Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 7 Issue 3

The non-integer local order calculus

Juan E Nápoles Valdes1,2

1UNNE, FaCENA, Av. Libertad 5450, (3400) Corrientes, Argentina
2UTN, FRRE, French 414, (3500) Resistencia, Chaco, Argentina

Correspondence: Juan E Nápoles Valdes, UNNE, FaCENA, Av. Libertad 5450, (3400) Corrientes, Argentina

Received: April 19, 2023 | Published: July 15, 2023

Citation: Valdes JEN. The non-integer local order calculus. Phys Astron Int J. 2023;7(3):163-168. DOI: 10.15406/paij.2023.07.00304

Download PDF

Keywords

Fractional Calculus, conformable derivative, non conformable derivative, generalized derivative

Introduction

Fractional calculus concerns the generalization of differentiation and integration to non-integer (fractional) orders. The subject has a long mathematical history being discussed for the first time already in the correspondence of Leibniz with L’Hopital when this replied "What does dndxnf(x) mean if n=12 ?" in September 30 of 1695. Over the centuries many mathematicians have built up a large body of mathematical knowledge on fractional integrals and derivatives. Although fractional calculus is a natural generalization of calculus, and although its mathematical history is equally long, it has, until recently, played a negligible role in physics. One reason could be that, until recently, the basic facts were not readily accessible even in the mathematical literature (see1). The nature of many systems makes that they can be more precisely modeled using fractional differential equations. The differentiation and integration of arbitrary orders have found applications in diverse fields of science and engineering like viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduction, electricity, mechanics, chaos, and fractals (see1-3).

The history of differential operators from Newton to Caputo, both local and global, is given in4 (Chapter 1). Here is the definition of a local derivative with a new parameter, which has a large number of applica- tions. More importantly, section 1.4 concludes: “Therefore, we can conclude that both the Riemann-Liouville operator and the Riemann-Liouville operator Caputo are not derivatives, and therefore they are not fractional derivatives, but fractional operators”. We are of in agreement with the result5 that says “the local fractional operator is not a fractional derivative”(page 24). As mentioned above, these tools are new and have demonstrated their potential and usefulness in solving phenomena and process modeling problems in various fields of science and technology (see6). Many different types of fractional operators have been proposed in the literature, here we show that several of these different notions of derivatives can be considered particular cases of our definition and, even more relevant, that it is possible to establish a direct relationship between derivatives global (classical) and local, the latter not very accepted by the mathematical community, under two arguments: its local character and compliance with the Leibniz Rule. In this note we present the recent development of the so-called Non-Integer Order Local Calculus, which is the correct name (sometimes we use the name Generalized Calculus, although it does not illustrate the concept well). To facilitate the understanding of the scope of our objective, we present the best known definitions of differential and integral local operators (for more details you can consult,7,8 Without much difficulty, we can extend these definitions, for any higher order. We assume that the reader is familiar with the classical Calculus, so we will not present it.

Preliminary results

Local fractional calculus (is also called Fractal calculus) was first introduced by Kolwankar and Gangal, although there were some attempts in the 1960s, this is the first formal definition of a local operator that generalizes the classical derivative. It is explain the behavior of continuous but nowhere differentiable function. They proposed particular notation that they had used in their publication for the local fractional derivative of a function defined on fractal sets.9-11 So we have

Definition 1 If, for a function f:[0,1]R , the limit

Dqf(y)=limxydq(f(x)f(y))d(xy)q,   (1)

exists and is finite, then we say that the local fractional derivative (LFD) of order q, at x = y, exists.

To understand the fractal behavior of functions, Parvate and Gangal (see)12 introduce the fractal derivative as follows:

x0Dαxf(y)=dαf(x)dxα(x0)=Flimxx0f(x)f(x0)SαF(x)SαF(x0)   (2)

where the right hand side is the notion of the limit by the points of the fractal set F.

Definition 2 Let  be an arbitrary but fixed real number. The integral staircase function SαF(x) of order α for a set is given by:

SαF(x)={γα[F,a,x]sixaγα[F,a,x]six<a   (3)

and the mass function is defined in this way.

Definition 3 The mass function γα[F,a,b] can written as (see13,14):

γα[F,a,b]=limδ0γαδ[F,a,b]=(ba)αΓ(1+α) .  (4)

Another version can be found at:15

x0Dαxf(y)=dαf(x)dxα(x0)=limxxσ0Dαy,σ[σ(f(x)f(x0)(x)] ,  (5)

with σ=± and Dαy,σ is the Riemann-Liouville derivative.

In16 we have the following notion:

x0Dαxf(y)=dαf(x)dxα(x0)=limxx0f(x)f(x0)xαxα0 ,  (6)

obtained from (??) under assumption xαxα0=(xx0)α .

He gave a new fractal derivative in theis way:17

x0Dαxf(y)=dαf(x)dxα(x0)=limΔxL0f(x)f(x0)KLα0 .  (7)

Taking into account.

Hα(F(x,x0))=(xxα0)=KΓ(1+α)Lα0 .

Yjis is the unified notation of.18 In this address we have another definition,19,20 as follows:

Dαf(x)=dαf(x)dxα(x0)=limxx0Δα[f(x)f(x0)](xx0)α ,  (8)

(xx0)α  is a measure fractal20 and Δα[f(x)f(x0)]Γ(1+α)Δ[f(x)f(x0)] . In [68] we have:

Dαf(x)=dαf(x)dxα(x0)=limxx0f(x)f(x0)(xx0)α .  (9)

All these results, although they do not exactly coincide with the direction of our work, we present them so that readers have a more complete picture and because they have become relevant again in recent years.

3  Post Kahlil derivative

In21 a definition of local derivative is presented, which opens a new direction of work, which is what we intend to illustrate here.

So they presented the following definition(see also22).

Thus, for a function f:(0,)R the conformable derivative of order 0<α1 of f at t>0 was defined by.

Tαf(t)=limε0f(t+εt1α)f(t)ϵ ,  (10)

and the fractional derivative at 0 is defined as Tαf(0)=limt0Tαf(t) .

In a work from the same year (cf.)58 another conformable derivative is defined in a very similar way. Let f be a function of (0,) , t>0 define the derivative of order α with 0<α<1 as the expression Dαf(t)=limε0f(teεtα)f(t)ε , of course, if Dαf(t) exists at some (0,a) with a>0 then defines the derivative of order α at 0 as Dαf(0)=limt0Dαf(t) .

8introduces a new twist when it defines a general derivative as follows, f: is a function, α a real number, the derivative of fractional order can be thought of as fα(t)=limε0fα(t+ε)f(t)(t+ε)αtα .

In 2018 we introduced a new local derivative, with a very distinctive property: when α1 we do not get the ordinary derivative. We call this derivative non-conformable, to distinguish it from the previous known ones, since when α1 the slope of the tangent line to the curve at the point is not preserved.

Be α(0,1] and define a continuous function f:[t0,+) .

First, let’s remember the definition of  1Nαf(t) , a non conformable fractional derivative of a function in a point t defined in23 and that is the basis of our results, that are close resemblance of those found in classical qualitative theory.

Definition 4 Given a function f:[t0,+) , t0>0 . Then the N-derivative of f of order α is defined by  1Nαf(t)=limε0f(t+εetα)f(t)ε for all t>0 , α(0,1) . If f is α - differentiable in some (0,a) , and limt0+N(α)1f(t)  exists, then define  1Nαf(0)=limt0+N(α)1f(t) .

If the above derivative of the function x(t) of order α exists and is finite in (t0,) , we will say that x(t) is N1 - differentiable in I=(t0,) .

Remark 5 The use in Definition 1 of the limit of a certain incremental quotient, instead of the integral used in the classical definitions of fractional derivatives, allows us to give the following interpretation of the N-derivative. Suppose that the point moves in a straight line in + . For the moments t1=t and t2=t+hetα where h>0 and α(0,1] and we denote S(t1) and S(t2) the path traveled by point P at time t1 and t2 so we have S(t2)S(t1)t2t1=S(t+hetα)S(t)hetα this is the average N1 - speed of point P over time hetα . Let’s consider Limh0S(t+hetα)S(t)hetα .

When α=1 , this is the usual instantaneous velocity of a point P at any time t>0 . If α(0,1) this is the instantaneous q-speed of the point P for any t>0 . Therefore, the physical meaning of the N-derivative is the instantaneous q-change rate of the state vector of the considered mechanics or another nature of the system.

Remark 6 The N1 - derivative solves almost all the insufficiencies that are indicated to the classical fractional derivatives. In particular we have the following result.

Theorem 7 (See24) Let f and g be N-differentiable at a point t>0 and  α(0,1] . Then.

  1. Nα1(af+bg)(t)=a1Nα(f)(t)+b1Nα(g)(t) .
  2. 1Nα(tp)=etαptp1,  p .
  3.  1Nα(λ)=0,  λ .
  4.  1Nα(fg)(t)=f1Nα(g)(t)+g1Nα(f)(t) .
  5.  1Nα(fg)(t)=gNα1(f)(t)f1Nα(g)(t)g2(t) .
  6. If, in addition, f is differentiable then  Nα1(f)=etαf(t) .
  7. Being f differentiable and α=n integer, we have Nn1(f)(t)=etnf(t) .

Remark 8 The relations a), c), d) and (e) are similar to the classical results mathematical analysis, these relationships are not established (or do not occur) for fractional derivatives of global character (see1,2 and bibliography there). The relation c) is maintained for the fractional derivative of Caputo. Cases c), f) and g) are typical of this non conformable local fractional derivative.

Now we will present the equivalent result, for  1Nα , of the well-known chain rule of classic calculus and that is basic in the Second Method of Lyapunov, for the study of stability of perturbed motion.

Theorem 9 (See24) Let α(0,1] , g N-differentiable at t>0 and f differentiable at g(t) then  1Nα(fg)(t)=f(g(t))1Nαg(t) .

Definition 10 The non conformable fractional integral of order α is defined by the expression  1Jαt0f(t)=tt0f(s)esαds .

The following statement is analogous to the one known from the Ordinary Calculus.

Theorem 11 Let f be N1 -differentiable function in (t0,) with α(0,1] . Then for all t>t0 we have.

  1. If f is differentiable  1Jαt0( 1Nαf(t))=f(t)f(t0) .
  2.  1Nα( 1Jαt0f(t))=f(t) .

Proof: See25

This derivative, and some variants, proved useful in various application problems (see26-35).

4  The N-derivative

In36 a generalized derivative was defined as follows (see also37,38).

Definition 12  Given a function ψ:[0,+) . Then the N-derivative of ψ of order α is defined by

NαFψ(τ)=limε0ψ(τ+εF(τ,α))ψ(τ)ε    (11)

for all τ>0 , α(0,1) being F(τ,α) is some function.

If ψ is N-differentiable in some (0,α) , and limτ0+NαFψ(τ) exists, then define NαFψ(0)=limτ0+NαFψ(τ) , note that if ψ is differentiable, then NαFψ(τ)=F(τ,α)ψ(τ) where ψ(τ) is the ordinary derivative.

Examples. Let’s see some particular cases that provide us with new non-conforming derivatives. 

  1. Mellin-Ross Function. In this case we have

Et(α,a)=tαE1,α+1(at)=tαk=0(at)kΓ(α+k+1)

with E1,α+1(.) the Mittag-Leffler two-parameter function. So, we obtain limα1NαEt(α,a)f(t)=f' , i.e.,  N E t ( 1,a ) 1 f( t )=f'( t )t k=0 (at) k Γ( k+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGfbWdamaaBaaa meaapeGaamiDaaWdaeqaaSWdbmaabmaapaqaa8qacaaIXaGaaiilai aadggaaiaawIcacaGLPaaaa8aabaWdbiaaigdaaaGccaWGMbWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGMbGaai4jam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamiDamaawahabeWc paqaa8qacaWGRbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8aaba WdbiabggHiLdaakiaab2aidaWcaaWdaeaapeGaaiikaiaadggacaWG 0bGaaiyka8aadaahaaWcbeqaa8qacaWGRbaaaaGcpaqaa8qacaqGto WaaeWaa8aabaWdbiaadUgacqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aaaa@5EED@ .

  1. Robotov’s Function. That is to say 

R α ( β,t )= t α k=0 β k t k( α+1 ) Γ( 1+α )( k+1 ) = t α E α+1,α+1 ( β t α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacqaHXoqya8aabeaa k8qadaqadaWdaeaapeGaeqOSdiMaaiilaiaadshaaiaawIcacaGLPa aacqGH9aqpcaWG0bWdamaaCaaaleqabaWdbiabeg7aHbaakmaawaha beWcpaqaa8qacaWGRbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8 aabaWdbiabggHiLdaakiaab2aidaWcaaWdaeaapeGaeqOSdi2damaa CaaaleqabaWdbiaadUgaaaGccaWG0bWdamaaCaaaleqabaWdbiaadU gadaqadaWdaeaapeGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMca aaaaaOWdaeaapeGaae4Kdmaabmaapaqaa8qacaaIXaGaey4kaSIaeq ySdegacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadUgacqGHRaWkcaaI XaaacaGLOaGaayzkaaaaaiabg2da9iaadshapaWaaWbaaSqabeaape GaeqySdegaaOGaamyra8aadaWgaaWcbaWdbiabeg7aHjabgUcaRiaa igdacaGGSaGaeqySdeMaey4kaSIaaGymaaWdaeqaaOWdbmaabmaapa qaa8qacqaHYoGycaWG0bWdamaaCaaaleqabaWdbiabeg7aHjabgUca RiaaigdaaaaakiaawIcacaGLPaaaaaa@7763@

like before, E α+1,α+1 ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacqaHXoqycqGHRaWk caaIXaGaaiilaiabeg7aHjabgUcaRiaaigdaa8aabeaak8qadaqada WdaeaapeGaaiOlaaGaayjkaiaawMcaaaaa@4619@ is the Mittag-Leffler two-parameter function. Now, we obtain lim α1 N R α ( β,t ) α f( t )=f'( t )t E 2,2 ( β t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biabeg7aHjabgkziUkaaigdaa8aabeaak8qacaWGobWdamaaDaaale aapeGaamOua8aadaWgaaadbaWdbiabeg7aHbWdaeqaaSWdbmaabmaa paqaa8qacqaHYoGycaGGSaGaamiDaaGaayjkaiaawMcaaaWdaeaape GaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaGaeyypa0JaamOzaiaacEcadaqadaWdaeaapeGaamiDaaGaayjkai aawMcaaiaadshacaWGfbWdamaaBaaaleaapeGaaGOmaiaacYcacaaI YaaapaqabaGcpeWaaeWaa8aabaWdbiabek7aIjaadshapaWaaWbaaS qabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaa@602D@ and

N R 1 ( β,t ) 1 f( t )= f'( t )t Γ( 2 ) k=0 β k t 2k ( k+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGsbWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbmaabmaapaqaa8qacqaHYoGycaGGSa GaamiDaaGaayjkaiaawMcaaaWdaeaapeGaaGymaaaakiaadAgadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8 qacaWGMbGaai4jamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGa amiDaaWdaeaapeGaae4Kdmaabmaapaqaa8qacaaIYaaacaGLOaGaay zkaaaaamaawahabeWcpaqaa8qacaWGRbGaeyypa0JaaGimaaWdaeaa peGaeyOhIukan8aabaWdbiabggHiLdaakiaab2aidaWcaaWdaeaape GaeqOSdi2damaaCaaaleqabaWdbiaadUgaaaGccaWG0bWdamaaCaaa leqabaWdbiaaikdacaWGRbaaaaGcpaqaa8qadaqadaWdaeaapeGaam 4AaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@63CA@

  1. Let F( t,α )= E 1,1 ( t α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpcaWGfbWdamaaBaaaleaapeGaaG ymaiaacYcacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadshapaWa aWbaaSqabeaapeGaeyOeI0IaeqySdegaaaGccaGLOaGaayzkaaaaaa@4B01@ . In this case we obtain, from Definition 12, the derivative   1 N α f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabckapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaamOta8aadaahaaWcbeqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaaaaa@43FF@ defined in [18] (and [46]).
  2. Be now F( t,α )= E 1,1 ( t α ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpcaWGfbWdamaaBaaaleaapeGaaG ymaiaacYcacaaIXaaapaqabaGcpeGaaiikaiaadshapaWaaWbaaSqa beaapeGaeyOeI0IaeqySdegaaOGaaiyka8aadaWgaaWcbaWdbiaaig daa8aabeaaaaa@4BC7@ , in this case we have F( t,α )= 1 t α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdae aapeGaamiDa8aadaahaaWcbeqaa8qacqaHXoqyaaaaaaaa@4607@ , a new derivative with a remarkable propertie lim t N 1 α f( t )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBa8aadaWgaaWcbaWdbiaa dshacqGHsgIRcqGHEisPa8aabeaak8qacaWGobWdamaaDaaaleaape GaaGymaaWdaeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@4BDD@ , i.e., the derived N is annulled to infinity.
  3. If we now take the development of function E to order 1, we have E a,b ( t α )=1+ 1 t α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGHbGaaiilaiaa dkgaa8aabeaak8qadaqadaWdaeaapeGaamiDa8aadaahaaWcbeqaa8 qacqGHsislcqaHXoqyaaaakiaawIcacaGLPaaacqGH9aqpcaaIXaGa ey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadshapaWaaWbaaS qabeaapeGaeqySdegaaaaaaaa@4B27@ . Then lim t N F α f( t )= lim t 1 N α f( t )=f'( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBa8aadaWgaaWcbaWdbiaa dshacqGHsgIRcqGHEisPa8aabeaak8qacaWGobWdamaaDaaaleaape GaamOraaWdaeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaGaeyypa0JaaeiBaiaabMgacaqGTbWdamaaBa aaleaapeGaamiDaiabgkziUkabg6HiLcWdaeqaaOWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaamOta8aadaahaaWcbeqaa8qacqaHXoqyaa GccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp caWGMbGaai4jamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@5F6A@ , in this case we have the classic derivative at infinit.

Remark 13 It is easy to check but tedious, following for example, that the general derivative fulfills properties very similar to those known from the classical calculus. As well as its most important consequences, among them the Chain Rule, of vital importance in many applications, among them the Second Method of Lyapunov.

Remark 14 The generalized derivative defined above is not fractional (as we noted above), but it does have a very desirable feature in applications, its dual dependency on both  and the kernel expression itself, with 0 < α     l e q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaicdacqGH8aapcqaHXoqycaGGGcGaaiiOaiaa dYgacaWGLbGaamyCaiaaigdaaaa@448A@ in 21 the conformal derivative is defined by putting F ( t , α ) = t 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpcaWG0bWdamaaCaaaleqabaWdbi aaigdacqGHsislcqaHXoqyaaaaaa@46A6@ , while in24 the nonconforming derivative is obtained with F( t,α )= e t α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpcaWGLbWdamaaCaaaleqabaWdbi aadshapaWaaWbaaWqabeaapeGaeyOeI0IaeqySdegaaaaaaaa@4722@ (see also 25). This generalized derivative, in addition to the aforementioned cases, contains as particular cases practically all known local operators and has proved its utility in various applications, see, for example,23,30,32-35,39,40-52

Remark 15 One of the characteristics of this generalized derivative is the fact that N F 2α f( t ) N F α ( N F α f( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaa8qa caaIYaGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOa GaayzkaaGaeyiyIKRaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaWd biabeg7aHbaakmaabmaapaqaa8qacaWGobWdamaaDaaaleaapeGaam OraaWdaeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@51B2@ , that is, it is necessary to indicate successive derivatives in the second way. Obviously, if N F 2α f( t ) N F α ( N F α f( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaa8qa caaIYaGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOa GaayzkaaGaeyiyIKRaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaWd biabeg7aHbaakmaabmaapaqaa8qacaWGobWdamaaDaaaleaapeGaam OraaWdaeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@51B2@ , the ordinary derivative is obtained.

Remark 16  From the above definition, it is not difficult to extend the order of the derivative for 0n1<αn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaicdacqGHKjYOcaWGUbGaeyOeI0IaaGymaiab gYda8iabeg7aHjabgsMiJkaad6gaaaa@45AE@ by putting.

N F α h( τ )= lim ε0 h ( n1 ) ( τ+εF( τ,α ) ) h ( n1 ) ( τ ) ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaa8qa cqaHXoqyaaGccaWGObWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawM caaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaa peGaeqyTduMaeyOKH4QaaGimaaWdaeqaaOWdbmaalaaapaqaa8qaca WGObWdamaaCaaaleqabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0Ia aGymaaGaayjkaiaawMcaaaaakmaabmaapaqaa8qacqaHepaDcqGHRa WkcqaH1oqzcaWGgbWaaeWaa8aabaWdbiabes8a0jaacYcacqaHXoqy aiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsislcaWGObWdamaaCa aaleqabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaaGymaaGaayjk aiaawMcaaaaakmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaaa8 aabaWdbiabew7aLbaaaaa@69FC@   (12)

If h ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIgapaWaaWbaaSqabeaapeWaaeWaa8aabaWd biaad6gaaiaawIcacaGLPaaaaaaaaa@3F2D@ exists on some interval I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadMeacqGHgksZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=1risbaa@48E0@ , then we have N F α h( τ )=F( τ,α ) h ( n ) ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaa8qa cqaHXoqyaaGccaWGObWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawM caaiabg2da9iaadAeadaqadaWdaeaapeGaeqiXdqNaaiilaiabeg7a HbGaayjkaiaawMcaaiaadIgapaWaaWbaaSqabeaapeWaaeWaa8aaba Wdbiaad6gaaiaawIcacaGLPaaaaaGcdaqadaWdaeaapeGaeqiXdqha caGLOaGaayzkaaaaaa@523D@ , with 0n1<αn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaicdacqGHKjYOcaWGUbGaeyOeI0IaaGymaiab gYda8iabeg7aHjabgsMiJkaad6gaaaa@45AE@ .

Slightly more recent, in37 a notion of generalized fractional derivative is defined, which is general from two points of view:

1) Contains as particular cases, both conformable and non-conformable derivatives.

2) It is defined for any order α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg7aHjabg6da+iaaicdaaaa@3EBA@ .

Given s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=1risbaa@488D@ , we denote by [s] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabUfacaWGZbGaaiyxaaaa@3E10@ the upper integer part of s, i.e., the smallest integer greater than or equal to s.

Definition 17 Given an interval I( 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadMeacqGHgksZdaqadaWdaeaapeGaaGimaiaa cYcacqGHEisPaiaawIcacaGLPaaaaaa@42AB@ , f:I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAgacaGG6aGaamysaiabgkziUorr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4A75@ , α + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg7aHjabgIGioprr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae8xhHi1damaaCaaaleqabaWdbiabgU caRaaaaaa@4A62@ and a continuous function positive T( t,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadsfadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaaaaa@4122@ , the derivative G T α f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadEeapaWaa0baaSqaa8qacaWGubaapaqaa8qa cqaHXoqyaaGccaWGMbaaaa@3FFD@ of f of order α at the point tI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadshacqGHiiIZcaWGjbaaaa@3EA4@ is defined by.

G T α f( t )= lim h0 1 h a k=0 a (1) k ( a k )f( tkhT( t,α ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadEeapaWaa0baaSqaa8qacaWGubaapaqaa8qa cqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaadIgacqGHsgIRcaaIWaaapaqabaGcpeWaaSaaa8aabaWdbiaaig daa8aabaWdbiaadIgapaWaaWbaaSqabeaapeGaamyyaaaaaaGcdaGf WbqabSWdaeaapeGaam4Aaiabg2da9iaaicdaa8aabaWdbiaadggaa0 WdaeaapeGaeyyeIuoaaOGaaeydGiaacIcacqGHsislcaaIXaGaaiyk a8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaqbaeaabiqaaa qaa8qacaWGHbaapaqaa8qacaWGRbaaaaGaayjkaiaawMcaaiaadAga daqadaWdaeaapeGaamiDaiabgkHiTiaadUgacaWGObGaamivamaabm aapaqaa8qacaWG0bGaaiilaiabeg7aHbGaayjkaiaawMcaaaGaayjk aiaawMcaaaaa@68DB@   (13)

In 2018, a derivative operator is defined on the real line with a limit process as follows (se53). For a given function p of two variables, the symbol D p f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseapaWaaSbaaSqaa8qacaWGWbaapaqabaGc peGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@4117@ defined by the limit D p f( t )= lim ε0 f( p( t,ε ) )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseapaWaaSbaaSqaa8qacaWGWbaapaqabaGc peGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0 JaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaeqyTduMaeyOKH4Qa aGimaaWdaeqaaOWdbmaalaaapaqaa8qacaWGMbWaaeWaa8aabaWdbi aadchadaqadaWdaeaapeGaamiDaiaacYcacqaH1oqzaiaawIcacaGL PaaaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaaa8aabaWdbiabew7aLbaaaaa@5898@ , as long as the limit exists and is finite, it will be called the derivative p of f at t or the generalized derivative from f to t and, for brevity, we also say that f is p-differentiable in t. In the case that it is a closed interval, we define the p-derivative at the extremes as the respective side derivatives. Starting from this definition, the derivative of order of a function is constructed as the following limit:

D p α f( t )= lim ε0 f( p( t,ε,α ) )f( t ) ε ,    0<α<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseapaWaa0baaSqaa8qacaWGWbaapaqaa8qa cqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biabew7aLjabgkziUkaaicdaa8aabeaak8qadaWcaaWdaeaapeGaam Ozamaabmaapaqaa8qacaWGWbWaaeWaa8aabaWdbiaadshacaGGSaGa eqyTduMaaiilaiabeg7aHbGaayjkaiaawMcaaaGaayjkaiaawMcaai abgkHiTiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWd aeaapeGaeqyTdugaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaG imaiabgYda8iabeg7aHjabgYda8iaaigdaaaa@6710@   (14)

where it is understood that in the case α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg7aHjabg2da9iaaigdaaaa@3EBA@ we have the ordinary derivative. It is clear that if f is differentiable in t, then D p α f( t )= p h ( t,0,α )f'( t ),    0<α<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseapaWaa0baaSqaa8qacaWGWbaapaqaa8qa cqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGH9aqpcaWGWbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbmaa bmaapaqaa8qacaWG0bGaaiilaiaaicdacaGGSaGaeqySdegacaGLOa GaayzkaaGaamOzaiaacEcadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaGimaiabgYda8i abeg7aHjabgYda8iaaigdaaaa@5B01@ . Note that there are no sign restrictions on the function p nor in its partial derivative p h ( t,0,α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGObaapaqabaGc peWaaeWaa8aabaWdbiaadshacaGGSaGaaGimaiaacYcacqaHXoqyai aawIcacaGLPaaaaaa@440A@ .

There is an additional detail that we want to point out, in36 the following is pointed out.

However, a new local derivative that violates Leibniz’s Rule can be constructed, so the violation of this rule cannot be a necessary condition for a given operator to be a fractional derivative, let’s go back to (11). It is clear that the violation of this rule does not depend (at least not only) on the incremental quotient, but on a factor that we can add to the increased function, from which the non-symmetry of the product rule would be obtained.

Taking into account54 we can write from (11) the following derivative ( α+β=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaabmaapaqaa8qacqaHXoqycqGHRaWkcqaHYoGy cqGH9aqpcaaIXaaacaGLOaGaayzkaaaaaa@42E5@ :

D H β α f( t ):= lim ε0 H( ε,β )f( t+εF( t,α ) )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebGaamisa8aadaqhaaWcbaWdbiabek7aIbWdaeaapeGaeqyS degaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaai Ooaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaa peGaeqyTduMaeyOKH4QaaGimaaWdaeqaaOWdbmaalaaapaqaa8qaca WGibWaaeWaa8aabaWdbiabew7aLjaacYcacqaHYoGyaiaawIcacaGL PaaacaWGMbWaaeWaa8aabaWdbiaadshacqGHRaWkcqaH1oqzcaWGgb WaaeWaa8aabaWdbiaadshacaGGSaGaeqySdegacaGLOaGaayzkaaaa caGLOaGaayzkaaGaeyOeI0IaamOzamaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaaapaqaa8qacqaH1oqzaaaaaa@6116@   (15)

with H( ε,β )k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIeadaqadaWdaeaapeGaeqyTduMaaiilaiab ek7aIbGaayjkaiaawMcaaiabgkziUkaadUgaaaa@44A4@ if ε0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabew7aLjabgkziUkaaicdaaaa@3FA8@ . In the case that k1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadUgacqGHHjIUcaaIXaaaaa@3ECE@ , we can consider two simple cases: 

  1. H( ε,β )=1+εβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIeadaqadaWdaeaapeGaeqyTduMaaiilaiab ek7aIbGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcqaH1oqzcq aHYoGyaaa@47B2@  as in54 and so 

D L β α f( t ):= lim ε0 ( 1+εβ )f( t+εF( t,α ) )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseacaWGmbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaGG6aGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGa aeyBaaWcpaqaa8qacqaH1oqzcqGHsgIRcaaIWaaapaqabaGcpeWaaS aaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqyTduMaeqOS digacaGLOaGaayzkaaGaamOzamaabmaapaqaa8qacaWG0bGaey4kaS IaeqyTduMaamOramaabmaapaqaa8qacaWG0bGaaiilaiabeg7aHbGa ayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaeqyTdugaaaaa@667D@ .

If F( t,α )= e t α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamiDaiaacYcacqaH XoqyaiaawIcacaGLPaaacqGH9aqpcaWGLbWdamaaCaaaleqabaWdbi aadshapaWaaWbaaWqabeaapeGaeyOeI0IaeqySdegaaaaaaaa@4723@ , that is, a generalization of the local fractional derivative presented in example 4 above. In this case we have:

N L 2 α f( t ):= lim ε0 ( 1+εβ )f( t+ε e t α )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaaGOmaaWd aeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOa GaayzkaaGaaiOoaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaa b2gaaSWdaeaapeGaeqyTduMaeyOKH4QaaGimaaWdaeqaaOWdbmaala aapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabew7aLjabek7a IbGaayjkaiaawMcaaiaadAgadaqadaWdaeaapeGaamiDaiabgUcaRi abew7aLjaadwgapaWaaWbaaSqabeaapeGaamiDa8aadaahaaadbeqa a8qacqGHsislcqaHXoqyaaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaam Ozamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacqaH 1oqzaaaaaa@64F9@ .  (16)

  1. H( ε,β )=1+ε β r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIeadaqadaWdaeaapeGaeqyTduMaaiilaiab ek7aIbGaayjkaiaawMcaaiabg2da9iaaigdacqGHRaWkcqaH1oqzcq aHYoGypaWaaWbaaSqabeaapeGaamOCaaaaaaa@48F5@ , r>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhacqGH+aGpcaaIWaaaaa@3E13@ , in this way we obtain 

D P β α f( t ):= lim ε0 ( 1+ε β r )f( t+εF( t,α ) )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseacaWGqbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaGG6aGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGa aeyBaaWcpaqaa8qacqaH1oqzcqGHsgIRcaaIWaaapaqabaGcpeWaaS aaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqyTduMaeqOS di2damaaCaaaleqabaWdbiaadkhaaaaakiaawIcacaGLPaaacaWGMb WaaeWaa8aabaWdbiaadshacqGHRaWkcqaH1oqzcaWGgbWaaeWaa8aa baWdbiaadshacaGGSaGaeqySdegacaGLOaGaayzkaaaacaGLOaGaay zkaaGaeyOeI0IaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaapaqaa8qacqaH1oqzaaaaaa@67CE@ .

Refer to our N-derivative of24 we have:

N P 2 α f( t ):= lim ε0 ( 1+ε β r )f( t+ε e t α )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGqbWdamaaDaaaleaapeGaaGOmaaWd aeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOa GaayzkaaGaaiOoaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaa b2gaaSWdaeaapeGaeqyTduMaeyOKH4QaaGimaaWdaeqaaOWdbmaala aapaqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabew7aLjabek7a I9aadaahaaWcbeqaa8qacaWGYbaaaaGccaGLOaGaayzkaaGaamOzam aabmaapaqaa8qacaWG0bGaey4kaSIaeqyTduMaamyza8aadaahaaWc beqaa8qacaWG0bWdamaaCaaameqabaWdbiabgkHiTiabeg7aHbaaaa aakiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbiaadsha aiaawIcacaGLPaaaa8aabaWdbiabew7aLbaaaaa@664A@ .  (17)

If k1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadUgacqGHGjsUcaaIXaaaaa@3ECC@ , as e x =1+x+ x 2 2! +... MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaapeGaamiEaaaakiab g2da9iaaigdacqGHRaWkcaWG4bGaey4kaSYaaSaaa8aabaWdbiaadI hapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaacgca aaGaey4kaSIaaiOlaiaac6cacaGGUaaaaa@48CF@ we can take (as a first possibility):

  1. H( ε,β )= E 1,1 ( εβ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIeadaqadaWdaeaapeGaeqyTduMaaiilaiab ek7aIbGaayjkaiaawMcaaiabg2da9iaadweapaWaaSbaaSqaa8qaca aIXaGaaiilaiaaigdaa8aabeaak8qadaqadaWdaeaapeGaeqyTduMa eqOSdigacaGLOaGaayzkaaaaaa@4B21@  and so we have 

D E β α f( t ):= lim ε0 E 1,1 ( εβ )f( t+εF( t,α ) )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadseacaWGfbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaGG6aGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGa aeyBaaWcpaqaa8qacqaH1oqzcqGHsgIRcaaIWaaapaqabaGcpeWaaS aaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaaIXaGaaiilaiaaigda a8aabeaak8qadaqadaWdaeaapeGaeqyTduMaeqOSdigacaGLOaGaay zkaaGaamOzamaabmaapaqaa8qacaWG0bGaey4kaSIaeqyTduMaamOr amaabmaapaqaa8qacaWG0bGaaiilaiabeg7aHbGaayjkaiaawMcaaa GaayjkaiaawMcaaiabgkHiTiaadAgadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaaWdaeaapeGaeqyTdugaaaaa@683D@ ,

and regarding our N-derivative of24 it becomes:

N E β α f( t ):= lim ε0 E 1,1 ( εβ )f( t+ε e t α )f( t ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGfbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaGG6aGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGa aeyBaaWcpaqaa8qacqaH1oqzcqGHsgIRcaaIWaaapaqabaGcpeWaaS aaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaaIXaGaaiilaiaaigda a8aabeaak8qadaqadaWdaeaapeGaeqyTduMaeqOSdigacaGLOaGaay zkaaGaamOzamaabmaapaqaa8qacaWG0bGaey4kaSIaeqyTduMaamyz a8aadaahaaWcbeqaa8qacaWG0bWdamaaCaaameqabaWdbiabgkHiTi abeg7aHbaaaaaakiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiabew7aLbaaaaa@679E@ .  (18)

From (15) we can easily obtain the following conclusions: 

  1. Is a derivative local operator, that is, defined at a point.
  2. They are derivative in the strict sense of the word.
  3. It does not comply with Leibniz’s rule, so for (16) we have (the calculations are similar for (17) and (18)):

N L 2 α [ f( t )g( t ) ]=( N 2 α f( t ) )g( t )+f( t )( N F α g( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaaGOmaaWd aeaapeGaeqySdegaaOWaamWaa8aabaWdbiaadAgadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaiaadEgadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaaGaay5waiaaw2faaiabg2da9maabmaapaqaa8qaca WGobWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaeqySdegaaOGaamOz amaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaam4zamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaey4kaSIa amOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaWaaeWaa8aaba Wdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaa8qacqaHXoqyaaGc caWGNbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcaca GLPaaaaaa@63B7@ ,

Also for (16) we have (again the calculations for (17) and (18) are very similar):

  1. If α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg7aHjabg2da9iaaicdaaaa@3EB9@ , β=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabek7aIjabg2da9iaaigdaaaa@3EBC@ then   N 2 α f( t )= N F 0 f( t )+f( t )=( 1+e )f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaaIYaaapaqaa8qa cqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGH9aqpcaWGobWdamaaDaaaleaapeGaamOraaWdaeaapeGaaGim aaaakiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgU caRiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da 9maabmaapaqaa8qacaaIXaGaey4kaSIaamyzaaGaayjkaiaawMcaai aadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@5717@ .
  2. If α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg7aHjabg2da9iaaigdaaaa@3EBA@ , β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabek7aIjabg2da9iaaicdaaaa@3EBB@ then 

N 2 1 f( t )= N e t 1 1 f( t )= lim ε0 f( t+ε e t 1 )f( t ) ε = e t 1 [ lim ε0 f( t+ε e t 1 )f( t ) ε e t 1 ]= e t 1 f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacaaIYaaapaqaa8qa caaIXaaaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa Gaeyypa0JaamOta8aadaqhaaWcbaWdbiaadwgapaWaaWbaaWqabeaa peGaamiDa8aadaahaaqabeaapeGaeyOeI0IaaGymaaaaaaaal8aaba WdbiaaigdaaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawIcacaGL PaaacqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aaba Wdbiabew7aLjabgkziUkaaicdaa8aabeaak8qadaWcaaWdaeaapeGa amOzamaabmaapaqaa8qacaWG0bGaey4kaSIaeqyTduMaamyza8aada ahaaWcbeqaa8qacaWG0bWdamaaCaaameqabaWdbiabgkHiTiaaigda aaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOzamaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaapaqaa8qacqaH1oqzaaGaeyypa0Jaamyz a8aadaahaaWcbeqaa8qacaWG0bWdamaaCaaameqabaWdbiabgkHiTi aaigdaaaaaaOWaamWaa8aabaWaaCbeaeaapeGaaeiBaiaabMgacaqG Tbaal8aabaWdbiabew7aLjabgkziUkaaicdaa8aabeaak8qadaWcaa WdaeaapeGaamOzamaabmaapaqaa8qacaWG0bGaey4kaSIaeqyTduMa amyza8aadaahaaWcbeqaa8qacaWG0bWdamaaCaaameqabaWdbiabgk HiTiaaigdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOzamaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacqaH1oqzcaWGLb WdamaaCaaaleqabaWdbiaadshapaWaaWbaaWqabeaapeGaeyOeI0Ia aGymaaaaaaaaaaGccaGLBbGaayzxaaGaeyypa0Jaamyza8aadaahaa Wcbeqaa8qacaWG0bWdamaaCaaameqabaWdbiabgkHiTiaaigdaaaaa aOGabmOza8aagaqba8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaa@9277@

if f is derivable.

  1. If the limit exists in (18) then we have

N L β α f( t )= N F α f( t )+β f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGccaWGMbWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacqGH9aqpcaWGobWdamaaDaaaleaapeGaamOraaWdaeaa peGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaGaey4kaSIaeqOSdiMabmOza8aagaqba8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaa@52BD@ .  (19)

  1. Unfortunately, “we lose" the Chain Rule that was valid for our N-derivative (see24), so for N L β α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaaaaa@40A9@ we obtain:

N L β α [ f( g( t ) ) ]= N F α f( g( t ) )+βf( g( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaGcdaWadaWdaeaapeGaamOzamaabmaapaqaa8 qacaWGNbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaaaiaawUfacaGLDbaacqGH9aqpcaWGobWdamaaDaaaleaape GaamOraaWdaeaapeGaeqySdegaaOGaamOzamaabmaapaqaa8qacaWG NbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPa aacqGHRaWkcqaHYoGycaWGMbWaaeWaa8aabaWdbiaadEgadaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5C5F@ .

If g( t )=t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadEgadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaadshaaaa@40E6@ , the above expression is a generalization of proportional derivative of.55

  1. From (19) we derive that

lim t N L β α f( t )= lim t N F α f( t )+ lim t β f ( t )= f ( t )+βf( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaadshacqGHsgIRcqGHEisPa8aabeaak8qacaWGobGaamita8aada qhaaWcbaWdbiabek7aIbWdaeaapeGaeqySdegaaOGaamOzamaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZdamaaxababaWdbi aabYgacaqGPbGaaeyBaaWcpaqaa8qacaWG0bGaeyOKH4QaeyOhIuka paqabaGcpeGaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaWdbiabeg 7aHbaakiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiab gUcaR8aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaapeGaam iDaiabgkziUkabg6HiLcWdaeqaaOWdbiabek7aIjqadAgapaGbauaa peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpceWGMb WdayaafaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaey4k aSIaeqOSdiMaamOzamaabmaapaqaa8qacqGHEisPaiaawIcacaGLPa aaaaa@7528@ .

Where we can draw the following: if the term βf( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabek7aIjaadAgadaqadaWdaeaapeGaeyOhIuka caGLOaGaayzkaaaaaa@40FF@ exists, then the derivative N β α f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaa0baaSqaa8qacqaHYoGya8aabaWd biabeg7aHbaakiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaa@436E@ is only a "translation" of the derivative of the function when t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadshacqGHsgIRcqGHEisPaaa@3FB1@ , so it does not affect the qualitative behavior of the ordinary derivative, this is of vital importance in the study of asymptotics properties of solutions of fractional differential equations with N L β α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eacaWGmbWdamaaDaaaleaapeGaeqOSdiga paqaa8qacqaHXoqyaaaaaa@40A9@ . Unfortunately, the non-existence of the limit of the function to infinity makes the qualitative study of these fractional differential equations impossible.

  1. Let’s go back to the equation (15), it is clear that the function H( ε,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadIeadaqadaWdaeaapeGaeqyTduMaaiilaiab ek7aIbGaayjkaiaawMcaaaaa@41C7@ can be generalized although that would complicate the calculations extraordinarily. Of course this does not close the discussion on what terms can be “added" to the increased function that give local fractional derivatives that violate the Leibniz Rule, which would maintain the locality, as a historical inheritance of the derivative, and would default Leibniz’s Rule, as a “necessary" condition so that there is a fractional derivative.

Conclusion

In this paper, we have presented a sketch of the latest developments obtained in the Non-Integer Order Calculus. Of course, they are not all, for example in56 a multi-index derivative is presented that generalizes the previous definitions and includes as a particular case the derivative presented in.57

All of the above shows that this topic is a fruitful field and has not finished giving us good results.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Podlybny. Fractional differential equations, London, Acad. Press, 1999.
  2. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and application on fractional differential equations. North Holland Math Stud. 2006;204:7–10.
  3. Lakshmikantham V, Leela S, Devi JV. Theory of fractional dynamic systems. Cambridge Scientific Publ. 2009.
  4. Atangana A. Derivative with a New Parameter Theory, Methods and Applications. Academic Press. 2016.
  5. S Umarov, S Steinberg. Variable order differential equations with piecewise constant order–function and diffusion with changing modes. Z Anal Anwend. 2009;28(4):431–450.
  6. Atangana A. Extension of rate of change concept: From local to nonlocal operators with applications. Results in Physics. 2020;19:103515.
  7. Capelas de Oliveira E, Tenreiro Machado JA. A Review of Definitions for Fractional Derivatives and Integral. Mathematical Problems in Engineering. 2014;2014(238459):1–6.
  8. Kolwankar KM. Local fractional calculus: a review. Math Phys. 2013.
  9. Vivas–Cortez, Paulo M Guzmán, Luciano M Lugo, et al. Fractional Calculus: Historical Notes. Revista Matua. 2021;8(2);1–13.
  10. Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos. 1996;6(4):505–513.
  11. Kolwankar KM, Gangal AD. Holder exponents of irregular signals and local fractional derivatives. Pramana J Phys. 1997;48(1):49–68.
  12. Kolwankar KM, Gangal AD. Local fractional Fokker–Planck equation. Phys Rev Lett. 1998;80:214.
  13. Parvate A D Gangal. Calculus on fractal subsets of real line – I: formulation. Fractals. 2009;17(1):53–81.
  14. Yang X J. Local Fractional Integral Transforms. Progress in Nonlinear Science. 2011:1–225.
  15. Yang X J. Local Fractional Functional Analysis and Its Applications. Hong Kong: Asian Academic publisher Limited, China. 2011.
  16. Adda FB, Cresson J. About Non–differentiable Functions. Journal of Mathematical Analysis and Applications. 2001;263(2):721–737.
  17. Chen W. Time–space fabric underying anomalous diffusion. Chaos, Solitons and Fractals. 2006;28(4):923–929.
  18. He JH. A new fractal derivation. Thermal Science. 2011;15(1):145–147.
  19. Gao F, Yang X, Kang Z. Local fractional Newton’s method derived from modified local fractional calculus. 2009 International Joint Conference on Computational Sciences and Optimization. 2009:228–232.
  20. Yang X J. Transport Equations in Fractal Porous Media within Fractional Complex Transform Method, Proceedings. Romanian Academy, Series A. 2013;14(4):287–292.
  21. Yang X J. Local Fractional Integral Transforms and Their Applications, Academic Press, New York, USA. 2015.
  22. Khalil R, Al Horani M, Yousef A, et al. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65–70.
  23. Abdeljawad T. On conformable fractional calculus. Journal of Computational and Applied Mathematics. 2015;279:57–66.
  24. Bohner M, Kashuri A, Mohammed PO, et al. Hermite–Hadamard–type inequalities for conformable integrals. Hacet J Math Stat. 2022;51(3):775–786.
  25. Guzmán PM, Langton G, Lugo LM, et al. A new definition of a fractional derivative of local type. J Math Anal. 2018;9(2):88–98.
  26. Valdés JEN, Guzmán PE, Lugo LM. Some new results on non–conformable fractional calculus. Adv Dynamical Sys Appl. 2018;13(2):167–175.
  27. Abreu–Blaya R, Fleitas A, Nápoles Valdés JE, et al. On the conformable fractional logistic models. Math Meth Appl Sci. 2020;43(7):4156–4167.
  28. Fleitas A, Gómez–Aguilar JF, Nápoles Valdés JE, et al. Analysis of the local Drude model involving the generalized fractional derivative. Optics. 2019;193:163008.
  29. Fleitas A, Méndez–Bermúdez JA, Nápoles Valdés JE, et al. On fractional Liénard–type systems. Revista Mexicana de Fisica. 2019;65(6):618–625.
  30. Guzmán PM, Nápoles Valdés JE. A note on the oscillatory character of some non–conformable generalized lienard system. Advanced Mathematical Models & Applications. 2019;4(2):127–133.
  31. Guzmán PM, Lugo LM, Nápoles JE. On the stability of solutions of fractional non conformable differential equations. Stud Univ Babes–Bolyai Math. 2020;65(4):495–502.
  32. Guzmán PM, Lugo LM, Nápoles JE. A note on the qualitative behavior of some nonlinear local improper conformable differential equations. J Frac Calc & Nonlinear Sys. 2020;1(1):13–20.
  33. Martínez F, Mohammed FPO, Valdés JEN. Non–conformable fractional Laplace transform. Kragujevac J Math. 2022;46(3):341–354.
  34. Martínez F, Valdés JEN. Towards a non–conformable fractional calculus of n–variables. J Math Appl. 2020;43:87–98.
  35. JE Nápoles, JM Sigarreta. New Hermite–Hadamard type inequalities for non–conformable integral operators. Symmetry. 2019;11(9):1108.
  36. JE Nápoles, C Tunc. On the Boundedness and Oscillation of Non–Conformable Lienard Equation. Journal of Fractional Calculus and Applications. 2020;11(2):92–101.
  37. Valdés JEN, Guzmán PM, Lugo LM, et al. The local generalized derivative and Mittag Leffler function. Sigma J Eng Nat Sci. 2020;38(2):1007–1017.
  38. Fleitas A, Nápoles JE, Rodríguez JM, et al. Note on the generalized conformable derivative. Revista de la UMA. 2021;62(2):443–457.
  39. Zhao D, Luo M. General conformable fractional derivative and its physical interpretation. Calcolo 54. 2017;903–917.
  40. Chatzarakis GE, Nápoles Valdés JE. Continuability of Lienard’s Type System with Generalized Local Derivative. Discontinuity, Nonlinearity, and Complexity. 2023;12(1):1–11.
  41. Guzmán PM, Kórus P, Nápoles Valdés JE. Generalized Integral Inequalities of Chebyshev Type. Fractal Fract. 2020;4(2):10.
  42. Guzmán PM, Nápoles JE, Gasimov Y. Integral inequalities within the framework of generalized fractional integrals. Fractional Differential Calculus. 2021;11(1):69–84.
  43. Hernández–Gómez JC, Nápoles Valdés JE, Rosario–Cayetano O, et al. Energy–Level Spacing Distribution of Quantum Systems via Conformable Operators. Discontinuity, Nonlinearity, and Complexity. 2022;11(2):325–335.
  44. Kórus P, Lugo LM, Valdes JEN. Integral inequalities in a generalized context. Studia Scientiarum Mathematicarum Hungarica. 2020;57(3):312–320.
  45. Lugo JM, Nápoles JEV, Vivas–Cortez M. On the oscillatory behaviour of some forced nonlinear generalized differential equation. Investigacion Operacional. 2021;42(2)267–278.
  46. Mehmood S, Shahzad M, Batool K, et al. Some integral inequalities in the framework of conformable fractional integral. J Prime Res Math. 2021;17(2):159–167.
  47. Nápoles JE. Oscillatory criteria for some non–conformable differential equation with damping. Interdis J Discontinuity, Nonlinearity Complexity. 2021;10(3):461–469.
  48. Valdés JEN, Gasimov YS, Aliyeva AR. On the oscillatory behavior of some generalized differential equation. Punjab Univ J Math. 2021;53(1):71–82.
  49. Valdés JEN, Jose SA. A note on the boundedness of solutions of generalized functional differential equations. Appl Math E–Notes. 2022;22:265–272.
  50. Nápoles JE, Quevedo MN. On the oscillatory nature of some generalized emden–fowler equation. Punjab Univ J Math. 2020;52(6):97–106.
  51. Nápoles JE, Quevedo MN, Plata ARG. On the asymptotic behavior of a generalized nonlinear equation. Sigma J Eng Nat Sci. 2020;38(4):2109–2121.
  52. Vivas–Cortez, P Kórus, JE Nápoles Valdés. Some generalized Hermite–Hadamard–Fejér inequality for convex functions. Advances in Difference Equations. 2021:199.
  53. Vivas–Cortez J, E Nápoles Valdés, LM Lugo. On a Generalized Laplace Transform. Appl Math Inf Sci. 2021;15(5):667–675.
  54. Mingarelli B. On generalized and fractional derivatives and their applications to classical mechanics. Math Phys. 2018.
  55. Zulfeqarr F, Ujlayan A, Ahuja A. A new fractional derivative and its fractional integral with some applications. 2017.
  56. Anderson DR, Ulness DJ. Newly defined conformable derivatives. Adv Dyn Sys App. 2015;10(2):109–137.
  57. Vivas–Cortez M, Lugo LM, Juan E Nápoles Valdés, et al. A Multi–Index Generalized Derivative Some Introductory Notes. Appl Math Inf Sci. 2022;16(6):883–890.
  58. E Reyes–Luis, G Fernández–Anaya, J Chávez–Carlos, et al. A two–index generalization of conformable operators with potential applications in engineering and physics. Revista Mexicana de Física. 2021;67(3):429–442.
  59. Katugampola UN. A new fractional derivative with classical properties. J Amer Math Soc. 2014;1:1–8.
Creative Commons Attribution License

©2023 Valdes. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.