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Abstract

In this paper, the propagator for a harmonic oscillator with mass obeying the function of
m(t) =mtan’ vt is derived by the Feynman path integral method. The wave function of
this oscillator is calculated by expanding the obtained propagator. The propagator for a
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harmonic oscillator with strongly pulsating mass is evaluated by the Schwinger method.
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by applying the integrals of the motion of quantum systems. The comparison between these

methods are also discussed.
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Introduction

The research in deriving quantum solutions for a harmonic
oscillator with time-dependent frequencies or with time-dependent
masses (or both simultaneously) have intensive studied in the recent
years.!”7 The main reasons for time-dependent harmonic oscillator
very interesting is the application in many areas of physics such
as quantum chemistry, plasma physics, and quantum optics. For
example, Colegrave and Abdalla®® presented that electromagnetic
field intensities in a Fabry-Perot cavity can be described by a harmonic
oscillator with time-dependent mass and constant frequency. The
standard tool in solving wave function of Schrodinger’s equation
for time-dependent harmonic oscillator is the Lewis-Riesenfeld in
variant operator method.!” The another method to solve the time-
dependent harmonic oscillator problems is Feynman path integral.!':'?
The Feynman path integral is the formulation which is invented for
calculating the propagator. The propagator represents the transition
probability amplitude of the system or Green’s function of the
Schrodinger’s equation. The Feynman path integral was applied
to derive the propagators for a harmonic oscillator with strongly

pulsating mass (m(t) = mcos’ vt) and a harmonic oscillator with
mass growing with time (m(t) =m(l1+ at)z) by M Sabir and S Raja

gopalan in 1991.3 The one aims of this paper is applying the Feynman
path integral to calculate the propagator for a harmonic oscillator with

mass obeying the function of m(¢)=mtan>vt and then expanding
the obtained propagator to evaluate the wave function. The another
method in calculating the propagator is the Schwinger method.!? This
method was first introduced by Schwinger in 1951 in solving the gauge
invariance and vacuum polarization in QED. In 2015 S Pepore and
B Sukbot applied the Schwinger method to evaluate the propagator
for a harmonic oscillator with mass growing with time.*The another
purposes of this article is employing the Schwinger method to derive
the propagator for a harmonic oscillator with strongly pulsating mass.
The alternative techniques in deriving the propagator is applying the
integrals of the motion of quantum systems. This method was first
presented by VV Dodonov, TA Malk in, and V. I. Man’ko in 1975.'
In 2018, S Pepore applied the integrals of the motion of quantum
systems to calculate the Green function for time-dependent mass
harmonic oscillators,' dual damped oscillators, and coupled harmonic
oscillators.'® The final aims of this paper is employing this method to

calculate the propagator for a harmonic oscillator with mass rapidly
growing with time (m(t)zm(1+at)4).The organizations of this
paper are as follows. In Section 2, the propagator for a harmonic
oscillator with mass having the function of m(¢) = mtan® vt is derived
by Feynman path integral method. In Section 3, the propagator for
a harmonic oscillator with strongly pulsating mass is calculated by
the Schwinger method. In Section 4, the propagator for a harmonic
oscillator with mass rapidly growing with time is evaluated by the
application of the integrals of the motion of quantum systems. Finally,
the conclusion is presented in Section 5.

The Feynman path integral for a harmonic oscillator with mass
obeying the law of m(t)=mtan’ vt

Colegrave and Abdalla’ demonstrated that the electromagnetic

field intensities in a Fabry-Perot cavity can be described by a harmonic
oscillator with strongly pulsating mass written by the Hamiltonian of

2
1
H(t)zzp;sec2 vt+5mcos2 vt x® (1)
m

Where m(t) =mecos?vt and v is the frequency of a pulsating mass.
This paper we will modify the time-dependent mass by imposing

m(t)=mtan’ vt . The Hamiltonian of this system can be described by

2
1
H(r)= P ot vt + — mtan? viwx? )
2m 2
Where @ is the frequency of oscillator.
The Lagrangian corresponding with the Hamiltonian in Eq.(2) can
be expressed as
. 1 2 1
L(x,%,t) =5mtan2 vix? —Emtan2 viw’x? 3)
By using the Euler-Lagrange equation,'’ the equation of motion
can be written as
¥+ 2veotvisec? vix + w*x =0 “4)
The Eq. (4) has the solution in the form of
x(t) = cotvt[Acos.Ot + Bsin.Ot] , %)
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Where A and B are" constants and Q2 = @* +v*. By imposing z=¢?,p= O(t" ft'), (14)
x(t’) =x" and x(t ): x , the classical path that connects the points
"o 2 2
(x',¢") and (x ,t ) can be written as sing = 1272 cosp = 1+ZZ , (15)
cotvt v, N v " ,
x,(1)= T {tanvt sin@Q(1—1')x +tanvt sm.O(t —t)x} (6) f tanvi's', B = / fanvi's' (16)
Where T =1 —1¢. the propagator in Eq. (13) can be rewritten as
The action of the classical systems can be calculated from . |
K( o t’) _ | mQtanvt'tanvt z |2 (1 B 2)7
S (x,5,0) = [L(x,5,1) . ) hh)= e z
Substituting the Lagrangian in Eq. (3) into Eq. (7), the classical imv v 5
action becomes xexp(f?[mnvt sec’ vt 'x? —tanvt'sec’ vi'x' D
yA
S, (t ™ tan2 ve XX — ™ tan? VX, X, ©) 1 1+ 22
(1)=5 ) 1l xexpi 20z~ (o + ) 2Z . (17)
Inserting the classical path in Eq. (6) into Eq. (8), the classical
action can be obtained as By using the formula
0 2 2
S (t)=m—cot_0T tan?ve'x? + tan” vi'x”? 1tz 1 =z 18
cl 2 + 2 ( )
2(1-2%) 2 1-z

tanvt'tanvt'x'x’ The propagator in Eq. (17) can be modified to

9)

As suggested by Feynman [10], the Green function for a quadratic
Lagrangian can be written as

my LI 2

——(tanvs sec? vi'x? — tan v’ sec? vi'x -
2 sin

. 1

"o mQtanvt'tanvt z |2 -

k(< ;xv,z/){} (1-2)

V.74

non imy " 2 " r 12
iSeq(x .t ;x',t') xexp(f?[mnvt sec” vt x 7tanvt sec vtx :|]
"o " — A
K(x\6sx ) =F(dt)e (10)
) ) . 1/ 5 Zaﬁzf(a2+ﬂ2)zz
where the pre-exponential function F (t ,t’) can be calculated XeXp —5(05 +8 ) X exp -2 . (19)
-z

from Pauli-Van Vleck'®" as

1 The next step is applying the Mehler’s formula [20]
i 62S61(x",t";x’,t') 2

Fia)=| -0 (11) o [2api-(a?+p)2 ,
27z ox'ox 1—2%) 2ex - Z
( ) p 1_22 Zn 0 ﬁ) 2”}’!'
By applying Eq. (11), the pre-exponential function F (t",t’) (20)
becomes
Where H, («) and H, () are the Hermite polynomials. The
1 .
T t Eq.(19) b
. mQtanvt'tanvt |2 propagator in Eq.(19) becomes
F (t .t ) = — (12)
2rtsin (X

1
K(x" o t') B {m_(?tanvt’tanvt" }2

Substituting Egs. (9) and (12) into Eq. (10), the propagator of this V74

oscillator can be written as

imv " "
xexp(—T[mnvt sec’vt'x"? — tanvt'sec vt’x’zn
z

1
M- mQtanvi'tanvt’ |2
K (51, ) =| e ttam”
2xisin (X

mQ
Xexp ——(tan vt'x? + tan vt’x'z)
2z

imv " "
xexp[—z—v[mnvt sec’vt'x"? — tanvt'sec vt'x'ZD
z

0 I —i.Q(t"—t')(nJr%)
im(Q _— / ,L N
Xexp L((tan vi'x? +tan vt’x’z)cos()T—ztanvt'tanvt x’x) n= oH ( P tanvt x ]H ( 3 tanvtxJ 21 - @D
) 2z5inQT :

(13) By using the spectral representation of the propagator

The next task is calculating the wave function. Beginning by e, " PR .
deﬁning K(x XLt ) = Zn:() Y, (x N )l//n (x N )’ (22)
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The wave function of this system can be written as

L
2

1
v (x,t) _| tanvt (m()}z

2"n!

Xexp {—ﬁtanz vtxz}HW ( /mVOtanvtxJ.
2z z

The Schwinger method for a harmonic
oscillator with strongly pulsating mass

(23)

This section is the evaluation of propagator for a harmonic
oscillator with strongly pulsating mass by the Schwinger method.*The
procedures of Schwinger method are presented in Ref.’The
Hamiltonian operator for a harmonic oscillator with strongly pulsating
mass can be written as?

~2

24

. 22
H(r):p (T)sec2v1+lmcoszvm)2x ().
2m 2

By solving the Heisenberg equations

; ";“T){é(r)ﬁ o)) "“”{Mﬁ O e

dr

and 1mposmg the initial conditions of x(r 0)=x(0) and

ple=0)=p(0).

the position operator can be expressed as

x(r) = (secvrcosvr’cos.()(r - T') - %secvrsinvr'sin.(?(r - r')jx(O)

+%secvrsecvr’sin()(r -7)p(0). (26)

m

By using Eq. (26), the momentum operator p(7)=mcos’ vz x(7)
can be written as
p(7) = (mvsinv(z —7")cosQ(z — ') — mQcosvr'cosvrsinQ(z - ')

2 ~
—%sinvr’sinwsin()(r —7'))x(0) + (secvr'cosvrcosQ(z —7')

+%secvr’sinvrsin.0(r -7') p(0). (27)

By applying Eq. (26) to eliminate {07 in Eq. (27), the momentum
operator can

be rewritten only in terms of x(z) and ;C(O) as
p(r)= (m.() cos’ vrcotQ(z—-7')+ mvsinvrcosvr)x(r)

-mQcosvr'cosvreseQ(r —1')x(0). (28)

Substituting Eq. (28) into Eq. (24) and rewriting each terms of

H(7) in a time ordered form with x(z) to the leftand x(0) to the
right with the helping of the commutator

1 . 1
Hora (r) = (Em.Q2 cos® vresc? .O(z' - z") + Emv2 sin®vr —Emv2 cos“vr
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©2021 Pepore 93

{ (0), (T):| —secvrsecvz’sm()(r 7'),the time ordered

exp [—i _O(n " %jt]exl’[i;n# tanvisec? Vtxz} Hamiltonian operator H o (7) can be written as
z

2

~2

+ 5 mv Qsinvrcosvrcot 2 (T - r')) X (Z') — (mQ*cosvrcosvr'eseQ (T - T’) cotQ (7 - r')

.. 2
+mvQcosvt'sinvreseQ(t —7'))x(7)x(0)+ %mO2 cos’vr'ese’ 2(z —7')x (0)

£0 cotO(r - T') J%mnvz'. 29)

As presented in Ref." the propagator can be calculated by
1)|Hora (1)

[to] o} )
K(x’x’;r)=C(x,x’)eXp(_ZTJ‘ (x(t)|x'(0)) dr)

=C(x, x')exp(fiij.{(% m(2*cos’ viese® Q¢ —7') + %mv.(?sinvtcosvtcozf)(t -7')
Z
0

1 . 1
Emv2 sin? vz — Emv2 cos? vi)x? — (mﬂzcosvtcosvr’csc()(t -7 )cotQ(t-1')

. 1
+mv.0cosvr'smvtcsc.()(t - r'))xx' + Em.O2 cos? vz’ csc? .O(t - T')x’2

—%cot()(t -7 —l%tanvt}dt), (30)

Where C(x,x')is the function of xandx’. The next step is
integrating over time each terms of Eq. (30). The integrating of the
first term in Eq. (30) can be obtained as

imx?
2z

T
J.(.()2 cos’vtese® Q(t—1')+vQsinvicosvicotQ(t — ') + v sin’ vt
0

cos” vrcotQ(r —7')x>.

(€2))

imv . im
—v?cos? vi)dt = —cosvrsinvex® + —
2z 2z

The second term in Eq. (30) can be calculated by

T
cosvr xx J OcosvtcscO t— )cot.Q(t - T') + Vsinvtcsc.O(t - T'))dt
0

im(2
=— lmv cosvt'cosvreseQ (v —1')xx'. (32)

V4

The third term in Eq. (30) can be integrated as

im(2 im(2
- cos vr’x’2J.csc Q(t-1")dt =—cos’vr'cotQ(r —7')x".

2z 2z
(33)
Finally, the last term in Eq. (30) can be evaluated by
1
T T 2
L2 cotQ(t—7')dt —KJ.mnvtdt S P [ C— (34)
29 2y sinQ(r—1')

Substituting Egs. (31)-(34) into Eq. (30), the propagator can be
written as
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B )
K(x, x’;‘r) = C(x, x')Lml(C;(s:TT,)} exp (”;lsinvrcosvrxz]
exp{#ﬁ_r,)[(cosz vex? + cos? vr’x’z)cos()(r -7')- ZCosw'cosvrxx’} .
(35)
Substituting the propagator in Eq. (35) into the equation of
. OK(x,x";t . ,
¢ I (o (o (o). 66
ox
the result is
oC(x,x'
i % =mcos vsin vk C (x x'). (37
X

After solving Eq. (37), the function C(x,x’) can be obtained as

C(x, x’) = C(x)exp(—l;n—:/sinvr’cosvr’x’z), (38)
4
Where C(x) is the function of x .
Substituting Eq. (38) into Eq. (35), the propagator becomes
B .
K(x,x'7)= C(x)[zmgj(s:ff)} exp[”;fv[sinwcosvrxz — sinvt'cosvr'x
exp L[(cosz vrx® + cos® vr'x'z)cos()(r -7')- 2cosvr’c0sv1xx’:| .
2zs5inQ(r—1')

(39

The final step is calculating C(x) by substituting Eq. (39) into the
equation of

oK (x,x"; Sl
- (a)< <r>} <r>)x <o>>. (40)
The obtaining result is
oC(x) _
o =0, 41)

p(t) = [(2ma(1 + m‘)2 —2ma(1+ at))cosa)t - [ma)(l + ott)2 + p

By using Eq. (46) and Eq. (47), the integrals of the motion xo and

P, canbe expressed as

N PN 2 N
Do [x,p,tj = Hma)(l + at)z T 4m7a(1 + at)jsina)t - (Zma(l + ott)2 —2ma(1+ al))cosa)t} X+ {
®

The Green function or propagator K (x,x’,t) is an eigen function
of the integrals of the motion as

20 (x)K (x.6,1) = x(x) K (x.0). (50)

dma
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which imply that C(x)=C = constant . The constant C can be
evaluated by

applying the initial condition of the propagator

hmHO+ K(x,x;7)=6(x—x"). (42)

The constant C can be obtained as
Co fm.()covsvz' . @3)

2rt

So, the propagator for a harmonic oscillator with strongly pulsating
mass can be written as

mQcosvrcosvr' |? imvr . ., "2
——————————| exp —[sznvrcosvrx — sinvt'cosvr'x ]
27xEsin .Q(T—T) z

K(x,x',7)= {
22 2 , , ,
cos’ vrx® +cos” vr'x'? | cosQ(r - ') - 2cosvr'cosvrxx' | |.

ox imQ
P 2zs5inQ(7 -7') (44)

The propagator for a harmonic oscillator
with mass rapidly with time

This section has an idea from the calculation of the Green function
for a harmonic oscillator with mass growing with time by S Pepore in

' ,ZD 2018."This paper will modify the Hamiltonian operator to

~2

p (1) 4+lm(1+at)4w2;fz(t)’

H(t)=——"— (45)
) 2m(1+at)

Where o is a constant. The aim of this section is calculating the
propagator corresponding to the Hamiltonian operator in Eq. (45) by

the application of the integrals of the motion of quantum systems.
Beginning by solving Heisenberg’s equation for x(t) and p(t)

and imposing the initial conditions of x(0)=xo and p(0)= p,, the
position operator and momentum operator can be written as

sinwt

’ 1 2a ’ ’
x(t) = ———| coswt + —sinwt |xo+| ———— | p,, (46)
( ) (1+at)2[ @ } ‘ [ma)(1+at)2] 0

(1+ at)]sina)t}co+ {(1 +at) cosot - 2—a(l + at)sina)t} }’o (47)
)

X0 [x,p,t] = [(1 + at)2 coswt —2—0[(1 + at)sinwt}x— %tz P

® mao(1+at)
(48)

coswt 2asinot |
(49)
(1+at)  o(l+ar) }

Po(x)K (x,x,t) == p(x')K (x,x1) . 51)

By applying Egs. (48)-(51), we can write
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Esin @ 0

2a
1 2 _2%0 : _tsma 0| )= K .
|:x(( +at)” cosot a)( +at)sma)tj+mw(l+m)2 &J (x,x,1)=x'K (x,x1),
(52)
2
[x((ma)(l + at)2 + dma (1+ at)jsina)t 7(2ma(l + ott)2 —2ma(1+ at))cosa)t]
®

cosot 20:sina)t2 ]aﬁxK (cx't ) =iz 6K(x,x,t). (53)

b ((l+at)2 o(1+at) ox'

For solving the propagator, we must rewrite Eq. (52) and Eq. (53)
to

M = w{[(l + onf)4 cotot 72—0{(1 + at)ajx -(1+ onf)2 csca)tx'}K(x,x',t),

ox 2]
(54)
8K(x:’x 1) __imo {(1 + 0{1‘)2 cscotx — (cota)t + 2Oljx’}K(x,x’,t).
ox 2]
(55)

Solving Eq. (54), we obtain

K(x,x',t)= C(x’,t)exp{i;[%(l + at)4 cotert —ma (1+ at)3]x2 —mao(1+ azt)2 cscanxx']}.
z

(56)

The constant of integration C(x',f)can be calculated by
substituting Eq. (56) into Eq. (55) to obtain
oC(x',t j

(x ):zmw( 57)

= —| cotar +2—ajx'C(x’,t).
ox

@

Solving Eq. (57), the result is

z

C(x'1)= C(t)exp{l;(”;wcotwtx'z + max’2ﬂ. (58)

ma)(1+0:t)2

27Esin @

K(x,x',t) :[

Conclusion

We have successfully derived the propagator and wave function for
a harmonic oscillator with mass obeying the law of m(t) = mtan® vt
by Feynman path integral, the propagator for a harmonic oscillator
with strongly pulsating mass by Schwinger method, and the
propagator for a harmonic oscillator with mass rapidly growing with
time by the application of the integrals of the motion of quantum
systems. The Feynman formulation base on functional integration.
The Schwinger method concern with operator algebra. The method
of VV Dodonovet.al is applying the integrals of the motion operators
xo and p, . The pre-exponential function F (t",t') in Feynman path
integral comes from the summation over all fluctuation amplitudes
of classical paths. In Schwinger method, the pre-exponential function

C(x,x") appears from the commutator of [x(r),x(O)}. In the method

of VV Dodonov et.al, the pre-exponential function C(¢) comes from
the fact that the propagators is the solution of Schrodinger equation.
These differences may shows the nature of classical mechanics which

1
2 .

} exp[vi(%cota)t((l + at)4 X+ x'z) — ma((l + at)3 x* - x’z) -mao(1+ at)2 cscatxx’)].
z
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Substituting Eq. (58) into Eq. (56), the propagator can be written
as

K(x,x’,t) = C(t)exp[iv.(m?wcota)t((l + at)4 X+ x'z)
z

2

—ma ((1 + ozt)3 x—x ) —mao(1+ ozt)2 cscotxx')]. (59)
The next step is calculating C (t) Substituting the propagator in

Eq. (59) into the Schrodinger equation

aK(x,x',t) 32 02K(x,x’,t) 1 4
£ =— +-m (1+a ) ox K (kx't),
ot 2m(1+ at)4 ox? 2 ( ) c )
(60)
we obtain
9C() [ L peoran+—2 (o). (61)
dt 2 (1 + at)
Solving Eq. (61), the result is
1
(1+ o:t)2 2
C(t) =C|———| . (62)
sinwt

The final step is finding the constant C by using the initial condition
of the propagator

limt_)0+ K(x,x’,t) :§(x—x’). (63)
The constant C becomes
C= (64)
27t

So, the propagator for a harmonic oscillator with mass rapidly
growing with time can be written as

(65)

the physical observables are real numbers and the nature of quantum
mechanics which the physical quantities are represented by operators.
The propagator approaches in this paper are alternative methods
comparison with the Schrodinger wave mechanics which base on
finding wave function and the Heisenberg formulation which requires
applying the creation and annihilation operators to derive the eigen
functions of Hamiltonian operator. In propagator method, the wave
function can be calculated by expanding the obtained propagator.
In the calculation point of views, the Feynman path integral more
simply than the Schwinger and Dodonov et. al. methods which some
Hamiltonian operators have difficulties in solving the Heisenberg
equation. However, having several methods in calculating the
propagators may be usefulness.
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