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Introduction
The research in deriving quantum solutions for a harmonic 

oscillator with time-dependent frequencies or with time-dependent 
masses (or both simultaneously) have intensive studied in the recent 
years.1–7 The main reasons for time-dependent harmonic oscillator 
very interesting is the application in many areas of physics such 
as quantum chemistry, plasma physics, and quantum optics. For 
example, Colegrave and Abdalla8,9 presented that electromagnetic 
field intensities in a Fabry-Perot cavity can be described by a harmonic 
oscillator with time-dependent mass and constant frequency. The 
standard tool in solving wave function of Schrodinger’s equation 
for time-dependent harmonic oscillator is the Lewis-Riesenfeld in 
variant operator method.10 The another method to solve the time-
dependent harmonic oscillator problems is Feynman path integral.11,12 
The Feynman path integral is the formulation which is invented for 
calculating the propagator. The propagator represents the transition 
probability amplitude of the system or Green’s function of the 
Schrodinger’s equation. The Feynman path integral was applied 
to derive the propagators for a harmonic oscillator with strongly 
pulsating mass ( )( )2cosm t m tν=  and a harmonic oscillator with 

mass growing with time ( ) ( )( )21m t m tα= +  by M Sabir and S Raja 
gopalan in 1991.3 The one aims of this paper is applying the Feynman 
path integral to calculate the propagator for a harmonic oscillator with 
mass obeying the function of ( ) 2tanm t m tν= and then expanding 
the obtained propagator to evaluate the wave function. The another 
method in calculating the propagator is the Schwinger method.12 This 
method was first introduced by Schwinger in 1951 in solving the gauge 
invariance and vacuum polarization in QED. In 2015 S Pepore and 
B Sukbot applied the Schwinger method to evaluate the propagator 
for a harmonic oscillator with mass growing with time.13The another 
purposes of this article is employing the Schwinger method to derive 
the propagator for a harmonic oscillator with strongly pulsating mass. 
The alternative techniques in deriving the propagator is applying the 
integrals of the motion of quantum systems. This method was first 
presented by VV Dodonov, IA Malk in, and V. I. Man’ko in 1975.14 
In 2018, S Pepore applied the integrals of the motion of quantum 
systems to calculate the Green function for time-dependent mass 
harmonic oscillators,15 dual damped oscillators, and coupled harmonic 
oscillators.16 The final aims of this paper is employing this method to 

calculate the propagator for a harmonic oscillator with mass rapidly 

growing with time ( ) ( )( )41 .m t m tα= + The organizations of this 
paper are as follows. In Section 2, the propagator for a harmonic 
oscillator with mass having the function of ( ) 2tanm t m tν= is derived 
by Feynman path integral method. In Section 3, the propagator for 
a harmonic oscillator with strongly pulsating mass is calculated by 
the Schwinger method. In Section 4, the propagator for a harmonic 
oscillator with mass rapidly growing with time is evaluated by the 
application of the integrals of the motion of quantum systems. Finally, 
the conclusion is presented in Section 5.

The Feynman path integral for a harmonic oscillator with mass 
obeying the law of ( ) 2tanm t m tν=

Colegrave and Abdalla9 demonstrated that the electromagnetic 
field intensities in a Fabry-Perot cavity can be described by a harmonic 
oscillator with strongly pulsating mass written by the Hamiltonian of

                      
( )

2
2 2 2 21sec cos

2 2
pH t t m t x
m

ν ν ω= +                           (1)

Where ( ) 2cosm t m tν= and v is the frequency of a pulsating mass. 
This paper we will modify the time-dependent mass by imposing
( ) 2tanm t m tν= . The Hamiltonian of this system can be described by 

                     
( )

2
2 2 2 21cot tan

2 2
pH t t m t x
m

ν ν ω= +                         (2)

Where  ω  is the frequency of oscillator.

The Lagrangian corresponding with the Hamiltonian in Eq.(2) can 
be expressed as

                   
( ) 2 2 2 2 21 1, , tan tan

2 2
L x x t m tx m t xν ν ω= − 

                     
(3)

By using the Euler-Lagrange equation,17 the equation of motion 
can be written as 

                              
2 22 sec 0x cot t tx xν ν ν ω+ + =                              (4)

The Eq. (4) has the solution in the form of

                         ( ) [ ],x t cot t Acos t Bsin tν= +Ω Ω                        (5)
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Where A and B are constants and 2 2 2ω ν= +Ω . By imposing 
( )x t x′ = ′ and ( )'' ''x t x= , the classical path that connects the points 

( ),x t′ ′  and ( )'' '',x t  can be written as

( ) ( ) ( ){ }'' '' ' ''sin sin
sincl
cot tx t tan t t t x tan t t t x

T
ν ν ν= − ′+′ −Ω Ω
Ω  

(6)

Where '' .T t t= − ′

The action of the classical systems can be calculated from

                                
( ) ( ), , , , .S x x t L x x t dt= ∫ 

                              
(7)

Substituting the Lagrangian in Eq. (3) into Eq. (7), the classical 
action becomes

                      
( ) 2 '' '' '' 2 ' 'tan tan .

2 2cl cl cl cl cl
m mS t t x x t x xν ν− ′=  

             
(8)

Inserting the classical path in Eq. (6) into Eq. (8), the classical 
action can be obtained as

( ) ( )2 '' ''2 2 2cot tan tan
2cl

mS t T t x t xν ν+ ′= ′Ω
Ω

( )'' 2 '' ''2 2 2 '' ''tan sec tan sec
2

m mt t x t t x tan t tan t x x
sin T

ν ν ν ν ν ν ν′ ′ ′ ′− ′− −
Ω
Ω    

                                                                                                              
.(9)

As suggested by Feynman [10], the Green function for a quadratic 
Lagrangian can be written as

                       ( ) ( )
( )'' '', ; ,

'' '' '', ; , ,
iS x t x tcl

žK x t x t F t t e
′ ′

′ ′ ′=                      (10)

where the pre-exponential function ( )'' ,F t t′ can be calculated 
from Pauli-Van Vleck18,19 as

                    
( ) ( )

1
2 '' '' 2

''
''

, ; ,
, .

2
clS x t x tiF t t

ž x xπ

 ∂
 =
 ∂
 

′
∂

′ ′

′
                    (11)

By applying Eq. (11), the pre-exponential function ( )'' ,F t t′
becomes

                           
( )

1
'' 2'' ,

2
m tan t tan tF t t

ižsin T
ν ν

π
 

=′ 


′



Ω
Ω

.                              (12)

Substituting Eqs. (9) and (12) into Eq. (10), the propagator of this 
oscillator can be written as

                      
( )

1
'' 2'' '', ; ,

2
m tan t tan tK x t x t

ižsin T
ν ν

π
 

= ′


′
′ 



Ω
Ω

      
'' 2 '' ''2 2 2exp sec sec

2
im tan t t x tan t t x
ž
ν ν ν ν ν′ ′ ′  × − −   

( )( )2 '' ''2 2 2 '' ''exp tan tan 2
2

im t x t x cos T tan t tan t x x
žsin T

ν ν ν ν′ ′ × + ′ 


′−


Ω
Ω

Ω   .                                                                                                               
                                                                                                             (13)

The next task is calculating the wave function. Beginning by 
defining

                                   
                                 ( )'', ,iz e t tϕ ϕ−= = ′−Ω

                                  
(14)

                                 

2 21 1, ,
2 2

z zsin cos
iz z

ϕ ϕ− +
= =                               (15)

                    
'' '' ,m mtan t x tan t x

ž ž
α ν β ν ′= ′=

Ω Ω

                    
(16)

the propagator in Eq. (13) can be rewritten as

            
( ) ( )

1
1'' 2'' '' 2 2, ; , 1m tan t tan t zK x t x t z

ž
ν ν
π

− 
= −′ 



′
′



Ω

        
'' 2 '' ''2 2 2exp sec sec

2
im tan t t x tan t t x
ž
ν ν ν ν ν′ ′ ′  × − −   

              
( )

2
2 2

2
1 1exp 2 .

21
zz

z
αβ α β

   + × − +    −      
                (17)

By using the formula

                                   
( )

2 2

22

1 1 ,
2 12 1

z z
zz

+
= +

−−
                             

(18)

The propagator in Eq. (17) can be modified to

              
( ) ( )

1
1'' 2'' '' 2 2, ; , 1m tan t tan t zK x t x t z

ž
ν ν
π

− 
= −′ 



′
′



Ω

         
'' 2 '' ''2 2 2exp sec sec

2
im tan t t x tan t t x
ž
ν ν ν ν ν′ ′ ′  × − −   

           
( ) ( )2 2 2

2 2
2

21exp exp .
2 1

z z

z

αβ α β
α β

 − +   × − + ×   −   
         (19)

The next step is applying the Mehler’s formula [20]

( ) ( )
( ) ( )

2 2 21
2 2

2 0

2
1 exp ,

1 2 !

n

n nn n

z z zz H H
z n

αβ α β
α β

− ∞

=

 − +
 − =
 −
 

∑   

                                                                                                            (20)

Where ( )nH α  and ( )nH β  are the Hermite polynomials. The 
propagator in Eq.(19) becomes

                  
( )

1
'' 2'' '', ; , m tan t tan tK x t x t

ž
ν ν
π

 
=  


′


′
′ Ω

        
'' 2 '' ''2 2 2exp sec sec

2
im tan t t x tan t t x
ž
ν ν ν ν ν′ ′ ′  × − −   

                  
( )2 '' ''2 2 2exp tan tan

2
m t x t x
ž

ν ν × − + ′ ′  

Ω

( ) 1''
2

'' ''
0 .

2 !

i t t n

n n nn
m m eH tan t x H tan t x
ž ž n

ν ν

 − − + 

=

′
 ∞    

×       
  

′ ′


∑
Ω

Ω Ω     (21)

By using the spectral representation of the propagator

                     ( ) ( ) ( )'' '' * '' ''
0, ; , , , ,n nnK x t x t x t x tψ ψ∞

=
′=′ ′ ′∑                         

(22)
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The wave function of this system can be written as 

( ) ] [

1
1 2
2 2 21, exp exp sec

2 22 !n n
tan t m imx t i n t tan t tx

ž žn
ν νψ ν ν

π

 
     = − +           

Ω
Ω

         
                

2 2exp tan .
2 n

m mtx H tan tx
ž ž

ν ν
  × −        

Ω Ω                     (23)

The Schwinger method for a harmonic 
oscillator with strongly pulsating mass

This section is the evaluation of propagator for a harmonic 
oscillator with strongly pulsating mass by the Schwinger method.12The 
procedures of Schwinger method are presented in Ref.13The 
Hamiltonian operator for a harmonic oscillator with strongly pulsating 
mass can be written as3

              
( ) ( ) ( )

2
2

2 2 21sec cos .
2 2

p
H m x

m
ν

τ
τ τντ τω= +



 

             (24)

By solving the Heisenberg equations

       

( ) ( ) ( ) ( ) ( ) ( ), , ,
d x d p

iž x H iž p H
d d
τ τ

τ τ τ τ
τ τ

   = =      

 

   

          
(25)

and imposing the initial conditions of ( ) ( )0 0x xτ = =
 

 and

( ) ( )0 0p pτ = =
 

, 

the position operator can be expressed as

( ) ( ) ( ) ( )0x sec cos cos sec sin sin xντ ντ ντ τ τ ντ ντ τ τ′ ′ ′ = − − − 


′


 

Ω Ω
Ω

( ) ( )1 0sec sec sin p
m

ντ ντ τ τ′ − ′+


Ω
Ω

.                                             (26)

By using Eq. (26), the momentum operator ( ) ( )2cosp m xντ τ τ=



 

 
can be written as 

 ( ) ( ) ( ) ( )(p m sin cos m cos cos sinτ ν ν τ τ τ τ ντ ντ τ τ= − −′ ′ ′−′ −


Ω Ω Ω

( ) ( ) ( )
2

) 0 (m sin sin sin x sec cos cosν ντ ντ τ τ ντ ντ τ τ− − ′+′ ′ −′


Ω Ω
Ω

( ) ( )) 0 .sec sin sin pτ τ τ τν ν ν′+ − ′


Ω
Ω

                                           (27)

By applying Eq. (26) to eliminate  in Eq. (27), the momentum 
operator can 

be rewritten only in terms of ( )x τ


 and  ( )0x  as 

     
( ) ( )( ) ( )2cosp m cot m sin cos xτ τ τ τ τ τ τν ν ν ν′= − +

 

Ω Ω

                 ( ) ( )0 .m cos cos csc xντ ντ τ τ−′ ′−


Ω Ω                            (28)

Substituting Eq. (28) into Eq. (24) and rewriting each terms of 

( )H τ


 in a time ordered form with ( )x τ


 to the left and ( )  0x


 to the 
right with the helping of the commutator

( ) ( ) ( )0 , ,ižx x sec sec sin
m

τ ντ ντ τ τ  = −  ′
 

′
 

Ω
Ω

the time ordered 

Hamiltonian operator ( )ordH τ


 can be written as

( ) ( )2 2 2 2 2 2 21 1 1( cos csc sin cos
2 2 2

ordH m m mτ τ τ τ τ τν ν ν ν ν′= − + −


Ω Ω

( ) ( ) ( ) ( )
2

21 ) (
2

m sin cos cot x m cos cos csc cotν ντ ντ τ τ τ ντ ντ τ τ τ τ+ − − − −′ ′ ′ ′


Ω Ω Ω Ω Ω

( ) ( ) ( ) ( ) ( )
2

2 2 21) 0 cos csc 0
2

m cos sin csc x x m xτ τ τν ν ν ντ τ τ τ τ′+ − ′ + −′ ′
  

Ω Ω Ω Ω

                      
( ) .

2 2
iž ižcot tanντ τ ντ− −′−
Ω

Ω
                           

(29)

As presented in Ref.13 the propagator can be calculated by

   
( ) ( )

( ) ( ) ( )

( ) ( )0

0
, ; , exp( )

0

ordx t H t x
iK x x C x x dt
ž x t x

τ

τ = −
′

′ ′
′∫



( ) ( ) ( )2 2 2

0

1 1, exp( {( cos csc
2 2

iC x x m t t m sin tcos tcot t
ž

τ

ν ν ντ ν τ= − − + −′ ′ ′∫ Ω Ω Ω Ω

( ) ( )2 2 2 2 2 21 1sin cos ) (
2 2

m t m t x m cos tcos csc t cot tν ν ν ν ν ντ τ τ− − − −′ ′ ′Ω Ω Ω

( ) ( )2 2 2 21) cos csc
2

m cos sin tcsc t xx m t xτ τ τν ν τν ν′+ − ′ ′+′ ′− ′Ω Ω Ω Ω

                         
( ) } ),

2 2
iž ižcot t tan t dtντ ν− ′− −
Ω

Ω
                    

(30)

Where ( ),C x x′ is the function of x and x′ . The next step is 
integrating over time each terms of Eq. (30). The integrating of the 
first term in Eq. (30) can be obtained as

( ) ( )
2

2 2 2 2 2

0

( cos csc sin
2

imx t t sin tcos tcot t t
ž

τ

ν ν τν ν ντ ν− − + − +′ ′∫ Ω Ω Ω Ω

 
( )2 2 2 2 2cos ) cos .

2 2
im imt dt cos sin x cot x
ž ž
νν ν ν ντ τ τ τν τ ′− = + −

Ω
Ω

          

                                                                                                           
(31)

The second term in Eq. (30) can be calculated by

( ) ( ) ( )( )
0

im cos xx cos tcsc t cot t sin tcsc t dt
ž

τ

ντ ν τ τ ν ν τ−′ ′ −′ ′ ′+ −∫
Ω

Ω Ω Ω Ω

                    
( ) .im cos cos csc xx

ž
ντ ντ τ τ− ′ − ′= ′Ω

Ω                        (32)

The third term in Eq. (30) can be integrated as

( ) ( )
2

2 2 2 2 2

0

cos csc cos .
2 2

im imx t dt cot x
ž ž

τ

τ τ τν ν τ τ′ ′− − = −′ ′ ′ ′∫
Ω Ω

Ω Ω
            

                                                                                                            
(33)

Finally, the last term in Eq. (30) can be evaluated by

     
( ) ( )

1
2

0 0

ln .
2 2

coscot t dt tan tdt
sin

τ τν νττ ν
τ τ

 
− − − =  

− 
′

′ 
∫ ∫

Ω
Ω

Ω
         (34)

Substituting Eqs. (31)-(34) into Eq. (30), the propagator can be 
written as

https://doi.org/10.15406/paij.2021.05.00240
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( ) ( ) ( )

1
2

2, ; , exp
2

cos imK x x C x x sin cos x
sinž

ντ ντ ντ ντ
τ τ

   =    −    
′ ′

′Ω

( ) ( ) ( )2 2 2 2exp cos cos 2 .
2

im x x cos cos cos xx
žsin

ντ ντ τ τ ντ ντ
τ τ

  × + − −   −
′ ′

′
′ ′ ′



Ω
Ω

Ω

                                                                                                              
(35)

Substituting the propagator in Eq. (35) into the equation of

                      

( ) ( ) ( ) ( ), ;
0 0 ,

K x x
iž x p x

x
τ

τ
′

′
′

∂
=

∂



                     (36)

the result is

                      

( ) ( ),
, .

C x x
iž m cos sin x C x x

x
ν ντ ντ

∂
= ′ ′

′∂

′
′ ′

              
(37)

After solving Eq. (37), the function ( ),C x x′ can be obtained as

                 
( ) ( ) 2, exp ,

2
imC x x C x sin cos x
ž
ν ντ ντ = − 


′ ′


′ ′

            
(38)

Where ( )C x is the function of x .

Substituting Eq. (38) into Eq. (35), the propagator becomes

( ) ( ) ( )

1
2

2 2, ; exp
2

cos imK x x C x sin cos x sin cos x
sinž

ντ ντ ντ ντ ντ ντ
τ τ

′ ′ ′ ′
′

    = −    −    Ω

( ) ( ) ( )2 2 2 2exp cos cos 2 .
2

im x x cos cos cos xx
žsin

ντ ντ τ τ ντ ντ
τ τ

  × + − −   −
′ ′

′
′ ′ ′



Ω
Ω

Ω
   

                                                                                                           (39)

The final step is calculating ( )C x by substituting Eq. (39) into the 
equation of

                     

( ) ( ) ( ) ( ), ;
0 .

K x x
iž x p x

x
τ

τ τ
∂

− =
∂

′
′



                     
(40)

The obtaining result is

                                               

( ) 0,
C x

x
∂

=
∂                                

 (41)

which imply that ( )C x C constant= = . The constant C can be 
evaluated by 

applying the initial condition of the propagator

                            
( ) ( )

0
,im ; .l K x x x x

τ
τ δ+→
′ ′= −

                       
(42)

The constant C can be obtained as

                                    
.

2
m cosC

iž
ντ

π
′

=
Ω

                                   
(43)

So, the propagator for a harmonic oscillator with strongly pulsating 
mass can be written as

( ) ( )

1
2

2 2, , exp
2 2
m cos cos imK x x sin cos x sin cos x

ižsin ž
ντ ντ ντ ντ ντ ντ ντ

π τ τ
′

′ ′ ′ ′
    = −    −    ′

Ω
Ω

( ) ( ) ( )2 2 2 2exp cos cos 2 .
2

im x x cos cos cos xx
žsin

ντ ντ τ τ ντ ντ
τ τ

  × + − −   −
′ ′

′
′ ′ ′



Ω
Ω

Ω
 

                                                                                                               (44)

The propagator for a harmonic oscillator 
with mass rapidly with time

This section has an idea from the calculation of the Green function 
for a harmonic oscillator with mass growing with time by S Pepore in 
2018.15This paper will modify the Hamiltonian operator to

         ( ) ( )
( )

( ) ( )
2

2
4 2

4
1 1 ,
22 1

p t
H t m t x t

m t
α ω

α
= + +

+



 

                 
(45)

Whereα is a constant. The aim of this section is calculating the 
propagator corresponding to the Hamiltonian operator in Eq. (45) by 
the application of the integrals of the motion of quantum systems. 

Beginning by solving Heisenberg’s equation for ( )x t


 and ( )p t


and imposing the initial conditions of ( ) 00x x=
 

 and ( ) 00p p=
 

, the 
position operator and momentum operator can be written as

( )
( ) ( )

0 02 2
1 2 ,

1 1
sin tx t cos t sin t x p

t m t
α ωω ω
ωα ω α

    = + +    + + 

  

    (46)

                                         

              
                

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2

2 2 2
0 0

4 22 1 2 1 1 1 1 1mp t m t m t cos t m t t sin t x t cos t t sin t pα αα α α α ω ω α α ω α ω α ω
ω ω

    = + − + − + + + + + − +          

  

                    (47) 

By using Eq. (46) and Eq. (47), the integrals of the motion 0x


 and 

0p


 can be expressed as 
( ) ( )

( )
2

0 2
2, , 1 1 ,

1
sin tx x p t t cos t t sin t x p

m t
α ωα ω α ω
ω ω α

      = + − + −        + 

    

                                                                                                             

(48)

                 
( ) ( ) ( ) ( )( ) ( ) ( )

2
2 2

0 2 2
4 2, , 1 1 2 1 2 1 .

1 1
m cos t sin tp x p t m t t sin t m t m t cos t x p

t t
α ω α ωω α α ω α α α α ω
ω α ω α

      = + + + − + − + + +         + +     

    

                  

(49)

The Green function or propagator ( ), ,K x x t′ is an eigen function 
of the integrals of the motion as 

                        ( ) ( ) ( ) ( )0 , , , , ,x x K x x t x x K x x t=′ ′ ′
 

                    (50)

                        ( ) ( ) ( ) ( )0 , , , ,p x K x x t p x K x x t= −′ ′ ′
 

.                      (51)

By applying Eqs. (48)-(51), we can write
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( ) ( )
( )

( ) ( )2
2

21 1 , , , , ,
1

ižsin tx t cos t t sin t K x x t x K x x t
xm t

α ωα ω α ω
ω ω α

 ∂  + − + + =  ∂ 
′

+
′


′

  

                                                                                                               

(52)

( ) ( ) ( ) ( )( )
2

2 24[ 1 1 2 1 2 1mx m t t sin t m t m t cos tαω α α ω α α α α ω
ω

  
+ + + − + − +      

( ) ( )
( ) ( )

2 2
, ,2 ] , , .

1 1

K x x tcos t sin tiž K x x t iž
x xt t

ω α ω
α ω α

  ∂∂ − + =
  ∂ ∂+ +

′
′

′
    (53)

For solving the propagator, we must rewrite Eq. (52) and Eq. (53) 
to

( ) ( ) ( ) ( ) ( )4 3 2, , 21 1 1 , , ,
K x x t im t cot t t x t csc tx K x x t

xž
ω αα ω α α ω

ω
∂   = + − + − + 

′
′ ′ ∂   

                                                                                                              
(54)

( ) ( ) ( )2, , 21 , , .
K x x t im t csc tx cot t x K x x t

xž
ω αα ω ω

ω
∂   = − + − +  ∂   

′
′ ′

′             

                                                                                                            
(55)

Solving Eq. (54), we obtain

( ) ( ) ( ) ( ) ( )4 3 22, , , exp{ 1 1 1 ]}.
2

i mK x x t C x t t cot t m t x m t csc txx
ž

ω α ω α α ω α ω = + − + − + ′


′


′

                                                                                                                 
(56)

The constant of integration ( ),C x t′ can be calculated by 
substituting Eq. (56) into Eq. (55) to obtain

                       

( ) ( ), 2 , .
C x t im cot t x C x t

xž
ω αω

ω
∂  = + ′


′

∂ 

′
′                  

(57)

Solving Eq. (57), the result is

               
( ) ( ) 2 2, exp .

2
i mC x t C t cot tx m x
ž

ω ω α′ ′  = + ′              
(58)

Substituting Eq. (58) into Eq. (56), the propagator can be written 
as

         
( ) ( ) ( )( )4 2 2, , exp[ ( 1

2
i mK x x t C t cot t t x x
ž

ω ω α+ + ′=′

             
( )( ) ( )3 22 21 1 )].m t x x m t csc txxα α ω α ω′ ′− + − − +

         
(59)

The next step is calculating ( ).C t Substituting the propagator in 
Eq. (59) into the Schrodinger equation

( )
( )

( ) ( ) ( )
22

4 2 2
4 2

, , , , 1 1 , , ,
22 1

K x x t K x x tžiž m t x K x x t
t xm t

α ω
α

′ ′
′

∂ ∂
= − + +

∂ ∂+
 

                                                                                                          (60)
we obtain

                        

( )
( ) ( )1 .

2 1
dC t

cot t C t
dt t

αω ω
α

 
= − +  +                  

 (61)

Solving Eq. (61), the result is

                                           
( ) ( )

1
2 21

.
t

C t C
sin t
α
ω

 +
 =
 
                                 

(62)

The final step is finding the constant C by using the initial condition 
of the propagator

                         
( ) ( )

0
lim , , .

t
K x x t x xδ+→

′ ′= −
                           

(63)

The constant C becomes

                                                  
.

2
mC

iž
ω
π

=                                          (64)

So, the propagator for a harmonic oscillator with mass rapidly 
growing with time can be written as

                
( ) ( ) ( )( ) ( )( ) ( )

1
2 2

4 3 22 2 2 21
, , exp[ ( 1 1 1 )].

2 2
m t i mK x x t cot t t x x m t x x m t csc txx

ižsin t ž
ω α ω ω α α α ω α ω
π ω

 +
 = + + − + − − +


′ ′ ′
 

′

                      

(65)

Conclusion
We have successfully derived the propagator and wave function for 

a harmonic oscillator with mass obeying the law of ( ) 2tanm t m tν=
by Feynman path integral, the propagator for a harmonic oscillator 
with strongly pulsating mass by Schwinger method, and the 
propagator for a harmonic oscillator with mass rapidly growing with 
time by the application of the integrals of the motion of quantum 
systems. The Feynman formulation base on functional integration. 
The Schwinger method concern with operator algebra. The method 
of VV Dodonovet.al is applying the integrals of the motion operators 

0x


and 0p


. The pre-exponential function ( )'' ,F t t′ in Feynman path 
integral comes from the summation over all fluctuation amplitudes 
of classical paths. In Schwinger method, the pre-exponential function 

( ),C x x′ appears from the commutator of ( ) ( ), 0 .x xτ 
  

 

In the method 

of VV Dodonov et.al, the pre-exponential function ( )C t comes from 
the fact that the propagators is the solution of Schrodinger equation. 
These differences may shows the nature of classical mechanics which 

the physical observables are real numbers and the nature of quantum 
mechanics which the physical quantities are represented by operators. 
The propagator approaches in this paper are alternative methods 
comparison with the Schrodinger wave mechanics which base on 
finding wave function and the Heisenberg formulation which requires 
applying the creation and annihilation operators to derive the eigen 
functions of Hamiltonian operator. In propagator method, the wave 
function can be calculated by expanding the obtained propagator. 
In the calculation point of views, the Feynman path integral more 
simply than the Schwinger and Dodonov et. al. methods which some 
Hamiltonian operators have difficulties in solving the Heisenberg 
equation. However, having several methods in calculating the 
propagators may be usefulness.
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