Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 3 Issue 6

Unrestricted hartree-fock computational simulation in a protonated rhodochrosite crystal

Ricardo Gobato,1 Marcia Regina Risso Gobato,2 Alireza Heidari,3 Abhijit Mitra4

1Laboratory of Biophysics and Molecular Modeling Genesis, State Secretariat of Education of Parana, Brazil
2Green Land Landscaping and Gardening, Seedling Growth Laboratory, Brazil
3Faculty of Chemistry, California South University, USA
4Department of Marine Science, University of Calcutta, India

Correspondence: Ricardo Gobato, Laboratory of Biophysics and Molecular Modeling Genesis, State Secretariat of Education of Parana, Brazil

Received: October 01, 2019 | Published: November 6, 2019

Citation: Gobato R, Gobato MRR, Heidari A, et al. Unrestricted hartree-fock computational simulation in a protonated rhodochrosite crystal. Phys Astron Int J.2019;3(6):220-228. DOI: 10.15406/paij.2019.03.00187

Download PDF

Abstract

In this paper, compact effective potentials, charge distribution, Atomic Polar Tensor (APT) and Mulliken charges were studied using a unrestricted Hartree-Fock computational simulation in a protonated rhodochrosite crystal. The rhodochrosite crystal unit cell of structure CMn6O8, where the charge distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis). The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G basis set, with δ=2.922 e δ=2.650 u.a., respectively, being δAPT> δMulliken. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm-1, with a normalized intensity of 0.65; 2231.4 cm-1 and 0.454; and 2177.24 cm-1 and 1.0, respectively. An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral tissues of rhodochrosite, before and after irradiating of synchrotron radiation using Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing– Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD). Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal.

Keywords: rhodochrosite, quartz crystal, hartree-fock methods, apt, mulliken, effective core potential, synchrotron radiation, cancer, tumoral tissues

Abbreviations

APT, atomic polar tensor; ECP, effective core potential; SAXS, small–angle X–ray scattering; USAXS, ultra–small angle X–ray scattering; FXS, X–ray scattering; WAXS, wide–angle X–ray scattering; GISAXS, grazing–incidence small–angle X–ray scattering; GIWAXS, grazing–incidence wide–angle X–ray scattering; SANS, small–angle neutron scattering; GISANS, grazing–incidence small–angle neutron scattering; XRD, X–ray diffraction; PXRD, powder X–ray diffraction; WAXD, wide–angle X–ray diffraction; GIXD grazing– incidence X–ray diffraction; EDXRD, energy–dispersive X–ray diffraction

Introduction

The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC03) shows complete solid solution with siderite (FeC03), and it may contain substantial amounts of Zn, Mg, Co, and Ca. The electric charge that accumulates in certain solid materials, such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins in response to applied mechanical stress, phenomenon called piezoelectricity.1 Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH19Mn6O8, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMn6O8, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis).

The electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a precise frequency is a crystal oscillator. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators.2 Quartz crystals are manufactured for frequencies from a few tens of kilohertz to hundreds of megahertz. More than two billion crystals are manufactured annually. Most are used for consumer devices such as wristwatches, clocks, radios, computers, cellphones, signal generators and oscilloscopes.3–12 But other crystals such as rhodochrosite also have piezoelectric properties. The rhodochrosite as crystal oscillator for being an alternative to those of quartz. The rhodochrosite (MnC03) shows complete solid solution with siderite (FeC03), and it may contain substantial amounts of Zn, Mg, Co, and Ca. The Kutnohorite [CaMn(C03)2] is a dolomite group mineral intermediary between rhodochrosite and calcite.3–12 The Figure 1 is one photography the Rhodochrosite stone from China.

Figure 1 Rhodochrosite stone from China.13

Methods

Hartree-Fock methods

The Hartree-Fock self–consistent method14–20 is based on the one-electron approximation in which the motion of each electron in the effective field of all the other electrons is governed by a one-particle Schrodinger¨ equation. The Hartree-Fock approximation takes into account of the correlation arising due to the electrons of the same spin, however, the motion of the electrons of the opposite spin remains uncorrelated in this approximation. The methods beyond self-consistent field methods, which treat the phenomenon associated with the many-electron system properly, are known as the electron correlation methods. The vast literature associated with these methods suggests that the following is a plausible hierarchy:

HF << MP2 < CISD < CISD < CISD  ( T ) <  FCI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamisai aadAeaqaaaaaaaaaWdbiaacckapaGaeyipaWJaeyipaWZdbiaaccka paGaamytaiaadcfacaaIYaWdbiaacckapaGaeyipaWZdbiaacckapa Gaam4qaiaadMeacaWGtbGaamira8qacaGGGcWdaiabgYda88qacaGG GcWdaiaadoeacaWGjbGaam4uaiaadseapeGaaiiOa8aacqGH8aappe GaaiiOa8aacaWGdbGaamysaiaadofacaWGebWdbiaacckacaGGGcGc paWaaeWaaKqbagaajugibiaadsfaaKqbakaawIcacaGLPaaajugib8 qacaGGGcWdaiabgYda88qacaGGGcGaaiiOa8aacaWGgbGaam4qaiaa dMeaaaa@62B7@

The extremes of ‘best’, FCI, and ‘worst’, HF, are irrefutable, but the intermediate methods are less clear and depend on the type of chemical problem being addressed.14 The use of HF in the case of FCI was due to the computational cost. The molecular Hartree-Fock wave function is written as an antisymmetrized product (Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaajugWaiaadMgaaSqabaaaaa@3B4B@ and a spin function (either α or β). The expression for the Hartree-Fock molecular electronic energy E HF  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbGcpaWaaSbaaSqaaKqzadWdbiaadIeacaWGgbGaaiiO aaWcpaqabaaaaa@3D02@ is given by the variation theorem as E HF = D| H ^ el + V NN |D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzadGaamisaiaadAeaaSqabaGccqGH9aqpdaaadaqa aiaadseadaabdaqaaiqadIeagaqcamaaBaaaleaajugWaiaadwgaca WGSbaaleqaaOGaey4kaSIaamOvamaaBaaaleaajugWaiaad6eacaWG obaaleqaaaGccaGLhWUaayjcSdGaamiraaGaayzkJiaawQYiaaaa@4C1D@  where D is the Slater-determinant Hartree-Fock wave function and H ^ el MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaajugWaiaadwgacaWGSbaaleqaaaaa@3B4D@ and V NN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaqcLbmacaWGobGaamOtaaWcbeaaaaa@3B16@ are given by

H ^ el =  ħ 2 2 m e i i 2 α i Z α e ' 2 r iα +  j i>j e ' 2 r ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qaceWFibWdayaajaGcdaWgaaWcbaqcLbmapeGaaeyzaiaa bYgaaSWdaeqaaKqzGeWdbiabg2da9iaacckacqGHsislkmaalaaapa qaamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbcKqz GeWdbiaa+Dsak8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaak8aaba qcLbsapeGaaGOmaiaad2gak8aadaWgaaWcbaqcLbmapeGaamyzaaWc paqabaaaaOWdbmaawafabeWcpaqaaKqzadWdbiaadMgaaSqab0Wdae aajugOb8qacqGHris5aaGccqGHhis0daqhaaWcbaqcLbmacaWGPbaa leaajugWaiaaikdaaaqcLbsacqGHsislkmaawafabeWcpaqaaKqzad Wdbiabeg7aHbWcbeqdpaqaaKqzGgWdbiabggHiLdaakmaawafabeWc paqaaKqzadWdbiaadMgaaSqab0WdaeaajugOb8qacqGHris5aaGcda WcaaWdaeaajugib8qacaWGAbGcpaWaaSbaaSqaaKqzadWdbiabeg7a HbWcpaqabaqcLbsapeGaamyzaiaacEcak8aadaahaaWcbeqaaKqzad Wdbiaaikdaaaaak8aabaqcLbsapeGaamOCaOWdamaaBaaaleaajugW a8qacaWGPbGaeqySdegal8aabeaaaaqcLbsapeGaey4kaSIaaiiOaO Waaybuaeqal8aabaqcLbmapeGaamOAaaWcbeqdpaqaaKqzGgWdbiab ggHiLdaakmaawafabeWcpaqaaKqzadWdbiaadMgacqGH+aGpcaWGQb aaleqan8aabaqcLbAapeGaeyyeIuoaaOWaaSaaa8aabaqcLbsapeGa amyzaiaacEcak8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaak8aaba qcLbsapeGaamOCaOWdamaaBaaaleaajugWa8qacaWGPbGaamOAaaWc paqabaaaaaaa@9543@

V NN =  α β>α Z α Z β e ' 2 r αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGwbGcdaWgaaWcbaqcLbmacaWGobGaamOtaaWcbeaakiab g2da9iaacckadaGfqbqabSWdaeaajugWa8qacqaHXoqyaSqab0Wdae aajugOb8qacqGHris5aaGcdaGfqbqabSWdaeaajugWa8qacqaHYoGy cqGH+aGpcqaHXoqyaSqab0WdaeaajugOb8qacqGHris5aaGcdaWcaa qaaiaadQfadaWgaaWcbaqcLbmacqaHXoqyaSqabaGccaWGAbWaaSba aSqaaKqzadGaeqOSdigaleqaaOGaamyzaiaacEcadaahaaWcbeqaaK qzadGaaGOmaaaaaOqaaiaadkhadaWgaaWcbaqcLbmacqaHXoqycqaH YoGyaSqabaaaaaaa@5E9E@

Since V NN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaqcLbmacaWGobGaamOtaaWcbeaaaaa@3B16@ does not involve electronic coordinates and D is normalized, we have D| V NN |D = V NN D|D = V NN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaamaabaGaam iramaaemaabaGaamOvamaaBaaaleaajugWaiaad6eacaWGobaaleqa aaGccaGLhWUaayjcSdGaamiraaGaayzkJiaawQYiaiabg2da9iaadA fadaWgaaWcbaqcLbmacaWGobGaamOtaaWcbeaakmaaamaabaWaaqGa aeaajugibiaadseaaOGaayjcSdqcLbsacaWGebaakiaawMYicaGLQm cajugibiabg2da9iaadAfakmaaBaaaleaajugWaiaad6eacaWGobaa leqaaaaa@5249@ . The operator H ^ el MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaajugWaiaadwgacaWGSbaaleqaaaaa@3B4D@ is the sum of one-electron operators f ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAgagaqcam aaBaaaleaajugWaiaadMgaaSqabaaaaa@3A7E@ and two-electron operators g ^ ij ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEgagaqcam aaBaaaleaajugWaiaadMgacaWGQbaaleqaaOGaai4oaaaa@3C37@ we have H ^ el =  i f ^ i + j i>j g ^ ij  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaajugWaiaadwgacaWGSbaaleqaaOGaeyypa0tcLbsaqaaa aaaaaaWdbiaacckakmaawafabeWcpaqaaaWdbeqan8aabaWdbmaaqa babaqcLbsaceWGMbWdayaajaqdpeWaaSbaa4qaaKqzadGaamyAaaGd beaaaeaajugWaiaadMgaa4qabKqzGgGaeyyeIuoaniabgUcaRmaaqa babaWaaabeaeaajugObiqadEgagaqca0WaaSbaa4qaaKqzadGaamyA aiaadQgaa4qabaaabaqcLbmacaWGPbGaeyOpa4JaamOAaaGdbeqcLb AacqGHris5aaGdbaqcLbmacaWGQbaaoeqajugObiabggHiLdaaaKqz GeGaaeiOaiaabYcaaaa@5CD0@ where f ^ i = 1 2 i 2 α α / r ia MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaqcaKqba+qadaWgaaWcbaqcLbmacaWGPbaaleqaaKqz adGaeyypa0JaeyOeI0scfa4aaSaaaeaacaaIXaaabaGaaGOmaaaacq GHhis0daqhaaqaaKqzadGaamyAaaqcfayaaKqzadGaaGOmaaaajugO biabggHiLRWaaSbaaSqaaKqzadGaeqySdegaleqaaKqzGgGaeyyeIu UcdaWgaaWcbaqcLbmacqaHXoqyaSqabaGccaGGVaGaamOCamaaBaaa leaajugWaiaadMgacaWGHbaaleqaaaaa@572C@  and g ^ ij = 1 r ij . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4zayaajaqcfa4aaSbaaSqaaKqzadGaamyAaiaadQgaaSqabaqc LbsacaqG9aGcdaWccaqaaiaaigdaaeaacaWGYbWaaSbaaSqaaKqzad GaamyAaiaadQgaaSqabaaaaOGaaiOlaaaa@4337@ The Hamiltonian H ^ el MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaajugWaiaadwgacaWGSbaaleqaaaaa@3B4D@ is the same as the Hamiltonian H ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcaa aa@380D@  for an atom except that α α / r ia MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGgaeaaaaaa aaa8qacqGHris5kmaaBaaaleaajugWaiabeg7aHbWcbeaajugObiab ggHiLRWaaSbaaSqaaKqzadGaeqySdegaleqaaOGaai4laiaadkhada WgaaWcbaqcLbmacaWGPbGaamyyaaWcbeaaaaa@47BF@ replaces Z/ r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaGGVa GaamOCamaaBaaaleaajugWaiaadMgaaSqabaaaaa@3C0C@ in f ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGMbWdayaajaGcpeWaaSbaa4qaaKqzadGaamyAaaGdbeaa jugibiabgwSixdaa@3E35@ Hence

E= D |  H ^  | D =2 i n/2    ϕ i ( 1 )| f ^ i | ϕ i ( 2 ) + j=1 n/2    i=1 n/2    ( 2 J ij K ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbGaeyypa0JcdaaadaqaaKqzGeGaamiraiaacckacaqG 8bGaaiiOaGqadiqa=HeapaGbaKaapeGaaiiOaiaabYhacaGGGcGaam iraaGccaGLPmIaayPkJaqcLbsacqGH9aqpcaaIYaGcdaGfWbqabSWd aeaajugWa8qacaWGPbaal8aabaqcLbmapeGaamOBaiaac+cacaaIYa aan8aabaqcLbAapeGaeyyeIuoaaOGaaiiOaiaacckadaaadaqaaKqz GeGaeqy1dyMcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbm aabmaapaqaaKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaaeiF aiqadAgapaGbaKaakmaaBaaaleaajugWa8qacaWGPbaal8aabeaaju gib8qacaqG8bGaeqy1dyMcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWd aeqaaOWdbmaabmaapaqaaKqzGeWdbiaaikdaaOGaayjkaiaawMcaaa GaayzkJiaawQYiaKqzGeGaey4kaSIcdaGfWbqabSWdaeaajugWa8qa caWGQbGaeyypa0JaaGymaaWcpaqaaKqzadWdbiaad6gacaGGVaGaaG OmaaqdpaqaaKqzGgWdbiabggHiLdaakiaacckacaGGGcWaaybCaeqa l8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaSWdaeaajugWa8qaca WGUbGaai4laiaaikdaa0WdaeaajugOb8qacqGHris5aaGccaGGGcGa aiiOaiaacckadaqadaWdaeaajugib8qacaaIYaGaa8NsaOWdamaaBa aaleaajugWa8qacaWGPbGaamOAaaWcpaqabaqcLbsapeGaeyOeI0Ia a83saOWdamaaBaaaleaajugWa8qacaWGPbGaamOAaaWcpaqabaaak8 qacaGLOaGaayzkaaaaaa@9608@

where

J ij =  ϕ i ( 1 ) ϕ j ( 2 )|e ' 2 / r 12 | ϕ i ( 1 ) ϕ j ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFkbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaWGQbaa l8aabeaajugib8qacqGH9aqpcaGGGcGcdaaadaqaaKqzGeGaeqy1dy McpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqa aKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaeqy1dyMcpaWaaS baaSqaaKqzadWdbiaadQgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWd biaaikdaaOGaayjkaiaawMcaaKqzGeGaaeiFaiaadwgacaGGNaGcpa WaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaadkhak8aa daWgaaWcbaqcLbmapeGaaGymaiaaikdaaSWdaeqaaKqzGeWdbiaabY hacqaHvpGzk8aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqabaGcpeWa aeWaa8aabaqcLbsapeGaaGymaaGccaGLOaGaayzkaaqcLbsacqaHvp Gzk8aadaWgaaWcbaqcLbmapeGaamOAaaWcpaqabaGcpeWaaeWaa8aa baqcLbsapeGaaGOmaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaaaaa@6C76@

And

K ij =  ϕ i ( 1 ) ϕ j ( 2 )|e ' 2 / r 12 | ϕ j ( 1 ) ϕ i ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFlbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaWGQbaa l8aabeaajugib8qacqGH9aqpcaGGGcGcdaaadaqaaKqzGeGaeqy1dy McpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqa aKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaeqy1dyMcpaWaaS baaSqaaKqzadWdbiaadQgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWd biaaikdaaOGaayjkaiaawMcaaKqzGeGaaeiFaiaadwgacaGGNaGcpa WaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaai4laiaadkhak8aa daWgaaWcbaqcLbmapeGaaGymaiaaikdaaSWdaeqaaKqzGeWdbiaabY hacqaHvpGzk8aadaWgaaWcbaqcLbmapeGaamOAaaWcpaqabaGcpeWa aeWaa8aabaqcLbsapeGaaGymaaGccaGLOaGaayzkaaqcLbsacqaHvp Gzk8aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqabaGcpeWaaeWaa8aa baqcLbsapeGaaGOmaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaaaaa@6C77@

f ^ i = ( ħ 2 /2 m e ) i 2  Ze ' 2 / r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGMbWdayaajaGcdaWgaaWcbaqcLbmapeGaamyAaaWcpaqa baqcLbsapeGaeyypa0JaaiiOaiabgkHiTOWaaeWaa8aabaWexLMBbX gBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiqcLbsapeGaa83j bOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiaac+cacaaIYa GaamyBaOWdamaaBaaaleaajugWa8qacaWGLbaal8aabeaaaOWdbiaa wIcacaGLPaaajugibiabgEGirRWdamaaDaaaleaajugWa8qacaWGPb aal8aabaqcLbmapeGaaGOmaaaajugibiabgkHiTiaacckacaWGAbGa amyzaiaacEcak8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsaca GGVaGaamOCaOWdamaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaa@6723@

can be used to give  D| H ^ el |D . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaaeaacaWGebGaaeiFaGqadiqa=HeapaGbaKaajuaGdaWgaaWc baqcLbmapeGaaeyzaiaabYgaaSWdaeqaaOWdbiaabYhacaWGebaaca GLPmIaayPkJaGaaiOlaaaa@4259@

Therefore, the Hartree-Fock energy of a diatomic or polyatomic molecule with only closed shells is

E HF = 2 i=1 n/2 H i core  +  j=1 n/2 i=1 n/2 ( 2 J ij K ij )+  V NN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFfbGcpaWaaSbaaSqaaKqzadWdbiaadIeacaWGgbaa l8aabeaajugib8qacqGH9aqpcaGGGcGaaGOmaOWaaybCaeqal8aaba qcLbmapeGaamyAaiabg2da9iaaigdaaSWdaeaajugWa8qacaWGUbGa ai4laiaaikdaa0WdaeaajugOb8qacqGHris5aaqcLbsacaWFibGcpa Waa0baaSqaaKqzGeWdbiaadMgaaSWdaeaajugWa8qacaWGJbGaam4B aiaadkhacaWGLbaaaKqzGeGaaiiOaiabgUcaRiaacckakmaawahabe WcpaqaaKqzadWdbiaadQgacqGH9aqpcaaIXaaal8aabaqcLbmapeGa amOBaiaac+cacaaIYaaan8aabaqcLbAapeGaeyyeIuoaaOWaaybCae qal8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaSWdaeaajugWa8qa caWGUbGaai4laiaaikdaa0WdaeaajugOb8qacqGHris5aaGcdaqada Wdaeaajugib8qacaaIYaGaa8NsaOWdamaaBaaaleaajugWa8qacaWG PbGaamOAaaWcpaqabaqcLbsapeGaeyOeI0Iaa83saOWdamaaBaaale aajugWa8qacaWGPbGaamOAaaWcpaqabaaak8qacaGLOaGaayzkaaqc LbsacqGHRaWkcaGGGcGaa8NvaOWdamaaBaaaleaajugWa8qacaWGob GaamOtaaWcpaqabaaaaa@80EA@

H i core     ϕ i ( 1 )| H ^ core ( 1 )| ϕ i ( 1 )    ϕ i ( 1 )| 1 2 i 2   α Z α / r 1α | ϕ i ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFibGcpaWaa0baaSqaaKqzadWdbiaadMgaaSWdaeaa jugWa8qacaWGJbGaam4BaiaadkhacaWGLbaaaKqzGeGaaiiOaiabgg Mi6kaacckakiaacckadaaadaqaaKqzGeGaeqy1dyMcpaWaaSbaaSqa aKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWdbiaaig daaOGaayjkaiaawMcaaKqzGeGaaeiFaiqa=HeapaGbaKaakmaaCaaa leqabaqcLbmapeGaam4yaiaad+gacaWGYbGaamyzaaaakmaabmaapa qaaKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaaeiFaiabew9a MPWdamaaBaaaleaajugWa8qacaWGPbaal8aabeaak8qadaqadaWdae aajugib8qacaaIXaaakiaawIcacaGLPaaaaiaawMYicaGLQmcajugi biabggMi6kaacckakiaacckadaaadaqaaKqzGeGaeqy1dyMcpaWaaS baaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWd biaaigdaaOGaayjkaiaawMcaaKqzGeGaaeiFaiabgkHiTOWaaSaaa8 aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaGaey4bIeTc paWaa0baaSqaaKqzadWdbiaadMgaaSWdaeaajugWa8qacaaIYaaaaK qzGeGaaiiOaOWaaybuaeqal8aabaqcLbmapeGaeqySdegaleqan8aa baqcLbsapeGaeyyeIuoaaiaadQfak8aadaWgaaWcbaqcLbmapeGaeq ySdegal8aabeaajugib8qacaGGVaGaamOCaOWdamaaBaaaleaajugW a8qacaaIXaGaeqySdegal8aabeaajugib8qacaqG8bGaeqy1dyMcpa WaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqaaKqz GeWdbiaaigdaaOGaayjkaiaawMcaaaGaayzkJiaawQYiaaaa@9855@

J ij   ϕ i ( 1 ) ϕ j ( 2 )|1/ r 12 | ϕ i ( 1 ) ϕ j ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFkbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaWGQbaa l8aabeaajugib8qacqGHHjIUcaGGGcGcdaaadaqaaKqzGeGaeqy1dy McpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqa aKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaeqy1dyMcpaWaaS baaSqaaKqzadWdbiaadQgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWd biaaikdaaOGaayjkaiaawMcaamaaeeaabaGaaGymaaGaay5bSdqcLb sacaGGVaGaamOCaOWdamaaBaaaleaajugWa8qacaaIXaGaaGOmaaWc paqabaqcLbsapeGaaeiFaiabew9aMPWdamaaBaaaleaajugWa8qaca WGPbaal8aabeaak8qadaqadaWdaeaajugib8qacaaIXaaakiaawIca caGLPaaajugibiabew9aMPWdamaaBaaaleaajugWa8qacaWGQbaal8 aabeaak8qadaqadaWdaeaajugib8qacaaIYaaakiaawIcacaGLPaaa aiaawMYicaGLQmcaaaa@6A25@

and

K ij   ϕ i ( 1 ) ϕ j ( 2 )|1/ r 12 | ϕ j ( 1 ) ϕ i ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFlbGcpaWaaSbaaSqaaKqzadWdbiaadMgacaWGQbaa l8aabeaajugib8qacqGHHjIUcaGGGcGcdaaadaqaaKqzGeGaeqy1dy McpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaOWdbmaabmaapaqa aKqzGeWdbiaaigdaaOGaayjkaiaawMcaaKqzGeGaeqy1dyMcpaWaaS baaSqaaKqzadWdbiaadQgaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWd biaaikdaaOGaayjkaiaawMcaaKqzGeGaaeiFaiaaigdacaGGVaGaam OCaOWdamaaBaaaleaajugWa8qacaaIXaGaaGOmaaWcpaqabaqcLbsa peGaaeiFaiabew9aMPWdamaaBaaaleaajugWa8qacaWGQbaal8aabe aak8qadaqadaWdaeaajugib8qacaaIXaaakiaawIcacaGLPaaajugi biabew9aMPWdamaaBaaaleaajugWa8qacaWGPbaal8aabeaak8qada qadaWdaeaajugib8qacaaIYaaakiaawIcacaGLPaaaaiaawMYicaGL Qmcaaaa@6991@

where the one-electron-operator symbol was changed from f ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGMbWdayaajaGcdaWgaaWcbaqcLbmapeGaamyAaaWcpaqa baaaaa@3B65@  to H ^ core ( 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qaceWFibGbaKaakmaaCaaaleqabaqcLbmacaWGJbGaam4B aiaadkhacaWGLbaaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaai Olaaaa@40E6@ 5

Mulliken load

Mulliken's loads are derived from the Mulliken population analysis and provide means for estimating partial atomic charges from numerical chemistry calculations, particularly those based on the linear combination of atomic orbitals. If the coefficients of the basic functions in the molecular orbital are Cμi for μe the basic function ie in the orbital molecular, the coefficients of the density matrix are:

D μν  =2    i C μi C υi * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabe27aULqz GeGaaiiOaaWcpaqabaqcLbsapeGaeyypa0JaaGOmaOWaaybuaeqal8 aabaqcLbmapeGaamyAaaWcbeqdpaqaaKqzGgWdbiabggHiL3GaaiiO aiaacckaaaqcLbsacaWGdbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTj aadMgaaSWdaeqaaKqzGeWdbiaadoeak8aadaqhaaWcbaqcLbmapeGa eqyXduNaamyAaaWcpaqaaKqzGeWdbiaacQcaaaaaaa@5664@

for a compact closed system in which each molecular orbital is doubly occupied. The population matrix P therefore has the following coefficients:

P μν = ( DS ) μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqabaqcLbsapeGaeyypa0JcdaqadaWdaeaajugib8qacaWGebGaam 4uaaGccaGLOaGaayzkaaWdamaaBaaaleaajugWa8qacqaH8oqBcqaH 9oGBaSWdaeqaaaaa@4851@

S is the overlay matrix for basic functions. The sum of the set of terms of P μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqabaaaaa@3DBF@ is N - the total number of electrons. The Mulliken population analysis aims first of all to distribute the N electrons on all the basic functions. This is done by taking the diagonal elements of P μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqabaaaaa@3DBF@ and factorizing the non-diagonal elements equally between the two appropriate basic functions. Non-diagonal terms including P μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqabaaaaa@3DBF@ and P νμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabe27aUjabeY7aTbWc paqabaaaaa@3DBF@ this simplifies the operation to a sum on a line. This defines the gross orbital population (GOB) as:

GO P μ =  ν P μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGhbGaam4taiaadcfajuaGpaWaaSbaaSqaaKqzadWdbiab eY7aTbWcpaqabaqcLbsapeGaeyypa0JaaiiOaOWaaybuaeqal8aaba qcLbmapeGaeqyVd4galeqan8aabaqcLbAapeGaeyyeIuoaaKqzadGa amiuaKqba+aadaWgaaWcbaqcLbmapeGaeqiVd0MaeqyVd4gal8aabe aaaaa@4EF9@

The terms GO P μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGhbGaam4taiaadcfak8aadaWgaaWcbaqcLbmapeGaeqiV d0gal8aabeaaaaa@3DA7@ lie on N and then divide the total number of electrons between the basic functions. It then remains to sum these terms on all the basic functions of a given atom A in order to obtain the gross atomic population (GAP). The integral of the GAPA terms also gives N. The load, QA, is then defined as the difference between the number of electrons on the free isolated atom, which is the atomic number ZA, and the raw atomic population:

Q A =  Z A  GA P A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGrbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaKqz GeWdbiabg2da9iaacckacaWGAbGcpaWaaSbaaSqaaKqzadWdbiaadg eaaSWdaeqaaKqzGeWdbiabgkHiTiaacckacaWGhbGaamyqaiaadcfa k8aadaWgaaWcbaqcLbmapeGaamyqaaWcpaqabaaaaa@489D@

The problem with this approach is the even distribution of non-diagonal terms between the two basic functions. This leads to charge separations between the molecules that are exaggerated. Many other methods are used to determine atomic charges in molecules.21,22 Concerning the nuclear contribution, the nuclear charge Z A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaaaa @3B21@ can be written as Z A = q A + Q A , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaOGa eyypa0JaamyCamaaBaaaleaajugWaiaadgeaaSqabaGccqGHRaWkju gib8qacaWGrbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaOGa aiilaaaa@44D0@  where q A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaqcLbmacaWGbbaaleqaaaaa@3A51@ and Q A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGrbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaaaa @3B18@  account for the Mulliken net and gross atomic charge.21 According to the Mulliken population analysis, the nuclear charge for A can be written as

Z A =  q A +  μ   P μμ S μμ +  μ<υ  2 P μυ S μυ +  1 2 BA    μ A    ν B 2 P μυ S μυ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbGcpaWaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaKqz GeWdbiabg2da9iaacckacaWGXbGcpaWaaSbaaSqaaKqzadWdbiaadg eaaSWdaeqaaKqzGeWdbiabgUcaRiaacckakmaawafabeWcpaqaaKqz adWdbiabeY7aTbWcbeqdpaqaaKqzGgWdbiabggHiLdaakiaacckaju gibiaadcfak8aadaWgaaWcbaqcLbmapeGaeqiVd0MaeqiVd0gal8aa beaajugib8qacaWGtbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabeY 7aTbWcpaqabaqcLbsapeGaey4kaSIaaiiOaOWaaybuaeqal8aabaqc LbmapeGaeqiVd0MaeyipaWJaeqyXduhaleqan8aabaqcLbAapeGaey yeIuoaaOGaaiiOaKqzGeGaaGOmaiaadcfak8aadaWgaaWcbaqcLbma peGaeqiVd0MaeqyXduhal8aabeaajugib8qacaWGtbGcpaWaaSbaaS qaaKqzadWdbiabeY7aTjabew8a1bWcpaqabaqcLbsapeGaey4kaSIa aiiOaOWaaSGaa8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaik daaaGcdaGfqbqabSWdaeaajugWa8qacaWGcbGaeyiyIKRaamyqaaWc beqdpaqaaKqzGgWdbiabggHiLdaakmaawahabeWcpaqaaKqzadWdbi abeY7aTbWcpaqaaKqzadWdbiaadgeaa0WdaeaapeGaaiiOaKqzGgGa eyyeIuEdcaGGGcaaaOWaaybCaeqal8aabaqcLbmapeGaeqyVd4gal8 aabaqcLbmapeGaamOqaaqdpaqaa8qacaGGGcqcLbAacqGHris5niaa cckaaaqcLbsacaaIYaGaamiuaOWaaSbaaSqaaKqzadGaeqiVd0Maeq yXduhaleqaaKqzGeGaam4uaOWdamaaBaaaleaajugWa8qacqaH8oqB cqaHfpqDaSWdaeqaaaaa@A47B@

which upon substitution in the dipole moment expression yields

p ^ x =  A μ P μμ X A   A μ<ν 2 P μυ ϕ μ |x| ϕ υ   A<B μ A ν B 2 P μυ ϕ μ |x| ϕ υ +  A q A X A     +  A μ P μμ S μμ X A  +  A μ<ν 2 P μν S μν X A  +  1 2 AB μ A ν B 2 P μυ S μυ X A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qadaaadaqaaKqzGeGabmiCa8aagaqcaOWaaSbaaSqaaKqzadWd biaadIhaaSWdaeqaaaGcpeGaayzkJiaawQYiaKqzGeGaeyypa0Jaai iOaiabgkHiTOWaaybuaeqal8aabaqcLbmapeGaamyqaaWcbeqdpaqa aKqzGgWdbiabggHiLdaakmaawafabeWcpaqaaKqzadWdbiabeY7aTb WcbeqdpaqaaKqzGgWdbiabggHiLdaajugibiaadcfak8aadaWgaaWc baqcLbmapeGaeqiVd0MaeqiVd0gal8aabeaajugib8qacaWGybGcpa WaaSbaaSqaaKqzadWdbiaadgeaaSWdaeqaaKqzGeWdbiabgkHiTiaa cckakmaawafabeWcpaqaaKqzadWdbiaadgeaaSqab0WdaeaajugOb8 qacqGHris5aaGcdaGfqbqabSWdaeaajugWa8qacqaH8oqBcqGH8aap cqaH9oGBaSqab0WdaeaajugOb8qacqGHris5aaqcLbsacaaIYaGaam iuaOWdamaaBaaaleaajugWa8qacqaH8oqBcqaHfpqDaSWdaeqaaKqz GeWdbiabew9aMPWdamaaBaaaleaajugWa8qacqaH8oqBaSWdaeqaaK qzGeWdbiaabYhacaWG4bGaaeiFaiabew9aMPWdamaaBaaaleaajugW a8qacqaHfpqDaSWdaeqaaKqzGeWdbiabgkHiTiaacckakmaawafabe WcpaqaaKqzadWdbiaadgeacqGH8aapcaWGcbaaleqan8aabaqcLbAa peGaeyyeIuoaaOWaaybCaeqal8aabaqcLbmapeGaeqiVd0gal8aaba qcLbmapeGaamyqaaqdpaqaaKqzGgWdbiabggHiLdaakmaawahabeWc paqaaKqzadWdbiabe27aUbWcpaqaaKqzadWdbiaadkeaa0Wdaeaaju gOb8qacqGHris5aaqcLbsacaaIYaGaamiuaOWdamaaBaaaleaajugW a8qacqaH8oqBcqaHfpqDaSWdaeqaaKqzGeWdbiabew9aMPWdamaaBa aaleaajugWa8qacqaH8oqBaSWdaeqaaKqzGeWdbiaabYhacaWG4bGa aeiFaiabew9aMPWdamaaBaaaleaajugWa8qacqaHfpqDaSWdaeqaaK qzGeWdbiabgUcaRiaacckakmaawafabeWcpaqaaKqzadWdbiaadgea aSqab0WdaeaajugOb8qacqGHris5aaqcLbsacaWGXbGcpaWaaSbaaS qaaKqzadWdbiaadgeaaSWdaeqaaKqzGeWdbiaadIfak8aadaWgaaWc baqcLbmapeGaamyqaaWcpaqabaaakeaapeGaaiiOaiaacckacaGGGc GaaiiOaKqzGeGaey4kaSIaaiiOaOWaaybuaeqal8aabaqcLbmapeGa amyqaaWcbeqdpaqaaKqzGgWdbiabggHiLdaakmaawafabeWcpaqaaK qzadWdbiabeY7aTbWcbeqdpaqaaKqzGgWdbiabggHiLdaajugibiaa dcfak8aadaWgaaWcbaqcLbmapeGaeqiVd0MaeqiVd0gal8aabeaaju gib8qacaWGtbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabeY7aTbWc paqabaqcLbsapeGaamiwaOWdamaaBaaaleaajugWa8qacaWGbbaal8 aabeaajugib8qacaGGGcGaey4kaSIaaiiOaOWaaybuaeqal8aabaqc LbmapeGaamyqaaWcbeqdpaqaaKqzGgWdbiabggHiLdaakmaawafabe WcpaqaaKqzadWdbiabeY7aTjabgYda8iabe27aUbWcbeqdpaqaaKqz GgWdbiabggHiLdaajugibiaaikdacaWGqbGcpaWaaSbaaSqaaKqbao aaBaaameaajugWa8qacqaH8oqBcqaH9oGBaWWdaeqaaaWcbeaajugi b8qacaWGtbqcfa4damaaBaaaleaajugWa8qacqaH8oqBcqaH9oGBaS WdaeqaaKqzGeWdbiaadIfak8aadaWgaaWcbaqcLbmapeGaamyqaaWc paqabaqcLbsapeGaaiiOaiabgUcaRiaacckakmaaliaapaqaaKqzGe WdbiaaigdaaOWdaeaajugib8qacaaIYaaaaOWaaybuaeqal8aabaqc LbmapeGaamyqaiabgcMi5kaadkeaaSqab0WdaeaajugOb8qacqGHri s5aaGcdaGfWbqabSWdaeaajugWa8qacqaH8oqBaSWdaeaajugWa8qa caWGbbaan8aabaqcLbAapeGaeyyeIuoaaOWaaybCaeqal8aabaqcLb mapeGaeqyVd4gal8aabaqcLbmapeGaamOqaaqdpaqaaKqzGgWdbiab ggHiLdaajugibiaaikdacaWGqbGcpaWaaSbaaSqaaKqzadWdbiabeY 7aTjabew8a1bWcpaqabaqcLbsapeGaam4uaOWdamaaBaaaleaajugW a8qacqaH8oqBcqaHfpqDaSWdaeqaaKqzGeWdbiaadIfak8aadaWgaa WcbaqcLbmapeGaamyqaaWcpaqabaaaaaa@3A66@

Note that S μυ X A =  ϕ μ |x| ϕ υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGtbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabew8a1bWc paqabaqcLbsapeGaamiwaOWdamaaBaaaleaajugWa8qacaWGbbaal8 aabeaajugib8qacqGH9aqpcaGGGcGcdaaadaqaaKqzGeGaeqy1dyMc paWaaSbaaSqaaKqzadWdbiabeY7aTbWcpaqabaqcLbsapeGaaeiFai aadIhacaqG8bGaeqy1dyMcpaWaaSbaaSqaaKqzadWdbiabew8a1bWc paqabaaak8qacaGLPmIaayPkJaaaaa@54DD@ and S μυ =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGtbGcpaWaaSbaaSqaaKqzadWdbiabeY7aTjabew8a1bWc paqabaqcLbsacqGH9aqpcaaIXaaaaa@4021@ so that

p ^ x = +  A q A X A   A μ<ν 2 P μν S μν x ¯ μν A    A<B μ A ν B 2 P μυ x ¯ μν AB   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaaeaajugibiqadchapaGbaKaakmaaBaaaleaajugWa8qacaWG 4baal8aabeaaaOWdbiaawMYicaGLQmcajugibiabg2da9iaacckacq GHRaWkcaGGGcGcdaGfqbqabSWdaeaajugWa8qacaWGbbaaleqan8aa baqcLbAapeGaeyyeIuoaaKqzGeGaamyCaOWdamaaBaaaleaajugWa8 qacaWGbbaal8aabeaajugib8qacaWGybGcpaWaaSbaaSqaaKqzadWd biaadgeaaSWdaeqaaKqzGeWdbiabgkHiTiaacckakmaawafabeWcpa qaaKqzadWdbiaadgeaaSqab0WdaeaajugOb8qacqGHris5aaGcdaGf qbqabSWdaeaajugWa8qacqaH8oqBcqGH8aapcqaH9oGBaSqab0Wdae aajugOb8qacqGHris5aaqcLbsacaaIYaGaamiuaOWdamaaBaaaleaa jugWa8qacqaH8oqBcqaH9oGBaSWdaeqaaKqzGeWdbiaadofak8aada WgaaWcbaqcLbmapeGaeqiVd0MaeqyVd4gal8aabeaajugib8qaceWG 4bWdayaaraGcdaqhaaWcbaqcLbmapeGaeqiVd0MaeqyVd4gal8aaba qcLbmapeGaamyqaaaajugibiaacckacaGGtaIaaiiOaOWaaybuaeqa l8aabaqcLbmapeGaamyqaiabgYda8iaadkeaaSqab0WdaeaajugOb8 qacqGHris5aaGcdaGfWbqabSWdaeaajugWa8qacqaH8oqBaSWdaeaa jugWa8qacaWGbbaan8aabaqcLbAapeGaeyyeIuoaaOWaaybCaeqal8 aabaqcLbmapeGaeqyVd4gal8aabaqcLbmapeGaamOqaaqdpaqaaKqz GgWdbiabggHiLdaajugibiaaikdacaWGqbGcpaWaaSbaaSqaaKqzad WdbiabeY7aTjabew8a1bWcpaqabaqcLbsapeGabmiEa8aagaqeaOWa a0baaSqaaKqzadWdbiabeY7aTjabe27aUbWcpaqaaKqzadWdbiaadg eacaWGcbaaaKqzGeGaaiiOaaaa@A5D9@

where

x ¯ μν A =  ϕ μ |x X A | ϕ υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWG4bWdayaaraGcdaqhaaWcbaqcLbmapeGaeqiVd0MaeqyV d4gal8aabaqcLbmapeGaamyqaaaajugibiabg2da9iaacckakmaaam aabaWaaqGaa8aabaqcLbsapeGaeqy1dyMcpaWaaSbaaSqaaKqzadWd biabeY7aTbWcpaqabaaak8qacaGLiWoajugibiaadIhacqGHsislkm aaeiaapaqaaKqzGeWdbiaadIfak8aadaWgaaWcbaqcLbmapeGaamyq aaWcpaqabaaak8qacaGLiWoajugibiabew9aMPWdamaaBaaaleaaju gWa8qacqaHfpqDaSWdaeqaaaGcpeGaayzkJiaawQYiaaaa@5A06@

and

x ¯ μν AB =  ϕ μ |x  X A  + X B 2 | ϕ υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWG4bWdayaaraGcdaqhaaWcbaqcLbmapeGaeqiVd0MaeqyV d4gal8aabaqcLbmapeGaamyqaiaadkeaaaqcLbsacqGH9aqpcaGGGc GcpaWaaaWaaeaajugib8qacqaHvpGzk8aadaWgaaWcbaqcLbmapeGa eqiVd0gal8aabeaajugib8qacaqG8bGaamiEaiabgkHiTiaacckakm aalaaapaqaaKqzGeWdbiaadIfak8aadaWgaaWcbaqcLbmapeGaamyq aKqzGeGaaiiOaaWcpaqabaGccqGHRaWkjugib8qacaWGybGcpaWaaS baaSqaaKqzadWdbiaadkeaaSWdaeqaaaGcbaqcLbsapeGaaGOmaaaa caqG8bGaeqy1dyMcpaWaaSbaaSqaaKqzadWdbiabew8a1bWcpaqaba aakiaawMYicaGLQmcaaaa@61F4@

The first two terms in eq. for p ^ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaamaabaqcLb saqaaaaaaaaaWdbiqadchapaGbaKaakmaaBaaaleaajugWa8qacaWG 4baal8aabeaaaOGaayzkJiaawQYiaaaa@3D58@ are of atomic origin where the first one, involving the net atomic charge, is the only term with a classical counterpart. The second term resembles Coulson’s atomic dipole, and the integral x ¯ μν A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWG4bWdayaaraGcdaqhaaWcbaqcLbmapeGaeqiVd0MaeqyV d4gal8aabaqcLbmapeGaamyqaaaaaaa@4004@ is the distance from the centroid of the hybrid orbital to nucleus A. For the third term, the integral x ¯ μν AB = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWG4bWdayaaraGcdaqhaaWcbaqcLbmapeGaeqiVd0MaeqyV d4gal8aabaqcLbmapeGaamyqaiaadkeaaaqcLbsacqGH9aqpaaa@4260@ is the distance of the center of charge from the midpoint of the chemical bond A-B. This contribution to the dipole moment has been referred to as the homopolar dipole21 by Mulliken. As can be seen, the dipole moment has been partitioned into three contributions: the net atomic charge, the atomic dipole, and the homopolar dipole. Since the density matrix is invariant with respect to the choice of origin and since the sum of all net atomic charges vanishes, this partitioning of the dipole moment does not depend on the choice of origin for the system.5,23

Atomic polar tensor (APT)

One of the most useful methods for interpreting and predicting infrared intensities comes from the atomic polar tensor (APT) formalism.24,25 In the APT framework, the derivative of the molecular dipole moment vector with respect to the ith normal coordinate (which is directly related to the infrared intensity of the ith fundamental mode), can be expressed as

p Q i =  α ξ p ξ i [ A U 1 L ] ξα,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaqcLbsapeGaeyOaIylcbmGaa8hCaaGcpaqaaKqzGeWd biabgkGi2kaadgfak8aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqaba aaaKqzGeWdbiabg2da9iaacckakmaawafabeWcpaqaaKqzadWdbiab eg7aHbWcbeqdpaqaaKqzGgWdbiabggHiLdaakmaawafabeWcpaqaaK qzadWdbiabe67a4bWcbeqdpaqaaKqzGgWdbiabggHiLdaakmaalaaa paqaaKqzGeWdbiabgkGi2kaa=bhaaOWdaeaajugib8qacqGHciITcq aH+oaEk8aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqabaaaaOWdbmaa dmaapaqaaKqzGeWdbiaadgeacaWGvbGcpaWaaWbaaSqabeaajugWa8 qacqGHsislcaaIXaaaaKqzGeGaamitaaGccaGLBbGaayzxaaWdamaa BaaaleaajugWa8qacqaH+oaEcqaHXoqycaGGSaGaamyAaaWcpaqaba aaaa@689F@

For each atom α in molecule, the quantities p τ ξ α =  P τξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSGaa8aabaqcLbsapeGaeyOaIyRaamiCaOWdamaaBaaaleaajugW a8qacqaHepaDaSWdaeqaaaGcbaqcLbsapeGaeyOaIyRaeqOVdGNcpa WaaSbaaSqaaKqzadWdbiabeg7aHbWcpaqabaaaaKqzGeWdbiabg2da 9iaacckaieWacaWFqbGcpaWaaSbaaSqaaKqzadWdbiabes8a0jabe6 7a4bWcpaqabaaaaa@4DA6@ where τ=x, y, z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHepaDcqGH9aqpcaWG4bGaaiilaiaacckacaWG5bGaaiil aiaacckacaWG6baaaa@414C@ and ξ=X,Y,Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH+oaEcqGH9aqpcaWGybGaaiilaiaadMfacaGGSaGaamOw aaaa@3EA2@ form the APT, represent by a 3×3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaaIZaGaey41aqRaaG4maaaa@3B70@  matrix p x ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb WcdaqhaaqaaKqzadGaamiEaaWcbaWaaeWaaeaajugWaiabeg7aHbWc caGLOaGaayzkaaaaaaaa@3E3E@

p x ( α ) = α p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb WcdaqhaaqaaKqzadGaamiEaaWcbaWaaeWaaeaajugWaiabeg7aHbWc caGLOaGaayzkaaaaaKqzadGaeyypa0Jaey4bIe9cdaWgaaadbaqcLb macqaHXoqyaWqabaqcLbmacaWGWbaaaa@472C@

So, if all the experimental infrared intensities and normal coordinates are known as well as the permanent dipole moment for a given molecule, the APT can be determined. On the other hand, these APTs can also be calculated by the SCF method and used to predict infrared intensities. These intensities can then be interpreted by partitioning the APT. This has been done before in the "charge-charge flux-overlap" (CCFO) model, first introduced by King and Mast26,27 and later applied by Person et al.28

The general expression for the APT is:

α p=  q α E+  A ( α q A ) R A   A μ<υ ( 2 P μυ R ¯ μν A )   A<B μ A ν B 2 P μυ x ¯ μν AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirNqba+aadaWgaaWcbaqcLbmapeGaeqySdegal8aa beaaieWajugib8qacaWFWbGaeyypa0Jaa8hOaiaabghajuaGpaWaaS baaSqaaKqzadWdbiabeg7aHbWcpaqabaqcLbsapeGaaeyraiabgUca RiaabckajuaGdaGfqbGcbeWcpaqaaKqzadWdbiaadgeaaSqab0Wdae aajugOb8qacqGHris5aaqcfa4aaeWaaOWdaeaajugib8qacqGHhis0 juaGpaWaaSbaaSqaaKqzadWdbiabeg7aHbWcpaqabaqcLbsapeGaae yCaKqba+aadaWgaaWcbaqcLbmapeGaamyqaaWcpaqabaaak8qacaGL OaGaayzkaaqcLbsacaWFsbqcfa4damaaBaaaleaajugWa8qacaWGbb aal8aabeaajugib8qacqGHsislcaqGGcqcfa4aaybuaOqabSWdaeaa jugWa8qacaWGbbaaleqan8aabaqcLbAapeGaeyyeIuoaaKqbaoaawa fakeqal8aabaqcLbmapeGaeqiVd0MaeyipaWJaeqyXduhaleqan8aa baqcLbAapeGaeyyeIuoaaKqzGeGaey4bIeDcfa4aaeWaaOWdaeaaju gib8qacaaIYaGaamiuaKqba+aadaWgaaWcbaqcLbmapeGaeqiVd0Ma eqyXduhal8aabeaajugib8qaceWFsbWdayaaraqcfa4aa0baaSqaaK qzadWdbiabeY7aTjabe27aUbWcpaqaaKqzadWdbiaadgeaaaaakiaa wIcacaGLPaaajugibiaacckacqGHsislcaGGGcqcfa4aaybuaOqabS WdaeaajugWa8qacaWGbbGaeyipaWJaamOqaaWcbeqdpaqaaKqzGgWd biabggHiLdaajuaGdaGfWbGcbeWcpaqaaKqzadWdbiabeY7aTbWcpa qaaKqzadWdbiaadgeaa0WdaeaajugOb8qacqGHris5aaqcfa4aaybC aOqabSWdaeaajugWa8qacqaH9oGBaSWdaeaajugWa8qacaWGcbaan8 aabaqcLbAapeGaeyyeIuoaaKqzGeGaaGOmaiaadcfajuaGpaWaaSba aSqaaKqzadWdbiabeY7aTjabew8a1bWcpaqabaqcLbsapeGabmiEa8 aagaqeaKqbaoaaDaaaleaajugWa8qacqaH8oqBcqaH9oGBaSWdaeaa jugWa8qacaWGbbGaamOqaaaaaaa@B662@

where E is the identity matrix and each term of the APT is represented by a 3 X 3 matrix. The four contributions in the above equation can be identified according to Person, Coulson, and Mulliken terminology as charge, charge flux, atomic dipole flux, and homopolar dipole flux. Comparing with the CCFO model, the difference introduced in this work lies in the fact that the overlap term has been decomposed into two flux contributions (atomic dipole and homopolar dipole fluxes).

In eq. for α p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirNqba+aadaWgaaWcbaqcLbmapeGaeqySdegal8aa beaaieWajugib8qacaWFWbGaa8hlaaaa@3E34@ the first two terms are the only classical contributions, one of them being the Mulliken net charge of atom a in its equilibrium position, R α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaqa aaaaaaaaWdbiaa=jfajuaGpaWaaSbaaSqaaKqzadWdbiabeg7aHbWc paqabaqcfaOaaiilaaaa@3C82@ and the other being the "charge flux" corresponding to charge migration as the chemical bond involving the α atom has been distorted. The sum over all atoms, A, implies there is electronic density deformation involving all the atoms in the molecule. These two terms have already been well discussed by Person, Zilles, and other28,29,30 The atomic dipole flux can be separated into two parts if the gradient of the density matrix and center of charge integrals are taken inside the parentheses:

  μ<ν α 2 P μυ α ( R ¯ μν A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHsislcaGGGcWaaabCaeaajugibiaaikdacaWGqbGcpaWaaSba aSqaaKqzadWdbiabeY7aTjabew8a1bWcpaqabaaapeqaaKqzadGaeq iVd0MaeyipaWJaeqyVd4galeaajugWaiabeg7aHbqcLbAacqGHris5 aKqzGeGaey4bIeTcpaWaaSbaaSqaaKqzadWdbiaabg7aaSWdaeqaaO WdbmaabmaapaqaaGqadKqzGeWdbiqa=jfapaGbaebakmaaDaaaleaa jugWa8qacqaH8oqBcqaH9oGBaSWdaeaajugWa8qacaWGbbaaaaGcca GLOaGaayzkaaaaaa@5A6D@

and

  A μ<ν A 2 ( P μυ α ) R ¯ μν A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHsislcaGGGcWaaabuaeaadaaeWbqaaKqzGeGaaGOmaaWcbaqc LbmacqaH8oqBcqGH8aapcqaH9oGBaSqaaKqzadGaamyqaaqcLbAacq GHris5aaWcbaqcLbmacaWGbbaaleqajugObiabggHiLdqcfa4aaeWa aOWdaeaajugib8qacaWGqbqcfa4damaaBaaaleaajugWa8qacqaH8o qBcqaHfpqDaSWdaeqaaKqzGeWdbiabgEGirNqba+aadaWgaaWcbaqc LbmapeGaaeySdaWcpaqabaaak8qacaGLOaGaayzkaaacbmqcLbsace WFsbWdayaaraqcfa4aa0baaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqaaKqzadWdbiaadgeaaaaaaa@616C@

the first of the two terms in equation

  A μ<ν A 2 ( P μυ α ) R ¯ μν A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHsislcaGGGcWaaabuaeaadaaeWbqaaKqzGeGaaGOmaaWcbaqc LbmacqaH8oqBcqGH8aapcqaH9oGBaSqaaKqzadGaamyqaaqcLbAacq GHris5aaWcbaqcLbmacaWGbbaaleqajugObiabggHiLdqcfa4aaeWa aOWdaeaajugib8qacaWGqbqcfa4damaaBaaaleaajugWa8qacqaH8o qBcqaHfpqDaSWdaeqaaKqzGeWdbiabgEGirNqba+aadaWgaaWcbaqc LbmapeGaaeySdaWcpaqabaaak8qacaGLOaGaayzkaaacbmqcLbsace WFsbWdayaaraqcfa4aa0baaSqaaKqzadWdbiabeY7aTjabe27aUbWc paqaaKqzadWdbiaadgeaaaaaaa@616C@

 involves only the atom for which the APT is being calculated because only these ϕ ' s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew9aMjaacEcajuaGpaWaaSbaaSqaaKqzadWdbiaadoha aSWdaeqaaaaa@3C31@ depend on   ( r  R α ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaGqadKqzGeWdbiaa=jhacqGHsislcaGGGcGa a8NuaKqba+aadaWgaaWcbaqcLbmapeGaeqySdegal8aabeaaaOWdbi aawIcacaGLPaaajugibiaac6caaaa@41E3@

Hardware and software

For calculations a computer models was used: IntelÒ CoreTM i3-3220 CPU @ 3.3 GHz x 4 processors,31 Memory DDR3 4 GB, HD SATA WDC WD7500 AZEK-00RKKA0 750.1 GB and DVD-RAM SATA GH24NS9 ATAPI, Graphics Intel Ivy Bridge.32 For calculations of computational dynamics, the Ubuntu Linux version 16.10 system was used33 and the software used for the molecular dynamics was GAMESS.16,34

Results

The Figure 2 show on cell structure of a protonated rhodochrosite crystal of structure Stoichiometric is CH19Mn6O8, obtained after molecular dynamics via unrestricted Hartree-Fock method, in basis set CEP-4G, CEP-31G and CEP-121G.35–96 The Figure 3A–D) show the normalized absorption spectrum as a function of the vibrational frequencies of the protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G. The rhodochrosite crystal unit cell of structure CMn6O8, where the load distribution by the molecule was verified in the unrestricted Hartree-Fock method, UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis), through the analysis of APT and Mulliken loads.97–102 The rhodochrosite unit cell was protonated, then presented the structure CH19Mn6O8 for the study with ab initio methods with +4 multiplicity. The displacement of charges by the molecule was analyzed to verify the site of molecular action. The load distribution by the protonated crystal is evaluated in Table 1, and its vibrational frequencies in Table 2. The Table 2 show the maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 cm-1, with a normalized intensity of 65%; 2231.4 cm-1 and 45.4%; and 2177.24 cm-1 and 100%, respectively.

Figure 2 Cell structure of a protonated rhodochrosite crystal. Represented in red the oxygen; silver in color Manganese; in gray color Hydrogen; in light see green color the Carbon. Stoichiometry:   CMn6O8. Stoichiometry  protonated: CH19Mn6O8.

Figure 3A Absorbance spectrum plot as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G basis set.

Figure 3B Absorbance spectrum plot as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-31G basis set.

Figure 3C Absorbance spectrum plot as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-121G basis set.

Figure 3D Absorbance spectrum plot as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G.

Basis Sets

Mulliken

   

APT

   
 

Charge*

 

δ

Charge*

 

δ

CEP-4G

-1.064

1.064

2.128

-1.366

1.366

2.732

CEP-31G

-1.034

1.034

2.068

-1.362

1.362

2.724

CEP-121G

-1.325

1.325

2.65

-1.461

1.461

2.922

Table 1 Load shifting on given basis sets of the Mulliken and APT method
*±1,602 176 634×10−19 C (Coulomb).

 

ν  (cm-1)

I (%)

ν  (cm-1)

I (%)

ν  (cm-1)

I (%)

ν  (cm-1)

I (%)

CEP-4G

2172.23

64.9904

2043.25

51.7671

2193.1

41.6608

2242.97

36.4643

CEP-31G

2231.4

45.3589

1891.26

41.6207

2027.77

40.3978

1926.32

38.0064

CEP-121G

2177.24

100

2261.98

87.0553

1947.03

83.1151

1778.57

51.6624

Table 2 Peaks maximum absorption intensity by the frequency given. Absorbance frequency as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G
ν=Frequency (cm-1); I=Normalized Intensity (%).

Analysis

The Mulliken load method in the UHF-CEP-4G base set; UHF-CEP-31G and UHF-CEP-121G are sufficient to show that the sites of action of the rhodochrosite crystal structure are found in three Oxygen-linked Manganese atoms, which are attached to the central Carbon atom, as well as these. Oxygen atoms and the central Carbon. These Manganese atoms show a slight negative to neutral load shift in the CEP-4G set basis, neutral to positive in the CEP-31G and CEP-121G set basis at the Mulliken charges, (Figure 4). The charge displacement is strong in the oxygen atoms, especially those near the central carbon, with negative load in all set basis studied, both in the APT and Mulliken charges. The central carbon atom on all set basis is positively charged in both APT and Mulliken load, except Milliken in CEP-31G, which is neutral. As might be expected from the charges by APT, the strong positive load manganese atoms, the strong negative load oxygen, the positively charged carbon atom. The manganese atom farthest from the carbon atom has a slight positive to neutral load shift. The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation δ=2,650 u.a for CEP-121G. The absorption peaks are in a Gaussian between the frequencies 1620 cm-1 and 2520 cm-1, Figure 3D. The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with δ=2.922 e δ=2.650, respectively, being δAPT > δMulliken, in all sets of calculated basis, (Table 1).

Figure 4 UHF-CEP-4G; UHF-CEP-31G and UHF-CEP-121G for APT and Mulliken.

Conclusion

The absorption peaks are in a Gaussian between the frequencies 1620 cm-1 and 2520 cm-1. The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation δ=2,650 u.a for CEP-121G. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 cm-1, with a normalized intensity of 0.65, 2231.4 cm-1 and 0.454 and 2177.24 cm-1 and 1.0 respectively. Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal. An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral tissues of rhodochrosite, before and after irradiating of synchrotron radiation using Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing– Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD).

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. F James Holler, Douglas A. Skoog and Stanley R. Crouch. Principles of Instrumental Analysis. 6th ed. Cengage Learning. 200, p. 9.
  2. Fox Electronics. Quartz Crystal Theory of Operation and Design Notes. Oscillator Theory of Operation and Design Notes. 2008.
  3. RE Newnham. Properties of materials. Anisotropy, Simmetry, Structure. Oxford University Press, New York, 2005.
  4. CD Gribble, AJ Hall. A Practical Introduction to Optical Mineralogy. 1985.
  5. Creative Commons. (CC-BY 4.0). Wikipedia, The Free Encyclopedia. 2019.
  6. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019;3(2):AJBSR.MS.ID.000659.
  7. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal. International Journal of Advanced Chemistry. 2019;7(2):77–81.
  8. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. 2019. p. 1–2.
  9. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal. International viXra.org Chemistry. viXra:1908.0294.
  10. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. viXra.org, Condensed Matter, viXra:1908.0295.
  11. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, et al. Rhodochrosite Optical Indicatrix. Peer Res Nest. 2019;1(3):PNEST.19.08.020.
  12. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, et al. Rhodochrosite Optical Indicatrix. Condensed Matter. 1908;0455.
  13. China Science Communication. Baidu, 2019.
  14. IN Levine. Quantum Chemistry. Pearson Education (Singapore) Pte. Ltd., Indian Branch, 48. In: FIE Patparganj editor. Delhi 110 092, India, 5th ed. edition, 2003.
  15. A Szabo, NS Ostlund. Modern Quantum Chemistry. Dover Publications, New York, 1989. p. 1–479.
  16. MS Gordon, Kim K Baldridge, Jerry A Boatz, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14(11):1347–1363.
  17. K Ohno, K Esfarjani, Y Kawazoe. Computational Material Science. Springer-Verlag, Berlin, 1999.
  18. K Wolfram, MC Hothausen. Introduction to DFT for Chemists. John Wiley & Sons, Inc. New York, 2nd edn. 2001.
  19. P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys Rev. 1964;(136):B864–B871.
  20. W Kohn, LJ Sham. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.
  21. RS Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J Chem Phys. 1955;23:1833–1840.
  22. IG Csizmadia. Theory and Practice of MO Calculations on Organic Molecules. Elsevier, Amsterdam, 1976.
  23. Ferreira MMC. Hartree-fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation. J Phys Chem. 1990;94:3220–3223.
  24. Biarge JF, Herranz J, Morcillo J. Polarized basis sets and the calculation of infrared intensities from nuclear electric shielding tensors. An R Soc Esp Fis Quim Ser A. 1961;A57:81.
  25. Person WB, Newton JH. Dipole moment derivatives and infrared intensities. I. Polar tensorsJ Chem Phys. 1974;61:1040.
  26. King WT, Mast GB. Integrated intensities in hydrogen cyanide J Phys Chem. 1976;80:2521.
  27. King WT. Vibrational Intensities in Infrared and Ramon Spectra: Person. In: WB Zerbi et al., editors. Elsevier: Amsterdam, 1982; Chapter 6.
  28. Person WB, Zilles B, Rogers JD, et al.  Hartree-fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation. RGAJ Mol Struct. 1982;80:297.
  29. Zilles BA. Ph.D. Dissertation, University of Florida, 1980.
  30. Zilles BA, Person W. Interpretation of infrared intensity changes on molecular complex formation. I. Water dimer. J Chem Phys. 1983;79:65.
  31. Creative Commons, (CC BY 4.0), “List of Intel Core i3 microprocessors. 2018.
  32. “Ivy Bridge”. 2018.
  33. Ubuntu (operating system). 2018.
  34. MS Gordon, MW Schmidt. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years. Elsevier. In: CE Dykstra et al., editors. 2005. p. 1167–1189.
  35. R Gobato, A Gobato, DFG Fedrigo. Inorganic arrangement crystal beryllium, lithium, selenium and silicon. In XIX Semana da Física. Simpósio Comemorativo dos 40 anos do Curso de Física da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL). 2014.
  36. R Gobato. Benzocaína, um estudo computacional”, Master’s thesis, Universidade Estadual de Londrina (UEL), 2008.
  37. R Gobato. Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.). Parana J Sci Edu. 2017;3(1):1–9.
  38. R Gobato, A Gobato, DFG Fedrigo. Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus Latifolia Var Tahiti). Parana J Sci Edu. 2015;1(1):1–10.
  39. R Gobato, DFG Fedrigo, A Gobato. Allocryptopine, Berberine, Chelerythrine, Copsitine, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Linn. Parana J Sci Edu. 2015;1(2):7–16.
  40. R Gobato, A Heidari. Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods. International Journal of Atmospheric and Oceanic Sciences. 2018;2(1):1–9.
  41. R Gobato, DFG Fedrigo, A Gobato. Molecular geometry of alkaloids present in seeds of mexican prickly poppy. Cornell University Library. 2015;arXiv:1507.05042.
  42. R Gobato, A Gobato, DFG Fedrigo. Study of the molecular electrostatic potential of D-Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species) in the Mm+ method. Parana J Sci Educ. 2016;2(4):1–9.
  43. R Gobato, DFG Fedrigo, A Gobato. Avro: key component of Lockheed X-35. Parana J Sci Educ. 2015;1(2):1–6.
  44. R Gobato, DFG Fedrigo, A Gobato. LOT-G3: Plasma Lamp, Ozonator and CW Transmitter. Ciencia e Natura. 2016;38(1).
  45. R Gobato. Matter and energy in a non-relativistic approach amongst the mustard seed and the faith. A metaphysical conclusion. Parana J Sci Educ. 2016;2(3):1–14.
  46. R Gobato, A Gobato, DFG Fedrigo. Harnessing the energy of ocean surface waves by Pelamis System. Parana J Sci Educ. 2016;2(2):1–15.
  47. R Gobato, A Gobato, DFG Fedrigo. Mathematics for input space probes in the atmosphere of Gliese 581d. Parana J Sc. Educ. 2016;2(5):6–13.
  48. R Gobato, A Gobato, DFG Fedrigo. Study of tornadoes that have reached the state of Parana. Parana J Sci Educ. 2016;2(1):1–27.
  49. R Gobato, M Simões F. Alternative Method of RGB Channel Spectroscopy Using a CCD Reader. Ciencia e Natura. 2017;39(2):1–9.
  50. R Gobato, A Heidari. Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi. Science Journal of Analytical Chemistry. 2017;5(5):76–85.
  51. R Gobato. O universo dos cristais líquidos”, Cadernos PDE, Secretaria de Estado da Educação do Paraná. 2009; 2:1–15
  52. R Gobato. The Liotropic Indicatrix. Thesis (Doctorate in Pysics). Universidade Estadual de Londrina, Londrina, 2012. p. 114.
  53. R Gobato, A Heidari. Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi. Science Journal of Analytical Chemistry. 2017;5(6):76–85.
  54. MRR Gobato, R Gobato, A Heidari. Planting of Jaboticaba Trees for Landscape Repair of Degraded Area. Landscape Architecture and Regional Planning. 2018;3(1):1–9.
  55. R Gobato, A Heidari. Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations. Malaysian Journal of Chemistry. 2018;20(1):1–23.
  56. A Heidari, R Gobato. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells–Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(–)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti–Cancer Nano Drugs by Coassembly of Dual Anti–Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 2018;4(6):1–17.
  57. A Heidari, R Gobato. Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet–Visible (UV–Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Parana Journal of Science and Education. 2018; 4(6):8–33.
  58. R Gobato, A Heidari. Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H. J Nanomed Res. 2018;7(4):241–252.
  59. SK Agarwal, S Roy, P Pramanick, et al. Marsilea quadrifolia: A floral species with unique medicinal properties.  Parana J Sci Educ. 2018;4(5):15–20.
  60. A Mitra, S Zaman, R Gobato. Indian Sundarban Mangroves: A potential Carbon Scrubbing System. Parana J Sci Educ. 2018;4(4):7–29.
  61. O Yarman, R Gobato, T Yarman. A new Physical constant from the ratio of the reciprocal of the “Rydberg constant” to the Planck length. Parana J Sci Educ. 2018;4(3):42–51.
  62. R Gobato, M Simões F. Alternative Method of Spectroscopy of Alkali Metal RGB. Modern Chemistry. 2017;5(4):70–74.
  63. DFG Fedrigo, R Gobato, A Gobato. Avrocar: a real flying saucer”, Cornell University Library. 2015;arXiv:1507.06916v1.
  64. M Simões F, AJ Palangana, R Gobato, et al. Micellar shape anisotropy and optical indicatrix in reentrant isotropic-nematic phase transitions. The Journal of Chemical Physics. 2012;137:204905.
  65. A Heidari, R Gobato. Putrescine, Cadaverine, Spermine and Spermidine–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Parana Journal of Science and Education (PJSE). 2018;4(5):1–14.
  66. R Gobato, A Heidari. Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations. Malaysian Journal of Chemistry. 2018;20(1):1–23.
  67. R Gobato, A Heidari, A Mitra. The Creation of C13H20BeLi2SeSi. The Proposal of a Bio–Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane. Arc Org Inorg Chem Sci. 2018;3(4):AOICS.MS.ID.000167.
  68. R Gobato, A Heidari, A Mitra. Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H. Semantic Scholar. 2018.
  69. A Heidari, R Gobato. First–Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)–3,7,15–Trihydroxy–12,13–Epoxytrichothec–9–En–8–One)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 2018;4(6):46–67.
  70. R Gobato, MRR Gobato, A Heidari, et al. Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G**(3df, 3pd). Arc Org Inorg Chem Sci. 2018;3(5):402–409.
  71. R Gobato, MRR Gobato, A Heidari, et al. Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G**(3df, 3pd). American Journal of Quantum Chemistry and Molecular Spectroscopy. 2018;2(1):9–17.
  72. R Gobato, MRR Gobato, A Heidari. Raman Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set CC–pVTZ and 6–311G** (3df, 3pd). International Journal of Advanced Engineering and Science. 2019;7(1):14–35.
  73. A Heidari, R Gobato. Evaluating the Effect of Anti–Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation. Trends in Res. 2019;2(1):1–8.
  74. A Heidari, R Gobato. Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment. Trends in Res. 2019;2(1):1–8.
  75. A Heidari, R Gobato. Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors. Trends in Res. 2019;2(1):1–8.
  76. A Heidari, R Gobato. Three–Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti–Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation. Trends in Res. 2019;2(1):1–8.
  77. A Heidari, R.Gobato. Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend. Trends in Res. 2019;2(1):1–8.
  78. A Heidari, R. Gobato. High–Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation. Trends in Res. 2019;2(2):1–9.
  79. R Gobato, MRR Gobato, A Heidari. Storm Vortex in the Center of Paraná State on June 6, 2017: A Case Study. Sumerianz Journal of Scientific Research. 2019;2(2):24–31.
  80. R Gobato, MRR Gobato, A Heidari. Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set RHF/CC– pVTZ and RHF/6–311G** (3df, 3pd): An Experimental Challenge to Chemists. Chemistry Reports. 2019;2(1):1–26.
  81. R Gobato, MRR Gobato, A Heidari, et al. New Nano–Molecule Kurumi–C13H 20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using ab initio, Hartree–Fock Method in the Base Set CC–pVTZ and 6–311G** (3df, 3pd). J Anal Pharm Res. 2019;8(1):1–6.
  82. R Gobato, MRR Gobato, A Heidari. Evidence of Tornado Storm Hit the Counties of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil. Sci Lett. 2019;7(1):9.
  83. Moharana Choudhury, Pardis Fazli, Prosenjit Pramanick, et al. Sensitivity of the Indian Sundarban mangrove ecosystem to local level climate change. Parana Journal of Science and Education. 2019;5(3):24–28.
  84. Arpita Saha, Ricardo Gobato, Sufia Zaman. Biomass Study of Mangroves in Indian Sundarbans: A Case Study from Satjelia Island. Parana Journal of Science and Education. 2019;5(2):1–5.
  85. Nabonita Pal, Arpan Mitra, Ricardo Gobato, et al. Natural Oxygen Counters in Indian Sundarbans, the Mangrove Dominated World Heritage Site. Parana Journal of Science and Education. 2019;5(2):6–13.
  86. Ricardo Gobato, Victoria Alexandrovna Kuzmicheva, Valery Borisovich Morozov. Einstein's hypothesis is confirmed by the example of the Schwarzschild problem. Parana Journal of Science and Education. 2019;5(1):1–6.
  87. Sufia Zaman, Ricardo Gobato, Prosenjit Pramanick, et al. Water quality of the River Ganga in and around the city of Kolkata during and after Goddess Durga immersion. Parana Journal of Science and Education. 2018;4(9):1–7.
  88. Ozan Yarman, Metin Arik, Ricardo Gobato, et al. Clarification of “Overall Relativistic Energy” According to Yarman’s Approach. Parana Journal of Science and Education. 2018;4(8):1–10.
  89. Sufia Zaman, Utpal Pal, Ricardo Gobato, et al. The Changing Trends of Climate in Context to Indian Sundarbans. Parana Journal of Science and Education. 2018;4(7):24–28.
  90. Suresh Kumar Agarwal, Sitangshu Roy, Prosenjit Pramanick, et al. Marsilea quadrifolia: A floral species with unique medicinal properties. Parana Journal of Science and Education. 2018;4(5):15–20.
  91. Ricardo Gobato, Marcia Regina Risso Gobato. Evidence of Tornadoes Reaching the Countries of Rio Branco do Ivai and Rosario de Ivai, Southern Brazil on June 6, 2017. Climatol Weather Forecasting. 2018;6:4.
  92. Ricardo Gobato. New Nano-Molecule Kurumi and Raman Spectroscopy using ab initio, Hartree-Fock Method. Am J Biomed Sci & Res. 2019;2(4):AJBSR.MS.ID.000594.
  93. DL Graf, Crystallographic tables for the rhombohedral carbonates. American Mineralogist. 1961;46:1283–1316.
  94. EN Maslen, VA Streltsov, NR Streltsova, et al. Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallographica B. 1995;51:929–939.
  95. R Wyckoff. The crystal structures of some carbonates of the calcite group. American Journal of Science. 1920;50:317–360.
  96. D Marcus, DE Hanwell, DC Curtis, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 2012;4:17.
  97. J Cioslowski. General and unique partitioning of molecular electronic properties into atomic contributions. Phys Rev Lett. 1989;62:1469.
  98. Paul von Ragu Schleyer. Encyclopedia of computational chemistry. New York, J. Wiley, 1998.
  99. Mulliken RS. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics. 1955;23(10):1833–1840.
  100. WJ Stevens, H Basch, M Krauss. Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms. J Chem Phys. 1984;81:6026–6033.
  101. WJ Stevens, M Krauss, H Basch, et al. Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms. Can J Chem. 1992;70(2):612–630.
  102. TR Cundari, WJ Stevens. Effective core potential methods for the lanthanides. J Chem Phys. 1993;98:5555–5565.
Creative Commons Attribution License

©2019 Gobato, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.