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Abbreviations: APT, atomic polar tensor; ECP, effective 
core potential; SAXS, small–angle X–ray scattering; USAXS, ultra–
small angle X–ray scattering; FXS, X–ray scattering; WAXS, wide–
angle X–ray scattering; GISAXS, grazing–incidence small–angle 
X–ray scattering; GIWAXS, grazing–incidence wide–angle X–ray 
scattering; SANS, small–angle neutron scattering; GISANS, grazing–
incidence small–angle neutron scattering; XRD, X–ray diffraction; 
PXRD, powder X–ray diffraction; WAXD, wide–angle X–ray 
diffraction; GIXD grazing– incidence X–ray diffraction; EDXRD, 
energy–dispersive X–ray diffraction

Introduction 
The rhodochrosite as crystal oscillator for being an alternative to 

those of quartz. The rhodochrosite (MnC03) shows complete solid 
solution with siderite (FeC03), and it may contain substantial amounts 
of Zn, Mg, Co, and Ca. The electric charge that accumulates in certain 
solid materials, such as crystals, certain ceramics, and biological 
matter such as bone, DNA and various proteins in response to applied 
mechanical stress, phenomenon called piezoelectricity.1 Through an 
unrestricted Hartree-Fock (UHF) computational simulation, Compact 
effective potentials (CEP), the infrared spectrum of the protonated 
rhodochrosite crystal, CH19Mn6O8, and the load distribution by the 
unit molecule by two widely used methods, Atomic Polar Tensor 

(APT) and Mulliken, were studied. The rhodochrosite crystal unit cell 
of structure CMn6O8, where the load distribution by the molecule was 
verified in the UHF CEP-4G (Effective core potential (ECP) minimal 
basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP 
triple-split basis).

The electronic oscillator circuit that uses the mechanical resonance 
of a vibrating crystal of piezoelectric material to create an electrical 
signal with a precise frequency is a crystal oscillator. The most 
common type of piezoelectric resonator used is the quartz crystal, 
so oscillator circuits incorporating them became known as crystal 
oscillators.2 Quartz crystals are manufactured for frequencies from a 
few tens of kilohertz to hundreds of megahertz. More than two billion 
crystals are manufactured annually. Most are used for consumer 
devices such as wristwatches, clocks, radios, computers, cellphones, 
signal generators and oscilloscopes.3–12 But other crystals such as 
rhodochrosite also have piezoelectric properties. The rhodochrosite 
as crystal oscillator for being an alternative to those of quartz. The 
rhodochrosite (MnC03) shows complete solid solution with siderite 
(FeC03), and it may contain substantial amounts of Zn, Mg, Co, 
and Ca. The Kutnohorite [CaMn(C03)2] is a dolomite group mineral 
intermediary between rhodochrosite and calcite.3–12 The Figure 1 is 
one photography the Rhodochrosite stone from China.
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Abstract

In this paper, compact effective potentials, charge distribution, Atomic Polar Tensor (APT) 
and Mulliken charges were studied using a unrestricted Hartree-Fock computational 
simulation in a protonated rhodochrosite crystal. The rhodochrosite crystal unit cell 
of structure CMn6O8, where the charge distribution by the molecule was verified in the 
UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split 
valance) and UHF CEP-121G (ECP triple-split basis). The largest load variation in the APT 
and Mulliken methods were obtained in the CEP-121G basis set, with δ=2.922 e δ=2.650 
u.a., respectively, being δAPT> δMulliken. The maximum absorbance peaks in the CEP-4G, 
CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm-1, with a 
normalized intensity of 0.65; 2231.4 cm-1 and 0.454; and 2177.24 cm-1 and 1.0, respectively. 
An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral 
tissues of rhodochrosite, before and after irradiating of synchrotron radiation using 
Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), 
Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–
Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–
Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence 
Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray 
Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing– Incidence X–
Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD). Later 
studies could check the advantages and disadvantages of rhodochrosite in the treatment of 
cancer through synchrotron radiation, such as one oscillator crystal.

Keywords: rhodochrosite, quartz crystal, hartree-fock methods, apt, mulliken, effective 
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Figure 1 Rhodochrosite stone from China.13 

Methods
Hartree-Fock methods

The Hartree-Fock self–consistent method14–20 is based on the 
one-electron approximation in which the motion of each electron 
in the effective field of all the other electrons is governed by a one-
particle Schrodinger¨ equation. The Hartree-Fock approximation 
takes into account of the correlation arising due to the electrons of 
the same spin, however, the motion of the electrons of the opposite 
spin remains uncorrelated in this approximation. The methods beyond 
self-consistent field methods, which treat the phenomenon associated 
with the many-electron system properly, are known as the electron 
correlation methods. The vast literature associated with these methods 
suggests that the following is a plausible hierarchy:

        ( )             2HF MP CISD CISD CISD T FCI<< < < < <

The extremes of ‘best’, FCI, and ‘worst’, HF, are irrefutable, 
but the intermediate methods are less clear and depend on the type 
of chemical problem being addressed.14 The use of HF in the case 
of FCI was due to the computational cost. The molecular Hartree-
Fock wave function is written as an antisymmetrized product (Slater 
determinant) of spin-orbitals, each spin-orbital being a product of a 
spatial orbital 

i
φ and a spin function (either α or β ). The expression 

for the Hartree-Fock molecular electronic energy 
 HF

E is given by the 

variation theorem as ˆ
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Therefore, the Hartree-Fock energy of a diatomic or polyatomic 
molecule with only closed shells is
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where the one-electron-operator symbol was changed from ˆ
i

f  to 
( )ˆ 1 .coreH 5

Mulliken load

Mulliken’s loads are derived from the Mulliken population 
analysis and provide means for estimating partial atomic charges 
from numerical chemistry calculations, particularly those based on the 
linear combination of atomic orbitals. If the coefficients of the basic 
functions in the molecular orbital are Cμi for μe the basic function ie in 
the orbital molecular, the coefficients of the density matrix are:

                                     
*2   i ii

D C C
µν µ υ

= ∑
for a compact closed system in which each molecular orbital is 

doubly occupied. The population matrix P therefore has the following 
coefficients:

                                        
( )P DS µνµν

=

https://doi.org/10.15406/paij.2019.03.00187


Unrestricted hartree-fock computational simulation in a protonated rhodochrosite crystal 222
Copyright:

©2019 Gobato et al. 

Citation: Gobato R, Gobato MRR, Heidari A, et al. Unrestricted hartree-fock computational simulation in a protonated rhodochrosite crystal. Phys Astron Int J. 
2019;3(6):220‒228. DOI: 10.15406/paij.2019.03.00187

S is the overlay matrix for basic functions. The sum of the set 
of terms of P

µν
is N - the total number of electrons. The Mulliken 

population analysis aims first of all to distribute the N electrons on 
all the basic functions. This is done by taking the diagonal elements 
of P

µν
and factorizing the non-diagonal elements equally between the 

two appropriate basic functions. Non-diagonal terms including P
µν

and P
νµ

this simplifies the operation to a sum on a line. This defines 
the gross orbital population (GOB) as:

                                         
 PGOP

µ µνν
=∑

The terms GOP
µ

lie on N and then divide the total number of 
electrons between the basic functions. It then remains to sum these 
terms on all the basic functions of a given atom A in order to obtain 
the gross atomic population (GAP). The integral of the GAPA terms 
also gives N. The load, QA, is then defined as the difference between 
the number of electrons on the free isolated atom, which is the atomic 
number ZA, and the raw atomic population:

                                    
  

A A A
Q Z GAP= −

The problem with this approach is the even distribution of non-
diagonal terms between the two basic functions. This leads to charge 
separations between the molecules that are exaggerated. Many other 
methods are used to determine atomic charges in molecules.21,22 

Concerning the nuclear contribution, the nuclear charge 
A

Z can be 
written as ,
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qZ Q= +  where 

A
q and 

A
Q  account for the Mulliken 

net and gross atomic charge.21 According to the Mulliken population 
analysis, the nuclear charge for A can be written as
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The first two terms in eq. for ˆ
x

p are of atomic origin where 
the first one, involving the net atomic charge, is the only term with 
a classical counterpart. The second term resembles Coulson’s atomic 
dipole, and the integral Ax

µν
is the distance from the centroid of the 

hybrid orbital to nucleus A. For the third term, the integral ABx
µν

= is 
the distance of the center of charge from the midpoint of the chemical 
bond A-B. This contribution to the dipole moment has been referred 
to as the homopolar dipole21 by Mulliken. As can be seen, the dipole 
moment has been partitioned into three contributions: the net atomic 
charge, the atomic dipole, and the homopolar dipole. Since the density 
matrix is invariant with respect to the choice of origin and since the 
sum of all net atomic charges vanishes, this partitioning of the dipole 
moment does not depend on the choice of origin for the system.5,23

Atomic polar tensor (APT)

One of the most useful methods for interpreting and predicting 
infrared intensities comes from the atomic polar tensor (APT) 
formalism.24,25 In the APT framework, the derivative of the molecular 

dipole moment vector with respect to the ith normal coordinate (which 
is directly related to the infrared intensity of the ith fundamental 
mode), can be expressed as

                       

1
, i

i i
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 So, if all the experimental infrared intensities and normal 
coordinates are known as well as the permanent dipole moment for 
a given molecule, the APT can be determined. On the other hand, 
these APTs can also be calculated by the SCF method and used to 
predict infrared intensities. These intensities can then be interpreted 
by partitioning the APT. This has been done before in the “charge-
charge flux-overlap” (CCFO) model, first introduced by King and 
Mast26,27 and later applied by Person et al.28

The general expression for the APT is:
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where E is the identity matrix and each term of the APT is 
represented by a 3 X 3 matrix. The four contributions in the above 
equation can be identified according to Person, Coulson, and 
Mulliken terminology as charge, charge flux, atomic dipole flux, 
and homopolar dipole flux. Comparing with the CCFO model, the 
difference introduced in this work lies in the fact that the overlap term 
has been decomposed into two flux contributions (atomic dipole and 
homopolar dipole fluxes).

In eq. for α∇ p, the first two terms are the only classical 
contributions, one of them being the Mulliken net charge of atom a 
in its equilibrium position, ,αR and the other being the “charge flux” 
corresponding to charge migration as the chemical bond involving 
the α  atom has been distorted. The sum over all atoms, A, implies 
there is electronic density deformation involving all the atoms in 
the molecule. These two terms have already been well discussed by 
Person, Zilles, and other28,29,30 The atomic dipole flux can be separated 
into two parts if the gradient of the density matrix and center of charge 
integrals are taken inside the parentheses:

                      
( )á2 AP

α

µυ µν
µ ν<

∇− ∑ R

and

                    
( )á2 

A
A

A
Pµυ µν

µ ν<
∇−∑ ∑ R

 
the first of the two terms in equation

                   
( )á2 

A
A

A
Pµυ µν

µ ν<
∇−∑ ∑ R

 involves only the atom for which the APT is being calculated 
because only these 'sφ depend on ( ) .α−r R  

Hardware and software

For calculations a computer models was used: Intel CoreTM 
i3-3220 CPU @ 3.3 GHz x 4 processors,31 Memory DDR3 4 GB, 
HD SATA WDC WD7500 AZEK-00RKKA0 750.1 GB and DVD-
RAM SATA GH24NS9 ATAPI, Graphics Intel Ivy Bridge.32 For 
calculations of computational dynamics, the Ubuntu Linux version 
16.10 system was used33 and the software used for the molecular 
dynamics was GAMESS.16,34

Results 
The Figure 2 show on cell structure of a protonated rhodochrosite 

crystal of structure Stoichiometric is CH19Mn6O8, obtained after 
molecular dynamics via unrestricted Hartree-Fock method, in basis 
set CEP-4G, CEP-31G and CEP-121G.35–96 The Figure 3 (A–D) show 
the normalized absorption spectrum as a function of the vibrational 
frequencies of the protonated rhodochrosite crystal for UHF-CEP-4G 
basis set, UHF-CEP-31G and UHF-CEP-121G. The rhodochrosite 
crystal unit cell of structure CMn6O8, where the load distribution by 
the molecule was verified in the unrestricted Hartree-Fock method, 
UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF 
CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split 
basis), through the analysis of APT and Mulliken loads.97–102 The 
rhodochrosite unit cell was protonated, then presented the structure 

CH19Mn6O8 for the study with ab initio methods with +4 multiplicity. 
The displacement of charges by the molecule was analyzed to verify 
the site of molecular action. The load distribution by the protonated 
crystal is evaluated in Table 1, and its vibrational frequencies in Table 
2. The Table 2 show the maximum absorbance peaks in the CEP-
4G, CEP-31G and CEP-121G set basis are present at the frequencies 
2172.23 cm-1, with a normalized intensity of 65%; 2231.4 cm-1 and 
45.4%; and 2177.24 cm-1 and 100%, respectively.

Figure 2 Cell structure of a protonated rhodochrosite crystal. Represented 
in red the oxygen; silver in color Manganese; in gray color Hydrogen; in 
light see green color the Carbon. Stoichiometry:   CMn6O8. Stoichiometry  
protonated: CH19Mn6O8. 

Figure 3A Absorbance spectrum plot as a function of vibrational frequencies 
of protonated rhodochrosite crystal for UHF-CEP-4G basis set. 
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Figure 3B Absorbance spectrum plot as a function of vibrational frequencies 
of protonated rhodochrosite crystal for UHF-CEP-31G basis set. 

Figure 3C Absorbance spectrum plot as a function of vibrational frequencies 
of protonated rhodochrosite crystal for UHF-CEP-121G basis set. 

Figure 3D Absorbance spectrum plot as a function of vibrational frequencies of protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G 
and UHF-CEP-121G. 

Table 1 Load shifting on given basis sets of the Mulliken and APT method

Basis Sets Mulliken APT

Charge* δ Charge* δ
CEP-4G -1.064 1.064 2.128 -1.366 1.366 2.732

CEP-31G -1.034 1.034 2.068 -1.362 1.362 2.724

CEP-121G -1.325 1.325 2.65 -1.461 1.461 2.922

*±1,602 176 634×10-19 C (Coulomb). 

Table 2 Peaks maximum absorption intensity by the frequency given. Absorbance frequency as a function of vibrational frequencies of protonated rhodochrosite 
crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G

ν (cm-1) I (%) ν  (cm-1) I (%) ν (cm-1) I (%) ν  (cm-1) I (%)

CEP-4G 2172.23 64.9904 2043.25 51.7671 2193.1 41.6608 2242.97 36.4643

CEP-31G 2231.4 45.3589 1891.26 41.6207 2027.77 40.3978 1926.32 38.0064

CEP-121G 2177.24 100 2261.98 87.0553 1947.03 83.1151 1778.57 51.6624

ν=Frequency (cm-1); I=Normalized Intensity (%). 
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Analysis

The Mulliken load method in the UHF-CEP-4G base set; UHF-
CEP-31G and UHF-CEP-121G are sufficient to show that the sites 
of action of the rhodochrosite crystal structure are found in three 
Oxygen-linked Manganese atoms, which are attached to the central 
Carbon atom, as well as these. Oxygen atoms and the central Carbon. 
These Manganese atoms show a slight negative to neutral load shift 
in the CEP-4G set basis, neutral to positive in the CEP-31G and 
CEP-121G set basis at the Mulliken charges, (Figure 4). The charge 
displacement is strong in the oxygen atoms, especially those near 
the central carbon, with negative load in all set basis studied, both 
in the APT and Mulliken charges. The central carbon atom on all set 

basis is positively charged in both APT and Mulliken load, except 
Milliken in CEP-31G, which is neutral. As might be expected from 
the charges by APT, the strong positive load manganese atoms, the 
strong negative load oxygen, the positively charged carbon atom. The 
manganese atom farthest from the carbon atom has a slight positive to 
neutral load shift. The Mulliken load method presents a better result 
when compared to the APT, in the studied set basis, for protonated 
rhodochrosite crystal, with a smaller load variation δ=2,650 u.a for 
CEP-121G. The absorption peaks are in a Gaussian between the 
frequencies 1620 cm-1 and 2520 cm-1, Figure 3D. The largest load 
variation in the APT and Mulliken methods were obtained in the CEP-
121G base set, with δ=2.922 e δ=2.650, respectively, being δAPT > 
δMulliken, in all sets of calculated basis, (Table 1).

Figure 4 UHF-CEP-4G; UHF-CEP-31G and UHF-CEP-121G for APT and Mulliken. 
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Conclusion
The absorption peaks are in a Gaussian between the frequencies 

1620 cm-1 and 2520 cm-1. The Mulliken load method presents a better 
result when compared to the APT, in the studied set basis, for protonated 
rhodochrosite crystal, with a smaller load variation δ=2,650 u.a for 
CEP-121G. The maximum absorbance peaks in the CEP-4G, CEP-
31G and CEP-121G set basis are present at the frequencies 2172.23 
cm-1, with a normalized intensity of 0.65, 2231.4 cm-1 and 0.454 and 
2177.24 cm-1 and 1.0 respectively. Later studies could check the 
advantages and disadvantages of rhodochrosite in the treatment of 
cancer through synchrotron radiation, such as one oscillator crystal. 
An in-depth study is necessary to verify the absorption by the tumoral 
and non-tumoral tissues of rhodochrosite, before and after irradiating 
of synchrotron radiation using Small–Angle X–Ray Scattering 
(SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation 
X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), 
Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), 
Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), 
Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–
Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), 
Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction 
(WAXD), Grazing– Incidence X–Ray Diffraction (GIXD) and 
Energy–Dispersive X–Ray Diffraction (EDXRD).
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