Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 1 Issue 6

The nature of gamma-ray bursts in the framework of the byuon theory

Baurov YA,1 Malov IF2

1Closed Joint Stock Company Research Institute of Cosmic Physics, Byuon Space Energy Corporation LLC, Russia
2PN Lebedev Physical Institute, Russian Academy of Sciences, Russia

Correspondence: Yuriy Alexeevich Baurov, Closed Joint Stock Company Research Institute of Cosmic Physics, Byuon Space Energy Corporation LLC, 353900, Krasnodar region, Novorossiysk, Engelsa 80, office 41, Russia

Received: December 19, 2017 | Published: December 20, 2017

Citation: Baurov YA, Malov IF. The nature of gamma-ray bursts in the framework of the byuon theory. Phys Astron Int J. 2017;1(6):205-208. DOI: 10.15406/paij.2017.01.00036

Download PDF

Abstract

Two models of gamma-ray bursts using the theory of byuons (TB) are considered. This theory describes a “life’ of special unobservable discrete objects from which the surrounding space and the world of ultimate particles are formed. Basic axioms and some conclusions of this theory are discussed. The results of experimental investigations of new non-gauge interaction (using high current magnets, torsion and piezo resonance balances, and changes in the rate of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGyaaa@3845@ - decay of radioactive elements etc.) are described. It is shown that basic problems with nature of gamma-ray bursts can be solved in the framework of this theory not only for bursts connected with supernova explosions but also for those without explosions. The conditions for ejection of matter during a SN explosion due to the non-gauge force action are shown.

Keywords: gamma-ray bursts, theory of byuons, new non-gauge force

Introduction

Gamma-ray bursts (GRBs) were detected for the first time in 1967 in the range 0.1-1MeV1 by US satellites Vela intended for monitoring of nuclear explosions in the atmosphere of the Earth. As was shown later these bursts had an astrophysical origin and did not connect to any processes at the Earth. Three possible locations of GRBs were assumed: the solar system, our Galaxy and sources at cosmological distances.2 A lot of GRBs were detected by space apparatuses, basically using BeppoSAX, BATSE, HETE, Swift and Fermi. This gave the possibility to reveal a number of their peculiarities which could be summarized in the following way.3

  1. GRBs are flares of gamma-rays in the range of 30 keV-100MeV. Their durations are in the interval from several milliseconds to thousands of seconds.4 They are characterized by complex emission profiles and by variabilities with typical time of order of msec. The distribution of GRBs on durations is bimodal. There are short bursts with the characteristic time less than 1.5sec and long ones with longer durations. The first group includes about 30% of all known bursts, and 70% of bursts belong to the second group. However the distribution of durations is quite wide and these two groups overlap. So, sometimes it is difficult to attribute a GRB to the certain group.
  2. The BATSE fluxes of the weakest bursts are of order of 10-7erg cm-2. Their spectra are non-thermal and variable. Bright flashes can give photons of 1GeV and even higher.
  3. The distribution of GRBs in the sky is isotropic but non-uniform. There is a deficiency of weak sources.
  4. In many cases afterglows are observed in optical and X-ray diapasons. Sometimes variable radio emission has been detected.5
  5. For a number of GRBs “host” galaxies were observed. Their optical spectra gave the possibility to estimate their red shifts Z. The known values of Z are up to several units.
  6. For GRB990123 ( Z>1.61 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGAbGaeyOpa4JaaGymaiaac6cacaaI2aGaaGymaaaa@3B73@ ) the total energy is 3 × 1054 erg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIZaGaaeiiaiabgEna0kaabccacaaIXaGaaGimaiaaiwda caaI0aGaaeiiaiaadwgacaWGYbGaam4zaaaa@4120@ if the isotropic radiation is suggested. This value is very near the equivalent rest mass of the Sun M Θ c 2 = 2 × 10 54  erg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWaaSbaaeaajugWaiabfI5arbqcfayabaGaam4yaSWa aWbaaWqabeaacaaIYaaaaKqbakabg2da9iaabccacaaIYaGaaeiiai abgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGynaiaaisdaaaqc faOaaeiiaiaadwgacaWGYbGaam4zaaaa@4994@ . In fact, emission of GRBs is collimated and their beam widths are from 20 to 200.6

The possible origin and emission mechanisms of GRBs

The detailed analysis of observable properties of GRBs shows almost certainly that they connect to extragalactic objects. The most probable sources of GRBs are supernova explosions in fields of an active star formation.7 Such processes can take place in galaxies at distances d more than 50Mpc. Indeed, the nearest galaxy with the registered GRB (GRB980425) has Z=0.0085, i.e. d=40Mpc. A supernova explosion can release huge energy which can be transformed to observed gamma-emission. Such processes are associated at this moment with long GRBs. Indeed, GRB980425 was followed by the SN 1998bv of less than one day.8 This confirms the connection of GRBs with collapses of massive stars. As for short gamma-bursts it is assumed usually that they are connected to merging of neutron stars or a neutron star and a black hole as the result of the evolution of a close binary system.9 Owing to gravitational radiation stars in such system move helically, approach each other and merge into isolated black hole. In this model emitted energy must be lower than from long bursts and such sources may be seen only at smaller distances. It is unclear what collimation must be in short GRBs. It is worth noting that there are not satisfactory explanations of all observational data up to now. Light curves of GRBs differ extremely from one source to another. The number of peaks, structures, durations and variabilities of individual features is unrepeatable, and this makes a very complicated picture of a typical GRB.

Afterglows

In a number of cases some emissions are registered in optical, X-ray and radio ranges after gamma-flashes. There is not the common point of view on the origin of gamma-radiation, but as for mechanisms of afterglows many investigators connect them with the interaction of shock waves formed during a supernova explosion with the surrounding medium.10

Soft gamma-ray repeaters

The separate group of GRBs includes the so called soft gamma-ray repeaters (SGRs). They belong to our Galaxy and are identified with isolated neutron stars. The most popular model of these objects is the magnetar model suggesting the existence of neutron stars with super-strong magnetic fields (1014-1015 G).11 However some alternative models were put forward, for example, the drift model12 and the accretion one.13 It must be held in any model that gamma-radiation in SGRs is caused by nuclear reactions near the star surface. These processes can provide energy up to 1046erg. The most energetic SGRs can be seen in distant galaxies. The decision of basic problems connected with nature of gamma-ray bursts energetics will be shown in this article using the theory of byuons (TB)-non-gauge theory of the formation of physical space and the world of ultimate particles on the basis of unobservable objects named “byuons”.14–16

GRBs in the byuon theory

  1. The basic axioms of TB and some results

In this article, we present only the basic axioms and main results from TB. In TB, there is initially no physical space, no time, and no world of ultimate particles that constitute all physical bodies around us, but there is an object that is inherently unobservable, namely byuon Φ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaeWaaeaapeGaamyAaaWdaiaawIcacaGLPaaa aaa@3AC3@ with discrete states. It has an internal vector property expressed in the form

Φ( i )={ [ A g x(i)], 1 [ A g x(i)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaeWaaeaapeGaamyAaaWdaiaawIcacaGLPaaa cqGH9aqpdaGabaqaauaabeqaceaaaeaacaGGBbGaaCyqaSWaaSbaaK qbagaajugWaiaadEgaaKqbagqaaiaadIhacaGGOaGaamyAaiaacMca caGGDbGaaiilaaqaaiabgkHiTmaakaaabaGaeyOeI0IaaGymaaqaba GaaGjcVlaayIW7caGGBbGaaCyqamaaBaaabaqcLbmacaWGNbaajuaG beaacaWG4bGaaiikaiaadMgacaGGPaGaaiyxaaaaaiaawUhaaaaa@552E@     (1)

Where is the byuon length, real (positive or negative) quantity that depends on index  = 1,2,…..,k.. Quantity A g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyqaS WaaSbaaKqbagaajugWaiaadEgaaKqbagqaaaaa@3AB0@ is an internal potential whose modulus is equal to the cosmological vector potential.14–16 This potential is determined by the byuon’s properties, so it is referred as internal one. By definition, quantity Φ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaeWaaeaapeGaamyAaaWdaiaawIcacaGLPaaa aaa@3AC3@ can be either real or purely imaginary. All multitudes of states Φ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaeWaaeaapeGaamyAaaWdaiaawIcacaGLPaaa aaa@3AC3@ relative to index i can form one-dimensional space R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaaaaa @3A41@ in which the distances between byuon states are determined as the difference between their lengths (Archimedean metrics). Discrete time, time quantum τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDpaWaaSbaaeaajugWa8qacaaIWaaajuaGpaqabaaa aa@3B2E@ , and space quantum x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A27@ in one-dimensional R1 formed by byuon states ( τ о 0.9× 10 43 c,  x ˜ 0 2.8 × 10 33 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3cdaWgaaqcfayaaKqzadaeaaaaaaaaa8qacaWG+qaajuaGpaqabaWd biabgIKi7kaaicdacaGGUaGaaGyoaiabgEna0kaaigdacaaIWaWcpa WaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaGinaiaaiodaaaqcfaOa am4yaiaacYcacaGGGcWdaiqadIhagaacamaaBaaabaqcLbmacaaIWa aajuaGbeaacqGHijYUpeGaaGOmaiaac6cacaaI4aGaaiiOaiabgEna 0kaaigdacaaIWaWcpaWaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaG 4maiaaiodaaaqcfaOaam4yaiaad2gaaaa@5E15@ ) are introduced.

  1. Statics: We believe that in the set {Φ( i )} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4Eaa baaaaaaaaapeGaeuOPdy0damaabmaabaWdbiaadMgaa8aacaGLOaGa ayzkaaGaaiyFaaaa@3CC3@ , there are meant no static states with time t> τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyOpa4JaeqiXdq3cpaWaaSbaaKqbagaajugWa8qa caaIWaaajuaGpaqabaaaaa@3DC8@ .
  1. Kinematics: Depending on whether the vector Φ( i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaeWaaeaapeGaamyAaaWdaiaawIcacaGLPaaa aaa@3AC3@ is real or imaginary, the length x(i) is positive or negative, decreases or increases in magnitude, free byuons (i.e. not interacting one with another) can be only in one of the four so called vacuum states (VS) II+I+I-, II-.

Let us introduce the following definitions:

  1. A free byuon is in the state II+ if it’s positive length discretely, in a quantum of time τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDl8aadaWgaaqcfayaaKqzadWdbiaaicdaaKqba+aa beaaaaa@3BC7@ , increases by a quantum of distance x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A27@ with the speed of propagation (increase in length) c= x ˜ 0 0 τ 0 = c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9maalaaabaGabmiEayaaiaWaaSbaaeaajugWaiaaicdaaKqb agqaaiabgkHiTiaaicdaaeaacqaHepaDdaWgaaqaaKqzadGaaGimaa qcfayabaaaaiabg2da9iaadogadaWgaaqaaKqzadGaaGimaaqcfaya baaaaa@46AD@ ( c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@3A03@ is the speed of light).
  2. A free byuon is in the state I+ if its positive length discretely, in a quantum of time τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDl8aadaWgaaqcfayaaKqzadWdbiaaicdaaKqba+aa beaaaaa@3BC7@ , decreases by x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A27@ . In this case c= 0 x ˜ 0 τ 0 = c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9maalaaabaGaaGimaiabgkHiTiqadIhagaacamaaBaaabaqc LbmacaaIWaaajuaGbeaaaeaacqaHepaDdaWgaaqaaKqzadGaaGimaa qcfayabaaaaiabg2da9iabgkHiTiaadogadaWgaaqaaKqzadGaaGim aaqcfayabaaaaa@479A@ .
  3. A free byuon is in the state II- if the modulus of its negative length grows by x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A27@ in time τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDl8aadaWgaaqcfayaaKqzadWdbiaaicdaaKqba+aa beaaaaa@3BC7@ . In this case c= x ˜ 0 0 τ 0 = c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9maalaaabaGaeyOeI0IabmiEayaaiaWaaSbaaeaajugWaiaa icdaaKqbagqaaiabgkHiTiaaicdaaeaacqaHepaDdaWgaaqaaKqzad GaaGimaaqcfayabaaaaiabg2da9iabgkHiTiaadogalmaaBaaajuaG baqcLbmacaaIWaaajuaGbeaaaaa@4920@ .
  4. A free byuon is in the state I- if the modulus of its negative length discretely, in time τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDl8aadaWgaaqcfayaaKqzadWdbiaaicdaaKqba+aa beaaaaa@3BC7@ , decreases by x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A27@ . In this case c= 0( x ˜ 0 ) τ 0 = c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9maalaaabaGaaGimaiabgkHiTiaacIcacqGHsislceWG4bGb aGaadaWgaaqaaKqzadGaaGimaaqcfayabaGaaiykaaqaaiabes8a0T WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaaaacqGH9aqpcaWGJbWc daWgaaqcfayaaKqzadGaaGimaaqcfayabaaaaa@4A25@ .

The byuon residence in one VS or another has a probabilistic character and is described by wave function, which corresponds to four VSes.14–16

The byuon concept allows us to express fundamental physical constants and properties of the surrounding world based on the quantum characteristics of the byuon VS only: space quantum x ˜ 0 2.8×  10 33 cm, τ о 0.9× 10 43 c, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaabaaaaaaaaapeGaeyis ISRaaGOmaiaac6cacaaI4aGaey41aqRaaiiOaiaaigdacaaIWaWcpa WaaWbaaKqbagqabaqcLbmapeGaeyOeI0IaaG4maiaaiodaaaqcfaOa am4yaiaad2gacaGGSaGaeqiXdq3damaaBaaabaqcLbmapeGaamOpea qcfa4daeqaa8qacqGHijYUcaaIWaGaaiOlaiaaiMdacqGHxdaTcaaI XaGaaGimaSWdamaaCaaajuaGbeqaaKqzadWdbiabgkHiTiaaisdaca aIZaaaaKqbakaadogacaGGSaaaaa@5D08@ and modulus of cosmological vector potential A g 1.95× 10 11 G×cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaabaqcLbmapeGaam4zaaqcfa4daeqaa8qa cqGHijYUcaaIXaGaaiOlaiaaiMdacaaI1aGaey41aqRaaGymaiaaic dal8aadaahaaqcfayabeaajugWa8qacaaIXaGaaGymaaaajuaGcaWG hbGaey41aqRaam4yaiaad2gaaaa@4B66@ .

The following basic hypothesis was introduced in.14–16 Let us assume that observed three-dimensional space R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaqcLbmapeGaaG4maaqcfa4daeqaaaaa @3A43@ is formed as a result of minimizing the interaction potential energy of byuon VSs in R1 formed by them. More exactly, space R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaqcLbmapeGaaG4maaqcfa4daeqaaaaa @3A43@ is fixed due to the dynamics of objects that appear due to the interaction between byuon VSes. Dynamic processes thus arise in space R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaqcLbmapeGaaG4maaqcfa4daeqaaaaa @3A43@ for objects with the minimum residual positive potential energy of interactions between byuon VSes, resulting in the wave properties of the elementary particles that arise. In other words, the theory allows us to find values of all other fundamental constants and the main properties of the surrounding world by establishing only three constants: A g , τ о, x ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaajuaibaWdbiaadEgaaKqba+aabeaapeGa aiilaiabes8a09aadaWgaaqaaKqbG8qacaWG+qqcfaOaaiilaaWdae qaaiqadIhagaacamaaBaaajuaibaGaaGimaaqabaaaaa@407D@ , Fundamental spatial scales are determined by the relations x 0  = k x ˜ 0 10 17  cm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaBaaabaqcfaYdbiaaicdajuaGcaGGGcaapaqa baWdbiabg2da9iaabccacaWGRbWdaiqadIhagaacamaaBaaajuaiba GaaGimaaqabaqcfa4dbiabgIKi7kaaigdacaaIWaWdamaaCaaajuai beqaa8qacqGHsislcaaIXaGaaG4naaaajuaGcaGGGcGaam4yaiaad2 gacaGGSaaaaa@4A2F@ , ct* =kN x ˜ 0 10 13  cm, L = kNP x ˜ 0 10 28  cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaamiDaKqbGiaacQcajuaGcaqGGaGaeyypa0Jaam4A aiaad6eapaGabmiEayaaiaWaaSbaaKqbGeaacaaIWaaabeaajuaGcq GHijYUpeGaaGymaiaaicdapaWaaWbaaKqbGeqabaWdbiabgkHiTiaa igdacaaIZaaaaKqbakaacckacaWGJbGaamyBaiaacYcacaqGGaGaam itaiaabccacqGH9aqpcaqGGaGaam4Aaiaad6eacaWGqbWdaiqadIha gaacamaaBaaajuaibaGaaGimaaqabaqcfa4dbiabgIKi7kaaigdaca aIWaWdamaaCaaajuaibeqaa8qacaaIYaGaaGioaaaajuaGcaGGGcGa am4yaiaad2gaaaa@5C0C@ where k, N, and P are calculated periods of interaction between byuon VSes. Speed of light c 0 = x ˜ 0 / τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaBaaajuaibaWdbiaaicdaa8aabeaajuaGpeGa eyypa0ZdaiqadIhagaacamaaBaaajuaibaGaaGimaaqabaqcfaOaai 4laiabes8a0naaBaaajuaibaGaaGimaaqabaaaaa@409A@ . Note that the speed of light appears in the TB due to variations in them, and there are no velocities greater than the c o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaBaaajuaibaWdbiaad+gaa8aabeaaaaa@38FD@ in the TB. Plank’s constant h=(( [ A g X ] o II + [ A g X ] o I )/C ) o X / o c t * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAai abg2da9iaacIcacaGGOaGaai4waiaadgeadaWgaaqcfasaaiaadEga aKqbagqaaiaadIfadaWgbaqcfasaaiaad+gaaKqbagqaaiaac2fada WgaaWcbaGaamysaiaadMeaaKqbagqaaSWaaWbaaeqabaGaey4kaSca aKqbakaacUfacaWGbbWaaSbaaKqbafaacaWGNbaajuaGbeaacaWGyb WaaSraaKqbGeaacaWGVbaajuaGbeaacaGGDbWcdaWgaaqaaiaadMea aeqaamaaCaaabeqaaiabgkHiTaaajuaGcaGGPaGaai4laiaadoeada Wgbaqcfasaaiaad+gaaKqbagqaaiaacMcacaWGybWaaSraaKqbGeaa caWGVbaajuaGbeaacaGGVaGaam4yaiaadshadaahaaqabSqaaiaacQ caaaaaaa@593A@ and elementary electric charge e 0 2 =(1/(4 3 )) A g 2 X o 2 ( X o /ct*) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaDaaajeaybaGaaGimaaqaaiaaikdaaaqcfaOaeyypa0Jaaiikaiaa igdacaGGVaGaaiikaiaaisdadaGcaaqaaiaaiodaaeqaaiaacMcaca GGPaGaaiyqamaaBaaaleaacaGGNbaajuaGbeaalmaaCaaabeqaaiaa ikdaaaqcfaOaamiwaSWaaSbaaeaacaWGVbaabeaadaahaaqabeaaca aIYaaaaKqbakaacIcacaGGybWcdaWgaaqaaiaac+gaaeqaaKqbakaa c+cacaGGJbGaaiiDaiaacQcacaGGPaWcdaahaaqabeaacaaIZaGaai 4laiaaikdaaaaaaa@5174@ are integrals of motion in the dynamics of byuon VSes. The constants of all interactions are determined; e.g., the vector constant of weak interactions is given by the expression C v =  e o A g 2 X o 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWdamaaBaaabaWdbiaadAhaa8aabeaapeGaeyypa0Ja aeiiaiaadwgal8aadaWgaaqcfayaaKqzadWdbiaad+gaaKqba+aabe aapeGaamyqa8aadaWgaaqcfasaa8qacaWGNbaajuaGpaqabaWdbiaa ikdacaWGybWdamaaBaaajuaibaWdbiaad+gaa8aabeaajuaGdaahaa qcfasabeaapeGaaG4maaaaaaa@4683@ . The masses of all leptons, proton, π 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda 3cdaahaaqcfayabeaajugWaiaaicdaaaaaaa@3AE4@ and meson are calculated. The energy density in the Universe ( ~ 10 29 g/c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG+bGaaGymaiaaicdapaWaaWbaaeqajuaibaWdbiabgkHi TiaaikdacaaI5aaaaKqbakaadEgacaGGVaGaam4yaiaad2gapaWaaW baaKqbGeqabaWdbiaaiodaaaaaaa@4129@ ) is also found, the Maxwell equations are derived, the physics of dark matter and dark energy demonstrated, the magnitudes of the galactic and intergalactic magnetic fields are calculated, and so on.

The TB predicts the following new physical phenomena:

  • new non-gauge force of nature,
  • -new quantum information channel in nature.

It is shown in14–16 that if we direct the vector potential of some magnetic system opposite to the vector A g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaadEgaaKqba+aabeaaaaa@3965@ then any substance will be thrown out the region of certain weakened summary potential A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ since the masses of particles are proportional to the modulus of the vector A g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiaadEgaaKqba+aabeaaaaa@3965@ . Unfortunately, the processes of origin of the bulk mass of such particles as the electron and the proton can be influenced upon only with very small probability, about 10-44, but the action on the formation of their geometric space, i.e. on the mass of the pair “neutrino-antineutrino” ( ν e ν ˜ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2aaSbaaeaajugWaiaadwgaaKqbagqaaiaaysW7cqGHugYQcaaMe8Ua fqyVd4MbaGaadaWgaaqaaKqzadGaamyzaaqcfayabaaaaa@4497@ ) equaled to 2m v e c 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaamyBaiaadAhadaWgaaqaaiaadwgaaeqaaiaadoga daWgaaqaaiaaicdaaeqaaKqbajaaikdaaaa@3D25@ (the minimum energy of four-contact byuon interaction 33eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHijYUcaaIZaGaaG4maiaadwgacaWGwbaaaa@3B94@ ), is possible with the probability 1.14–16

A great number of experiments on investigating properties of new anisotropic interaction on installations of various physical nature by different groups of experimenters in a number of institutes, is described in.14–16 Among those investigations are experiments with high-current magnets, with torsion and piezo resonance balances,17–20 with gravimeters and attached magnets,21 with a system of two quartz resonators,15 studies on changes in b-decay rate of radioactive elements22,23 and on heat releases in plasma devices.24 The results of investigations have shown that the new interaction rejects any substance from space regions in which the vector potential of some current system has a component directed opposite to the vector Α g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHroWdamaaBaaabaqcLbmapeGaam4zaaqcfa4daeqaaaaa @3AB8@ . The force is maximum when the angle between the vectors Α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHroaaaa@37C1@ and Α g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHroWdamaaBaaabaqcLbmapeGaam4zaaqcfa4daeqaaaaa @3AB8@ is equal to 130°–135°. This corresponds to the action of the force along the generatrix of a cone with an opening of 90°–100° and an axis parallel to the vector Α g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHroWdamaaBaaabaqcLbmapeGaam4zaaqcfa4daeqaaaaa @3AB8@ having the following coordinates in the second equatorial system: right ascension α293°±10° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGHijYUcaaIYaGaaGyoaiaaiodacqGHWcaScqGH XcqScaaIXaGaaGimaiabgclaWcaa@436B@ , declination δ=36°±10° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGH9aqpcaaIZaGaaGOnaiabgclaWkabgglaXkaa igdacaaIWaGaeyiSaalaaa@4207@ .24

A new principle for the motion of space vehicles that was based on using physical space as a support medium was described for the first time in.14 It was shown in16,25,26 that any object reduces the magnitude of the modulus of A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ wherever it is located in physical space due to interaction between the potentials of the physical fields of elementary particles and A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ . This comprehensive reduction in A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ is called the information image (II) of the object and is characteristic of it only since it is codified by coefficients λ i ( i= 1,2,3.. ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBl8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aa beaadaqadaqaa8qacaWGPbGaeyypa0JaaeiiaiaaigdacaGGSaGaaG OmaiaacYcacaaIZaGaaiOlaiaac6caa8aacaGLOaGaayzkaaaaaa@4521@ , in a complicated series of terms for varying A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ through the field potentials of the object. If the object returns to its own II as it moves, this place will push it due to the action of a new force associated with the reduction in A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ . A long-term experiment to investigate a new force for vehicle propulsion was carried out in Italy from January 26, 2013 to February 28, 2014.16,26 The maximum of the new force was equaled 0.5N but α= 316°±5° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH9aqpcaqGGaGaaG4maiaaigdacaaI2aGaeyiS aaRaeyySaeRaaGynaiabgclaWcaa@42A9@ .

TB determines the average density of substance in the Universe taking i = NkP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGPbGaaeiiaiabg2da9iaabccacaWGobGaam4Aaiaadcfa aaa@3C76@ and, hence, its characteristic dimension x ˜ 0 NkP 10 28 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWcdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGaaGPaVlaaykW7 caWGobGaam4AaiaadcfacqGHijYUcaaIXaGaaGimaSWaaWbaaKqbag qabaqcLbmacaaIYaGaaGioaaaajuaGcaWGJbGaamyBaaaa@4963@ . Then the total energy in the Universe can be represented as

h τ 0 NkP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGObaabaGaeqiXdq3cdaWgaaqcfayaaKqzadGaaGimaaqcfaya baaaaiaaykW7caaMc8UaamOtaiaadUgacaWGqbaaaa@4224@     (2)

Its value is 5.4× 10 77 erg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI1aGaaiOlaiaaisdacqGHxdaTcaaIXaGaaGimaSWdamaa CaaajuaGbeqaaKqzadWdbiaaiEdacaaI3aaaaKqbakaadwgacaWGYb Gaam4zaaaa@4344@ , and the corresponding equivalent mass 6× 10 56 g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHijYUcaaI2aGaey41aqRaaGymaiaaicdapaWaaWbaaKqb GeqabaWdbiaaiwdacaaI2aaaaKqbakaadEgaaaa@4009@ . The uniformity of distribution of substance over the sphere with the radius x ˜ 0 NkP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiEay aaiaWaaSbaaeaajugWaiaaicdaaKqbagqaaiaaysW7caWGobGaam4A aiaadcfaaaa@3E4C@  gives the density of substance in the Universe 10 29 gc m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHijYUcaaIXaGaaGimaSWdamaaCaaajuaGbeqaaKqzadWd biabgkHiTiaaikdacaaI5aaaaKqbakaadEgacaWGJbGaamyBaSWdam aaCaaajuaGbeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4544@ , which is really observed.27 

  1. TB for the short hard gamma ray bursts

As was indicated in TB, any value of index i can be always re-denoted by j and then j=0, 1, 2 corresponds to reference points (new beginnings). Re-denoting i+1 by ξ,i+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEcaGGSaGaamyAaiabgUcaRiaaikdaaaa@3BA3@ by γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzaaa@384B@ etc. leads, depending on reference points, to formation of three families of subspaces embedded in each other.14–16 So, R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWcpaWaaSbaaKqbagaajugWa8qacaaIZaaajuaGpaqa baaaaa@3ADC@ can be represented as R 3 = R 1,0 × R 1,1 × R 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaajuaibaWdbiaaiodaa8aabeaajuaGpeGa eyypa0JaamOua8aadaWgaaqcfasaa8qacaaIXaGaaiilaiaaicdaa8 aabeaajuaGpeGaey41aqRaamOua8aadaWgaaqcfasaa8qacaaIXaGa aiilaiaaigdaa8aabeaajuaGpeGaey41aqRaamOua8aadaWgaaqcfa saa8qacaaIXaGaaiilaiaaikdaa8aabeaaaaa@4A31@ at any moment. The new Universe birth process can have a beginning in anytime too if the values k, N and P are integer numbers. But in this case we can’t take in (2) the time of potential energy minimizing of byuon VSs interaction in R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaGpaqa baaaaa@3ADA@ equaled τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDdaWgaaqaaKqzadGaaGimaaqcfayabaaaaa@3B00@ because we have ultimate particles with their potential physical fields and all known interactions in R3 by this time. Therefore the time of the minimal act (minimum action h/2) in process of an object formation with E>0 from byuons will be from 10-22 s (the time of strong interaction28) till 10-17 s (electromagnetic interaction). Then we shall have from (2) an appearance of object with energy from 1050 erg till 1055 erg. We think it is the initial source for realization of a short hard gamma ray burst. The possibility of this event is very small (10-60) because we must have k, N and P in the set of integer numbers. It isn’t zero because the variation of physical field potentials in the Universe can create this situation. Using this process we can explain gamma ray bursts by the known physics. VS of byuon II+ and I- describes the photons in TB. They must have the energies in the range from 102eV until 107eV.

  1. TB for the gamma ray bursts connected with supernovae (SN)

This correlation takes place in nature6 but not every SN produces a gamma ray burst. It is the first problem. The second problem is huge energy of gamma ray bursts more than the values released during SN explosions.

Let us show a decision of these problems using TB and new non-gauge force of nature. The new force has nonlinear and nonlocal character as variation of summary potential A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ . The A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ contains potentials of all existent fields of all possible sources (Earth, Sun, Galaxy, etc.), and the new force can be represented as a complex series in terms of changes in this summary potential A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaaaa@396F@ . The first term of the series is 7×  10 10 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI3aGaey41aqRaaeiiaiaaigdacaaIWaWcpaWaaWbaaKqb agqabaqcLbmapeGaaGymaiaaicdaaaqcfaOaam4yaiaad2gaaaa@4179@  

F=2N m ν c 2 λ 1 2 . Δ A Σ (Δ A Σ /ΔX), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbGaeyypa0JaaGOmaiaad6eacaWGTbWdamaaBaaajuai baWdbiabe27aUbWdaeqaaKqba+qacaWGJbWdamaaCaaabeqcfasaa8 qacaaIYaaaaKqbakabeU7aS9aadaWgaaqcfasaa8qacaaIXaaapaqa baqcfa4aaWbaaKqbGeqabaWdbiaaikdaaaqcfa4damaaCaaabeqaa8 qacaGGUaaaaiabfs5aejaadgeapaWaaSbaaKqbGeaapeGaeu4Odmfa paqabaqcfaOaaiika8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbi abfo6atbqcfa4daeqaa8qacaGGVaGaeuiLdqKaamiwa8aacaGGPaGa aiilaaaa@5525@      (3)

where is the number of stable particles (electrons, protons, and neutrons) in the test body, Δ A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaaaaa@3B5F@ is the difference in changes of the summary potential AΣ at the location points of a test body and sensor element, Δ A Σ /ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaa8qacaGGVaGaeuiLdqKaamiwaaaa@3E65@ is the gradient in space of the difference potentials Δ A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaaaaa@3B5F@ ; is the general spatial coordinate ( ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGybaaaa@38E7@ can be the length of an arc of a circle, or the characteristic size of the test body, according to the specific experiments); 2 m v c 2 =33 eV; λ 1 = 10 6 ( Tm ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaamyBa8aadaWgaaqcfasaa8qacaWG2baapaqabaqc fa4dbiaadogapaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfaOaeyypa0 JaaG4maiaaiodacaqGGaGaamyzaiaadAfacaGG7aGaeq4UdW2damaa BaaajuaibaWdbiaaigdaa8aabeaajuaGpeGaeyypa0JaaGymaiaaic dapaWaaWbaaKqbGeqabaWdbiabgkHiTiaaiAdaaaqcfa4damaabmaa baWdbiaadsfacaWGTbaapaGaayjkaiaawMcaamaaCaaajuaibeqaa8 qacqGHsislcaaIXaaaaaaa@50E9@ is the first coefficient of the series.14,15

It’s shown in the experiments with space thruster model16,25,26 that for a rest time t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bWcpaWaaSbaaKqbagaajugWa8qacaWGYbaajuaGpaqa baaaaa@3B38@ ( time of II existence) in the process of a body revolution during less than 0.1s the value of the new force decreases rapidly. TB explains this phenomenon in the following way. If t r < 0.1c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bWcpaWaaSbaaKqbagaajugWa8qacaWGYbaajuaGpaqa baWdbiabgYda8iaabccacaaIWaGaaiOlaiaaigdacaWGJbaaaa@3FFE@ then ultimate particles can’t “remember” a value of summary potential A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4daeqaaaaa @39F9@ in the process of its internal physical space forming. It will not “feel” the difference potentials Δ A Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaaaaa@3B5F@ in the process of the body revolution in the space thruster model. So, if matter in the process of the SN explosion moves from strong gravitation potential ( A Σ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaabaqcLbmapeGaeu4OdmLaaGymaaqcfa4d aeqaaaaa@3BB4@ ) toward weakening of gravitation potential ( A Σ2 >  A Σ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaabaqcLbmapeGaeu4OdmLaaGOmaaqcfa4d aeqaa8qacqGH+aGpcaqGGaGaamyqa8aadaWgaaqaaKqzadWdbiabfo 6atjaaigdaaKqba+aabeaaaaa@4280@ ) then we can have the situation shown in Figure 1 and the realization of the new force action for an acceleration of matter in the process of the SN explosion. The author of29 have developed this mechanism for accelerating of cosmic rays (CRs) with the application of the new force theory too. It was shown that CR can reach energy exceeding the Greisen-Zatsepin-Kuzmin limit of 5 ×  10 19 eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI1aGaaeiiaiabgEna0kaabccacaaIXaGaaGimaSWdamaa CaaajuaGbeqaaKqzadWdbiaaigdacaaI5aaaaKqbakaadwgacaWGwb aaaa@420E@ . g Is the gravitation field action direction; F is the non-gauge force action direction; A Σi   < A Σi+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHbbWdamaaBaaajuaibaWdbiabfo6atjaadMgaaKqba+aa beaadaWgaaqaa8qacaGGGcaapaqabaGaeyipaWZdbiaahgeapaWaaS baaKqbGeaapeGaeu4OdmLaamyAaiabgUcaRiaaigdaaKqba+aabeaa aaa@4347@ . It’s shown in22 that the value ( Δ A Σ /ΔX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaa8qacaGGVaGaeuiLdqKaamiwaaaa@3E65@ ) can be about 1015G. If we take Δ A Σ   1.95× 10 11  Gcm (Δ A Σ   A Σi+1 A Σi ), N   10 51 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbqcfa4d aeqaa8qacaGGGcGaeyisISRaaiiOaiaaigdacaGGUaGaaGyoaiaaiw dacqGHxdaTcaaIXaGaaGima8aadaahaaqcfasabeaapeGaaGymaiaa igdacaGGGcaaaKqbakaadEeacaWGJbGaamyBaiaabccapaGaaiika8 qacqqHuoarcaWGbbWdamaaBaaajuaibaWdbiabfo6atbWdaeqaaKqb a+qacaGGGcGaeyisISRaaCyqa8aadaWgaaqcfasaa8qacqqHJoWuca WGPbGaey4kaSIaaGymaaqcfa4daeqaa8qacqGHsislcaWHbbWdamaa BaaajuaibaWdbiabfo6atjaadMgaa8aabeaajuaGcaGGPaWdbiaacY cacaqGGaGaamOtaiaacckacqGHijYUcaGGGcGaaGymaiaaicdapaWa aWbaaKqbGeqabaWdbiaaiwdacaaIXaaaaaaa@6A90@ (for example, then summary mass for electrons will be about 1024g ) and the distance (L) of the new force action equaled with a radius of the Sun ( 7× 10 10 cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI3aGaey41aqRaaGymaiaaicdal8aadaahaaqcfayabeaa jugWa8qacaaIXaGaaGimaaaajuaGcaWGJbGaamyBaaaa@40D6@ ) then the work by the new force will be about 1054erg. We can see that such values of energy are observed in the astrophysical investigations.6 But this is the initial energy. So, the process of SN explosion can realize the gamma ray burst if the conditions shown in Figure 1 are satisfied.

Figure 1 The diagram of the summary potential change in the process when matter flies away from the SN explosion for the non-gauge force action realization.

Conclusion

So, we have seen that the problem of the short hard gamma ray bursts and the gamma ray bursts connected with SN can be solved satisfactorily using TB.

Acknowledgments

None.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Kiebesadel RW, Strong IB, Olson RF. Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal Letters. 1973;182:85–88.
  2. Luchkov BI, Mitrofanov IG, Rosental IL. On the nature of cosmic gamma-ray bursts. Physics Uspekhi. 1996;39(7):695–711.
  3. Postnov KA. Cosmic gamma-ray bursts. Physics Uspekhi. 1999;42(5):469–480.
  4. Gendre B, Stratta G, Atteia JL, et al. The Ultra-long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant? The Astrophysical Journal. 2013;766(1):1–9.
  5. Veldrenne G, Atteia JL. The brightest explosions in the Universe. Springer Praxis Books, UK, 2009. p. 1–584.
  6. Frail DA, Kulkarni SR, Sari R, et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. The Astrophysical Journal Letters. 2001;562(1):1–4.
  7. Sokolov VV, Fatkhulin TA, Komarova VN . The Multiband Photometry of the GRB Host Galaxies. Cornell University Library, USA. 2000.
  8. Galama TJ, Groot PJ, Paradijs JV, et al. Optical follow-up of GRB 970508. The Astrophysical Journal Letters. 1998;497(1):1–5.
  9. Blinnikov S, Novikov ID, Perevodchikova TV, et al. Exploding Neutron Stars in Close Binaries. Soviet Astronomy Letters. 1984;10:177–179.
  10. Li L, Wu XF, Huang YF, et al. ArXiv: astro-ph.HE 1503.0097v1.
  11. Duncan RC, Thompson C. Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts. The Astrophysical Journal. 1992;392(1):9–13.
  12. Malov IF, Machabeli GZ. Nature of anomalous X-ray pulsars, soft gamma repeaters and radio pulsars with very long periods. Astronomical and Astrophysical Transactions. 2006;25(1).
  13. Bisnovatyi –Kogan GS, Ikhasov NR. A new look at anomalous X-ray Pulsars. Astronomy Reports. 2014;58(4):217–227.
  14. Baurov YA. On the structure of physical vacuum and a new interaction in Nature (Theory, Experiment and Applications). Nova Science, USA. 2000.
  15. Baurov YA. Global Anisotropy of Physical Space. Experimental and Theoretical Basis. Nova Science, New York, USA. 2004.
  16. Baurov YA. Theory of Byuon and Global Anisotropy of Physical Space. Lap Lambert Academic Publishing, Germany. 2016.
  17. Baurov YA, Klimenko EY, Novikov. Seismic activity of the earth, the cosmological vectorial potential and method of a short-term earthquakes forecasting. SI Dokl Akad Nauk SSSR. 1990;315:1116.
  18. Baurov YA, Klimenko EY, Novikov SI. Experimental observation of space magnetic anisotropy. Physics Letters A. 1992;162(1):32–34.
  19. Baurov YA, Ryabov PM. Variations of Decay Rates of Radio-active Elements and their Connections with Global Anisotropy of Physical Space. Dokl Akad Nauk. 1992;326:73.
  20. Baurov YA. Space magnetic anisotropy and a new interaction in nature. Physics Letters A. 1993;181(4):283–288.
  21. Baurov YA, Kopaev AV. Experimental Investigations of Signals of a New Nature with the aid of two High Precision Stationary Quartz Gravimeters. HadronicJournal. 2002;25:1–6.
  22. Baurov YA, Konradov AA, Kuznetsov EA, et al. Experimental Investigations of Changes in β-Decay Rate Of 60Co and 137Cs. Modern Physics Letters A. 2001;16(32):2089–2101.
  23. Baurov YA, Sobolev YG, Ryabov YW, et al. Experimental investigations of changes in the rate of beta decay of radioactive elements. Physics of Atomic Nuclei. 2007;70(11):1825–1835.
  24. Baurov YA, Timofeev IB, Chernikov VA, et al. Experimental investigations of the distribution of pulsed-plasma-generator radiation at its various spatial orientation and global anisotropy of space. Physics Letters A. 2003;311(6):512–523.
  25. Baurov YA, Albanese L, Meneguzzo F, et al. Universal Propulsion Harnessing the Global Anisotropy of the Physical Space. American Journal of Modern Physics. 2013;2(6):383–391.
  26. Baurov YA, Sobolev YG, Meneguzzo F. Fundamental experiments for revealing physical space anisotropy and their possible interpretation. Bulletin of the Russian Academy of Sciences: Physics. 2013;79(7):935–939.
  27. Baurov YA, Malov IF. On the Nature of Dark Matter and Dark Energy. Journal of Modern Physics. 2010;1:17–32.
  28. Shirokov YM, Yudin NP. Nuclear Physics. 2nd ed. Nauka, Moscow, Russia. 1980.
  29. Baurov YA. The Anisotropy of Cosmic Rays and the Global Anisotropy of Physical Space. Journal of Modern Physics. 2012;3:1744–1748.
Creative Commons Attribution License

©2017 Baurov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.