
isotropy. Also =constantσ

θ
, this agreed with Collins et al. [54] results.

Physical and kinematical properties of the 
model

 In this section we discuss the some physical and kinematic 
properties of the model represented by equation (46). The string 
tension density ( )λ , the energy density ( )ρ , the particle density ( )pρ  
and the cosmological constant ( )Λ  for =0,1β  may be expressed as

Here

2 =sinh( )M tα 2 =sinh( )M tα ;
1

= 2 1k m + ; 1 1 1= 6l bk bk mω+ − ; 
2

2 1= 3 3;l b k m+ +  2
3 1=3 3.l m bk+ +  

( )

6

2 2 2 2 2 2 2 20 2 1
1 1 1 1 22 2

1

8 = [3 {6 2 3 3 ( 1)} 3 ( 1) . ] 58

b m
n nkM m m n mn m n bk m M nk m s n k M

n k

φπλ α α

−

− − − + − + − + − −
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Case 1: =0β  

 

 

	

Case 2: =1β  
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γ ξ
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−

− +
+ + −

− +
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From Figure 2, we observe that the string tension density λ is an 
increasing function of time, which is always negative and approaches 
to zero at late time. As suggested by Letelier PS41 the string tension 
density λ may have positive or negative values, corresponding to >0λ
the string dominant over particle whereas in case of <0λ the string 
disappear from universe. In our case the particles density dominate 
over the string tension density at present epoch. It is self exploratory 
from Figures 3 & 4 the energy density ρ and particle density =0β are 
decreasing function of cosmic time for both cases =0β and =1β .

Figure 2 Plot of string tension density λ  versus time = 1b −. For = 1b − , =1ω
, 0 =1φ .

Figure 3 Plot of energy density ρ  versus time t . For =0,1β , =1ω , = 1b −
, 0 0= =1φ ξ .

Figure 4 Plot of particle density pρ  versus time t . For =0,1β , = 1b − , = 1b −
, 0 0= =1φ ξ .

In Figure 5 we have plotted cosmological constant Λ with cosmic 
time t. It may be seen from figure that cosmological constant Λ is 
decreasing function of time and approaches to small value at late 
time. This type of behavior of Λ is good agreement with recent cosmic 
observations.

Figure 5 Plot of cosmological constant t  versus time t . For =1ω , =1ω
, = 1b − , 0 0= =1φ ξ .
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We analyze from Figures 6 & 7 that the particle density is pρ is 
always greater than string density for =0β  and =1β  at =1n , also the 
energy density decreasing with time.

Figure 6 Plot of energy density ρ , particle density pρ  and string tension 
density t  versus time t . For =0β , =1ω , = 1b − , 0 0= =1φ ξ .

Figure 7 Plot of energy density ρ , particle density pρ  and string tension 
density λ  versus time t . For =1β , =1ω , = 1b − , 0 0= =1φ ξ .

In Figure 8 we have presented the variation
| |

pρ
λ

with cosmic time 
t, the concern figure indicate that if 1n≤  then the particle density 
dominant over string tension density, but if >1n then the string density 
dominant over particle density at early time (deceleration phase) but 
for acceleration phase the particle density greater than string density
λ .

Figure 8 Plot of 
| |

pρ
λ

 versus time =0,1β . For =0,1β , =1ω , = 1b − , 0 0= =1φ ξ .

Concluding remarks
As discussed in this paper the Bianchi-III space-time viscous 

string cosmological models have been investigated in scalar-tensor 
BD theory of gravity with time dependent DP q and dynamical 
cosmological constant Λ . The exact solution of EFE have been 
obtained by assuming viscosity as a some power function of energy 
density ρ and the DP q  as a time function along with suitable 
assumptions on scale factor 

1

( )=[ ( )]na t sinh tα  , here n andα are 
positive constants. We have presented a class of models with different 
choice of n and β . The main findings of the study are listed below: 

As discussed in section 3, (see equation 48)) the universe 
starts evolving from zero volume at 0t→ and thereafter expanding 
continuously from early decelerating phase to present accelerating 
phase. As 0t→ , the expansion scalarθ→∞ (see equation (49)), which 
indicates the early inflationary phase of the universe. Therefore we 
can say that the universe grow up from Big-Bang.

It may also be pointed out that the universe was accelerating for
1n≤ and show transition phase i.e. early deceleration phase to current 

acceleration phase for >1n .

It is also observed form Figures 6 & 7 that for both the cases =0β
and =1β , the string tension density λ is negative whereas particle 
density pρ is positive at early time. At late time both are converges to 
zero. Hence, the string disappears from universe.

The cosmological constant Λ is a decreasing function of time and 
it converges to a small positive value at late time (Figure 5). This 
type of behavior of cosmological constant Λ is supported by recent 
observations data.
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