Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 3

The propagators for time-dependent mass harmonic oscillators

Surarit Pepore

Physics, Rajamangala, University of Technology Thanyaburi, Thailand

Correspondence: Surarit Pepore, Physics, Rajamangala, University of Technology Thanyaburi, Thailand, Tel 0925202842

Received: November 12, 2021 | Published: November 23, 2021

Citation: Pepore S. The propagators for time-dependent mass harmonic oscillators. Phys Astron Int J. 2021;5(3):93-98. DOI: 10.15406/paij.2021.05.00240

Download PDF

Abstract

In this paper, the propagator for a harmonic oscillator with mass obeying the function of m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@ is derived by the Feynman path integral method. The wave function of this oscillator is calculated by expanding the obtained propagator. The propagator for a harmonic oscillator with strongly pulsating mass is evaluated by the Schwinger method. The propagator for a harmonic oscillator with mass rapidly growing with time is calculated by applying the integrals of the motion of quantum systems. The comparison between these methods are also discussed.

Keywords: Feynman path integral, Schwinger method, Integrals of the motion,Propagator

Introduction

The research in deriving quantum solutions for a harmonic oscillator with time-dependent frequencies or with time-dependent masses (or both simultaneously) have intensive studied in the recent years.1–7 The main reasons for time-dependent harmonic oscillator very interesting is the application in many areas of physics such as quantum chemistry, plasma physics, and quantum optics. For example, Colegrave and Abdalla8,9 presented that electromagnetic field intensities in a Fabry-Perot cavity can be described by a harmonic oscillator with time-dependent mass and constant frequency. The standard tool in solving wave function of Schrodinger’s equation for time-dependent harmonic oscillator is the Lewis-Riesenfeld in variant operator method.10 The another method to solve the time-dependent harmonic oscillator problems is Feynman path integral.11,12 The Feynman path integral is the formulation which is invented for calculating the propagator. The propagator represents the transition probability amplitude of the system or Green’s function of the Schrodinger’s equation. The Feynman path integral was applied to derive the propagators for a harmonic oscillator with strongly pulsating mass ( m( t )=m cos 2 νt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad2gadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaad2gaciGGJbGaai4BaiaacohapaWaaWbaaSqabe aapeGaaGOmaaaak8aacqaH9oGBpeGaamiDaaGaayjkaiaawMcaaaaa @4517@  and a harmonic oscillator with mass growing with time ( m( t )=m ( 1+αt ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad2gadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaad2gadaqadaWdaeaapeGaaGymaiabgUcaRiabeg 7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaa aOGaayjkaiaawMcaaaaa@4551@  by M Sabir and S Raja gopalan in 1991.3 The one aims of this paper is applying the Feynman path integral to calculate the propagator for a harmonic oscillator with mass obeying the function of m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@ and then expanding the obtained propagator to evaluate the wave function. The another method in calculating the propagator is the Schwinger method.12 This method was first introduced by Schwinger in 1951 in solving the gauge invariance and vacuum polarization in QED. In 2015 S Pepore and B Sukbot applied the Schwinger method to evaluate the propagator for a harmonic oscillator with mass growing with time.13The another purposes of this article is employing the Schwinger method to derive the propagator for a harmonic oscillator with strongly pulsating mass. The alternative techniques in deriving the propagator is applying the integrals of the motion of quantum systems. This method was first presented by VV Dodonov, IA Malk in, and V. I. Man’ko in 1975.14 In 2018, S Pepore applied the integrals of the motion of quantum systems to calculate the Green function for time-dependent mass harmonic oscillators,15dual damped oscillators, and coupled harmonic oscillators.16 The final aims of this paper is employing this method to calculate the propagator for a harmonic oscillator with mass rapidly growing with time ( m( t )=m ( 1+αt ) 4 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad2gadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaad2gadaqadaWdaeaapeGaaGymaiabgUcaRiabeg 7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGinaaaa aOGaayjkaiaawMcaaiaac6caaaa@4605@ The organizations of this paper are as follows. In Section 2, the propagator for a harmonic oscillator with mass having the function of m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@ is derived by Feynman path integral method. In Section 3, the propagator for a harmonic oscillator with strongly pulsating mass is calculated by the Schwinger method. In Section 4, the propagator for a harmonic oscillator with mass rapidly growing with time is evaluated by the application of the integrals of the motion of quantum systems. Finally, the conclusion is presented in Section 5.

The Feynman path integral for a harmonic oscillator with mass obeying the law of m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@

Colegrave and Abdalla9 demonstrated that the electromagnetic field intensities in a Fabry-Perot cavity can be described by a harmonic oscillator with strongly pulsating mass written by the Hamiltonian of

H( t )= p 2 2m sec 2 νt+ 1 2 m cos 2 νt ω 2 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGOmaiaad2gaaaGaci4CaiaacwgacaGGJbWdamaaCaaaleqa baWdbiaaikdaaaGcpaGaeqyVd42dbiaadshacqGHRaWkdaWcaaWdae aapeGaaGymaaWdaeaapeGaaGOmaaaacaWGTbGaci4yaiaac+gacaGG ZbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaeqyVd42dbiaadshacq aHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaakiaadIhapaWaaWbaaSqa beaapeGaaGOmaaaaaaa@5583@   (1)

Where m( t )=m cos 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacogacaGGVbGaai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436F@ and  is the frequency of a pulsating mass. This paper we will modify the time-dependent mass by imposing m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@ . The Hamiltonian of this system can be described by

H( t )= p 2 2m cot 2 νt+ 1 2 m tan 2 νt ω 2 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGOmaiaad2gaaaGaci4yaiaac+gacaGG0bWdamaaCaaaleqa baWdbiaaikdaaaGcpaGaeqyVd42dbiaadshacqGHRaWkdaWcaaWdae aapeGaaGymaaWdaeaapeGaaGOmaaaacaWGTbGaciiDaiaacggacaGG UbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaeqyVd42dbiaadshacq aHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaakiaadIhapaWaaWbaaSqa beaapeGaaGOmaaaaaaa@558C@   (2)

Where  ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabeM8a3baa@3A1F@  is the frequency of oscillator.

The Lagrangian corresponding with the Hamiltonian in Eq.(2) can be

expressed as

L( x, x ˙ ,t )= 1 2 m tan 2 νt x ˙ 2 1 2 m tan 2 νt ω 2 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbaiaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaaGOmaaaacaWGTbGaciiDaiaacggacaGGUbWdamaa CaaaleqabaWdbiaaikdaaaGcpaGaeqyVd42dbiaadshaceWG4bWday aacaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaaIYaaaaiaad2gaciGG0bGaaiyyaiaac6gapa WaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGaamiDaiabeM8a 39aadaahaaWcbeqaa8qacaaIYaaaaOGaamiEa8aadaahaaWcbeqaa8 qacaaIYaaaaaaa@59E6@   (3)

By using the Euler-Lagrange equation,17 the equation of motion can be

written as

x ¨ +2νcotνt sec 2 νt x ˙ + ω 2 x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaWaa8qacqGHRaWkcaaIYaWdaiabe27aU9qacaWGJbGa am4BaiaadshapaGaeqyVd42dbiaadshaciGGZbGaaiyzaiaacogapa WaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGaamiDaiqadIha paGbaiaapeGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbiaaikdaaa GccaWG4bGaeyypa0JaaGimaaaa@4FBD@   (4)

The Eq. (4) has the solution in the form of

x( t )=cotνt[ Acost+Bsint ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja am4yaiaad+gacaWG0bGaeqyVd4MaamiDamaadmaapaqaa8qacaWGbb Gaam4yaiaad+gacaWGZbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfiGaa8NjHiaadshacqGHRaWkcaWGcbGaam4CaiaadM gacaWGUbGaa8NjHiaadshaaiaawUfacaGLDbaacaGGSaaaaa@5A85@   (5)

Where A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbaaaa@36DD@  and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGcbaaaa@36DE@  are constants and 2 = ω 2 + ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbcabaaaaaaaaapeGaa8Nj H8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaeqyYdC3damaaCa aaleqabaWdbiaaikdaaaGccqGHRaWkcqaH9oGBpaWaaWbaaSqabeaa peGaaGOmaaaaaaa@4B5D@ . By imposing x( t )= x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qaceWG0bWdayaafaaapeGaayjkaiaawMca aiabg2da9iqadIhapaGbauaaaaa@3D16@ and x( t '' )= x '' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaaGccaGLOaGaayzkaaGaeyypa0JaamiEa8aadaahaaWcbe qaa8qacaGGNaGaai4jaaaaaaa@401E@ , the classical path that connects the points ( x , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiqadIhapaGbauaapeGaaiilaiqadshapaGbauaa a8qacaGLOaGaayzkaaaaaa@3BD3@  and ( x '' , t '' ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEca aaGccaGGSaGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaaaO GaayjkaiaawMcaaaaa@3ED5@  can be written as

x cl ( t )= cotνt sinT { tanν t '' sin( t t ) x '' +tanν t ' sin( t '' t ) x } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaape Gaam4yaiaad+gacaWG0bGaeqyVd4MaamiDaaWdaeaapeGaci4Caiaa cMgacaGGUbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJb acfiGaa8NjHiaadsfaaaWaaiWaa8aabaWdbiaadshacaWGHbGaamOB aiabe27aUjaadshapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcci GGZbGaaiyAaiaac6gacaWFMeYaaeWaa8aabaWdbiaadshacqGHsisl ceWG0bWdayaafaaapeGaayjkaiaawMcaaiaadIhapaWaaWbaaSqabe aapeGaai4jaiaacEcaaaGccqGHRaWkcaWG0bGaamyyaiaad6gacqaH 9oGBcaWG0bWdamaaCaaaleqabaWdbiaacEcaaaGcciGGZbGaaiyAai aac6gacaWFMeYaaeWaa8aabaWdbiaadshapaWaaWbaaSqabeaapeGa ai4jaiaacEcaaaGccqGHsislcaWG0baacaGLOaGaayzkaaGabmiEa8 aagaqbaaWdbiaawUhacaGL9baaaaa@7A15@   (6)

Where T= t '' t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadshapaWaaWbaaSqabeaapeGaai4jaiaacEca aaGccqGHsislceWG0bWdayaafaWdbiaac6caaaa@3E76@

The action of the classical systems can be calculated from

S( x, x ˙ ,t )= L( x, x ˙ ,t )dt. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbaiaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqppaWaaubiaeqaleqaba GaaGzaVdqdbaWdbiabgUIiYdaakiaadYeadaqadaWdaeaapeGaamiE aiaacYcaceWG4bWdayaacaWdbiaacYcacaWG0baacaGLOaGaayzkaa GaamizaiaadshacaGGUaaaaa@4C8C@   (7)

Substituting the Lagrangian in Eq. (3) into Eq. (7), the classical action becomes

S cl ( t )= m 2 tan 2 ν t '' x cl '' x ˙ cl '' m 2 tan 2 ν t x cl ' x ˙ cl ' . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaape GaamyBaaWdaeaapeGaaGOmaaaaciGG0bGaaiyyaiaac6gapaWaaWba aSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGaamiDa8aadaahaaWcbe qaa8qacaGGNaGaai4jaaaakiaadIhapaWaa0baaSqaa8qacaWGJbGa amiBaaWdaeaapeGaai4jaiaacEcaaaGcceWG4bWdayaacaWaa0baaS qaa8qacaWGJbGaamiBaaWdaeaapeGaai4jaiaacEcaaaGccqGHsisl daWcaaWdaeaapeGaamyBaaWdaeaapeGaaGOmaaaaciGG0bGaaiyyai aac6gapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGabmiD a8aagaqba8qacaWG4bWdamaaDaaaleaapeGaam4yaiaadYgaa8aaba WdbiaacEcaaaGcceWG4bWdayaacaWaa0baaSqaa8qacaWGJbGaamiB aaWdaeaapeGaai4jaaaakiaac6caaaa@640F@   (8)

Inserting the classical path in Eq. (6) into Eq. (8), the classical action can be obtained as

S cl ( t )= m 2 cotT( tan 2 ν t '' x '' 2 + tan 2 ν t x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaape GaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqb ciaa=zsia8aabaWdbiaaikdaaaGaci4yaiaac+gacaGG0bGaa8NjHi aadsfadaqadaWdaeaapeGaciiDaiaacggacaGGUbWdamaaCaaaleqa baWdbiaaikdaaaGcpaGaeqyVd42dbiaadshapaWaaWbaaSqabeaape Gaai4jaiaacEcaaaGccaWG4bWdamaaCaaaleqabaWdbiaacEcacaGG NaaaaOWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkciGG0bGaai yyaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGa bmiDa8aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaa aaaOGaayjkaiaawMcaaaaa@679E@
mν 2 ( tanν t '' sec 2 ν t '' x '' 2 tanν t sec 2 ν t x 2 ) m sinT tanν t tanν t '' x x '' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaad2gapaGaeqyVd4gabaWdbiaaikda aaWaaeWaa8aabaWdbiGacshacaGGHbGaaiOBa8aacqaH9oGBpeGaam iDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiGacohacaGGLbGa ai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27aU9qacaWG0b WdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaamiEa8aadaahaaWc beqaa8qacaGGNaGaai4jaaaak8aadaahaaWcbeqaa8qacaaIYaaaaO GaeyOeI0IaciiDaiaacggacaGGUbWdaiabe27aU9qaceWG0bWdayaa faWdbiGacohacaGGLbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qaceWG0bWdayaafaWdbiqadIhapaGbauaadaahaaWc beqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaa8aaba Wdbiaad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPnga iuGacaWFMecapaqaa8qacaWGZbGaamyAaiaad6gacaWFMeIaamivaa aacaWG0bGaamyyaiaad6gapaGaeqyVd42dbiqadshapaGbauaapeGa amiDaiaadggacaWGUbWdaiabe27aU9qacaWG0bWdamaaCaaaleqaba WdbiaacEcacaGGNaaaaOGabmiEa8aagaqba8qacaWG4bWdamaaCaaa leqabaWdbiaacEcacaGGNaaaaaaa@839F@ .  (9)

As suggested by Feynman [10], the Green function for a quadratic Lagrangian can be written as

K( x '' , t '' ; x , t )=F( t '' , t ) e i S cl ( x '' , t '' ; x , t ) ћ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpcaWGgbWaaeWaa8aabaWdbiaadshapa WaaWbaaSqabeaapeGaai4jaiaacEcaaaGccaGGSaGabmiDa8aagaqb aaWdbiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbmaalaaapa qaa8qacaWGPbGaam4ua8aadaWgaaadbaWdbiaadogacaWGSbaapaqa baWcpeWaaeWaa8aabaWdbiaadIhapaWaaWbaaWqabeaapeGaai4jai aacEcaaaWccaGGSaGaamiDa8aadaahaaadbeqaa8qacaGGNaGaai4j aaaaliaacUdaceWG4bWdayaafaWdbiaacYcaceWG0bWdayaafaaape GaayjkaiaawMcaaaWdaeaapeGaam4weaaaaaaaaa@5D34@   (10)

where the pre-exponential function F( t '' , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaaaaa@3E1B@ can be calculated from Pauli-Van

Vleck18,19 as

F( t '' , t )= [ i 2πћ 2 S cl ( x '' , t '' ; x , t ) x x '' ] 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaGaey ypa0ZaamWaa8aabaWdbmaalaaapaqaa8qacaWGPbaapaqaa8qacaaI YaGaeqiWdaNaam4weaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaale qabaWdbiaaikdaaaGccaWGtbWdamaaBaaaleaapeGaam4yaiaadYga a8aabeaak8qadaqadaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qaca GGNaGaai4jaaaakiaacYcacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaai4oaiqadIhapaGbauaapeGaaiilaiqadshapaGbau aaa8qacaGLOaGaayzkaaaapaqaa8qacqGHciITceWG4bWdayaafaWd biabgkGi2kaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaaaaa GccaGLBbGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIYaaaaaaakiaac6caaaa@6081@   (11)

By applying Eq. (11), the pre-exponential function F( t '' , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaaaaa@3E1B@ becomes

F( t '' , t )= [ mtanν t tanν t '' 2πiћsinT ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaGaey ypa0ZaamWaa8aabaWdbmaalaaapaqaa8qacaWGTbWexLMBbXgBd9gz LbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHiaadshacaWGHb GaamOBaiabe27aUjqadshapaGbauaapeGaamiDaiaadggacaWGUbGa eqyVd4MaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaaaOWdae aapeGaaGOmaiabec8aWjaadMgacaWGBrGaam4CaiaadMgacaWGUbGa a8NjHiaadsfaaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbmaala aapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaaa@65BA@ .  (12)

Substituting Eqs. (9) and (12) into Eq. (10), the propagator of this oscillator can

be written as

K( x '' , t '' ; x , t )= [ mtanν t tanν t '' 2πiћsinT ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeWaaSaaa8aabaWdbi aad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGa caWFMeIaamiDaiaadggacaWGUbGaeqyVd4MabmiDa8aagaqba8qaca WG0bGaamyyaiaad6gacqaH9oGBcaWG0bWdamaaCaaaleqabaWdbiaa cEcacaGGNaaaaaGcpaqaa8qacaaIYaGaeqiWdaNaamyAaiaadUfbca WGZbGaamyAaiaad6gacaWFMeIaamivaaaaaiaawUfacaGLDbaapaWa aWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaa aaaaaa@6AFE@
×exp( imν 2ћ [ tanν t '' sec 2 ν t '' x '' 2 tanν t sec 2 ν t x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGPbGaamyBaiabe27aUbWdaeaapeGaaGOmaiaadU fbaaWaamWaa8aabaWdbiaadshacaWGHbGaamOBaiabe27aUjaadsha paWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcciGGZbGaaiyzaiaaco gapaWaaWbaaSqabeaapeGaaGOmaaaakiabe27aUjaadshapaWaaWba aSqabeaapeGaai4jaiaacEcaaaGccaWG4bWdamaaCaaaleqabaWdbi aacEcacaGGNaaaaOWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsisl caWG0bGaamyyaiaad6gacqaH9oGBceWG0bWdayaafaWdbiGacohaca GGLbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqyVd4MabmiD a8aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaO Gaay5waiaaw2faaaGaayjkaiaawMcaaaaa@68DC@
×exp( im 2ћsinT ( ( tan 2 ν t '' x '' 2 + tan 2 ν t x 2 )cosT2tanν t tanν t '' x x '' ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHiaadsfaaaWaaeWaa8aabaWdbmaabmaapaqaa8qaci GG0bGaaiyyaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH 9oGBpeGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiaadI hapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcpaWaaWbaaSqabeaa peGaaGOmaaaakiabgUcaRiGacshacaGGHbGaaiOBa8aadaahaaWcbe qaa8qacaaIYaaaaOWdaiabe27aU9qaceWG0bWdayaafaWdbiqadIha paGbauaadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaam 4yaiaad+gacaWGZbGaa8NjHiaadsfacqGHsislcaaIYaGaamiDaiaa dggacaWGUbWdaiabe27aU9qaceWG0bWdayaafaWdbiaadshacaWGHb GaamOBa8aacqaH9oGBpeGaamiDa8aadaahaaWcbeqaa8qacaGGNaGa ai4jaaaakiqadIhapaGbauaapeGaamiEa8aadaahaaWcbeqaa8qaca GGNaGaai4jaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@81F5@ .  (13)

The next task is calculating the wave function. Beginning by defining

z= e iφ ,φ=( t '' t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaamyA aiabeA8aQbaakiaacYcacqaHgpGAcqGH9aqptCvAUfeBSn0BKvguHD wzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMeYaaeWaa8aabaWdbiaa dshapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGccqGHsislceWG0b WdayaafaaapeGaayjkaiaawMcaaiaacYcaaaa@5422@   (14)

sinφ= 1 z 2 2iz ,cosφ= 1+ z 2 2z , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaadMgacaWGUbGaeqOXdOMaeyypa0ZaaSaaa8aabaWdbiaa igdacqGHsislcaWG6bWdamaaCaaaleqabaWdbiaaikdaaaaak8aaba WdbiaaikdacaWGPbGaamOEaaaacaGGSaGaam4yaiaad+gacaWGZbGa eqOXdOMaeyypa0ZaaSaaa8aabaWdbiaaigdacqGHRaWkcaWG6bWdam aaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaikdacaWG6baaaiaa cYcaaaa@5029@   (15)

α= m ћ tanν t '' x '' ,β= m ћ tanν t x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaWGTbWe xLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHa WdaeaapeGaam4weaaaaSqabaGccaWG0bGaamyyaiaad6gacqaH9oGB caWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaamiEa8aada ahaaWcbeqaa8qacaGGNaGaai4jaaaakiaacYcacqaHYoGycqGH9aqp daGcaaWdaeaapeWaaSaaa8aabaWdbiaad2gacaWFMecapaqaa8qaca WGBraaaaWcbeaakiaadshacaWGHbGaamOBaiabe27aUjqadshapaGb auaapeGabmiEa8aagaqbaaaa@5EF5@   (16)

the propagator in Eq. (13) can be rewritten as

K( x '' , t '' ; x , t )= [ mtanν t tanν t '' z πћ ] 1 2 ( 1 z 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeWaaSaaa8aabaWdbi aad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGa caWFMeIaamiDaiaadggacaWGUbGaeqyVd4MabmiDa8aagaqba8qaca WG0bGaamyyaiaad6gacqaH9oGBcaWG0bWdamaaCaaaleqabaWdbiaa cEcacaGGNaaaaOGaamOEaaWdaeaapeGaeqiWdaNaam4weaaaaiaawU facaGLDbaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWdbiaaikdaaaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG6b WdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWba aSqabeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaaaaaaa@6E43@
×exp( imν 2ћ [ tanν t '' sec 2 ν t '' x '' 2 tanν t sec 2 ν t x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGPbGaamyBaiabe27aUbWdaeaapeGaaGOmaiaadU fbaaWaamWaa8aabaWdbiaadshacaWGHbGaamOBaiabe27aUjaadsha paWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcciGGZbGaaiyzaiaaco gapaWaaWbaaSqabeaapeGaaGOmaaaakiabe27aUjaadshapaWaaWba aSqabeaapeGaai4jaiaacEcaaaGccaWG4bWdamaaCaaaleqabaWdbi aacEcacaGGNaaaaOWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsisl caWG0bGaamyyaiaad6gacqaH9oGBceWG0bWdayaafaWdbiGacohaca GGLbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqyVd4MabmiD a8aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaO Gaay5waiaaw2faaaGaayjkaiaawMcaaaaa@68DC@
×exp{ 1 1 z 2 [ 2αβz( α 2 + β 2 )( 1+ z 2 2 ) ] }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaiWaa8aabaWdbmaalaaapaqa a8qacaaIXaaapaqaa8qacaaIXaGaeyOeI0IaamOEa8aadaahaaWcbe qaa8qacaaIYaaaaaaakmaadmaapaqaa8qacaaIYaGaeqySdeMaeqOS diMaamOEaiabgkHiTmaabmaapaqaa8qacqaHXoqypaWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRiabek7aI9aadaahaaWcbeqaa8qacaaI YaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbmaalaaapaqaa8qaca aIXaGaey4kaSIaamOEa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqa a8qacaaIYaaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaGaay5Eai aaw2haaiaac6caaaa@5A2C@   (17)

By using the formula

1+ z 2 2( 1 z 2 ) = 1 2 + z 2 1 z 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdacqGHRaWkcaWG6bWdamaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiaaikdadaqadaWdaeaapeGaaGymaiabgk HiTiaadQhapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMca aaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacq GHRaWkdaWcaaWdaeaapeGaamOEa8aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaaIXaGaeyOeI0IaamOEa8aadaahaaWcbeqaa8qaca aIYaaaaaaakiaacYcaaaa@4BBD@   (18)

The propagator in Eq. (17) can be modified to

K( x '' , t '' ; x , t )= [ mtanν t tanν t '' z πћ ] 1 2 ( 1 z 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeWaaSaaa8aabaWdbi aad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGa caWFMeIaamiDaiaadggacaWGUbGaeqyVd4MabmiDa8aagaqba8qaca WG0bGaamyyaiaad6gacqaH9oGBcaWG0bWdamaaCaaaleqabaWdbiaa cEcacaGGNaaaaOGaamOEaaWdaeaapeGaeqiWdaNaam4weaaaaiaawU facaGLDbaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWdbiaaikdaaaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG6b WdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWba aSqabeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaaaaaaa@6E43@
×exp( imν 2ћ [ tanν t '' sec 2 ν t '' x '' 2 tanν t sec 2 ν t x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGPbGaamyBaiabe27aUbWdaeaapeGaaGOmaiaadU fbaaWaamWaa8aabaWdbiaadshacaWGHbGaamOBaiabe27aUjaadsha paWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcciGGZbGaaiyzaiaaco gapaWaaWbaaSqabeaapeGaaGOmaaaakiabe27aUjaadshapaWaaWba aSqabeaapeGaai4jaiaacEcaaaGccaWG4bWdamaaCaaaleqabaWdbi aacEcacaGGNaaaaOWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsisl caWG0bGaamyyaiaad6gacqaH9oGBceWG0bWdayaafaWdbiGacohaca GGLbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqyVd4MabmiD a8aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaO Gaay5waiaaw2faaaGaayjkaiaawMcaaaaa@68DC@
×exp[ 1 2 ( α 2 + β 2 ) ]×exp[ 2αβz( α 2 + β 2 ) z 2 1 z 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaabmaapaqaa8qacq aHXoqypaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiabek7aI9aa daahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaacaGLBbGaay zxaaGaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbmaalaaa paqaa8qacaaIYaGaeqySdeMaeqOSdiMaamOEaiabgkHiTmaabmaapa qaa8qacqaHXoqypaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiab ek7aI9aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaam OEa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaeyOe I0IaamOEa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaay5waiaaw2 faaiaac6caaaa@6475@   (19)

The next step is applying the Mehler’s formula [20]

( 1 z 2 ) 1 2 exp[ 2αβz( α 2 + β 2 ) z 2 1 z 2 ]= n=0 H n ( α ) H n ( β ) z n 2 n n! , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaigdacqGHsislcaWG6bWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0 YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaciyzaiaa cIhacaGGWbWaamWaa8aabaWdbmaalaaapaqaa8qacaaIYaGaeqySde MaeqOSdiMaamOEaiabgkHiTmaabmaapaqaa8qacqaHXoqypaWaaWba aSqabeaapeGaaGOmaaaakiabgUcaRiabek7aI9aadaahaaWcbeqaa8 qacaaIYaaaaaGccaGLOaGaayzkaaGaamOEa8aadaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacaaIXaGaeyOeI0IaamOEa8aadaahaaWcbe qaa8qacaaIYaaaaaaaaOGaay5waiaaw2faaiabg2da9maaqadabaGa amisaaWcbaGaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIu oakmaaBaaaleaacaWGUbaabeaakmaabmaapaqaa8qacqaHXoqyaiaa wIcacaGLPaaacaWGibWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbm aabmaapaqaa8qacqaHYoGyaiaawIcacaGLPaaadaWcaaWdaeaapeGa amOEa8aadaahaaWcbeqaa8qacaWGUbaaaaGcpaqaa8qacaaIYaWdam aaCaaaleqabaWdbiaad6gaaaGccaWGUbGaaiyiaaaacaGGSaaaaa@7144@   (20)

Where H n ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGaeqySdegacaGLOaGaayzkaaaaaa@3CAA@  and H n ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGaeqOSdigacaGLOaGaayzkaaaaaa@3CAC@  are the Hermite polynomials. The propagator in Eq.(19) becomes

K( x '' , t '' ; x , t )= [ mtanν t tanν t '' πћ ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeWaaSaaa8aabaWdbi aad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGa caWFMeIaamiDaiaadggacaWGUbGaeqyVd4MabmiDa8aagaqba8qaca WG0bGaamyyaiaad6gacqaH9oGBcaWG0bWdamaaCaaaleqabaWdbiaa cEcacaGGNaaaaaGcpaqaa8qacqaHapaCcaWGBraaaaGaay5waiaaw2 faa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaaaaaaaaaa@64DB@
×exp( imν 2ћ [ tanν t '' sec 2 ν t '' x '' 2 tanν t sec 2 ν t x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGPbGaamyBa8aacqaH9oGBaeaapeGaaGOmaiaadU fbaaWaamWaa8aabaWdbiaadshacaWGHbGaamOBa8aacqaH9oGBpeGa amiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiGacohacaGGLb Gaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27aU9qacaWG 0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaamiEa8aadaahaa Wcbeqaa8qacaGGNaGaai4jaaaak8aadaahaaWcbeqaa8qacaaIYaaa aOGaeyOeI0IaamiDaiaadggacaWGUbWdaiabe27aU9qaceWG0bWday aafaWdbiGacohacaGGLbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaa aOWdaiabe27aU9qaceWG0bWdayaafaWdbiqadIhapaGbauaadaahaa Wcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaa aa@6958@
×exp[ m 2ћ ( tan 2 ν t '' x '' 2 + tan 2 ν t x 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGTbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC 0B0HwAJbacfiGaa8NjHaWdaeaapeGaaGOmaiaadUfbaaWaaeWaa8aa baWdbiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaa aOGaamiEa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaak8aadaahaa Wcbeqaa8qacaaIYaaaaOGaey4kaSIaciiDaiaacggacaGGUbWdamaa CaaaleqabaWdbiaaikdaaaGcpaGaeqyVd42dbiqadshapaGbauaape GabmiEa8aagaqbamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGL PaaaaiaawUfacaGLDbaaaaa@6531@
× n=0 H n ( m ћ tanν t '' x '' ) H n ( m ћ tanν t x ) e i( t '' t )( n+ 1 2 ) 2 n n! . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aaabmaeaacaWGibWaaSbaaSqaaiaad6gaaeqaaaqaaiaa d6gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcdaqadaWdae aapeWaaOaaa8aabaWdbmaalaaapaqaa8qacaWGTbWexLMBbXgBd9gz LbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaapeGaam 4weaaaaSqabaGccaWG0bGaamyyaiaad6gacqaH9oGBcaWG0bWdamaa CaaaleqabaWdbiaacEcacaGGNaaaaOGaamiEa8aadaahaaWcbeqaa8 qacaGGNaGaai4jaaaaaOGaayjkaiaawMcaaiaadIeapaWaaSbaaSqa a8qacaWGUbaapaqabaGcpeWaaeWaa8aabaWdbmaakaaapaqaa8qada WcaaWdaeaapeGaamyBaiaa=zsia8aabaWdbiaadUfbaaaaleqaaOGa amiDaiaadggacaWGUbGaeqyVd4MabmiDa8aagaqba8qaceWG4bWday aafaaapeGaayjkaiaawMcaamaalaaapaqaa8qacaWGLbWdamaaCaaa leqabaWdbiabgkHiTiaadMgacaWFMeYaaeWaa8aabaWdbiaadshapa WaaWbaaWqabeaapeGaai4jaiaacEcaaaWccqGHsislceWG0bWdayaa faaapeGaayjkaiaawMcaamaabmaapaqaa8qacaWGUbGaey4kaSYaaS aaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaacaGLOaGaayzkaaaa aaGcpaqaa8qacaaIYaWdamaaCaaaleqabaWdbiaad6gaaaGccaWGUb GaaiyiaaaacaGGUaaaaa@7CD8@   (21)
By using the spectral representation of the propagator

K( x '' , t '' ; x , t )= n=0 ψ n * ( x '' , t '' ) ψ n ( x , t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaaeWaqaaaWcbaGaamOBaiabg2da9i aaicdaaeaacqGHEisPa0GaeyyeIuoakiabeI8a59aadaqhaaWcbaWd biaad6gaa8aabaWdbiaacQcaaaGcdaqadaWdaeaapeGaamiEa8aada ahaaWcbeqaa8qacaGGNaGaai4jaaaakiaacYcacaWG0bWdamaaCaaa leqabaWdbiaacEcacaGGNaaaaaGccaGLOaGaayzkaaGaeqiYdK3dam aaBaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qaceWG4bWd ayaafaWdbiaacYcaceWG0bWdayaafaaapeGaayjkaiaawMcaaiaacY caaaa@5EA8@   (22)

The wave function of this system can be written as

ψ n ( x,t )= [ tanνt 2 n n! ( m πћ ) 1 2 ] 1 2 exp[ i( n+ 1 2 )t] exp [ imν 2ћ tanνt sec 2 νt x 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3damaaBaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWada WdaeaapeWaaSaaa8aabaWdbiaadshacaWGHbGaamOBaiabe27aUjaa dshaa8aabaWdbiaaikdapaWaaWbaaSqabeaapeGaamOBaaaakiaad6 gacaGGHaaaamaabmaapaqaa8qadaWcaaWdaeaapeGaamyBamXvP5wq SX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbciaa=zsia8aaba Wdbiabec8aWjaadUfbaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWd bmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaOGaay5wai aaw2faa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaaaaGcciGGLbGaaiiEaiaacchadaWadaWdaeaapeGaey OeI0IaamyAaiaa=zsidaqadaWdaeaapeGaamOBaiabgUcaRmaalaaa paqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGaayjkaiaawMcaaiaads hadaqcJaWdaeaapeGaciyzaiaacIhacaGGWbaacaGLDbGaay5waaWa aSaaa8aabaWdbiaadMgacaWGTbGaeqyVd4gapaqaa8qacaaIYaGaam 4weaaacaWG0bGaamyyaiaad6gacqaH9oGBcaWG0bGaci4Caiaacwga caGGJbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH9oGBcaWG0bGaam iEa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaaaa@870B@
×exp[ m 2ћ tan 2 νt x 2 ] H n ( m ћ tanνtx ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGTbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC 0B0HwAJbacfiGaa8NjHaWdaeaapeGaaGOmaiaadUfbaaGaciiDaiaa cggacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH9oGBcaWG0b GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaGa amisa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaape WaaOaaa8aabaWdbmaalaaapaqaa8qacaWGTbGaa8NjHaWdaeaapeGa am4weaaaaSqabaGccaWG0bGaamyyaiaad6gacqaH9oGBcaWG0bGaam iEaaGaayjkaiaawMcaaiaac6caaaa@6475@   (23)

The Schwinger method for a harmonic oscillator with strongly pulsating mass

This section is the evaluation of propagator for a harmonic oscillator with strongly pulsating mass by the Schwinger method.12The procedures of Schwinger method are presented in Ref.13The Hamiltonian operator for a harmonic oscillator with strongly pulsating mass can be written as3

H ̂ ( τ )= p ̂ 2 ( τ ) 2m sec 2 ντ+ 1 2 m cos 2 ντ ω 2 x ̂ 2 ( τ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWaaCbiae aapeGaamiCaaWcpaqabeaapeGaeSOadqcaaOWdamaaCaaaleqabaWd biaaikdaaaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaapa qaa8qacaaIYaGaamyBaaaaciGGZbGaaiyzaiaacogapaWaaWbaaSqa beaapeGaaGOmaaaak8aacqaH9oGBpeGaeqiXdqNaey4kaSYaaSaaa8 aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBaiGacogacaGGVbGa ai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27aU9qacqaHep aDcqaHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaak8aadaWfGaqaa8qa caWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaWbaaSqabeaapeGaaG Omaaaakmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacaGGUaaa aa@6320@   (24)

By solving the Heisenberg equations

iћ d x ̂ ( τ ) dτ =[ x ̂ ( τ ), H ̂ ( τ ) ],iћ d p ̂ ( τ ) dτ =[ p ̂ ( τ ), H ̂ ( τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaamiza8aadaWfGaqaa8qacaWG 4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaeqiXdqhaca GLOaGaayzkaaaapaqaa8qacaWGKbGaeqiXdqhaaiabg2da9maadmaa paqaamaaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakmaabm aapaqaa8qacqaHepaDaiaawIcacaGLPaaacaGGSaWdamaaxacabaWd biaadIeaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacqaHep aDaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGSaGaamyAaiaadUfb daWcaaWdaeaapeGaamiza8aadaWfGaqaa8qacaWGWbaal8aabeqaa8 qacqWIcmajaaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaa paqaa8qacaWGKbGaeqiXdqhaaiabg2da9maadmaapaqaamaaxacaba WdbiaadchaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacqaH epaDaiaawIcacaGLPaaacaGGSaWdamaaxacabaWdbiaadIeaaSWdae qabaWdbiablkWaKaaakmaabmaapaqaa8qacqaHepaDaiaawIcacaGL PaaaaiaawUfacaGLDbaaaaa@6C6B@   (25)

and imposing the initial conditions of x ̂ ( τ=0 )= x ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqNaeyypa0JaaGimaaGaayjkaiaawMcaaiabg2da98aada WfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaaaa@4435@  and p ̂ ( τ=0 )= p ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqNaeyypa0JaaGimaaGaayjkaiaawMcaaiabg2da98aada WfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaaaa@4425@ ,

the position operator can be expressed as

x ̂ ( τ )=( secντcosν τ cos( τ τ ) ν secντsinν τ sin( τ τ ) ) x ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaado hacaWGLbGaam4yaiabe27aUjabes8a0jaadogacaWGVbGaam4Caiab e27aUjqbes8a09aagaqba8qacaWGJbGaam4BaiaadohatCvAUfeBSn 0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMeYaaeWaa8aa baWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPa aacqGHsisldaWcaaWdaeaapeGaeqyVd4gapaqaa8qacaWFMecaaiaa dohacaWGLbGaam4yaiabe27aUjabes8a0jaadohacaWGPbGaamOBai abe27aUjqbes8a09aagaqba8qacaWGZbGaamyAaiaad6gacaWFMeYa aeWaa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawI cacaGLPaaaaiaawIcacaGLPaaapaWaaCbiaeaapeGaamiEaaWcpaqa beaapeGaeSOadqcaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPa aaaaa@8001@
+ 1 m secντsecν τ sin( τ τ ) p ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad2gatCvAUfeB Sn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMecaaiaado hacaWGLbGaam4yaiabe27aUjabes8a0jaadohacaWGLbGaam4yaiab e27aUjqbes8a09aagaqba8qacaWGZbGaamyAaiaad6gacaWFMeYaae Waa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIca caGLPaaapaWaaCbiaeaapeGaamiCaaWcpaqabeaapeGaeSOadqcaaO WaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaaaa@60E6@ .  (26)

By using Eq. (26), the momentum operator p ̂ ( τ )=m cos 2 ντ x ̂ ̇ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaeyypa0JaamyBaiGacogacaGGVb Gaai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27aU9qacqaH epaDpaWaaCbiaeaadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcm ajaaaapaqabeaapeGaeS4bdycaaOWaaeWaa8aabaWdbiabes8a0bGa ayjkaiaawMcaaaaa@4D09@  can be written as

p ̂ ( τ )=(mνsinν( τ τ )cos( τ τ )mcosν τ cosντsin( τ τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Jaaiikaiaad2gacqaH9o GBcaWGZbGaamyAaiaad6gacqaH9oGBdaqadaWdaeaapeGaeqiXdqNa eyOeI0IafqiXdq3dayaafaaapeGaayjkaiaawMcaaiaadogacaWGVb Gaam4CamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqb ciaa=zsidaqadaWdaeaapeGaeqiXdqNaeyOeI0IafqiXdq3dayaafa aapeGaayjkaiaawMcaaiabgkHiTiaad2gacaWFMeIaam4yaiaad+ga caWGZbGaeqyVd4MafqiXdq3dayaafaWdbiaadogacaWGVbGaam4Cai abe27aUjabes8a0jaadohacaWGPbGaamOBaiaa=zsidaqadaWdaeaa peGaeqiXdqNaeyOeI0IafqiXdq3dayaafaaapeGaayjkaiaawMcaaa aa@7A06@
m ν 2 sinν τ sinντsin( τ τ )) x ̂ ( 0 )+(secν τ cosντcos( τ τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaad2gacqaH9oGBpaWaaWbaaSqabeaa peGaaGOmaaaaaOWdaeaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUb YrVrhAPngaiuGapeGaa8NjHaaacaWGZbGaamyAaiaad6gacqaH9oGB cuaHepaDpaGbauaapeGaam4CaiaadMgacaWGUbGaeqyVd4MaeqiXdq Naam4CaiaadMgacaWGUbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGH sislcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaGaaiyka8aadaWfGa qaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGa aGimaaGaayjkaiaawMcaaiabgUcaRiaacIcacaWGZbGaamyzaiaado gacqaH9oGBcuaHepaDpaGbauaapeGaam4yaiaad+gacaWGZbGaeqyV d4MaeqiXdqNaam4yaiaad+gacaWGZbGaa8NjHmaabmaapaqaa8qacq aHepaDcqGHsislcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaaaaa@7C0B@
+ ν secν τ sinντsin( τ τ )) p ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaGaeqyVd4gabaWexLMBbXgBd9gzLbvyNv2C aeHbnfgBNvNBGC0B0HwAJbacfiWdbiaa=zsiaaGaam4Caiaadwgaca WGJbWdaiabe27aU9qacuaHepaDpaGbauaapeGaam4CaiaadMgacaWG UbWdaiabe27aU9qacqaHepaDcaWGZbGaamyAaiaad6gacaWFMeYaae Waa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIca caGLPaaacaGGPaWdamaaxacabaWdbiaadchaaSWdaeqabaWdbiablk WaKaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiOlaaaa @627F@   (27)

By applying Eq. (26) to eliminate p ^ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGWbWdayaajaWdbmaabmaapaqaa8qacaaIWaaacaGLOaGaayzk aaaaaa@399D@  in Eq. (27), the momentum operator can

be rewritten only in terms of x ̂ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaaaaa@3CC5@  and x ^ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaecaaeaacaWG4baacaGLcmaadaqadaWdaeaapeGaaGimaaGaayjk aiaawMcaaaaa@3B4F@  as p ̂ ( τ )=( m cos 2 ντcot( τ τ )+mνsinντcosντ ) x ̂ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaad2 gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWF MeIaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikdaaaGcpa GaeqyVd42dbiabes8a0jaadogacaWGVbGaamiDaiaa=zsidaqadaWd aeaapeGaeqiXdqNaeyOeI0IafqiXdq3dayaafaaapeGaayjkaiaawM caaiabgUcaRiaad2gapaGaeqyVd42dbiaadohacaWGPbGaamOBa8aa cqaH9oGBpeGaeqiXdqNaam4yaiaad+gacaWGZbWdaiabe27aU9qacq aHepaDaiaawIcacaGLPaaapaWaaCbiaeaapeGaamiEaaWcpaqabeaa peGaeSOadqcaaOWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaa aa@739E@

mcosν τ cosντcsc( τ τ ) x ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gD OL2yaGqbciaa=zsicaWGJbGaam4BaiaadohacqaH9oGBcuaHepaDpa GbauaapeGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiXdqNaam4yaiaa dohacaWGJbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHep aDpaGbauaaa8qacaGLOaGaayzkaaWdamaaxacabaWdbiaadIhaaSWd aeqabaWdbiablkWaKaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaay zkaaGaaiOlaaaa@60A6@   (28)

Substituting Eq. (28) into Eq. (24) and rewriting each terms of H ̂ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaaaaa@3C95@  in a time ordered form with x ̂ ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaaaaa@3CC5@  to the left and    x ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaacckapaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOa dqcaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaaaa@3E20@    x ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaacckapaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOa dqcaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaaaa@3E20@  to the right with the helping of the commutator

[ x ̂ ( 0 ), x ̂ ( τ ) ]= iћ m secντsecν τ sin( τ τ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqca aOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacaGGSaWdamaaxa cabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qa cqaHepaDaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaWcaa WdaeaapeGaamyAaiaadUfba8aabaWdbiaad2gatCvAUfeBSn0BKvgu HDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMecaaiaadohacaWGLb Gaam4yaiabe27aUjabes8a0jaadohacaWGLbGaam4yaiabe27aUjqb es8a09aagaqba8qacaWGZbGaamyAaiaad6gacaWFMeYaaeWaa8aaba Wdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPaaa caGGSaaaaa@6B31@ the time ordered Hamiltonian operator H ̂ ord ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaWGVbGaamOCaiaadsgaa8aabeaak8qadaqadaWdaeaapeGaeq iXdqhacaGLOaGaayzkaaaaaa@3FDD@  can be written as

H ̂ ord ( τ )=( 1 2 m 2 cos 2 ντ csc 2 ( τ τ )+ 1 2 m ν 2 sin 2 ντ 1 2 m ν 2 cos 2 ντ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaWGVbGaamOCaiaadsgaa8aabeaak8qadaqadaWdaeaapeGaeq iXdqhacaGLOaGaayzkaaGaeyypa0Jaaiikamaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIYaaaaiaad2gatCvAUfeBSn0BKvguHDwzZbqeg0 uySDwDUbYrVrhAPngaiuGacaWFMeYdamaaCaaaleqabaWdbiaaikda aaGcciGGJbGaai4BaiaacohapaWaaWbaaSqabeaapeGaaGOmaaaak8 aacqaH9oGBpeGaeqiXdqNaci4yaiaacohacaGGJbWdamaaCaaaleqa baWdbiaaikdaaaGccaWFMeYaaeWaa8aabaWdbiabes8a0jabgkHiTi qbes8a09aagaqbaaWdbiaawIcacaGLPaaacqGHRaWkdaWcaaWdaeaa peGaaGymaaWdaeaapeGaaGOmaaaacaWGTbWdaiabe27aUnaaCaaale qabaWdbiaaikdaaaGcciGGZbGaaiyAaiaac6gapaWaaWbaaSqabeaa peGaaGOmaaaak8aacqaH9oGBpeGaeqiXdqNaeyOeI0YaaSaaa8aaba Wdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aacqaH9oGBdaahaaWc beqaa8qacaaIYaaaaOGaci4yaiaac+gacaGGZbWdamaaCaaaleqaba WdbiaaikdaaaGcpaGaeqyVd42dbiabes8a0baa@7F31@
+ 1 2 mνsinντcosντcot( τ τ )) x ̂ 2 ( τ )(m 2 cosντcosν τ csc( τ τ )cot( τ τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyB aiabe27aUnXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaG qbciaa=zsicaWGZbGaamyAaiaad6gacqaH9oGBcqaHepaDcaWGJbGa am4BaiaadohacqaH9oGBcqaHepaDcaWGJbGaam4BaiaadshacaWFMe YaaeWaa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaa wIcacaGLPaaacaGGPaWdamaaxacabaWdbiaadIhaaSWdaeqabaWdbi ablkWaKaaak8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWd biabes8a0bGaayjkaiaawMcaaiabgkHiTiaacIcacaWGTbGaa8NjH8 aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbGaeqyV d4MaeqiXdqNaam4yaiaad+gacaWGZbGaeqyVd4MafqiXdq3dayaafa WdbiaadogacaWGZbGaam4yaiaa=zsidaqadaWdaeaapeGaeqiXdqNa eyOeI0IafqiXdq3dayaafaaapeGaayjkaiaawMcaaiaadogacaWGVb GaamiDaiaa=zsidaqadaWdaeaapeGaeqiXdqNaeyOeI0IafqiXdq3d ayaafaaapeGaayjkaiaawMcaaaaa@8B09@
+mνcosν τ sinντcsc( τ τ )) x ̂ ( τ ) x ̂ ( 0 )+ 1 2 m 2 cos 2 ν τ csc 2 ( τ τ ) x ̂ 2 ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaamyBa8aacqaH9oGBtCvAUfeBSn0BKvguHDwzZbqeg0uy SDwDUbYrVrhAPngaiuGapeGaa8NjHiaadogacaWGVbGaam4Ca8aacq aH9oGBpeGafqiXdq3dayaafaWdbiaadohacaWGPbGaamOBa8aacqaH 9oGBpeGaeqiXdqNaam4yaiaadohacaWGJbGaa8NjHmaabmaapaqaa8 qacqaHepaDcqGHsislcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaGa aiyka8aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcda qadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaWdamaaxacabaWdbiaa dIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacaaIWaaaca GLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdaaaGaamyBaiaa=zsipaWaaWbaaSqabeaapeGaaGOmaaaakiGaco gacaGGVbGaai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27a U9qacuaHepaDpaGbauaapeGaci4yaiaacohacaGGJbWdamaaCaaale qabaWdbiaaikdaaaGccaWFMeYaaeWaa8aabaWdbiabes8a0jabgkHi Tiqbes8a09aagaqbaaWdbiaawIcacaGLPaaapaWaaCbiaeaapeGaam iEaaWcpaqabeaapeGaeSOadqcaaOWdamaaCaaaleqabaWdbiaaikda aaGcdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaaaa@862B@
iћ 2 cot( τ τ ) iћν 2 tanντ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGBrWexLMBbXgBd9gzLbvy Nv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaapeGaaGOmaa aacaWGJbGaam4BaiaadshacaWFMeYaaeWaa8aabaWdbiabes8a0jab gkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPaaacqGHsisldaWcaa WdaeaapeGaamyAaiaadUfbcqaH9oGBa8aabaWdbiaaikdaaaGaamiD aiaadggacaWGUbGaeqyVd4MaeqiXdqNaaiOlaaaa@5CF6@   (29)

As presented in Ref.13 the propagator can be calculated by

K( x, x ;τ )=C( x, x )exp( i ћ 0 τ x( t )| H ̂ ord ( t ) | x ( 0 ) x( t )| x ( 0 ) dt) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiabes8a0bGaayjkaiaawMcaaiabg2da9iaadoeadaqadaWdae aapeGaamiEaiaacYcaceWG4bWdayaafaaapeGaayjkaiaawMcaaiGa cwgacaGG4bGaaiiCaiaacIcacqGHsisldaWcaaWdaeaapeGaamyAaa WdaeaapeGaam4weaaadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGa eqiXdqhan8aabaWdbiabgUIiYdaakmaalaaapaqaa8qadaaadaWdae aapeGaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaWaaqWa a8aabaWaaCbiaeaapeGaamisaaWcpaqabeaapeGaeSOadqcaaOWdam aaBaaaleaapeGaam4BaiaadkhacaWGKbaapaqabaGcpeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaaiaawEa7caGLiWoaceWG4bWday aafaWdbmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaaacaGLPmIa ayPkJaaapaqaa8qadaGhbaWdaeaapeGaamiEamaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaabeGaayzkJiaawEa7aiqadIhapaGbauaa peWaaaGaaeaadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaaGaay PkJaaaaiaadsgacaWG0bGaaiykaaaa@7313@
=C( x, x )exp( i ћ 0 τ {( 1 2 m 2 cos 2 νt csc 2 ( t τ )+ 1 2 mνsinνtcosνtcot( t τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGb auaaa8qacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbGaaiikaiabgk HiTmaalaaapaqaa8qacaWGPbaapaqaa8qacaWGBraaamaawahabeWc paqaa8qacaaIWaaapaqaa8qacqaHepaDa0WdaeaapeGaey4kIipaaO Gaai4EaiaacIcadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa caWGTbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfi Gaa8NjH8aadaahaaWcbeqaa8qacaaIYaaaaOGaci4yaiaac+gacaGG ZbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaeqyVd42dbiaadshaci GGJbGaai4CaiaacogapaWaaWbaaSqabeaapeGaaGOmaaaakiaa=zsi daqadaWdaeaapeGaamiDaiabgkHiTiqbes8a09aagaqbaaWdbiaawI cacaGLPaaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOm aaaacaWGTbWdaiabe27aU9qacaWFMeIaam4CaiaadMgacaWGUbWdai abe27aU9qacaWG0bGaam4yaiaad+gacaWGZbWdaiabe27aU9qacaWG 0bGaam4yaiaad+gacaWG0bGaa8NjHmaabmaapaqaa8qacaWG0bGaey OeI0IafqiXdq3dayaafaaapeGaayjkaiaawMcaaaaa@85E2@
1 2 m ν 2 sin 2 νt 1 2 m ν 2 cos 2 νt) x 2 (m 2 cosνtcosν τ csc( t τ )cot( t τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBaiabe27a U9aadaahaaWcbeqaa8qacaaIYaaaaOGaci4CaiaacMgacaGGUbWdam aaCaaaleqabaWdbiaaikdaaaGccqaH9oGBcaWG0bGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBaiabe27aU9aada ahaaWcbeqaa8qacaaIYaaaaOGaci4yaiaac+gacaGGZbWdamaaCaaa leqabaWdbiaaikdaaaGccqaH9oGBcaWG0bGaaiykaiaadIhapaWaaW baaSqabeaapeGaaGOmaaaakiabgkHiTiaacIcacaWGTbWexLMBbXgB d9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjH8aadaahaa Wcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbGaeqyVd4MaamiD aiaadogacaWGVbGaam4Caiabe27aUjqbes8a09aagaqba8qacaWGJb Gaam4CaiaadogacaWFMeYaaeWaa8aabaWdbiaadshacqGHsislcuaH epaDpaGbauaaa8qacaGLOaGaayzkaaGaam4yaiaad+gacaWG0bGaa8 NjHmaabmaapaqaa8qacaWG0bGaeyOeI0IafqiXdq3dayaafaaapeGa ayjkaiaawMcaaaaa@8067@
+mνcosν τ sinνtcsc( t τ ))x x + 1 2 m 2 cos 2 ν τ csc 2 ( t τ ) x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaamyBa8aacqaH9oGBtCvAUfeBSn0BKvguHDwzZbqeg0uy SDwDUbYrVrhAPngaiuGapeGaa8NjHiaadogacaWGVbGaam4Ca8aacq aH9oGBpeGafqiXdq3dayaafaWdbiaadohacaWGPbGaamOBa8aacqaH 9oGBpeGaamiDaiaadogacaWGZbGaam4yaiaa=zsidaqadaWdaeaape GaamiDaiabgkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPaaacaGG PaGaamiEaiqadIhapaGbauaapeGaey4kaSYaaSaaa8aabaWdbiaaig daa8aabaWdbiaaikdaaaGaamyBaiaa=zsipaWaaWbaaSqabeaapeGa aGOmaaaakiGacogacaGGVbGaai4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOWdaiabe27aU9qacuaHepaDpaGbauaapeGaci4yaiaacohacaGG JbWdamaaCaaaleqabaWdbiaaikdaaaGccaWFMeYaaeWaa8aabaWdbi aadshacqGHsislcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaGabmiE a8aagaqbamaaCaaaleqabaWdbiaaikdaaaaaaa@77E2@
iћ 2 cot( t τ ) iћν 2 tanνt}dt), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGBrWexLMBbXgBd9gzLbvy Nv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaapeGaaGOmaa aacaWGJbGaam4BaiaadshacaWFMeYaaeWaa8aabaWdbiaadshacqGH sislcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaGaeyOeI0YaaSaaa8 aabaWdbiaadMgacaWGBrGaeqyVd4gapaqaa8qacaaIYaaaaiaadsha caWGHbGaamOBaiabe27aUjaadshacaGG9bGaamizaiaadshacaGGPa Gaaiilaaaa@5EEC@   (30)

Where C( x, x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaaaaa@3C74@ is the function of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqbaaaa@3847@ . The next step is integrating over time each terms of Eq. (30). The integrating of the first term in Eq. (30) can be obtained as

im x 2 2ћ 0 τ ( 2 cos 2 νt csc 2 ( t τ )+νsinνtcosνtcot( t τ )+ ν 2 sin 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbGaamiEa8aadaahaaWc beqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaam4weaaadaGfWbqabS WdaeaapeGaaGimaaWdaeaapeGaeqiXdqhan8aabaWdbiabgUIiYdaa kiaacIcatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiu GacaWFMeYdamaaCaaaleqabaWdbiaaikdaaaGcciGGJbGaai4Baiaa cohapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGaamiDai GacogacaGGZbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaa8Nj Hmaabmaapaqaa8qacaWG0bGaeyOeI0IafqiXdq3dayaafaaapeGaay jkaiaawMcaaiabgUcaR8aacqaH9oGBpeGaa8NjHiaadohacaWGPbGa amOBa8aacqaH9oGBpeGaamiDaiaadogacaWGVbGaam4Ca8aacqaH9o GBpeGaamiDaiaadogacaWGVbGaamiDaiaa=zsidaqadaWdaeaapeGa amiDaiabgkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPaaacqGHRa WkpaGaeqyVd42aaWbaaSqabeaapeGaaGOmaaaakiGacohacaGGPbGa aiOBa8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27aU9qacaWG0b aaaa@83C6@
ν 2 cos 2 νt)dt= imν 2ћ cosντsinντ x 2 + im 2ћ cos 2 ντcot( τ τ ) x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0Ydaiabe27aUnaaCaaaleqabaWdbiaaikdaaaGcciGGJbGa ai4BaiaacohapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpe GaamiDaiaacMcacaWGKbGaamiDaiabg2da9maalaaapaqaa8qacaWG PbGaamyBa8aacqaH9oGBaeaapeGaaGOmaiaadUfbaaGaam4yaiaad+ gacaWGZbWdaiabe27aU9qacqaHepaDcaWGZbGaamyAaiaad6gapaGa eqyVd42dbiabes8a0jaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaki abgUcaRmaalaaapaqaa8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2z LnharyqtHX2z15gih9gDOL2yaGqbciaa=zsia8aabaWdbiaaikdaca WGBraaaiGacogacaGGVbGaai4Ca8aadaahaaWcbeqaa8qacaaIYaaa aOWdaiabe27aU9qacqaHepaDcaWGJbGaam4BaiaadshacaWFMeYaae Waa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIca caGLPaaacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccaGGUaaaaa@7E18@   (31)

The second term in Eq. (30) can be calculated by

im ћ cosν τ x x 0 τ ( cosνtcsc( t τ )cot( t τ )+νsinνtcsc( t τ ) )dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMgacaWGTbWexLMBbXgBd9gzLbvyNv2CaeHb nfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaapeGaam4weaaacaWGJb Gaam4BaiaadohacqaH9oGBcuaHepaDpaGbauaapeGaamiEaiqadIha paGbauaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabes8a0b qdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaa8NjHiaadogacaWG VbGaam4Caiabe27aUjaadshacaWGJbGaam4CaiaadogacaWFMeYaae Waa8aabaWdbiaadshacqGHsislcuaHepaDpaGbauaaa8qacaGLOaGa ayzkaaGaam4yaiaad+gacaWG0bGaa8NjHmaabmaapaqaa8qacaWG0b GaeyOeI0IafqiXdq3dayaafaaapeGaayjkaiaawMcaaiabgUcaRiab e27aUjaadohacaWGPbGaamOBaiabe27aUjaadshacaWGJbGaam4Cai aadogacaWFMeYaaeWaa8aabaWdbiaadshacqGHsislcuaHepaDpaGb auaaa8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadshaaa a@8100@
= im ћ cosν τ cosντcsc( τ τ )x x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbWexLMBbXgB d9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaape Gaam4weaaacaWGJbGaam4BaiaadohacqaH9oGBcuaHepaDpaGbauaa peGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiXdqNaam4yaiaadohaca WGJbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpaGb auaaa8qacaGLOaGaayzkaaGaamiEaiqadIhapaGbauaapeGaaiOlaa aa@6147@   (32)

The third term in Eq. (30) can be integrated as

im 2 2ћ cos 2 ν τ x 2 0 τ csc 2 ( t τ )dt= im 2ћ cos 2 ν τ cot( τ τ ) x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbWexLMBbXgBd9gzLbvy Nv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjH8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacaaIYaGaam4weaaaciGGJbGaai4Baiaa cohapaWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH9oGBpeGafqiXdq 3dayaafaWdbiqadIhapaGbauaadaahaaWcbeqaa8qacaaIYaaaaOWa aybCaeqal8aabaWdbiaaicdaa8aabaWdbiabes8a0bqdpaqaa8qacq GHRiI8aaGcciGGJbGaai4CaiaacogapaWaaWbaaSqabeaapeGaaGOm aaaakiaa=zsidaqadaWdaeaapeGaamiDaiabgkHiTiqbes8a09aaga qbaaWdbiaawIcacaGLPaaacaWGKbGaamiDaiabg2da9maalaaapaqa a8qacaWGPbGaamyBaiaa=zsia8aabaWdbiaaikdacaWGBraaaiGaco gacaGGVbGaai4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiabe27a U9qacuaHepaDpaGbauaapeGaam4yaiaad+gacaWG0bGaa8NjHmaabm aapaqaa8qacqaHepaDcqGHsislcuaHepaDpaGbauaaa8qacaGLOaGa ayzkaaGabmiEa8aagaqbamaaCaaaleqabaWdbiaaikdaaaGccaGGUa aaaa@7DAC@   (33)
Finally, the last term in Eq. (30) can be evaluated by

2 0 τ cot( t τ )dt ν 2 0 τ tanνtdt=ln [ cosντ sin( τ τ ) ] 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfiWdbiaa=zsia8aabaWdbiaaikdaaaWaaybCaeqal8 aabaWdbiaaicdaa8aabaWdbiabes8a0bqdpaqaa8qacqGHRiI8aaGc caWGJbGaam4BaiaadshacaWFMeYaaeWaa8aabaWdbiaadshacqGHsi slcuaHepaDpaGbauaaa8qacaGLOaGaayzkaaGaamizaiaadshacqGH sisldaWcaaWdaeaapeGaeqyVd4gapaqaa8qacaaIYaaaamaawahabe Wcpaqaa8qacaaIWaaapaqaa8qacqaHepaDa0WdaeaapeGaey4kIipa aOGaamiDaiaadggacaWGUbGaeqyVd4MaamiDaiaadsgacaWG0bGaey ypa0JaciiBaiaac6gadaWadaWdaeaapeWaaSaaa8aabaWdbiaadoga caWGVbGaam4Caiabe27aUjabes8a0bWdaeaapeGaam4CaiaadMgaca WGUbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpaGb auaaa8qacaGLOaGaayzkaaaaaaGaay5waiaaw2faa8aadaahaaWcbe qaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGccaGG Uaaaaa@7DCC@   (34)

Substituting Eqs. (31)-(34) into Eq. (30), the propagator can be written as

K( x, x ;τ )=C( x, x ) [ cosντ sin( τ τ ) ] 1 2 exp( imν 2ћ sinντcosντ x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiabes8a0bGaayjkaiaawMcaaiabg2da9iaadoeadaqadaWdae aapeGaamiEaiaacYcaceWG4bWdayaafaaapeGaayjkaiaawMcaamaa dmaapaqaa8qadaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqyVd4 MaeqiXdqhapaqaa8qacaWGZbGaamyAaiaad6gatCvAUfeBSn0BKvgu HDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMeYaaeWaa8aabaWdbi abes8a0jabgkHiTiqbes8a09aagaqbaaWdbiaawIcacaGLPaaaaaaa caGLBbGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXa aapaqaa8qacaaIYaaaaaaakiGacwgacaGG4bGaaiiCamaabmaapaqa a8qadaWcaaWdaeaapeGaamyAaiaad2gacqaH9oGBa8aabaWdbiaaik dacaWGBraaaiaadohacaWGPbGaamOBaiabe27aUjabes8a0jaadoga caWGVbGaam4Caiabe27aUjabes8a0jaadIhapaWaaWbaaSqabeaape GaaGOmaaaaaOGaayjkaiaawMcaaaaa@7D8D@
×exp( im 2ћsin( τ τ ) [ ( cos 2 ντ x 2 + cos 2 ν τ x 2 )cos( τ τ )2cosν τ cosντx x ] ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpa Gbauaaa8qacaGLOaGaayzkaaaaamaadmaapaqaa8qadaqadaWdaeaa peGaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikdaaaGccq aH9oGBcqaHepaDcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH RaWkciGGJbGaai4BaiaacohapaWaaWbaaSqabeaapeGaaGOmaaaaki abe27aUjqbes8a09aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaa peGaaGOmaaaaaOGaayjkaiaawMcaaiaadogacaWGVbGaam4Caiaa=z sidaqadaWdaeaapeGaeqiXdqNaeyOeI0IafqiXdq3dayaafaaapeGa ayjkaiaawMcaaiabgkHiTiaaikdacaWGJbGaam4BaiaadohacqaH9o GBcuaHepaDpaGbauaapeGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiX dqNaamiEaiqadIhapaGbauaaa8qacaGLBbGaayzxaaaacaGLOaGaay zkaaGaaiOlaaaa@89FE@   (35)

Substituting the propagator in Eq. (35) into the equation of

iћ K( x, x ;τ ) x = x( τ )| p ̂ ( 0 ) | x ( 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiabes8a0bGaay jkaiaawMcaaaWdaeaapeGaeyOaIyRabmiEa8aagaqbaaaapeGaeyyp a0ZaaaWaa8aabaWdbiaadIhadaqadaWdaeaapeGaeqiXdqhacaGLOa GaayzkaaWaaqWaa8aabaWaaCbiaeaapeGaamiCaaWcpaqabeaapeGa eSOadqcaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaaiaawE a7caGLiWoaceWG4bWdayaafaWdbmaabmaapaqaa8qacaaIWaaacaGL OaGaayzkaaaacaGLPmIaayPkJaGaaiilaaaa@5871@   (36)

the result is

iћ C( x, x ) x =mνcosν τ sinν τ x C( x, x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4qamaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaaa8qacaGLOaGaayzkaaaapa qaa8qacqGHciITceWG4bWdayaafaaaa8qacqGH9aqpcaWGTbGaeqyV d4Maam4yaiaad+gacaWGZbGaeqyVd4MafqiXdq3dayaafaWdbiaado hacaWGPbGaamOBaiabe27aUjqbes8a09aagaqba8qaceWG4bWdayaa faWdbiaadoeadaqadaWdaeaapeGaamiEaiaacYcaceWG4bWdayaafa aapeGaayjkaiaawMcaaiaac6caaaa@5A54@   (37)

After solving Eq. (37), the function C( x, x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaaaaa@3C74@ can be obtained as

C( x, x )=C( x )exp( imν 2ћ sinν τ cosν τ x 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaGaeyypa0Jaam4qamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHi Tmaalaaapaqaa8qacaWGPbGaamyBaiabe27aUbWdaeaapeGaaGOmai aadUfbaaGaam4CaiaadMgacaWGUbGaeqyVd4MafqiXdq3dayaafaWd biaadogacaWGVbGaam4Caiabe27aUjqbes8a09aagaqba8qaceWG4b WdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiaa cYcaaaa@5BA5@   (38)

Where C( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3A9C@ is the function of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ .

Substituting Eq. (38) into Eq. (35), the propagator becomes

K( x, x ;τ )=C( x ) [ cosντ sin( τ τ ) ] 1 2 exp( imν 2ћ [ sinντcosντ x 2 sinν τ cosν τ x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiabes8a0bGaayjkaiaawMcaaiabg2da9iaadoeadaqadaWdae aapeGaamiEaaGaayjkaiaawMcaamaadmaapaqaa8qadaWcaaWdaeaa peGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiXdqhapaqaa8qacaWGZb GaamyAaiaad6gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhA PngaiuGacaWFMeYaaeWaa8aabaWdbiabes8a0jabgkHiTiqbes8a09 aagaqbaaWdbiaawIcacaGLPaaaaaaacaGLBbGaayzxaaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaki GacwgacaGG4bGaaiiCamaabmaapaqaa8qadaWcaaWdaeaapeGaamyA aiaad2gacqaH9oGBa8aabaWdbiaaikdacaWGBraaamaadmaapaqaa8 qacaWGZbGaamyAaiaad6gacqaH9oGBcqaHepaDcaWGJbGaam4Baiaa dohacqaH9oGBcqaHepaDcaWG4bWdamaaCaaaleqabaWdbiaaikdaaa GccqGHsislcaWGZbGaamyAaiaad6gacqaH9oGBcuaHepaDpaGbauaa peGaam4yaiaad+gacaWGZbGaeqyVd4MafqiXdq3dayaafaWdbiqadI hapaGbauaadaahaaWcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaa caGLOaGaayzkaaaaaa@8DCB@
×exp( im 2ћsin( τ τ ) [ ( cos 2 ντ x 2 + cos 2 ν τ x 2 )cos( τ τ )2cosν τ cosντx x ] ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpa Gbauaaa8qacaGLOaGaayzkaaaaamaadmaapaqaa8qadaqadaWdaeaa peGaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikdaaaGccq aH9oGBcqaHepaDcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH RaWkciGGJbGaai4BaiaacohapaWaaWbaaSqabeaapeGaaGOmaaaaki abe27aUjqbes8a09aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaa peGaaGOmaaaaaOGaayjkaiaawMcaaiaadogacaWGVbGaam4Caiaa=z sidaqadaWdaeaapeGaeqiXdqNaeyOeI0IafqiXdq3dayaafaaapeGa ayjkaiaawMcaaiabgkHiTiaaikdacaWGJbGaam4BaiaadohacqaH9o GBcuaHepaDpaGbauaapeGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiX dqNaamiEaiqadIhapaGbauaaa8qacaGLBbGaayzxaaaacaGLOaGaay zkaaGaaiOlaaaa@89FE@   (39)

The final step is calculating C( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3A9C@ by substituting Eq. (39) into the equation of

iћ K( x, x ;τ ) x = x( τ )| p ̂ ( τ ) | x ( 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaa bmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiabes 8a0bGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaamiEaaaacqGH9aqp daaadaWdaeaapeGaamiEamaabmaapaqaa8qacqaHepaDaiaawIcaca GLPaaadaabdaWdaeaadaWfGaqaa8qacaWGWbaal8aabeqaa8qacqWI cmajaaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaacaGLhW UaayjcSdGabmiEa8aagaqba8qadaqadaWdaeaapeGaaGimaaGaayjk aiaawMcaaaGaayzkJiaawQYiaiaac6caaaa@5A40@   (40)

The obtaining result is

C( x ) x =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeadaqadaWdaeaapeGaamiEaaGa ayjkaiaawMcaaaWdaeaapeGaeyOaIyRaamiEaaaacqGH9aqpcaaIWa Gaaiilaaaa@4123@   (41)

which imply that C( x )=C=constant MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja am4qaiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0bGaamyyai aad6gacaWG0baaaa@4502@ . The constant C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbaaaa@36DF@ can be evaluated by

applying the initial condition of the propagator

lim τ 0 + K( x, x ;τ )=δ( x x ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGPb GaaiyBamaaBaaaleaacqaHepaDcqGHsgIRcaaIWaWaaWbaaWqabeaa cqGHRaWkaaaaleqaaOaeaaaaaaaaa8qacaWGlbWaaeWaa8aabaWdbi aadIhacaGGSaGabmiEa8aagaqba8qacaGG7aGaeqiXdqhacaGLOaGa ayzkaaGaeyypa0JaeqiTdq2aaeWaa8aabaWdbiaadIhacqGHsislce WG4bWdayaafaaapeGaayjkaiaawMcaaiaac6caaaa@4FA3@   (42)

The constant can be obtained as

C= mcosν τ 2πiћ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamyBamXv P5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbciaa=zsica WGJbGaam4BaiaadohacqaH9oGBcuaHepaDpaGbauaaaeaapeGaaGOm aiabec8aWjaadMgacaWGBraaaaWcbeaakiaac6caaaa@5170@   (43)

So, the propagator for a harmonic oscillator with strongly pulsating mass can be written as

K( x, x ,τ )= [ mcosντcosν τ 2πiћsin( τ τ ) ] 1 2 exp( imν 2ћ [ sinντcosντ x 2 sinν τ cosν τ x 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiabes8a0bGaayjkaiaawMcaaiabg2da9maadmaapaqaa8qada WcaaWdaeaapeGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gi h9gDOL2yaGqbciaa=zsicaWGJbGaam4BaiaadohacqaH9oGBcqaHep aDcaWGJbGaam4BaiaadohacqaH9oGBcuaHepaDpaGbauaaaeaapeGa aGOmaiabec8aWjaadMgacaWGBrGaam4CaiaadMgacaWGUbGaa8NjHm aabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpaGbauaaa8qacaGL OaGaayzkaaaaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qadaWcaa WdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGcciGGLbGaaiiEaiaa cchadaqadaWdaeaapeWaaSaaa8aabaWdbiaadMgacaWGTbGaeqyVd4 gapaqaa8qacaaIYaGaam4weaaadaWadaWdaeaapeGaam4CaiaadMga caWGUbGaeqyVd4MaeqiXdqNaam4yaiaad+gacaWGZbGaeqyVd4Maeq iXdqNaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Iaam4C aiaadMgacaWGUbGaeqyVd4MafqiXdq3dayaafaWdbiaadogacaWGVb Gaam4Caiabe27aUjqbes8a09aagaqba8qaceWG4bWdayaafaWaaWba aSqabeaapeGaaGOmaaaaaOGaay5waiaaw2faaaGaayjkaiaawMcaaa aa@96B1@
×exp( im 2ћsin( τ τ ) [ ( cos 2 ντ x 2 + cos 2 ν τ x 2 )cos( τ τ )2cosν τ cosντx x ] ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHmaabmaapaqaa8qacqaHepaDcqGHsislcuaHepaDpa Gbauaaa8qacaGLOaGaayzkaaaaamaadmaapaqaa8qadaqadaWdaeaa peGaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikdaaaGccq aH9oGBcqaHepaDcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH RaWkciGGJbGaai4BaiaacohapaWaaWbaaSqabeaapeGaaGOmaaaaki abe27aUjqbes8a09aagaqba8qaceWG4bWdayaafaWaaWbaaSqabeaa peGaaGOmaaaaaOGaayjkaiaawMcaaiaadogacaWGVbGaam4Caiaa=z sidaqadaWdaeaapeGaeqiXdqNaeyOeI0IafqiXdq3dayaafaaapeGa ayjkaiaawMcaaiabgkHiTiaaikdacaWGJbGaam4BaiaadohacqaH9o GBcuaHepaDpaGbauaapeGaam4yaiaad+gacaWGZbGaeqyVd4MaeqiX dqNaamiEaiqadIhapaGbauaaa8qacaGLBbGaayzxaaaacaGLOaGaay zkaaGaaiOlaaaa@89FE@   (44)

The propagator for a harmonic oscillator with mass rapidly with time

This section has an idea from the calculation of the Green function for a harmonic oscillator with mass growing with time by S Pepore in 2018.15This paper will modify the Hamiltonian operator to H ̂ ( t )= p ̂ 2 ( t ) 2m ( 1+αt ) 4 + 1 2 m ( 1+αt ) 4 ω 2 x ̂ 2 ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaamaaxacaba WdbiaadchaaSWdaeqabaWdbiablkWaKaaak8aadaahaaWcbeqaa8qa caaIYaaaaOWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aaba WdbiaaikdacaWGTbWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqy caWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaisdaaaaaaO Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyB amaabmaapaqaa8qacaaIXaGaey4kaSIaeqySdeMaamiDaaGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaI0aaaaOGaeqyYdC3damaaCaaa leqabaWdbiaaikdaaaGcpaWaaCbiaeaapeGaamiEaaWcpaqabeaape GaeSOadqcaaOWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiaacYcaaaa@5FA4@   (45)

Where α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CE@ is a constant. The aim of this section is calculating the propagator corresponding to the Hamiltonian operator in Eq. (45) by the application of the integrals of the motion of quantum systems. Beginning by solving Heisenberg’s equation for x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and p ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF1@ and imposing the initial conditions of x ̂ ( 0 )= x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiabg2da98aadaWfGaqaa8qacaWG4b aal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaaIWaaapaqa baaaaa@401C@  and p ̂ ( 0 )= p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiabg2da98aadaWfGaqaa8qacaWGWb aal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaaIWaaapaqa baaaaa@400C@ , the position operator and momentum operator can be written as

x ̂ ( t )= 1 ( 1+αt ) 2 [ cosωt+ 2α ω sinωt ] x ̂ 0 +( sinωt mω ( 1+αt ) 2 ) p ̂ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXa aapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeg7aHjaadsha aiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaWada WdaeaapeGaam4yaiaad+gacaWGZbGaeqyYdCNaamiDaiabgUcaRmaa laaapaqaa8qacaaIYaGaeqySdegapaqaa8qacqaHjpWDaaGaam4Cai aadMgacaWGUbGaeqyYdCNaamiDaaGaay5waiaaw2faa8aadaWfGaqa a8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbmaalaaapaqaa8qa caWGZbGaamyAaiaad6gacqaHjpWDcaWG0baapaqaa8qacaWGTbGaeq yYdC3aaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqycaWG0baacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLOaGaay zkaaWdamaaxacabaWdbiaadchaaSWdaeqabaWdbiablkWaKaaak8aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaaaaa@7152@   (46)

p ̂ ( t )=[ ( 2mα ( 1+αt ) 2 2mα( 1+αt ) )cosωt( mω ( 1+αt ) 2 + 4m α 2 ω ( 1+αt ) )sinωt ] x ̂ 0 +[ ( 1+αt ) 2 cosωt 2α ω ( 1+αt )sinωt ] p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaCbiae aaqaaaaaaaaaWdbiaadchaaSWdaeqabaWdbiablkWaKaaakmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWdbm aabmaapaqaa8qacaaIYaGaamyBaiabeg7aHnaabmaapaqaa8qacaaI XaGaey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaa8aadaahaaWcbe qaa8qacaaIYaaaaOGaeyOeI0IaaGOmaiaad2gacqaHXoqydaqadaWd aeaapeGaaGymaiabgUcaRiabeg7aHjaadshaaiaawIcacaGLPaaaai aawIcacaGLPaaacaWGJbGaam4BaiaadohacqaHjpWDcaWG0bGaeyOe I0YaaeWaa8aabaWdbiaad2gacqaHjpWDdaqadaWdaeaapeGaaGymai abgUcaRiabeg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaa peGaaGOmaaaakiabgUcaRmaalaaapaqaa8qacaaI0aGaamyBaiabeg 7aH9aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqaHjpWDaaWa aeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqycaWG0baacaGLOaGaay zkaaaacaGLOaGaayzkaaGaam4CaiaadMgacaWGUbGaeqyYdCNaamiD aaGaay5waiaaw2faa8aadaWfGaqaa8qacaWG4baal8aabeqaa8qacq WIcmajaaGcpaWaaSbaaSqaa8qacaaIWaaapaqabaaakeaapeGaey4k aSYaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqySde MaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbGaeqyYdCNaamiDaiabgkHiTmaalaaapaqaa8 qacaaIYaGaeqySdegapaqaa8qacqaHjpWDaaWaaeWaa8aabaWdbiaa igdacqGHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaGaam4CaiaadM gacaWGUbGaeqyYdCNaamiDaaGaay5waiaaw2faa8aadaWfGaqaa8qa caWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqaa8qacaaIWa aapaqabaaaaaa@A0E5@ .  (47)

By using Eq. (46) and Eq. (47), the integrals of the motion  and  can be expressed as

x ̂ 0 ( x ̂ , p ̂ ,t )=[ ( 1+αt ) 2 cosωt 2α ω ( 1+αt )sinωt ] x ̂ ( sinωt mω ( 1+αt ) 2 ) p ̂ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da9maadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiab eg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiaadogacaWGVbGaam4CaiabeM8a3jaadshacqGHsisldaWcaaWd aeaapeGaaGOmaiabeg7aHbWdaeaapeGaeqyYdChaamaabmaapaqaa8 qacaaIXaGaey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaaiaadoha caWGPbGaamOBaiabeM8a3jaadshaaiaawUfacaGLDbaapaWaaCbiae aapeGaamiEaaWcpaqabeaapeGaeSOadqcaaOGaeyOeI0YaaeWaa8aa baWdbmaalaaapaqaa8qacaWGZbGaamyAaiaad6gacqaHjpWDcaWG0b aapaqaa8qacaWGTbGaeqyYdC3aaeWaa8aabaWdbiaaigdacqGHRaWk cqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaik daaaaaaaGccaGLOaGaayzkaaWdamaaxacabaWdbiaadchaaSWdaeqa baWdbiablkWaKaaakiaacYcaaaa@7AD7@   (48)

p ̂ 0 ( x ̂ , p ̂ ,t )=[ ( mω ( 1+αt ) 2 + 4m α 2 ω ( 1+αt ) )sinωt ( 2mα ( 1+αt ) 2 2mα( 1+αt ) )cosωt ] x ̂ +[ cosωt ( 1+αt ) 2 + 2αsinωt ω ( 1+αt ) 2 ] p ̂ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da9maadmaapaabaeqabaWdbmaabmaapaqaa8qacaWGTbGaeqyY dC3aaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqycaWG0baacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkdaWcaaWd aeaapeGaaGinaiaad2gacqaHXoqypaWaaWbaaSqabeaapeGaaGOmaa aaaOWdaeaapeGaeqyYdChaamaabmaapaqaa8qacaaIXaGaey4kaSIa eqySdeMaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadohaca WGPbGaamOBaiabeM8a3jaadshaaeaacqGHsisldaqadaWdaeaapeGa aGOmaiaad2gacqaHXoqydaqadaWdaeaapeGaaGymaiabgUcaRiabeg 7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaa kiabgkHiTiaaikdacaWGTbGaeqySde2aaeWaa8aabaWdbiaaigdacq GHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGa am4yaiaad+gacaWGZbGaeqyYdCNaamiDaaaacaGLBbGaayzxaaWdam aaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakiabgUcaRmaa dmaapaqaa8qadaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqyYdC NaamiDaaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqy caWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaey4kaSYaaSaaa8aabaWdbiaaikdacqaHXoqycaWGZbGaamyAaiaa d6gacqaHjpWDcaWG0baapaqaa8qacqaHjpWDdaqadaWdaeaapeGaaG ymaiabgUcaRiabeg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaaaaaaaakiaawUfacaGLDbaapaWaaCbiaeaapeGaam iCaaWcpaqabeaapeGaeSOadqcaaOGaaiOlaaaa@A7A2@   (49)

The Green function or propagator K( x, x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaaaaa@3E25@ is an eigen function of the integrals of the motion as

x ̂ 0 ( x )K( x, x ,t )= x ̂ ( x )K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb a8qacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da98aadaWfGaqaa8 qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGabmiE a8aagaqbaaWdbiaawIcacaGLPaaacaWGlbWaaeWaa8aabaWdbiaadI hacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMca aiaacYcaaaa@51E5@   (50)

p ̂ 0 ( x )K( x, x ,t )= p ̂ ( x )K( x, x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb a8qacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHiT8aada WfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGabmiEa8aagaqbaaWdbiaawIcacaGLPaaacaWGlbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjk aiaawMcaaaaa@5212@ .  (51)

By applying Eqs. (48)-(51), we can write

[ x( ( 1+αt ) 2 cosωt 2α ω ( 1+αt )sinωt )+ iћsinωt mω ( 1+αt ) 2 x ]K( x, x ,t )= x K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadIhadaqadaWdaeaapeWaaeWaa8aabaWdbiaa igdacqGHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohacqaHjpWDcaWG0bGa eyOeI0YaaSaaa8aabaWdbiaaikdacqaHXoqya8aabaWdbiabeM8a3b aadaqadaWdaeaapeGaaGymaiabgUcaRiabeg7aHjaadshaaiaawIca caGLPaaacaWGZbGaamyAaiaad6gacqaHjpWDcaWG0baacaGLOaGaay zkaaGaey4kaSYaaSaaa8aabaWdbiaadMgacaWGBrGaam4CaiaadMga caWGUbGaeqyYdCNaamiDaaWdaeaapeGaamyBaiabeM8a3naabmaapa qaa8qacaaIXaGaey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaaIYaaaaaaakmaalaaapaqaa8qacqGHciITa8 aabaWdbiabgkGi2kaadIhaaaaacaGLBbGaayzxaaGaam4samaabmaa paqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaai aawIcacaGLPaaacqGH9aqpceWG4bWdayaafaWdbiaadUeadaqadaWd aeaapeGaamiEaiaacYcaceWG4bWdayaafaWdbiaacYcacaWG0baaca GLOaGaayzkaaGaaiilaaaa@807D@   (52)

[x( ( mω ( 1+αt ) 2 + 4m α 2 ω ( 1+αt ) )sinωt( 2mα ( 1+αt ) 2 2mα( 1+αt ) )cosωt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiaadIhadaqadaWdaeaapeWaaeWaa8aabaWdbiaad2gacqaH jpWDdaqadaWdaeaapeGaaGymaiabgUcaRiabeg7aHjaadshaaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRmaalaaa paqaa8qacaaI0aGaamyBaiabeg7aH9aadaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qacqaHjpWDaaWaaeWaa8aabaWdbiaaigdacqGHRaWk cqaHXoqycaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaam4Cai aadMgacaWGUbGaeqyYdCNaamiDaiabgkHiTmaabmaapaqaa8qacaaI YaGaamyBaiabeg7aHnaabmaapaqaa8qacaaIXaGaey4kaSIaeqySde MaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGa eyOeI0IaaGOmaiaad2gacqaHXoqydaqadaWdaeaapeGaaGymaiabgU caRiabeg7aHjaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaWG JbGaam4BaiaadohacqaHjpWDcaWG0baacaGLOaGaayzkaaaaaa@7565@
iћ( cosωt ( 1+αt ) 2 + 2αsinωt ω ( 1+αt ) 2 ) x ]K( x, x ,t )=iћ K( x, x ,t ) x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyAaiaadUfbdaqadaWdaeaapeWaaSaaa8aabaWdbiaa dogacaWGVbGaam4CaiabeM8a3jaadshaa8aabaWdbmaabmaapaqaa8 qacaaIXaGaey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIYaaaaaaakiabgUcaRmaalaaapaqaa8qacaaIYa GaeqySdeMaam4CaiaadMgacaWGUbGaeqyYdCNaamiDaaWdaeaapeGa eqyYdC3aaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqycaWG0baaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLOaGa ayzkaaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiEaa aacaGGDbGaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGb auaapeGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGPbGaam 4wemaalaaapaqaa8qacqGHciITcaWGlbWaaeWaa8aabaWdbiaadIha caGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaa WdaeaapeGaeyOaIyRabmiEa8aagaqbaaaapeGaaiOlaaaa@7503@   (53)

For solving the propagator, we must rewrite Eq. (52) and Eq. (53) to

K( x, x ,t ) x = imω ћ { ( ( 1+αt ) 4 cotωt 2α ω ( 1+αt ) 3 )x ( 1+αt ) 2 cscωt x }K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITcaWG4baaaiabg2da9maalaaapaqaa8qacaWGPbGa amyBaiabeM8a3bWdaeaapeGaam4weaaadaGadaWdaeaapeWaaeWaa8 aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqySdeMaamiDaaGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI0aaaaOGaam4yaiaad+ gacaWG0bGaeqyYdCNaamiDaiabgkHiTmaalaaapaqaa8qacaaIYaGa eqySdegapaqaa8qacqaHjpWDaaWaaeWaa8aabaWdbiaaigdacqGHRa WkcqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa iodaaaaakiaawIcacaGLPaaacaWG4bGaeyOeI0YaaeWaa8aabaWdbi aaigdacqGHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaa leqabaWdbiaaikdaaaGccaWGJbGaam4CaiaadogacqaHjpWDcaWG0b GabmiEa8aagaqbaaWdbiaawUhacaGL9baacaWGlbWaaeWaa8aabaWd biaadIhacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkai aawMcaaiaacYcaaaa@7C2D@   (54)

K( x, x ,t ) x = imω ћ { ( 1+αt ) 2 cscωtx( cotωt+ 2α ω ) x }K( x, x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITceWG4bWdayaafaaaa8qacqGH9aqpcqGHsisldaWc aaWdaeaapeGaamyAaiaad2gacqaHjpWDa8aabaWdbiaadUfbaaWaai Waa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqySdeMaamiD aaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yai aadohacaWGJbGaeqyYdCNaamiDaiaadIhacqGHsisldaqadaWdaeaa peGaam4yaiaad+gacaWG0bGaeqyYdCNaamiDaiabgUcaRmaalaaapa qaa8qacaaIYaGaeqySdegapaqaa8qacqaHjpWDaaaacaGLOaGaayzk aaGabmiEa8aagaqbaaWdbiaawUhacaGL9baacaWGlbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjk aiaawMcaaiaac6caaaa@6F5B@   (55)

Solving Eq. (54), we obtain

K( x, x ,t )=C( x ,t )exp{ i ћ [ mω 2 ( 1+αt ) 4 cotωtmα ( 1+αt ) 3 ) x 2 mω ( 1+αt ) 2 cscωtx x ]}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiqadIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPaaaciGG LbGaaiiEaiaacchacaGG7bWaaSaaa8aabaWdbiaadMgaa8aabaWdbi aadUfbaaWaaKGea8aabaWdbmaalaaapaqaa8qacaWGTbGaeqyYdCha paqaa8qacaaIYaaaamaabmaapaqaa8qacaaIXaGaey4kaSIaeqySde MaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI0aaaaOGa am4yaiaad+gacaWG0bGaeqyYdCNaamiDaiabgkHiTiaad2gacqaHXo qydaqadaWdaeaapeGaaGymaiabgUcaRiabeg7aHjaadshaaiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaG4maaaaaOGaay5waiaawMcaai aadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaad2gacqaH jpWDdaqadaWdaeaapeGaaGymaiabgUcaRiabeg7aHjaadshaaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGZbGa am4yaiabeM8a3jaadshacaWG4bGabmiEa8aagaqba8qacaGGDbGaai yFaiaac6caaaa@7E0C@   (56)
The constant of integration can be calculated by substituting Eq. (56) into Eq. (55) to obtain

C( x ,t ) x = imω ћ ( cotωt+ 2α ω ) x C( x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeadaqadaWdaeaapeGabmiEa8aa gaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaeyOaIy RabmiEa8aagaqbaaaapeGaeyypa0ZaaSaaa8aabaWdbiaadMgacaWG TbGaeqyYdChapaqaa8qacaWGBraaamaabmaapaqaa8qacaWGJbGaam 4BaiaadshacqaHjpWDcaWG0bGaey4kaSYaaSaaa8aabaWdbiaaikda cqaHXoqya8aabaWdbiabeM8a3baaaiaawIcacaGLPaaaceWG4bWday aafaWdbiaadoeadaqadaWdaeaapeGabmiEa8aagaqba8qacaGGSaGa amiDaaGaayjkaiaawMcaaiaac6caaaa@5A4D@   (57)

Solving Eq. (57), the result is

C( x ,t )=C( t )exp[ i ћ ( mω 2 cotωt x 2 +mα x 2 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaGaeyypa0Jaam4qamaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaGaciyzaiaacIhacaGGWbWaamWaa8aabaWdbmaalaaa paqaa8qacaWGPbaapaqaa8qacaWGBraaamaabmaapaqaa8qadaWcaa WdaeaapeGaamyBaiabeM8a3bWdaeaapeGaaGOmaaaacaWGJbGaam4B aiaadshacqaHjpWDcaWG0bGabmiEa8aagaqbamaaCaaaleqabaWdbi aaikdaaaGccqGHRaWkcaWGTbGaeqySdeMabmiEa8aagaqbamaaCaaa leqabaWdbiaaikdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaca GGUaaaaa@5B52@   (58)

Substituting Eq. (58) into Eq. (56), the propagator can be written as

K( x, x ,t )=C( t )exp[ i ћ ( mω 2 cotωt( ( 1+αt ) 4 x 2 + x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchacaGGBbWa aSaaa8aabaWdbiaadMgaa8aabaWdbiaadUfbaaGaaiikamaalaaapa qaa8qacaWGTbGaeqyYdChapaqaa8qacaaIYaaaaiaadogacaWGVbGa amiDaiabeM8a3jaadshadaqadaWdaeaapeWaaeWaa8aabaWdbiaaig dacqGHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaaisdaaaGccaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccq GHRaWkceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjk aiaawMcaaaaa@6023@
mα( ( 1+αt ) 3 x 2 x 2 )mω ( 1+αt ) 2 cscωtx x )]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyBaiabeg7aHnaabmaapaqaa8qadaqadaWdaeaapeGa aGymaiabgUcaRiabeg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaS qabeaapeGaaG4maaaakiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaa kiabgkHiTiqadIhapaGbauaadaahaaWcbeqaa8qacaaIYaaaaaGcca GLOaGaayzkaaGaeyOeI0IaamyBaiabeM8a3naabmaapaqaa8qacaaI XaGaey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaa8aadaahaaWcbe qaa8qacaaIYaaaaOGaam4yaiaadohacaWGJbGaeqyYdCNaamiDaiaa dIhaceWG4bWdayaafaWdbiaacMcacaGGDbGaaiOlaaaa@5CEA@   (59)

The next step is calculating C( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOlaaaa @3B4A@ Substituting the propagator in Eq. (59) into the Schrodinger equation

iћ K( x, x ,t ) t = ћ 2 2m ( 1+αt ) 4 2 K( x, x ,t ) x 2 + 1 2 m ( 1+αt ) 4 ω 2 x 2 K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0JaeyOeI0Ya aSaaa8aabaWdbiaadUfbpaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGOmaiaad2gadaqadaWdaeaapeGaaGymaiabgUcaRiabeg7a HjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGinaaaaaa GcdaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGc caWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqba8qaca GGSaGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaamiEa8aa daahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRmaalaaapaqaa8qaca aIXaaapaqaa8qacaaIYaaaaiaad2gadaqadaWdaeaapeGaaGymaiab gUcaRiabeg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaape GaaGinaaaakiabeM8a39aadaahaaWcbeqaa8qacaaIYaaaaOGaamiE a8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4samaabmaapaqaa8qaca WG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGL PaaacaGGSaaaaa@752F@   (60)

we obtain

dC( t ) dt =( 1 2 ωcotωt+ α ( 1+αt ) )C( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgacaWGdbWaaeWaa8aabaWdbiaadshaaiaa wIcacaGLPaaaa8aabaWdbiaadsgacaWG0baaaiabg2da9maabmaapa qaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa cqaHjpWDcaWGJbGaam4BaiaadshacqaHjpWDcaWG0bGaey4kaSYaaS aaa8aabaWdbiabeg7aHbWdaeaapeWaaeWaa8aabaWdbiaaigdacqGH RaWkcqaHXoqycaWG0baacaGLOaGaayzkaaaaaaGaayjkaiaawMcaai aadoeadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaac6caaaa@5740@   (61)

Solving Eq. (61), the result is

C( t )=C ( ( 1+αt ) 2 sinωt ) 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja am4qamaabmaapaqaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaig dacqGHRaWkcqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaaikdaaaaak8aabaWdbiaadohacaWGPbGaamOBaiabeM8a3j aadshaaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqa a8qacaaIXaaapaqaa8qacaaIYaaaaaaakiaac6caaaa@4DB7@   (62)

The final step is finding the constant by using the initial condition of the propagator

lim t 0 + K( x, x ,t )=δ( x x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaacMgacaGGTbWaaSbaaSqaaiaadshacqGHsgIRcaaIWaWa aWbaaWqabeaacqGHRaWkaaaaleqaaOGaam4samaabmaapaqaa8qaca WG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcqaH0oazdaqadaWdaeaapeGaamiEaiabgkHiTiqadI hapaGbauaaa8qacaGLOaGaayzkaaGaaiOlaaaa@4DFD@   (63)

The constant becomes

C= mω 2πiћ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamyBaiab eM8a3bWdaeaapeGaaGOmaiabec8aWjaadMgacaWGBraaaaWcbeaaki aac6caaaa@414B@   (64)

So, the propagator for a harmonic oscillator with mass rapidly growing with time can be written as

K( x, x ,t )= [ mω ( 1+αt ) 2 2πiћsinωt ] 1 2 exp[ i ћ ( mω 2 cotωt( ( 1+αt ) 4 x 2 + x 2 )mα( ( 1+αt ) 3 x 2 x 2 ) mω ( 1+αt ) 2 cscωtx x )]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb a8qacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9maadmaapaqaa8 qadaWcaaWdaeaapeGaamyBaiabeM8a3naabmaapaqaa8qacaaIXaGa ey4kaSIaeqySdeMaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacaaIYaGaeqiWdaNaamyAaiaadUfbcaWG ZbGaamyAaiaad6gacqaHjpWDcaWG0baaaaGaay5waiaaw2faa8aada ahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa aaGcciGGLbGaaiiEaiaacchacaGGBbWaaSaaa8aabaWdbiaadMgaa8 aabaWdbiaadUfbaaGaaiikamaalaaapaqaa8qacaWGTbGaeqyYdCha paqaa8qacaaIYaaaaiaadogacaWGVbGaamiDaiabeM8a3jaadshada qadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaHXoqycaWG 0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaisdaaaGccaWG4b WdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkceWG4bWdayaafaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTiaad2 gacqaHXoqydaqadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWk cqaHXoqycaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaio daaaGccaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislceWG 4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaa qaaiabgkHiTiaad2gacqaHjpWDdaqadaWdaeaapeGaaGymaiabgUca Riabeg7aHjaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaG OmaaaakiaadogacaWGZbGaam4yaiabeM8a3jaadshacaWG4bGabmiE a8aagaqba8qacaGGPaGaaiyxaiaac6caaaaa@9A8E@   (65)

Conclusion

We have successfully derived the propagator and wave function for a harmonic oscillator with mass obeying the law of m( t )=m tan 2 νt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaO Wdaiabe27aU9qacaWG0baaaa@436D@ by Feynman path integral, the propagator for a harmonic oscillator with strongly pulsating mass by Schwinger method, and the propagator for a harmonic oscillator with mass rapidly growing with time by the application of the integrals of the motion of quantum systems. The Feynman formulation base on functional integration. The Schwinger method concern with operator algebra. The method of VV Dodonovet.al is applying the integrals of the motion operators x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A6C@ and p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A64@ . The pre-exponential function F( t '' , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaaaaa@3E1B@ in Feynman path integral comes from the summation over all fluctuation amplitudes of classical paths. In Schwinger method, the pre-exponential function C( x, x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaaaaa@3C74@ appears from the commutator of [ x ̂ ( τ ), x ̂ ( 0 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqca aOWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaiaacYcapaWaaC biaeaapeGaamiEaaWcpaqabeaapeGaeSOadqcaaOWaaeWaa8aabaWd biaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGUaaaaa@44E2@ In the method of VV Dodonov et.al, the pre-exponential function C( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A98@ comes from the fact that the propagators is the solution of Schrodinger equation. These differences may shows the nature of classical mechanics which the physical observables are real numbers and the nature of quantum mechanics which the physical quantities are represented by operators. The propagator approaches in this paper are alternative methods comparison with the Schrodinger wave mechanics which base on finding wave function and the Heisenberg formulation which requires applying the creation and annihilation operators to derive the eigen functions of Hamiltonian operator. In propagator method, the wave function can be calculated by expanding the obtained propagator. In the calculation point of views, the Feynman path integral more simply than the Schwinger and Dodonov et. al. methods which some Hamiltonian operators have difficulties in solving the Heisenberg equation. However, having several methods in calculating the propagators may be usefulness.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1.  AB Nassar, JMF Bassalo, PDT Alencar. Nonlinear superposition law and Feynman propagator, Phys. Lett. A. 1986;113:365.
  2.  CFD Souza, ADS Dutra. The propagator for a time–dependent mass subject to a harmonic potential with a time–dependent frequencies. Phys Lett. A. 1987;123:297.
  3.  M Sabir, S Rajagopalan. Path integral analysis of harmonic oscillators with time–dependent mass. Pramana.  J Phys. 1991;37:253.
  4.  S Mandal. On the squeezing of coherent light coupled to a driven damped harmonic oscillator with time–dependent frequency. Phys Lett A. 2004;321:308.
  5.  SK Singh, S Mandal. The solutions of the generalized classical and quantum harmonic oscillators with time–dependent mass, frequency, two–photon parameter and external force: the squeezing effects, Opt Commun. 2010;283:4685.
  6.  B Berrabah. Quantum mechanical path integral in phase space and class of harmonic oscillators with varied frequencies. Journal of Modern Physics. 2016;7:359.
  7.  S Mandal. Classical and quantum harmonic oscillators with time–dependent mass and frequency: a new class of exactly solvable model. Opt Commun. 2017;386:37.
  8. RK Colegrave, MS Abdalla. Harmonic oscillator with exponential decaying mass. J Phys  A. 1981;14:2269.
  9.  RK Colegrave, MS Abdalla. Harmonic oscillator with strongly pulsating mass. J Phys A. 1982;15:1549.
  10.  RP Feynman, AR Hibbs, Quantum Mechanics and Path Integral. McGraw–Hill. New York. 1965.
  11.  S Pepore, P Winotai, T Osotchan, et al. Path integral for a harmonic oscillator with time–dependent mass and frequency. Science Asia. 2006;32:173.
  12.  J Schwinger. The theory of quantized field. Phys Rev. 1951;82:664.
  13. S Pepore, B Sukbot. Schwinger method and Feynman path integral for a harmonic oscillator with mass growing with time, Chinese. J Phys. 2015;53:060004.
  14.  VV Dodonov, IA Malkin, VI Man’ko. Integrals of the motion, Green functions and coherent states of dynamical systems, Int. J Theor Phys. 1975;14:37.
  15.  S Pepore. Integrals of the motion and Green functions for time–dependent mass harmonic oscillators, Rev Mex Fis. 2018;64:30.
  16.  S Pepore. Integrals of the motion and Green functions for dual damped oscillators and coupled harmonic oscillators. Rev Mex Fis. 2018;64:150.
  17.  H Goldstein, C Poole, J Safko. Classical Mechanics. Addison– Wesley, San Francisco. 2000.
  18.  W Pauli. Selected chapters of the field quantization, ETH, Zurice, 1952.
  19.  C Morette. On the definition and approximation of Feynman’s path integral. Phys Rev. 1951;81:848.
  20. A Erdelyi. Higher Transcendental Functions. McGra–Hill, New York, 1953.
Creative Commons Attribution License

©2021 Pepore. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.