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mathematical literature (see1). The nature of many systems makes 
that they can be more precisely modeled using fractional differential 
equations. The differentiation and integration of arbitrary orders have 
found applications in diverse fields of science and engineering like 
viscoelasticity, electrochemistry, diffusion processes, control theory, 
heat conduction, electricity, mechanics, chaos, and fractals (see1-3).

The history of differential operators from Newton to Caputo, both 
local and global, is given in4 (Chapter 1). Here is the definition of a 
local derivative with a new parameter, which has a large number of 
applica- tions. More importantly, section 1.4 concludes: “Therefore, 
we can conclude that both the Riemann-Liouville operator and the 
Riemann-Liouville operator Caputo are not derivatives, and therefore 
they are not fractional derivatives, but fractional operators”. We are of 
in agreement with the result5 that says “the local fractional operator 
is not a fractional derivative”(page 24). As mentioned above, these 
tools are new and have demonstrated their potential and usefulness in 
solving phenomena and process modeling problems in various fields 
of science and technology (see6). Many different types of fractional 
operators have been proposed in the literature, here we show that 
several of these different notions of derivatives can be considered 
particular cases of our definition and, even more relevant, that it is 
possible to establish a direct relationship between derivatives global 
(classical) and local, the latter not very accepted by the mathematical 
community, under two arguments: its local character and compliance 
with the Leibniz Rule. In this note we present the recent development 
of the so-called Non-Integer Order Local Calculus, which is the correct 
name (sometimes we use the name Generalized Calculus, although it 
does not illustrate the concept well). To facilitate the understanding 
of the scope of our objective, we present the best known definitions 
of differential and integral local operators (for more details you can 
consult,7,8 Without much difficulty, we can extend these definitions, 
for any higher order. We assume that the reader is familiar with the 
classical Calculus, so we will not present it.

Preliminary results
Local fractional calculus (is also called Fractal calculus) was first 

introduced by Kolwankar and Gangal, although there were some 

attempts in the 1960s, this is the first formal definition of a local 
operator that generalizes the classical derivative. It is explain the 
behavior of continuous but nowhere differentiable function. They 
proposed particular notation that they had used in their publication for 
the local fractional derivative of a function defined on fractal sets.9-11 
So we have

Definition 1 If, for a function [ ]: 0,1f R® , the limit
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exists and is finite, then we say that the local fractional derivative 
(LFD) of order q , at x y= , exists. 

To understand the fractal behavior of functions, Parvate and 
Gangal (see)12 introduce the fractal derivative as follows:
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where the right hand side is the notion of the limit by the points of 
the fractal set F.

Definition 2 Let  be an arbitrary but fixed real number. The integral 
staircase function ( )FS xa of ordera for a set F is given by:

 ( )
[ ]

[ ]

, ,

, ,
F

F a x si x a
S x

F a x si x a

a

a

a

g

g

ìï ³ïïïï=íïïï- <ïïî

                              (3)

 

and the mass function is defined in this way

Definition 3 The mass function [ ], ,F a bag can written as (see13,14):
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Introduction
Fractional calculus concerns the generalization of differentiation 

and integration to non-integer (fractional) orders. The subject has a 
long mathematical history being discussed for the first time already 
in the correspondence of Leibniz with L’Hopital when this replied 

“What does ( )
n

n
d f x
dx

mean if n= 1
2

?” in September 30 of 1695. 

Over the centuries many mathematicians have built up a large body 
of mathematical knowledge on fractional integrals and derivatives. 
Although fractional calculus is a natural generalization of calculus, 
and although its mathematical history is equally long, it has, until 
recently, played a negligible role in physics. One reason could be that, 
until recently, the basic facts were not readily accessible even in the 
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Another version can be found at:15
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with s =± and ,yDa
s- is the Riemann-Liouville derivative.

In16 we have the following notion:
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obtained from (??) under assumption 0 0( )x x x xa a a- = - .

He gave a new fractal derivative in theis way:17
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Taking into account
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Yjis is the unified notation of.18 In this address we have another 
definition,19,20 as follows:
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0( )x x a- is a measure fractal20 and

( ) ( ) ( ) ( ) ( )0 0Ä Ã 1 Äf x f x f x f xa aé ù é ù- @ + -ë û ë û . In [68] we have:
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All these results, although they do not exactly coincide with the 
direction of our work, we present them so that readers have a more 
complete picture and because they have become relevant again in 
recent years.

Post Kahlil derivative

In21 a definition of local derivative is presented, which opens a new 
direction of work, which is what we intend to illustrate here.

So they presented the following definition(see also22).

Thus, for a function ( ): 0,f R¥ ® the conformable derivative of 

order 0 1a< £ of f at 0t > was defined by
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and the fractional derivative at 0 is defined as
( ) ( )00 tT f lim T f ta a®= .

In a work from the same year (cf.)58 another conformable 
derivative is defined in a very similar way. Let f be a function of
( )0,¥ ®  , 0t > define the derivative of ordera with 0 1a< <

as the expression ( )
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exists at some ( )0,a with 0a > then defines the derivative of ordera

at 0 as ( ) ( )00 tD f lim D f ta a
®= .

8introduces a new twist when it defines a general derivative as 
follows, :f ®  is a function, a a real number, the derivative of 

fractional order can be thought of as ( )
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In 2018 we introduced a new local derivative, with a very distinctive 
property: when 1a® we do not get the ordinary derivative. We call 
this derivative non-conformable, to distinguish it from the previous 
known ones, since when 1a® the slope of the tangent line to the 
curve at the point is not preserved.

Be ( ]0,1aÎ and define a continuous function [ )0: ,f t +¥ ®  .

First, let’s remember the definition of ( )1 N f ta , a non conformable 

fractional derivative of a function in a point  defined in23 and that is 
the basis of our results, that are close resemblance of those found in 
classical qualitative theory.

Definition 4 Given a function [ )0: ,f t ¥+ ®  , 0 0t >

. Then the N-derivative of f of ordera is defined by
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If the above derivative of the function ( )x t of ordera exists 

and is finite in ( )0 ,t ¥ , we will say that ( )x t is 1N -differentiable in

( )0 ,I t= ¥ .

Remark 5 The use in Definition 1 of the limit of a certain incremental 
quotient, instead of the integral used in the classical definitions of 
fractional derivatives, allows us to give the following interpretation of 
the N-derivative. Suppose that the point moves in a straight line in +
. For the moments 1t t= and 2

tt t he
a-

= + where 0h> and ( ]0,1aÎ
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When 1a= , this is the usual instantaneous velocity of a point 
P at any time 0t > . If ( )0,1aÎ this is the instantaneous q-speed of 
the point P for any 0t > . Therefore, the physical meaning of the 
N-derivative is the instantaneous q-change rate of the state vector of 
the considered mechanics or another nature of the system. 

Remark 6 The 1N -derivative solves almost all the insufficiencies 
that are indicated to the classical fractional derivatives. In particular 
we have the following result. 

Theorem 7 (See24) Let f and g be N-differentiable at a point 0t >
and ( ] 0,1aÎ . Then

    1.  ( )( ) ( )( ) ( )( )1 1 1N af bg t a N f t b N g ta a a+ = +  

    2.  ( ) 1
1 ,  p t pN t e pt p

aa - -= Î  

    3.  ( )1 0,  Na l l= Î  
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    6.  If, in addition, f is differentiable then ( ) ( )1
tN f e f t

aa -
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    7.  Being f differentiable and na= integer, we have

( )( ) ( )1
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-
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Remark 8 The relations a), c), d) and (e) are similar to the classical 
results mathematical analysis, these relationships are not established 
(or do not occur) for fractional derivatives of global character 
(see1,2 and bibliography there). The relation c) is maintained for the 
fractional derivative of Caputo. Cases c), f) and g) are typical of this 
non conformable local fractional derivative. 

Now we will present the equivalent result, for 1 N
a , of the well-

known chain rule of classic calculus and that is basic in the Second 
Method of Lyapunov, for the study of stability of perturbed motion.

Theorem 9 (See24) Let ( ]0,1aÎ , g N-differentiable at 0t > and f

differentiable at ( )g t then ( )( ) ( ) ( )1 1 ( )N f g t f g t N g ta a¢= . 

Definition 10 The non conformable fractional integral of ordera is 

defined by the expression ( )
( )

1 0
0
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e
a
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The following statement is analogous to the one known from the 
Ordinary Calculus.

Theorem 11 Let f be 1N -differentiable function in ( )0 ,t ¥ with

( ]0,1aÎ . Then for all 0t t> we have

    1.  If f is differentiable ( )( ) ( ) ( )1 1 00  tJ N f t f t f ta a = - . 

    2.  ( )( ) ( )1 1 0  tN J f t f ta a = . 

  Proof. See25

This derivative, and some variants, proved useful in various 
application problems (see26-35). 

The N-derivative.

In36 a generalized derivative was defined as follows (see also37,38).

Definition 12  Given a function [ ): 0,y +¥ ®  . Then the 
N-derivative ofy of ordera is defined by
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for all 0t> , ( )0,1aÎ being ( ),F t a is some function.

Ify is N-differentiable in some ( )0,a , and ( )
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= , note that if y is differentiable, 

then ( ) ( ) ( ),FN Fay t t a y t= ¢ where ( )y t¢ is the ordinary derivative. 

Examples. Let’s see some particular cases that provide us with 
new non-conforming derivatives.  

    1.  Mellin-Ross Function. In this case we have
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with ( )1, 1 .E a+ the Mittag-Leffler two-parameter function. So, we 
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    2.  Robotov’s Function. That is to say
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    3.  Let ( ) ( )1,1,F t E t aa -= . In this case we obtain, from Definition 

12, the derivative ( )1 N f ta defined in [18] (and [46]). 

    4.  Be now ( ) 1,1 1, ( )F t E t aa -= , in this case we have ( ) 1,F t
ta

a =

, a new derivative with a remarkable propertie ( )1lim 0t N f ta
®¥ = , 

i.e., the derived N is annulled to infinity. 

    5.  If we now take the development of function E to order 1, we have

( ),
11a bE t
t

a
a

- = + . Then ( ) ( ) ( )1lim lim 't F tN f t N f t f ta a
®¥ ®¥= = , 

in this case we have the classic derivative at infinit. 

Remark 13 It is easy to check but tedious, following for example, 
that the general derivative fulfills properties very similar to those 
known from the classical calculus. As well as its most important 
consequences, among them the Chain Rule, of vital importance in 
many applications, among them the Second Method of Lyapunov. 

Remark 14 The generalized derivative defined above is not fractional 
(as we noted above), but it does have a very desirable feature in 
applications, its dual dependency on both  and the kernel expression 
itself, with 0   1leqa< in 21 the conformal derivative is defined by 

putting ( ) 1,F t t aa -= , while in24 the nonconforming derivative is 

obtained with ( ), tF t e
a

a
-

= (see also 25). This generalized derivative, 

in addition to the aforementioned cases, contains as particular cases 
practically all known local operators and has proved its utility in 
various applications, see, for example,23,30,32-35,39,40-52 

Remark 15 One of the characteristics of this generalized derivative 

is the fact that ( ) ( )( )2
F F FN f t N N f ta a a¹ , that is, it is necessary to 

indicate successive derivatives in the second way. Obviously, if 1F º
, the ordinary derivative is obtained. 

Remark 16  From the above definition, it is not difficult to extend the 
order of the derivative for 0 1n na£ - < £ by putting

 ( )
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,
lim

n n

F
h F h

N ha
e

t e t a t
t

e

- -

®

+ -
=  (12)

https://doi.org/10.15406/paij.2023.07.00304


The non-integer local order calculus 166
Copyright:

©2023 Valdes

Citation: Valdes JEN. The non-integer local order calculus. Phys Astron Int J. 2023;7(3):163‒168. DOI: 10.15406/paij.2023.07.00304

If ( )nh exists on some interval I Í , then we have

( ) ( ) ( )( ), n
FN h F ha t t a t= , with 0 1n na£ - < £ . 

Slightly more recent, in37 a notion of generalized fractional 
derivative is defined, which is general from two points of view:

1) Contains as particular cases, both conformable and non-
conformable derivatives.

2) It is defined for any order 0a> .

Given s Î , we denote by [ ]s the upper integer part of s , i.e., the 
smallest integer greater than or equal to s .

Definition 17 Given an interval ( )0,I Í ¥ , :f I ®  , a +Î

and a continuous function positive ( ),T t a , the derivative TG fa of f

of ordera at the point t IÎ is defined by
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0 0

1limž( 1) ,
a

k
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a
G f t f t khT t
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®
=

æ ö÷ç ÷= - -ç ÷ç ÷çè øå  (13)

In , a derivative operator is defined on the real line 
with a limit process as follows (se53). For a given function 

 of two variables, the symbol ( )pD f t defined by the limit

( )
( )( ) ( )

0
,

limp
f p t f t

D f t e

e

e®

-
= , as long as the limit exists and 

is finite, it will be called the derivative p of f at  t or the generalized 
derivative from f to  t and, for brevity, we also say that f is p
-differentiable in  t . In the case that it is a closed interval, we define 
the p-derivative at the extremes as the respective side derivatives. 
Starting from this definition, the derivative of ordera of a function is 
constructed as the following limit:
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0

, ,
lim ,    0 1p

f p t f t
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e

e a
a
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-
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where it is understood that in the case 1a= we have the 

ordinary derivative. It is clear that if f is differentiable in t , then

( ) ( ) ( ),0, ' ,    0 1p hD f t p t f ta a a= < < . Note that there are no sign 

restrictions on the function p nor in its partial derivative ( ),0,hp t a .

There is an additional detail that we want to point out, in36 the 
following is pointed out.

However, a new local derivative that violates Leibniz’s Rule can 
be constructed, so the violation of this rule cannot be a necessary 
condition for a given operator to be a fractional derivative, let’s go 
back to (11). It is clear that the violation of this rule does not depend 
(at least not only) on the incremental quotient, but on a factor that we 
can add to the increased function, from which the non-symmetry of 
the product rule would be obtained.

Taking into account54 we can write from (11) the following 
derivative ( )1a b+ = :
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β ε

ε β ε α
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+ −
=               (15)

with ( ),H ke b ® if 0e® . In the case that 1k º , we can consider 

two simple cases:  

    1.  ( ), 1H e b eb= + as in54 and so
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If ( ), tF t e
a

a
-

= , that is, a generalization of the local fractional 

derivative presented in example 4 above. In this case we have:
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Refer to our N-derivative of24 we have:
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If 1k ¹ , as
2

1 ...
2!

x xe x= + + + we can take (as a first possibility): 

    3.  ( ) ( )1,1,H Ee b eb= and so we have
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and regarding our N-derivative of24 it becomes:
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e
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From (15) we can easily obtain the following conclusions:  

    1.  Is a derivative local operator, that is, defined at a point. 

    2.  They are derivative in the strict sense of the word. 

    3.  It does not comply with Leibniz’s rule, so for (16) we have 
(the calculations are similar for (17) and (18)):

 ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2 FNL f t g t N f t g t f t N g ta a aé ù = +ë û
Also for (16) we have (again the calculations for (17) and (18) are 

very similar): 

    4.  If 0a= , 1b = then ( ) ( ) ( ) ( ) ( )0
2 1FN f t N f t f t e f ta = + = +  

    5.  If 1a= , 0b = then 
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 if f is derivable. 

    6.  If the limit exists in (18) then we have

 ( ) ( ) ( )FNL f t N f t f ta a
b b+ ¢=  (19)

    7.  Unfortunately, “we lose” the Chain Rule that was valid for 
our N-derivative (see24), so for NLab we obtain:

 ( )( ) ( )( ) ( )( )FNL f g t N f g t f g ta a
b bé ù = +ê úë û

If ( )g t t= , the above expression is a generalization of proportional 
derivative of.55 
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    8.  From (19) we derive that 

( ) ( ) ( ) ( ) ( )lim lim limFt t t
NL f t N f t f t f t fa a

b b b
®¥ ®¥ ®¥

= + = +¢ ¢ ¥

Where we can draw the following: if the term ( )fb ¥ exists, then 
the derivative ( )N f ta

b is only a “translation” of the derivative of the 

function when t ®¥ , so it does not affect the qualitative behavior 
of the ordinary derivative, this is of vital importance in the study of 
asymptotics properties of solutions of fractional differential equations 
with NLab . Unfortunately, the non-existence of the limit of the function 
to infinity makes the qualitative study of these fractional differential 
equations impossible. 

  9.  Let’s go back to the equation (15), it is clear that the function
( ),H e b can be generalized although that would complicate the 

calculations extraordinarily. Of course this does not close the 
discussion on what terms can be “added” to the increased function 
that give local fractional derivatives that violate the Leibniz Rule, 
which would maintain the locality, as a historical inheritance of 
the derivative, and would default Leibniz’s Rule, as a “necessary” 
condition so that there is a fractional derivative. 

Conclusion
In this paper, we have presented a sketch of the latest developments 

obtained in the Non-Integer Order Calculus. Of course, they are 
not all, for example in56 a multi-index derivative is presented that 
generalizes the previous definitions and includes as a particular case 
the derivative presented in.57

All of the above shows that this topic is a fruitful field and has not 
finished giving us good results.
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