Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 6 Issue 4

The cosmic pendulum: Kepler‘s laws representing a universal cosmic clock

Hans J Fahr

Argelander Institut für Astronomie, Universität Bonn, Germany

Correspondence: Hans J Fahr, Argelander Institut für Astronomie, Universität Bonn, Auf dem Huegel 71, 53121 Bonn, Germany

Received: September 30, 2022 | Published: October 17, 2022

Citation: Fahr HJ. The cosmic pendulum: Keplers laws representing a universal cosmic clock. Phys Astron Int J. 2022;6(4):135-140. DOI: 10.15406/paij.2022.06.00266

Download PDF

Abstract

Recent observations of the James Webb Space Telescope (JWST) seem to show that structure formation and the build-up of planetary systems in the universe already must have started astonishingly enough at a time of 0.1 Gigayears after the Big-Bang. The question thus arises whether these earliest planetary systems did originate under similar conditions as did our solar system about 4.1 Gigayears later? In this article we are looking onto this fundamental problem and show that for the context of the origin of solar systems it very much counts how the Hubble expansion of the universe has developed over cosmic eons. If the cosmic expansion dynamics is too large, no solar systems at all would have been produced, if it would be too small, solar systems would have originated just shortly after the cosmic matter recombination, but not anymore since then.

In other words, the Keplerian laws, derivable with the help of Newton‘s gravitational law, would they perhaps reflect the changes in an expanding universe over the cosmic eons? And if yes, - how would they do it? In this article we conclude that in fact Newton‘s pendulum or Kepler‘s planetary revolution periods represent a perfect cosmic clock indicating the actual status of the expanding universe. Only in case, however, that Newton‘s gravitational constant G would vary with the scale R of the universe like G - R, then this clock astonishingly enough would be synchronized for the whole cosmic evolution not serving anymore as a cosmic tracer.

Introduction

How does the initial matter uniformity disappear in an expanding universe?

It is hardly understandable why cosmic matter with, - as generally required by the cosmologic principle -, an initially perfectly homogeneous distribution in space may at all have started at some epoch in the past a process of forming local material substructures like stars or galaxies. Such formations are generally understood as driven by local, gravitationally induced collapse instabilities of cosmic gases forming large local units of solar or Giga-solar masses. In an expanding universe the uniformly distributed cosmic matter should otherwise simply be subject to an ongoing redistribution into a permanently growing cosmic space, accompanied by permanently and unavoidably decreasing cosmic mass densities ρ(R)= ρ 0 ( R 0 /R) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaaiikaiaadkfacaGGPaGaeyypa0JaeqyWdi3damaaBaaa leaapeGaaGimaaWdaeqaaOWdbiabgwSixlaacIcacaWGsbWdamaaBa aaleaapeGaaGimaaWdaeqaaOWdbiaac+cacaWGsbGaaiyka8aadaah aaWcbeqaa8qacaaIZaaaaaaa@4750@ . The opposite can only be expected, if the collapse period of a gravitationally induced local structuring process is shorter than the universal expansion period of the homogeneous matter distribution, so that density structures can form and do grow decoupled from the general cosmic expansion. The problem thus evidently is and must be closely connected with the specific form of the actual expansion dynamics of the whole universe, permitting matter to accumulate at distinct places, even though the universe continues to expand.

Given an accelerated expansion of the universe, as is presently favoured by several astrophysicists when trying to understand the redshifted emissions of most distant galaxies1-3 it may be definitely harder to understand these structure formation processes. Here in this article we, however, mainly consider this problem on the basis of a "coasting expansion of the universe" with a constant expansion velocity of its scale R=R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGsbGaaiikaiaadshacaGGPaaaaa@3C17@ with R ˙ =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaGaai abg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3DB7@ and R ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaWaai abg2da9iaaicdaaaa@39B2@ . This latter form of the cosmic expansion we do strongly favour in this article since it can be based on solid scientific grounds.4,5

Why is the Hubble parameter a critical quantity?

Before the event of cosmic matter recombination anyway no gravitationallly induced matter collapses were possible, because then ionized matter - because of strong electron-photon couplings - was repelled by the collapse-inherent increase of radiation pressure. Thus the question arises, how much variation the Hubble parameter H=H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpcaWGibGaaiikaiaadshacaGGPaaaaa@3C03@ may have undergone since that cosmic time of matter recombination when at first in cosmic history matter accumulation or condensation could have started? What in fact does one know at all about the value of the Hubble parameter at earlier times in the cosmic past, especially near and even before the point of recombination of cosmic matter? To frankly confess the truth: Not very much, - and for sure - nothing safe yet.

All about that is connected with the mainstream cosmic view which cosmologists nowadays share concerning the state of the universe near cosmic recombination time. One can only speculate about this point on the basis of the Big-Bang cosmology, and perhaps question whether it existed at all in the history of the universe, i.e. if at all cosmic matter at some times in the past was in a fully ionized phase. The present day value of the Hubble parameter with H today =70km/s/Mpc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamiDaiaad+gacaWGKbGaamyyaiaadMhaaeqaaOGaeyypa0Ja aG4naiaaicdacaWGRbGaamyBaiaac+cacaWGZbGaai4laiaad2eaca WGWbGaam4yaaaa@463E@ .6is obtained from redshift observations of the more or less nearby galaxies with redshifts z1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacqGHKj YOcaaIXaaaaa@3A80@ , and not very much can be speculated from this poor observational basis on the specific value of H r =H( t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGibGaaiikaiaadshadaWgaaWc baGaamOCaaqabaGccaGGPaaaaa@3E5D@ which prevailed at the time of recombination t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B2C@  (i.e. Ζ 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA5aAjablo Ki7iaaigdacaaIWaWaaWbaaSqabeaacaaIZaaaaaaa@3C1F@ ). If to the contrary at least some fundamental theoretical prerequisites need to be fulfilled, then at least the basis for estimations would be better.

For example: If the Hubble parameter H is predetermined for all cosmic times by a constant vacuum energy density Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfU5ambaa@3886@ , at present time as well as back all the time till the recombination time t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B2C@ , then it can be shown (see Fahr, 2021a) , that the Hubble parameter would have been constant all over this time period from the recombination period till now, i.e. H Λ = H today = H r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaeu4MdWeabeaakiabg2da9iaadIeadaWgaaWcbaGaamiDaiaa d+gacaWGKbGaamyyaiaadMhaaeqaaOGaeyypa0JaamisamaaBaaale aacaWGYbaabeaaaaa@4342@ . That would mean concerning the above relation that H r = H today MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGibWaaSbaaSqaaiaadshacaWG VbGaamizaiaadggacaWG5baabeaaaaa@3FC4@ ! If, however, the Hubble parameter at present times, as well as at the recombination time t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamOCaaqabaaaaa@392D@ , is purely determined by baryonic matter, i.e. by the rest-mass density of baryonic matter ρ= ρ B (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkeaaeqaaOGaaiik aiaadkfacaGGPaaaaa@3EE4@ , then one could use the following relation taken from the first of the two Friedman equations7 and obtain:

H 2 (R)= 8πG 3 ρ B (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadkfacaGG PaGaeyypa0ZaaSaaaeaacaaI4aGaeqiWdaNaam4raaqaaiaaiodaaa GaeqyWdi3damaaBaaaleaapeGaamOqaaWdaeqaaOWdbiaacIcacaWG sbGaaiykaaaa@4589@

Concerning the corresponding Hubble parameter at the recombination epoch at t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B2C@ with R r = 10 3 R today MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaBaaaleaacaWGYbaabeaakiabg2da9iaaigdacaaIWaWa aWbaaSqabeaacqGHsislcaaIZaaaaOWdaiaadkfadaWgaaWcbaGaam iDaiaad+gacaWGKbGaamyyaiaadMhaaeqaaaaa@435D@ 8one would then obtain a value:

H r = H today ( R today R r ) 3/2 = H today ( 10 3 R r R r ) 3/2 = 10 4.5 H today MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGibWaaSbaaSqaaiaadshacaWG VbGaamizaiaadggacaWG5baabeaakiabgwSixlaacIcadaWcaaqaai aadkfadaWgaaWcbaGaamiDaiaad+gacaWGKbGaamyyaiaadMhaaeqa aaGcbaaeaaaaaaaaa8qacaWGsbWaaSbaaSqaaiaadkhaaeqaaaaak8 aacaGGPaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGccqGH9aqp caWGibWaaSbaaSqaaiaadshacaWGVbGaamizaiaadggacaWG5baabe aakiabgwSixlaacIcadaWcaaqaaiaaigdacaaIWaWaaWbaaSqabeaa caaIZaaaaOWdbiaadkfadaWgaaWcbaGaamOCaaqabaaak8aabaWdbi aadkfadaWgaaWcbaGaamOCaaqabaaaaOWdaiaacMcadaahaaWcbeqa aiaaiodacaGGVaGaaGOmaaaakiabg2da9iaaigdacaaIWaWaaWbaaS qabeaacaaI0aGaaiOlaiaaiwdaaaGccaWGibWaaSbaaSqaaiaadsha caWGVbGaamizaiaadggacaWG5baabeaaaaa@6BFA@

meaning that the Hubble parameter at the recombination era could under this prerequisites certainly have been much larger than the present day Hubble parameter H today MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamiDaiaad+gacaWGKbGaamyyaiaadMhaaeqaaaaa@3CC4@ .

For a more general study of the historic evolution of the Hubble parameter H=H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpcaWGibGaaiikaiaadshacaGGPaaaaa@3C03@ one should, however, start from a broader, more general analytic basis by again looking back to the first of the Friedman equations,7 when expressing the fact that the Hubble parameter in a more general outline is given by:.

H 2 = R 2 R 2 = 8πG 3 [ ρ B + ρ D + ρ v + ρ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaadkfadaahaaWcbeqa aiaaikdaaaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiabg2 da9abaaaaaaaaapeWaaSaaaeaacaaI4aGaeqiWdaNaam4raaqaaiaa iodaaaGaai4waiabeg8aYnaaBaaaleaacaWGcbaabeaakiabgUcaRi abeg8aYnaaBaaaleaacaWGebaabeaakiabgUcaRiabeg8aYnaaBaaa leaacaWG2baabeaakiabgUcaRiabeg8aYnaaBaaaleaacqqHBoatae qaaOGaaiyxaaaa@52F7@

where all quantities denote equivalent mass densities [ ρ B + ρ D + ρ v + ρ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiabeg8aYnaaBaaaleaacaWGcbaabeaakiabgUcaRiabeg8a YnaaBaaaleaacaWGebaabeaakiabgUcaRiabeg8aYnaaBaaaleaaca WG2baabeaakiabgUcaRiabeg8aYnaaBaaaleaacqqHBoataeqaaOGa aiyxaaaa@476F@ of baryonic matter, of dark matter, of photons, and of the vacuum energy. These quantities are thought to be known as functions of time t, or equivalently, of the scale of the universe R=R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGsbGaaiikaiaadshacaGGPaaaaa@3C17@ , though at least the quantities ρ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadseaaeqaaaaa@39E6@ and ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiabfU5ambqabaaaaa@3A92@ are physically not at all well conceived, neither by its concrete meaning nor by its dependence on the scale R of the universe.

By introduction of Ω 0 =3 H 0 2 /8πG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyQdC1damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa iodacaWGibWdamaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaaki aac+cacaaI4aGaeqiWdaNaam4raaaa@4267@ with H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeaqaaaaa aaaaWdbmaaBaaaleaacaaIWaaabeaaaaa@38E4@ denoting the present-day Hubble parameter one can write the upper equation in the following form:

1= 1 Ω 0 [ ρ B + ρ D + ρ v + ρ Λ ]=[ Ω B + Ω D + Ω v + Ω Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGH9a qpdaWcaaqaaiaaigdaaeaaqaaaaaaaaaWdbiabgM6ax9aadaWgaaWc baWdbiaaicdaa8aabeaaaaGcpeGaai4waiabeg8aYnaaBaaaleaaca WGcbaabeaakiabgUcaRiabeg8aYnaaBaaaleaacaWGebaabeaakiab gUcaRiabeg8aYnaaBaaaleaacaWG2baabeaakiabgUcaRiabeg8aYn aaBaaaleaacqqHBoataeqaaOGaaiyxaiabg2da9iaacUfacqGHPoWv daWgaaWcbaGaamOqaaqabaGccqGHRaWkcqGHPoWvdaWgaaWcbaGaam iraaqabaGccqGHRaWkcqGHPoWvdaWgaaWcbaGaamODaaqabaGccqGH RaWkcqGHPoWvdaWgaaWcbaGaeu4MdWeabeaakiaac2faaaa@5D38@

For the present cosmic epoch one has obtained observational best-fit values for the above quantities Ω B + Ω D + Ω v + Ω Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyQdC1aaSbaaSqaaiaadkeaaeqaaOGaey4kaSIaeyyQdC1aaSba aSqaaiaadseaaeqaaOGaey4kaSIaeyyQdC1aaSbaaSqaaiaadAhaae qaaOGaey4kaSIaeyyQdC1aaSbaaSqaaiabfU5ambqabaaaaa@44E1@  given by2,6 with the following numerical values:

Ω B =0.04;.... Ω D =0.23;.... Ω v =0.01;.... Ω Λ =0.72 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyQdC1aaSbaaSqaaiaadkeaaeqaaOGaeyypa0JaaGimaiaac6ca caaIWaGaaGinaiaacUdacaGGUaGaaiOlaiaac6cacaGGUaGaeyyQdC 1aaSbaaSqaaiaadseaaeqaaOGaeyypa0JaaGimaiaac6cacaaIYaGa aG4maiaacUdacaGGUaGaaiOlaiaac6cacaGGUaGaeyyQdC1aaSbaaS qaaiaadAhaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaGymaiaa cUdacaGGUaGaaiOlaiaac6cacaGGUaGaeyyQdC1aaSbaaSqaaiabfU 5ambqabaGccqGH9aqpcaaIWaGaaiOlaiaaiEdacaaIYaaaaa@5C85@

Inserting now in addition the expected dependences of ρ B ; ρ D ; ρ v ; ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadkeaaeqaaOGaai4oaiabeg8aYnaaBaaa leaacaWGebaabeaakiaacUdacqaHbpGCdaWgaaWcbaGaamODaaqaba GccaGG7aGaeqyWdi3aaSbaaSqaaiabfU5ambqabaaaaa@453C@ on the scale of the universe leads us then to the following expression:

H 2 = R 2 R 2 = H 0 2 Ω B ( R o R ) 3 + Ω D ( R o R ) 3 + Ω v ( R o R ) 4 + Ω Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaadkfadaahaaWcbeqa aiaaikdaaaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiabg2 da9abaaaaaaaaapeGaamisa8aadaqhaaWcbaWdbiaaicdaa8aabaWd biaaikdaaaGcpaGaeyyXIC9dbiabgM6axnaaBaaaleaacaWGcbaabe aakiaacIcadaWcaaqaaiaadkfadaWgaaWcbaGaam4Baaqabaaakeaa caWGsbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqGHPo WvdaWgaaWcbaGaamiraaqabaGccaGGOaWaaSaaaeaacaWGsbWaaSba aSqaaiaad+gaaeqaaaGcbaGaamOuaaaacaGGPaWaaWbaaSqabeaaca aIZaaaaOGaey4kaSIaeyyQdC1aaSbaaSqaaiaadAhaaeqaaOGaaiik amaalaaabaGaamOuamaaBaaaleaacaWGVbaabeaaaOqaaiaadkfaaa GaaiykamaaCaaaleqabaGaaGinaaaakiabgUcaRiabgM6axnaaBaaa leaacqqHBoataeqaaOGaaiyxaaaa@61FD@

Hereby the equivalent mass energy density ρ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWG2baabeaaaaa@39F8@ of the cosmic photons has been taken into account by its value corresponding to a cosmologically redshifted Planck radiation.9 When introducing the present-day Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyQdCfaaa@38C0@ -values into the upper equation, one then obtains the R-dependence of the Hubble parameter in the following form (Figure 1):

H(R)= H 0 0.27 ( R 0 /R) 3 +0.01 ( R 0 /R) 4 +0.72] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisaiaacIcacaWGsbGaaiykaiabg2da9iaadIeadaWgaaWcbaGa aGimaaqabaGccqGHflY1daGcaaqaaiaaicdacaGGUaGaaGOmaiaaiE dacaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiaac+cacaWGsbGa aiykamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaicdacaGGUaGaaG imaiaaigdacaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiaac+ca caWGsbGaaiykamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaicdaca GGUaGaaG4naiaaikdacaGGDbaaleqaaaaa@55EB@

Figure 1 Hubble parameter H(x) (yellow curve) and the expansion velocity R ˙ (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaacaGaaiikaiaadIhacaGGPaaaaa@3A67@ (blue curve) as functions of the normalized Hubble scale x=R/ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadkfacaGGVaGaamOuamaaBaaaleaacaaIWaaa beaaaaa@3C7B@ .

Going back to the expected recombination point at R r = R 0 /1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaBaaaleaacaWGYbaabeaakiabg2da9iaadkfadaWgaaWc baGaaGimaaqabaGccaGGVaGaaGymaiaaicdacaaIWaGaaGimaaaa@3F9E@ one thus learns that the Hubble parameter H r =H( R r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWGYbaabeaakiabg2da9iaadIeacaGGOaGa amOuamaaBaaaleaacaWGYbaabeaakiaacMcaaaa@3E5B@ for this time is given by:

H r = H 0 0.27 (1000) 3 +0.01 (1000) 4 +0.72] 0.84 H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWGYbaabeaakiabg2da9iaadIeadaWgaaWc baGaaGimaaqabaGccqGHflY1daGcaaqaaiaaicdacaGGUaGaaGOmai aaiEdacaGGOaGaaGymaiaaicdacaaIWaGaaGimaiaacMcadaahaaWc beqaaiabgkHiTiaaiodaaaGccqGHRaWkcaaIWaGaaiOlaiaaicdaca aIXaGaaiikaiaaigdacaaIWaGaaGimaiaaicdacaGGPaWaaWbaaSqa beaacqGHsislcaaI0aaaaOGaey4kaSIaaGimaiaac6cacaaI3aGaaG Omaiaac2faaSqabaGccqWIdjYocaaIWaGaaiOlaiaaiIdacaaI0aGa amisamaaBaaaleaacaaIWaaabeaaaaa@5BCC@

or expressing the surprising fact that at the expected recombination time t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshadaWgaaWcbaGaamOCaaqabaaaaa@3B4C@ the photon field does contribute the utmost to the Hubble parameter and amounts at that time t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshadaWgaaWcbaGaamOCaaqabaaaaa@3B4C@ to a value: H r 0.84 H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWGYbaabeaakiabloKi7iaaicdacaGGUaGa aGioaiaaisdacaWGibWaaSbaaSqaaiaaicdaaeqaaaaa@3EFB@ .

Taking as our basis such a "coasting universe" which prevails for the case of ρ Λ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiabfU5ambqabaGccqWI8iIocaWGsbWaaWba aSqabeaacqGHsislcaaIYaaaaaaa@3E72@  ( ϱ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 daWgaaWcbaGaeu4MdWeabeaaaaa@44C6@  denoting the mass density equivalent of the vacuum energy, R denoting the scale of the universe,4 and taking the period when the vacuum energy in the later phases of cosmic expansion unavoidably becomes the dominant ingredient of the cosmic mass density ρ Λ ρ b , ρ d , ρ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaOGaeS4AI8JaeqyWdi3aaSbaaSqaaiaadkga aeqaaOGaaiilaiabeg8aYnaaBaaaleaacaWGKbaabeaakiaacYcacq aHbpGCdaWgaaWcbaGaamODaaqabaaaaa@45DC@ (indices b,d,v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacaGGSa GaamizaiaacYcacaWG2baaaa@3B3C@ standing for baryons, dark matter, and photons, respectively), then one unavoidably finds:

R ˙ = dR dt =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaGaai abg2da9maalaaabaGaamizaiaadkfaaeaacaWGKbGaamiDaaaacqGH 9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaaa@426F@   (1)

which in fact because R ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaWaai abg2da9iaaicdaaaa@39B2@ of necessarily implies: a "coasting expansion" of the universe! Then consequently a Hubble parameter must be expected that falls off with the cosmic scale R like:

H(R)= R R = H 0 ( R 0 R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamOuaiaacMcacqGH9aqpdaWcaaqaaiaadkfaaeaacaWGsbaaaiab g2da9iaadIeadaWgaaWcbaGaaGimaaqabaGccqGHflY1caGGOaWaaS aaaeaacaWGsbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOuaaaacaGG Paaaaa@45E6@   (2)

meaning that the Hubble parameter H(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamOuaiaacMcaaaa@3A0E@ in case of a coasting cosmic expansion permanently decreases like H R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqWI8i IocaWGsbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@3BB3@ , and consequently the inverse of it, H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@39B3@ , i.e. the expansion time period τ ex =1/H(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGLbGaamiEaaqabaGccqGH9aqpcaaIXaGaai4laiaadIea caGGOaGaamOuaiaacMcaaaa@4064@ of cosmic matter, permanently grows proportional to R!

Structure formation in the cosmic gas

As discussed in Fahr and Zönnchen9 in a homogeneous expanding cosmic gas cosmic matter structures can form due to selfgravitational interactions in density perturbations of this cosmic gas. These self-generating structures are persistent phenomena of cosmic sound waves, however, when selfgravity of the oscillatory matter is included. The typical dispersion relation for such self-gravitating, accoustic waves is given in the following form:10

ω 2 (k)= v s 2 k 2 4πG ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaCa aaleqabaGaaGOmaaaakiaacIcacaWGRbGaaiykaiabg2da9iaadAha daqhaaWcbaGaam4CaaqaaiaaikdaaaGccaWGRbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaaGinaiabec8aWjaadEeacqaHbpGCdaWgaaWc baGaamOCaaqabaaaaa@4900@

with as the wave frequency, k=2π/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGH9a qpcaaIYaGaeqiWdaNaai4laiabeU7aSbaa@3DE7@ as the wave vector and wave length λ, and v s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4Caaqabaaaaa@3930@ as the effective, local sound velocity at recombination era. G is Newton‘s gravitational constant, and ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGYbaabeaaaaa@39F4@ is the actual local matter density at the recombination time t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B2C@ .

As evident from the above dispersion relation, there exists a critrical wave number k c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaam4yaaqabaaaaa@3915@ with

k c = 4πG ρ r v s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaam4yaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaaGinaiab ec8aWjaadEeacqaHbpGCdaWgaaWcbaGaamOCaaqabaaakeaacaWG2b Waa0baaSqaaiaadohaaeaacaaIYaaaaaaaaeqaaaaa@4355@

and the property that all waves with wave numbers k k c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGHKj YOcaWGRbWaaSbaaSqaaiaadogaaeqaaaaa@3BBA@ lead to unstable, standing waves with imaginary values for associated frequencies ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@38DE@ , i.e. with growing wave amplitudes and hence ongoing of structure formation.

From that fact one can conclude that the characteristic wavelengths of standing wave structures at the recombination epoch are given by:

λ c = 2π k c = 2π 4πG ρ r v s 2 = π v s 2 G ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGJbaabeaakiabg2da9maalaaabaGaaGOmaiabec8aWbqa aiaadUgadaWgaaWcbaGaam4yaaqabaaaaOGaeyypa0ZaaSaaaeaaca aIYaGaeqiWdahabaWaaOaaaeaadaWcaaqaaiaaisdacqaHapaCcaWG hbGaeqyWdi3aaSbaaSqaaiaadkhaaeqaaaGcbaGaamODamaaDaaale aacaWGZbaabaGaaGOmaaaaaaaabeaaaaGccqGH9aqpdaGcaaqaamaa laaabaGaeqiWdaNaamODamaaDaaaleaacaWGZbaabaGaaGOmaaaaaO qaaiaadEeacqaHbpGCdaWgaaWcbaGaamOCaaqabaaaaaqabaaaaa@55C1@

Calculating the value of λ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGJbaabeaaaaa@39D9@ one obtains with v s = γ P r / ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4CaaqabaGccqGH9aqpdaGcaaqaaiabeo7aNjaadcfadaWg aaWcbaGaamOCaaqabaGccaGGVaGaeqyWdi3aaSbaaSqaaiaadkhaae qaaaqabaaaaa@418F@ and γ=5/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9iaaiwdacaGGVaGaaG4maaaa@3BED@ , P r = n r K T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaWGUbWaaSbaaSqaaiaadkhaaeqa aOGaam4saiaadsfadaWgaaWcbaGaamOCaaqabaaaaa@3F05@ and T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOCaaqabaaaaa@390D@ denoting pressure and temperature of the cosmic H-gas:

λ c = πγ P r G ρ r 2 = πγ( n r K T r ) G ρ r 2 = πγ(K T r ) mG ρ r =2.3 K T r mG ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGJbaabeaakiabg2da9maakaaabaWaaSaaaeaacqaHapaC cqaHZoWzcaWGqbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaam4raiabeg 8aYnaaDaaaleaacaWGYbaabaGaaGOmaaaaaaaabeaakiabg2da9maa kaaabaWaaSaaaeaacqaHapaCcqaHZoWzcaGGOaGaamOBamaaBaaale aacaWGYbaabeaakiaadUeacaWGubWaaSbaaSqaaiaadkhaaeqaaOGa aiykaaqaaiaadEeacqaHbpGCdaqhaaWcbaGaamOCaaqaaiaaikdaaa aaaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaeqiWdaNaeq4SdCMa aiikaiaadUeacaWGubWaaSbaaSqaaiaadkhaaeqaaOGaaiykaaqaai aad2gacaWGhbGaeqyWdi3aaSbaaSqaaiaadkhaaeqaaaaaaeqaaOGa eyypa0JaaGOmaiaac6cacaaIZaWaaOaaaeaadaWcaaqaaiaadUeaca WGubWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamyBaiaadEeacqaHbpGC daWgaaWcbaGaamOCaaqabaaaaaqabaaaaa@6C60@

The temperature at the recombination era is expected to be about 3000K, and due to the redshift cooling of the present CMB (3K -radiation) one obtains the redshift relation: (1+z)=( R 0 / R r )1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaIXa Gaey4kaSIaamOEaiaacMcacqGH9aqpcaGGOaGaamOuamaaBaaaleaa caaIWaaabeaakiaac+cacaWGsbWaaSbaaSqaaiaadkhaaeqaaOGaai ykaiabloKi7iaaigdacaaIWaGaaGimaiaaicdaaaa@45FD@ . This means that the present cosmic density of the universe ρ 0 = 10 31 g/c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaaIWaaabeaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaIZaGaaGymaaaakiaadEgacaGGVaGaam4yaiaad2gada ahaaWcbeqaaiaaiodaaaaaaa@433B@ should have been larger at the recombination era by a factor (1000) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaIXa GaaGimaiaaicdacaaIWaGaaiykamaaCaaaleqabaGaaG4maaaaaaa@3C3D@ yielding an actual value at t= t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B2C@ of ρ r = 10 22 g/c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGYbaabeaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaIYaGaaGOmaaaakiaadEgacaGGVaGaam4yaiaad2gada ahaaWcbeqaaiaaiodaaaaaaa@4378@ . This argumentation is based on the assumption that cosmic photons are subject to redshifts which are due to the expansion of the universe. If this cosmic mainstream basis is questioned, then, as we shall show at the end, this would change all of our above conclusions.

The baryon gas temperature T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOCaaqabaaaaa@390D@ , solely due to the influence of the Hubble drift at the recombination era, should develop according to a linear approach for 0.1 H r (t t r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacaGGUa GaaGymaiabgwMiZkaadIeadaWgaaWcbaGaamOCaaqabaGccaGGOaGa amiDaiabgkHiTiaadshadaWgaaWcbaGaamOCaaqabaGccaGGPaaaaa@425D@ by:11

T (t) H = T Hr (1 H r (t t r )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgba WcbaGaamisaaqabaGccaGGOaGaaiiDaiaacMcacqGH9aqpdaWcaaqa aiaadsfadaWgbaWcbaGaamisaiaadkhaaeqaaaGcbaGaaiikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadsha cqGHsislcaWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiaacMcada ahaaWcbeqaaiaaikdaaaaaaaaa@4A72@

and the density is given by :

ρ H (t)= ρ r ( R( t r ) R(t) ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGibaabeaakiaacIcacaGG0bGaaiykaiabg2da9iabeg8a YnaaBaaaleaacaWGYbaabeaakiabgwSixlaacIcadaWcaaqaaiaadk facaGGOaGaamiDamaaBaaaleaacaWGYbaabeaakiaacMcaaeaacaWG sbGaaiikaiaadshacaGGPaaaaiaacMcadaahaaWcbeqaaiaaiodaaa aaaa@4C34@

Covering a time period Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaads haaaa@3971@ after the recombination point t t r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHsi slcaWG0bWaaSbaaSqaaiaadkhaaeqaaaaa@3B13@ , over which the Hubble parameter H= H r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpcaWGibWaaSbaaSqaaiaadkhaaeqaaaaa@3AD4@ can be considered as constant, permits then to write

R(t)=R( t r )exp[ H r (t t r )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaGGOa GaamiDaiaacMcacqGH9aqpcaWGsbGaaiikaiaadshadaWgaaWcbaGa amOCaaqabaGccaGGPaGaciyzaiaacIhacaGGWbGaai4waiaadIeada WgaaWcbaGaamOCaaqabaGccaGGOaGaamiDaiabgkHiTiaadshadaWg aaWcbaGaamOCaaqabaGccaGGPaGaaiyxaaaa@4B90@

and consequently yielding the following density as function of time:

ρ H (t)= ρ r ( R( t r ) R( t r )exp[ H r (t t r ) ) 3 = ρ r exp[3 H r (t t r )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGibaabeaakiaacIcacaWG0bGaaiykaiabg2da9iabeg8a YnaaBaaaleaacaWGYbaabeaakiabgwSixlaacIcadaWcaaqaaiaadk facaGGOaGaamiDamaaBaaaleaacaWGYbaabeaakiaacMcaaeaacaWG sbGaaiikaiaadshadaWgaaWcbaGaamOCaaqabaGccaGGPaGaciyzai aacIhacaGGWbGaai4waiaadIeadaWgaaWcbaGaamOCaaqabaGccaGG OaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaamOCaaqabaGccaGGPa aaaiaacMcadaahaaWcbeqaaiaaiodaaaGccqGH9aqpcqaHbpGCdaWg aaWcbaGaamOCaaqabaGcciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0 IaaG4maiaadIeadaWgaaWcbaGaamOCaaqabaGccaGGOaGaamiDaiab gkHiTiaadshadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiyxaaaa@6A1C@

The critical mass M c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaaaaa@38F7@ of a collapse-critical gas package is then given by:

M c = 4π 3 λ c 3 ρ H = 4π 3 2.3 3 ( K T H mG ρ H ) 3/2 ρ H =541.3 ( K T H mG ) 3/2 ρ H 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaaisdacqaHapaCaeaa caaIZaaaaiabeU7aSnaaDaaaleaacaWGJbaabaGaaG4maaaakiabeg 8aYnaaBaaaleaacaWGibaabeaakiabg2da9maalaaabaGaaGinaiab ec8aWbqaaiaaiodaaaGaaGOmaiaac6cacaaIZaWaaWbaaSqabeaaca aIZaaaaOGaaiikamaalaaabaGaam4saiaadsfadaWgaaWcbaGaamis aaqabaaakeaacaWGTbGaam4raiabeg8aYnaaBaaaleaacaWGibaabe aaaaGccaGGPaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGccqaH bpGCdaWgaaWcbaGaamisaaqabaGccqGH9aqpcaaI1aGaaGinaiaaig dacaGGUaGaaG4maiabgwSixlaacIcadaWcaaqaaiaadUeacaWGubWa aSbaaSqaaiaadIeaaeqaaaGcbaGaamyBaiaadEeaaaGaaiykamaaCa aaleqabaGaaG4maiaac+cacaaIYaaaaOGaeqyWdi3aaSbaaSqaaiaa dIeaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaGaai4laiaaikdaaa aaaa@6DFF@

If now one introduces the above expressions for T H (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamisaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B3F@ and ρ H (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGibaabeaakiaacIcacaWG0bGaaiykaaaa@3C26@ as functions of t, one then can see the marginally possible, selfgravitational collapse mass M c = M c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccqGH9aqpcaWGnbWaaSbaaSqaaiaadogaaeqa aOGaaiikaiaadshacaGGPaaaaa@3E49@ as function of the cosmic time after the recombination point as given by:

M c (t)= 4π 3 λ c 3 (t) ρ H (t)=[51.3 ( K T H,r mG ) 3/2 ρ H,r 1/2 ] exp[(3/2) H r (t t r )] (1 H r (t t r )) 3 = M c0 μ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpdaWcaaqa aiaaisdacqaHapaCaeaacaaIZaaaaiabeU7aSnaaDaaaleaacaWGJb aabaGaaG4maaaakiaacIcacaWG0bGaaiykaiabeg8aYnaaBaaaleaa caWGibaabeaakiaacIcacaWG0bGaaiykaiabg2da9iaacUfacaaI1a GaaGymaiaac6cacaaIZaGaeyyXICTaaiikamaalaaabaGaam4saiaa dsfadaWgaaWcbaGaamisaiaacYcacaWGYbaabeaaaOqaaiaad2gaca WGhbaaaiaacMcadaahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaakiab eg8aYnaaBaaaleaacaWGibGaaiilaiaadkhaaeqaaOWaaWbaaSqabe aacqGHsislcaaIXaGaai4laiaaikdaaaGccaGGDbWaaSaaaeaaciGG LbGaaiiEaiaacchacaGGBbGaaiikaiaaiodacaGGVaGaaGOmaiaacM cacaWGibWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadshacqGHsisl caWG0bWaaSbaaSqaaiaadkhaaeqaaOGaaiykaiaac2faaeaacaGGOa GaaGymaiabgkHiTiaadIeadaWgaaWcbaGaamOCaaqabaGccaGGOaGa amiDaiabgkHiTiaadshadaWgaaWcbaGaamOCaaqabaGccaGGPaGaai ykamaaCaaaleqabaGaaG4maaaaaaGccqGH9aqpcaWGnbWaaSbaaSqa aiaadogacaaIWaaabeaakiabgwSixlabeY7aTjaacIcacaWG0bGaai ykaaaa@890B@

The above expression μ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaacI cacaWG0bGaaiykaaaa@3B19@ describing the growth factor of the mass condensate in time is shown in Figure 2.  The three curves represent solutions for three Hubble parameters namely H 0 = H today =70km/s/Mpc; H 1 =2 H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGibWaaSbaaSqaaiaadshacaWG VbGaamizaiaadggacaWG5baabeaakiabg2da9iaaiEdacaaIWaGaam 4Aaiaad2gacaGGVaGaam4Caiaac+cacaWGnbGaamiCaiaadogacaGG 7aGaamisamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacaWGib WaaSbaaSqaaiaaicdaaeqaaaaa@4EF3@ ; and H 2 =4 H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaaI0aGaamisamaaBaaaleaacaaI Waaabeaaaaa@3C47@ . One can see that the critical mass substantially increases and also reaches an expected magnitude of 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacaaI2aaaaaaa@3973@ , meaning that masses of the order of M c > 10 11 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccqGH+aGpcaaIXaGaaGimamaaCaaaleqabaGa aGymaiaaigdaaaGccaWGnbWaaSbaaSqaaiablMPiLbqabaaaaa@3FDA@ , i.e. solar masses, within a time of several Billions of years are possible, however, it must be realized that the results of Figure 2 are based on the assumption that within the considered time the actual Hubble parameter is not varying, but keeps a fixed value of H= H 0 ;2 H 0 ;4 H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpcaWGibWaaSbaaSqaaiaaicdaaeqaaOGaai4oaiaaikdacaWGibWa aSbaaSqaaiaaicdaaeqaaOGaai4oaiaaisdacaWGibWaaSbaaSqaai aaicdaaeqaaaaa@4109@ .

Figure 2 The mass growth factor μ(t) as function of cosmic time in Megayears in a linear approach with H = 1,2,4 H0.

The above expression shows that possible critical masses M c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B53@ are growing with cosmic time t, however, one should keep in mind, to produce elementary cosmic cornerstones like galaxies, one would need a growth factor of about 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacaaI2aaaaaaa@3973@ . Furthermore there exists a severe limitation for this mass growth given through a comparison between gravitational free-fall times τ ff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGMbGaamOzaaqabaaaaa@3AD8@ and expansion times τ ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGLbGaamiEaaqabaaaaa@3AE9@ . The time τ ff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGMbGaamOzaaqabaaaaa@3AD8@ is the time it takes to condense the gravitationally unstable mass M c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B53@ to a stable structure by its free-fall in the genuine gravitational field, without the pressure action taken into account, and is given by:

τ ff = 1 4πG ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGMbGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa daGcaaqaaiaaisdacqaHapaCcaWGhbGaeqyWdi3aaSbaaSqaaiaadk haaeqaaaqabaaaaaaa@42ED@

The expansion time τ ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGLbGaamiEaaqabaaaaa@3AE9@ is the typical time needed to expand the mass M c (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4yaaqabaGccaGGOaGaamiDaiaacMcaaaa@3B53@ with the ongoing Hubble expansion to infinity or say: back to the whole universe!, and it is simply given by:

τ ex = R R ˙ = 1 H r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGLbGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaadkfaaeaa ceWGsbGbaiaaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamisamaaBa aaleaacaWGYbaabeaaaaaaaa@4181@

The critical mass can only survive as a cosmic structure, as long as τ ff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGMbGaamOzaaqabaaaaa@3AD8@ is smaller than τ ex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGLbGaamiEaaqabaaaaa@3AE9@ , meaning that one should numerically have the following relation fulfilled:

1 4πG ρ r 1 H r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaamaakaaabaGaaGinaiabec8aWjaadEeacqaHbpGCdaWgaaWc baGaamOCaaqabaaabeaaaaGccqGHKjYOdaWcaaqaaiaaigdaaeaaca WGibWaaSbaaSqaaiaadkhaaeqaaaaaaaa@4290@

Creation of solar-type collapse centers in a coastingly expanding universe

We shall ask now under which conditions stars like our Sun with masses of M M ° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqWI8i IocaWGnbWaaSbaaSqaaiabgclaWcqabaaaaa@3BF6@  can have formed over the epochs of cosmic expansion. This addresses the question whether or not "solar systems" (i.e. planetary systems with a central mass M=1 M ° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaaIXaGaeyyXICTaamytamaaBaaaleaacqGHWcaSaeqaaaaa@3ED8@ like our Sun) over the cosmic epochs have had different orbital parameters and consequently might have looked different over the cosmic eons. We start from a specific cosmic expansion state characterized by the actual cosmic scale R( t 0 )= R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaGGOa GaamiDamaaBaaaleaacaaIWaaabeaakiaacMcacqGH9aqpcaGGsbWa aSbaaSqaaiaaicdaaeqaaaaa@3DEC@ and the actually prevailing homogeneous cosmic mass density ϱ( t 0 )=ϱ( R 0 )= ϱ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 paGaaiikaiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyypa0 Zdbiab=f=aX=aacaGGOaGaaiOuamaaBaaaleaacaaIWaaabeaakiaa cMcacqGH9aqppeGae8x8de=damaaBaaaleaacaaIWaaabeaaaaa@5199@  of this epoch.

Let us assume that in this cosmic phase by a locally induced gravitational collapse instability a mass center with a central mass M, just equal to one solar mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaeSigI8gabeaaaaa@3949@ , is formed from all the matter originally uniformly distributed inside the mass-generating source vacuole with a linear dimension D=D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpcaWGebGaaiikaiaadkfacaGGPaaaaa@3BD9@ , obtained by the following request:

4π 3 D (R) 3 ϱ(R)= 4π 3 D (R) 3 ϱ( R 0 ) ( R 0 R ) 3 = M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaiabec8aWbqaaiaaiodaaaGaamiraiaacIcacaWGsbGaaiykamaa CaaaleqabaGaaG4maaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbaOaeaaaaaaaaa8qacqWFXpq8paGaaiikaiaadkfacaGG PaGaeyypa0ZaaSaaaeaacaaI0aGaeqiWdahabaGaaG4maaaacaWGeb GaaiikaiaadkfacaGGPaWaaWbaaSqabeaacaaIZaaaaOWdbiab=f=a X=aacaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiaacMcacaGGOa WaaSaaaeaacaWGsbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOuaaaa caGGPaWaaWbaaSqabeaacaaIZaaaaOGaeyypa0JaamytamaaBaaale aacqWIyiYBaeqaaaaa@62B6@

This makes evident that the actual linear dimension D=D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpcaWGebGaaiikaiaadkfacaGGPaaaaa@3BD9@ forming one solar mass unit M= M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaWGnbWaaSbaaSqaaiablIHiVbqabaaaaa@3B21@ in the expanding universe is given by:

D (R)=R M 4π 3 R 0 3 ϱ 0 ] 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaeSigI8gabeaakiaacIcacaWGsbGaaiykaiabg2da9iaadkfa cqGHflY1daWcaaqaaiaad2eadaWgaaWcbaGaeSigI8gabeaaaOqaam aalaaabaGaaGinaiabec8aWbqaaiaaiodaaaGaamOuamaaDaaaleaa caaIWaaabaGaaG4maaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbaOaeaaaaaaaaa8qacqWFXpq8paWaaSbaaSqaaiaaicda aeqaaaaakiaac2fadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaa a@580C@

expressing the fact that the characteristic solar mass-vacuole with a linear dimension D (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaeSigI8gabeaakiaacIcacaWGsbGaaiykaaaa@3B7A@ is just growing proportional to the cosmic scale R of the universe. Hereby it has tacitly been assumed that the universe has a Euclidean geometry with a curvature parameter of k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGH9a qpcaaIWaaaaa@39C1@ .

As motivated in the beginning of this article, we now assume to have a universe with a "coasting expansion" , i.e. with the property that the Hubble constant is given by H c (R)= R ˙ /R= H 0 c ( R 0 /R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahaa WcbeqaaiaadogaaaGccaGGOaGaamOuaiaacMcacqGH9aqpceWGsbGb aiaacaGGVaGaamOuaiabg2da9iaadIeadaqhaaWcbaGaaGimaaqaai aadogaaaGccqGHflY1caGGOaGaamOuamaaBaaaleaacaaIWaaabeaa kiaac+cacaWGsbGaaiykaaaa@493D@ . Then producing via collapse a mass unit of one solar mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaeSigI8gabeaaaaa@3949@ in the center of the sphere with radius D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamOuaiaacMcaaaa@3A0A@ might mean that any massive object at the periphery of the originating vacuole now is attracted in Newton‘s sense by the gravitational field of the central mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaeSigI8gabeaaaaa@3949@ , but at the same time with respect to this mass center it is subject to the differential Hubble drift v H =D(R) H c (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamisaaqabaGccqGH9aqpcaWGebGaaiikaiaadkfacaGGPaGa eyyXICTaamisamaaCaaaleqabaGaam4yaaaakiaacIcacaWGsbGaai ykaaaa@4374@ due to the coasting expansion dynamics. This differential Hubble drift with respect to the mass center supplies the necessary kinetic energy of the peripheral object for its orbital motion around the central mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaeSigI8gabeaaaaa@3949@ .

Looking now both for the specific kinetic energy E kin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaam4AaiaadMgacaWGUbaabeaaaaa@3AD8@ of this object with respect to the mass center, and for the specific gravitational binding energy E bind MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOyaiaadMgacaWGUbGaamizaaqabaaaaa@3BB8@ of this object with respect to the central mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaeSigI8gabeaaaaa@3949@ one finds:

E kin = 1 2 [D(R) H c (R)] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaam4AaiaadMgacaWGUbaabeaakiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaGaai4waiaadseacaGGOaGaamOuaiaacMcacqGHfl Y1caWGibWaaWbaaSqabeaacaWGJbaaaOGaaiikaiaadkfacaGGPaGa aiyxamaaCaaaleqabaGaaGOmaaaaaaa@4977@

and:

E bind = G M D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOyaiaadMgacaWGUbGaamizaaqabaGccqGH9aqpdaWcaaqa aiaadEeacaWGnbWaaSbaaSqaaiablIHiVbqabaaakeaacaWGebGaai ikaiaadkfacaGGPaaaaaaa@42DF@

where G denotes Newton‘s gravitational constant. Considering the ratio of = E kin / E bind MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaiab=HGiol ab=1da9iaadweadaWgaaWcbaGaam4AaiaadMgacaWGUbaabeaakiaa c+cacaWGfbWaaSbaaSqaaiaadkgacaWGPbGaamOBaiaadsgaaeqaaa aa@42C2@ kinetic over binding energy of such a "Keplerian" object would then lead to the following expression:

(R)= 1 2 [D(R) H c (R)] 2 G M D(R) = D (R) 3 H c (R) 2 2G M = R H o c2 4π 3 R 0 ϱ 0 ] 2G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolaacI cacaWGsbGaaiykaiabg2da9maalaaabaWaaSaaaeaacaaIXaaabaGa aGOmaaaacaGGBbGaamiraiaacIcacaWGsbGaaiykaiabgwSixlaadI eadaahaaWcbeqaaiaadogaaaGccaGGOaGaamOuaiaacMcacaGGDbWa aWbaaSqabeaacaaIYaaaaaGcbaWaaSaaaeaacaWGhbGaamytamaaBa aaleaacqWIyiYBaeqaaaGcbaGaamiraiaacIcacaWGsbGaaiykaaaa aaGaeyypa0ZaaSaaaeaacaWGebGaaiikaiaadkfacaGGPaWaaWbaaS qabeaacaaIZaaaaOGaamisamaaCaaaleqabaGaam4yaaaakiaacIca caWGsbGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGhb GaamytamaaBaaaleaacqWIyiYBaeqaaaaakiabg2da9maalaaabaGa amOuaiabgwSixpaalaaabaGaamisamaaDaaaleaacaWGVbaabaGaam 4yaiaaikdaaaaakeaadaWcaaqaaiaaisdacqaHapaCaeaacaaIZaaa aiaadkfadaWgaaWcbaGaaGimaaqabaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiuaakabaaaaaaaaapeGae8x8de=damaaBaaa leaacaaIWaaabeaaaaGccaGGDbaabaGaaGOmaiaadEeaaaaaaa@79D5@

This shows that the ratio =(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolabg2 da9iabgIGiolaacIcacaWGsbGaaiykaaaa@3D4F@ linearly grows with the scale R of the universe which means that the actually arising Kepler problem: "motion of a planet around its sun" all the time in the universe would change its character with the cosmic scale R, in the sense that the appearing Kepler object has higher and higher kinetic energy, while in contrast a bound system can only exist for (R)1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolaacI cacaWGsbGaaiykaiabgsMiJkaaigdaaaa@3D35@ . This is unavoidable, unless G is assumed to vary proportional to R as discussed in Fahr and Heyl.5 In fact for G(R)= G 0 (R/ R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacaGGOa GaamOuaiaacMcacqGH9aqpcaWGhbWaaSbaaSqaaiaaicdaaeqaaOGa eyyXICTaaiikaiaadkfacaGGVaGaamOuamaaBaaaleaacaaIWaaabe aakiaacMcaaaa@43C3@ permanently during the cosmic evolution the same "Kepler"-problem then would arise.

Without a variable G this, however, means that the ratio (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolaacI cacaWGsbGaaiykaaaa@3AC5@ of kinetic over binding energy of the Kepler object is permanently increasing with the increase of the scale of the universe R. In order, however, to have a bound Kepler object, one thus should have c 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolabgs MiJkabgIGiopaaBaaaleaacaWGJbaabeaakiabgsMiJkaaigdacaGG Saaaaa@400C@ which never after achieving a critical scale R c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4yaaqabaaaaa@38FC@ of the universe will be realizable anymore. Hereby this critical scale R c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4yaaqabaaaaa@38FC@ is given by

R c = 2G [ H 0 2 4π 3 R 0 ϱ 0 ] R τ=2π D(R) g(R) =2π D 3 (R) G M =2π R 3 G M [ M 4π 3 R 0 3 ϱ 0 ] τ 2 R 3 τ 2 =2π R 3 G M [ M 4π 3 R 0 3 ϱ 0 ] R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOuam aaBaaaleaacaWGJbaabeaakiabg2da9maalaaabaGaaGOmaiaadEea aeaacaGGBbWaaSaaaeaacaWGibWaa0baaSqaaiaaicdaaeaacaaIYa aaaaGcbaWaaSaaaeaacaaI0aGaeqiWdahabaGaaG4maaaacaWGsbWa aSbaaSqaaiaaicdaaeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGcqaaaaaaaaaWdbiab=f=aX=aadaWgaaWcbaGaaGim aaqabaaaaOGaaiyxaaaaaeaacaWGsbaabaGaeqiXdqNaeyypa0JaaG Omaiabec8aWnaakaaabaWaaSaaaeaacaWGebGaaiikaiaadkfacaGG PaaabaGaam4zaiaacIcacaWGsbGaaiykaaaaaSqabaGccqGH9aqpca aIYaGaeqiWda3aaOaaaeaadaWcaaqaaiaadseadaahaaWcbeqaaiaa iodaaaGccaGGOaGaamOuaiaacMcaaeaacaWGhbGaamytamaaBaaale aacqWIyiYBaeqaaaaaaeqaaOGaeyypa0JaaGOmaiabec8aWnaakaaa baWaaSaaaeaacaWGsbWaaWbaaSqabeaacaaIZaaaaaGcbaGaam4rai aad2eadaWgaaWcbaGaeSigI8gabeaaaaGccaGGBbWaaSaaaeaacaWG nbWaaSbaaSqaaiablIHiVbqabaaakeaadaWcaaqaaiaaisdacqaHap aCaeaacaaIZaaaaiaadkfadaqhaaWcbaGaaGimaaqaaiaaiodaaaGc peGae8x8de=damaaBaaaleaacaaIWaaabeaaaaGccaGGDbaaleqaaa GcbaGaeqiXdq3aaWbaaSqabeaacaaIYaaaaOGaeSipIOJaamOuamaa CaaaleqabaGaaG4maaaaaOqaaiabes8a0naaCaaaleqabaGaaGOmaa aakiabg2da9iaaikdacqaHapaCdaWcaaqaaiaadkfadaahaaWcbeqa aiaaiodaaaaakeaacaWGhbGaamytamaaBaaaleaacqWIyiYBaeqaaa aakiaacUfadaWcaaqaaiaad2eadaWgaaWcbaGaeSigI8gabeaaaOqa amaalaaabaGaaGinaiabec8aWbqaaiaaiodaaaGaamOuamaaDaaale aacaaIWaaabaGaaG4maaaak8qacqWFXpq8paWaaSbaaSqaaiaaicda aeqaaaaakiaac2faaeaacaWGsbaaaaa@9DFA@

meaning that bound planetary systems with a central mass of M=1 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaaIXaGaamytamaaBaaaleaacqWIyiYBaeqaaaaa@3BDC@ will after that cosmic time t c =t( R c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaam4yaaqabaGccqGH9aqpcaWG0bGaaiikaiaadkfadaWgaaWc baGaam4yaaqabaGccaGGPaaaaa@3E75@ never anymore newly appear during the ongoing expansion of the universe.

This would have the interesting consequence that the "Kepler pendulum" (with the specific acceleration g(R)=G M / D 2 (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacaGGOa GaamOuaiaacMcacqGH9aqpcaWGhbGaeyyXICTaamytamaaBaaaleaa cqWIyiYBaeqaaOGaai4laiaadseadaahaaWcbeqaaiaaikdaaaGcca GGOaGaamOuaiaacMcaaaa@452A@  at a distance D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamOuaiaacMcaaaa@3A0A@ from a solar mass object with M=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaaIXaaaaa@39A4@ would act as "a cosmic clock" with a "cosmic oscillation/revolution period of:

τ(R)=2π L(R)/g(R) =2π D(R)/g(R) =2π D 3 (R)/G M =2π R 3 [ M 4π 3 R 0 3 Q 0 ]/G M =2πR R G M M 4π 3 R 0 3 Q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaacI cacaWGsbGaaiykaiabg2da9iaaikdacqaHapaCdaGcaaqaaiaadYea caGGOaGaaiOuaiaacMcacaGGVaGaai4zaiaacIcacaGGsbGaaiykaa Wcbeaakiabg2da9iaaikdacqaHapaCdaGcaaqaaiaadseacaGGOaGa amOuaiaacMcacaGGVaGaam4zaiaacIcacaWGsbGaaiykaaWcbeaaki abg2da9iaaikdacqaHapaCdaGcaaqaaiaadseadaahaaWcbeqaaiaa iodaaaGccaGGOaGaamOuaiaacMcacaGGVaGaam4raiaad2eadaWgaa WcbaGaeSigI8gabeaaaeqaaOGaeyypa0JaaGOmaiabec8aWnaakaaa baGaamOuamaaCaaaleqabaGaaG4maaaakiaacUfadaWcaaqaaiaad2 eadaWgaaWcbaGaeSigI8gabeaaaOqaamaalaaabaGaaGinaiabec8a WbqaaiaaiodaaaGaamOuamaaDaaaleaacaaIWaaabaGaaG4maaaaki aadgfadaWgaaWcbaGaaGimaaqabaaaaOGaaiyxaiaac+cacaWGhbGa amytamaaBaaaleaacqWIyiYBaeqaaaqabaGccqGH9aqpcaaIYaGaeq iWdaNaamOuamaakaaabaWaaSaaaeaacaWGsbaabaGaam4raiaad2ea daWgaaWcbaGaeSigI8gabeaaaaaabeaakmaakaaabaWaaSaaaeaaca WGnbWaaSbaaSqaaiablIHiVbqabaaakeaadaWcaaqaaiaaisdacqaH apaCaeaacaaIZaaaaiaadkfadaqhaaWcbaGaaGimaaqaaiaaiodaaa GccaWGrbWaaSbaaSqaaiaaicdaaeqaaaaaaeqaaaaa@8226@

As already mentioned in Fahr and Heyl5 again this period would change into a "linear" cosmic clock τ(R)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jaacI cacaWGsbGaaiykaiablYJi6iaadkfaaaa@3D06@  when one could assume a scale variable Newton parameter as: G=G(R)= G 0 (R/ R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpcaWGhbGaaiikaiaadkfacaGGPaGaeyypa0Jaam4ramaaBaaaleaa caaIWaaabeaakiabgwSixlaacIcacaWGsbGaai4laiaadkfadaWgaa WcbaGaaGimaaqabaGccaGGPaaaaa@4595@ .

The more interesting point in this context, however, is that the above derived ratio (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolaacI cacaWGsbGaaiykaaaa@3AC5@ would under this latter assumption in fact be! a cosmologic constant, i.e.:

(r)= 0 = R 0 H 0 2 4π 3 R 0 ϱ 0 2 G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiolaacI cacaWGYbGaaiykaiabg2da9iabgIGiopaaBaaaleaacaaIWaaabeaa kiabg2da9maalaaabaGaamOuamaaBaaaleaacaaIWaaabeaakiabgw SixpaalaaabaGaamisamaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqa amaalaaabaGaaGinaiabec8aWbqaaiaaiodaaaGaamOuamaaBaaale aacaaIWaaabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaOaeaaaaaaaaa8qacqWFXpq8paWaaSbaaSqaaiaaicdaaeqaaa aaaOqaaiaaikdacaWGhbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@5AA0@

if the Newton gravitational coupling coefficient seen over the cosmic eons would not be a constant, but instead would scale with R according to the formula G=G(R)= G 0 (R/ R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpcaWGhbGaaiikaiaadkfacaGGPaGaeyypa0Jaam4ramaaBaaaleaa caaIWaaabeaakiabgwSixlaacIcacaWGsbGaai4laiaadkfadaWgaa WcbaGaaGimaaqabaGccaGGPaaaaa@4595@ !

This anyway becomes manifest, also without the assumption of the scale variable G, when writing the Kepler pendulum period in the form (taking D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamOuaiaacMcaaaa@3A0A@ as the length of the pendulum, and g(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacaGGOa GaamOuaiaacMcaaaa@3A2D@ as the gravitational acceleration of the central Sun):

τ=2π D(R) g(R) =2π D 3 (R) G M =2π R 3 G M [ M 4π 3 R 0 3 ϱ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jabg2 da9iaaikdacqaHapaCdaGcaaqaamaalaaabaGaamiraiaacIcacaWG sbGaaiykaaqaaiaadEgacaGGOaGaamOuaiaacMcaaaaaleqaaOGaey ypa0JaaGOmaiabec8aWnaakaaabaWaaSaaaeaacaWGebWaaWbaaSqa beaacaaIZaaaaOGaaiikaiaadkfacaGGPaaabaGaam4raiaad2eada WgaaWcbaGaeSigI8gabeaaaaaabeaakiabg2da9iaaikdacqaHapaC daGcaaqaamaalaaabaGaamOuamaaCaaaleqabaGaaG4maaaaaOqaai aadEeacaWGnbWaaSbaaSqaaiablIHiVbqabaaaaOGaai4wamaalaaa baGaamytamaaBaaaleaacqWIyiYBaeqaaaGcbaWaaSaaaeaacaaI0a GaeqiWdahabaGaaG4maaaacaWGsbWaa0baaSqaaiaaicdaaeaacaaI Zaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGcqa aaaaaaaaWdbiab=f=aX=aadaWgaaWcbaGaaGimaaqabaaaaOGaaiyx aaWcbeaaaaa@6CAE@

and seeing that Kepler‘s third law (i.e. τ 2 R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaCa aaleqabaGaaGOmaaaakiablYJi6iaadkfadaahaaWcbeqaaiaaioda aaaaaa@3CB3@ , D(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamOuaiaacMcaaaa@3A0A@ taken as the main axis of the planetary ellipse) would come out quite naturally from the above:

τ 2 =2π R 3 G M [ M 4π 3 R 0 3 ϱ 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaCa aaleqabaGaaGOmaaaakiabg2da9iaaikdacqaHapaCdaWcaaqaaiaa dkfadaahaaWcbeqaaiaaiodaaaaakeaacaWGhbGaamytamaaBaaale aacqWIyiYBaeqaaaaakiaacUfadaWcaaqaaiaad2eadaWgaaWcbaGa eSigI8gabeaaaOqaamaalaaabaGaaGinaiabec8aWbqaaiaaiodaaa GaamOuamaaDaaaleaacaaIWaaabaGaaG4maaaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaOaeaaaaaaaaa8qacqWFXpq8pa WaaSbaaSqaaiaaicdaaeqaaaaakiaac2faaaa@5923@

So there are obviously two options immaginable: Either under variable G-conditions, like those discussed above, planetary systems can be produced at all cosmic times with the same character as at Newton‘s times,  - or without variable G-conditions the Kepler problem is specific for all cosmic evolution periods and it even exists a critical cosmic scale R= R c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGsbWaaSbaaSqaaiaadogaaeqaaaaa@3AD9@ after passing the latter no planetary systems can be built and be expected as arising at all anymore.

In addition assuming that the planetary object at the periphery of the solar mass vacuole starts orbiting the central mass on a circular orbit (i.e. before R= R c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGsbWaaSbaaSqaaiaadogaaeqaaaaa@3AD9@ is reached!), then at each of its orbital positions with an orbital velocity the centripetal force equals the gravitational attraction force of the central mass and thus it is required that:

v 2 R = G M R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkfaaaGaeyypa0ZaaSaa aeaacaWGhbGaamytamaaBaaaleaacqWIyiYBaeqaaaGcbaGaamOuam aaCaaaleqabaGaaGOmaaaaaaaaaa@3FCA@

meaning that the kinetic energy of the object kin =(1/2)m v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWGRbGaamyAaiaad6gaaeqaaOGaeyypa0Jaaiikaiaaigda caGGVaGaaGOmaiaacMcacaWGTbGaamODamaaCaaaleqabaGaaGOmaa aaaaa@42FB@ equals just half the binding energy kin =(1/2) bind =(1/2)mG M /R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWGRbGaamyAaiaad6gaaeqaaOGaeyypa0Jaaiikaiaaigda caGGVaGaaGOmaiaacMcacqGHiiIZdaWgaaWcbaGaamOyaiaadMgaca WGUbGaamizaaqabaGccqGH9aqpcaGGOaGaaGymaiaac+cacaaIYaGa aiykaiaad2gacaWGhbGaamytamaaBaaaleaacqWIyiYBaeqaaOGaai 4laiaadkfaaaa@4FA3@ . This also again leads to Kepler‘s third law concerning the dependence of orbital periods and the main ellipse axis R of the orbit:

τ 2 =( 2πR v )=4 π 2 R 3 G M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaCa aaleqabaGaaGOmaaaakiabg2da9iaacIcadaWcaaqaaiaaikdacqaH apaCcaWGsbaabaGaamODaaaacaGGPaGaeyypa0JaaGinaiabec8aWn aaCaaaleqabaGaaGOmaaaakmaalaaabaGaamOuamaaCaaaleqabaGa aG4maaaaaOqaaiaadEeacaWGnbWaaSbaaSqaaiablIHiVbqabaaaaa aa@49D6@

Conclusion

In constrast to the case given in a static universe10 processes of structure formation evidently run very different in an expanding universe. This is because then structure formation definitely will depend on the specific form of the prevailing cosmic expansion (e.g. decelerated, accelerated or coasting expansion etc.,).12-14 To explain the SN-1a luminosities as function of redshifts Perlmutter et al.,2 Schmidt et al.,1 or Riess et al.3 have prefered as basis an accelerated expansion of the universe connected with the action of a constant vacuum energy density. Such a constant vacuum energy is as yet a physically non-understood quantity and is problematic from its physical nature and action.15-19 There are, however, more recent attempts by Casado20 and Casado and Jou21 showing that a "coasting", non-accelerated universe can equally well explain these supernovae luminosities. If in fact vacuum pressure and vacuum energy play a cosmologic role, and if it must be assumed that the universe expands under the thermodynamic and gravodynamic action of vacuum pressure, then as shown by Fahr22 the unavoidable consequence is a "coasting expansion" of the universe with R=dR/dt=const., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGKbGaamOuaiaac+cacaWGKbGaamiDaiabg2da9iaadogacaWG VbGaamOBaiaadohacaWG0bGaaiOlaiaacYcaaaa@446B@ R denoting the scale of the universe.

As we do show in this article under the conditions of a coasting, instead of an accelerated, expansion of the universe the origin of new solar-type systems is possible all the time after the cosmic matter recombination, while under the condition of an accelerated expanion of the universe new solar systems cannot be built up after some critical cosmci time period. This could perhaps be a criterion to exclude the possibility of universes with an accelerated Hubble expansion.

Acknowledgments

None.

Conflicts of interest

None.

Funding

None.

References

  1. Schmidt BP. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. Astrophys J. 1998;507(1):46.
  2. Perlmutter S, Aldering G, Goldhabe G, et al. The supernova cosmology project: Measurement of Omega and Lambda from 42 high-redshift supernovae. Astrophys J. 1999;517:565–586.
  3. Riess AG. Observational evidence for an accelerating universe and a cosmological constant. Astron J. 1998;116(3):1009.
  4. Fahr HJ. How much could gravitational binding energy act as hidden cosmic vacuum energy?, Advances Theoret. Computational Physics. 2022;5(2):449–457.
  5. Fahr HJ, Heyl M. Evolution of cosmic structures in the expanding universe: Could not one have known it all before? Advances Theoret & Computational Physics. 2022;5(3):524–528.
  6. Bennett CL, Hill RS, Hinshaw G. First year of Wilkinson Microwave Anisotropy emission. Astrophys J Supplement. 2003;148(1):97–117.
  7. Goenner HFM. Einführung in die Spezielle und Allgemeine Relativitäststheorie, Spektrum Akademischer Verlag, Heidelberg. 1996.
  8. Fahr HJ, Heyl M. Structure formation after the era of cosmic recombination. Advances Theoret & Computational Physics. 2021;4(3):253–258.
  9. Fahr HJ, Zoennchen J. The writing on the cosmic wall: Is there a straightforward explanation of the cosmic microwave bachground. Annalen der Physik. 2009;18(10-11):699–721.
  10. Jeans J Phil. Transactions Royal Society, 199A, 42, 1902, or: Astronomy and Cosmogony, Cambridge University Press, 1929 (Reprinted by Dover Publications, INC, New York, 1940).
  11. Fahr HJ. The baryon distribution function in the expanding universe after the recombination era. Phys  Astron Internat Journal. 2021b;5(2):37–41.
  12. Kolb EW. A coasting cosmology. Astrophys J. 1989;344:543.
  13. Kragh HS. Cosmology and Controversy, Princeton University, Princeton, NJ, 1996.
  14. Perlmutter S. Supernovae, Dark energy, and the accelerating universe. Physics Today. 2003;53–60.
  15. Einstein A. Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie, Sitzungsberichte der K.P.Akademie der Wissenschaften. Phys Math Klasse. 1917;142–152.
  16. Peebles PJE, Ratra B. The cosmological constant and dark energy. Rev Modern Physcs. 2003;75:559–599.
  17. Fahr HJ, Willerding E. Entstehung von Sonnensystemen: Eine Einführung in das Problem der Planetenentstehung". Spektrum Akademischer Verlag, Heidelberg/Berlin. 1998.
  18. Kragh HS, Overduin JM. The weight of the vacuum. Springer Briefs in Physics. 2014.
  19. Fahr HJ, Heyl M. The thermodynamics of a gravitating vacuum. Astron Nachr/AN. 2014;999(88):789–793.
  20. Cassado J, Jou D. Steady flow cosmological models. Astrophys Space Sci. 2013;344(2):513.
  21. Cassado J. Linear expansion models versus standard cosmologies; a critical and historical overview. Astrophys Space Sci. 2020;365:16.
  22. Fahr HJ, Heyl M. A universe with a constant expansion rate. Physics & Astronomy Internat J. 2020;4(4): 156–163.
Creative Commons Attribution License

©2022 Fahr. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.