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A universe with a constant expansion rate

Abstract

One of the strongest supports for the existence of a cosmological vacuum energy density
A is given by the SN-Ia luminosities as function of the redshift z of the host galaxies,
since they seem to indicate an accelerated expansion of the universe in more recent cosmic
times. In this paper, we show that one in fact, however, can start out from the astronomical
observations of two-point correlation functions regulating the positions of galaxies and
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clusters of galaxies and derive from them the average cosmic mass density in the universe.

We obtained that for the scale-invariant mass distribution derived from these correlation
functions we only obtain a finite mass density for a positive curvature parameter k = +1,
while for curvature parameters k=0 and k =—1one obtains vanishing cosmic mass
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densities. In these latter universes one consequently would find conditions for a “coasting

cosmology” fulfilled which abolishes the need for a cosmic vacuum energy A.
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Introduction

During many decades after the first Friedman-Lemaitre FLRW-
cosmological models'? on the basis of Einstein‘s GTR field equations®*
the expansion of the universe was assumed to occur as decelerated by
the internal gravitation of the universe due to its matter and energy
contents. In the recent decades, however, measurements of the
luminosity of distant high-redshift type Ia supernovae seemed to show
that these standard candles are looking fainter than could be expected
on the basis of these classical cosmological models.’>!® For the
purpose to nevertheless fit these new observations with cosmological
models, an artificial term - called /4 and denoting the dynamical effect
of a cosmic vacuum energy density of completely unknown nature
- has been introduced into the earlier Friedman equations with the
wholesome effect of accelerating the cosmic expansion at large scales
of our present epoch. Meanwhile, however, the need for this artificial
enlargement of the Friedman equations has been doubted on several
grounds; one is that the interpretations of luminosities of the most
distant supernovae SNe-la may not be correctly carried out and thus
misleading in the conclusions derived with them, the other is that so-
called “coastal cosmology” - models , without cosmic vacuum energy
density as ingredient, can in fact be proposed that can well fit the
observed SNe-Ia luminosities (e.g. see Cassado, 2020).

Most recently Kang et al," have found evidences for an
evolutionary trend in SN Ia supernova brightnesses which in principle
were pointed out all the time since the publication by Tinsley'?. Their
most recent studies namely seem to have shown that the brightness
of standardized SN Ia supernovae is intrinsically correlated to the
morphology, the mass, and the local star formation rate of the host
galaxy, while in the works by Perlmutter et al.,”* and contemporary
publishers it had been assumed that the standardized SN Ia brightness
does not evolve with redshift or look-back time. This indicates the
problem that the present SN Ia light curve fitters supporting the
standard ACDM cosmological models are not taking care for a
correction for this population age effect which would therefore create
a serious systematic bias with increasing redshift. Just those most red-
shifted SN Ia objects which presently give the strongest support for
an accelerating cosmic expansion and the action of a cosmic vacuum
energy would be most concerned by this bias. Meanwhile Riess et
al.,'"* recognized that a luminosity evolution of 25 percent over a

look-back-time of 5 Gyr would be sufficient to nullify the present
cosmological claims.

In this respect it is highly interesting to read in the most recent
publication by Cassado (2020) that the presently discussed SNe la
data are also fitted nicely by a universe with a “coasting cosmology”
which expands according to a linear expansion model R(t) ~t with
no deceleration and no acceleration, but with a permanently vanishing
deceleration parameter ¢ =—RR/R* =0. This was already found in
earlier publications by Dev et al.,'”>"'® This fact of an equally nice fit
of a coasting universe compared to the prominent ACDM — model
concerning compatibility with SNe Ia data had already shown up
clearly in a figure given in a publication by Perlmutter et al.’*. But in
his publication the author favored the fit by the ACDM — model as
compared to disfavored coasting model, because the latter needed an
empty universe with vanishing mass density (i.e. Q,;;€Q, =0) which
obviously, in view of the present matter in the universe, cannot be
assumed to prevail.

This latter conclusion was in principle also shared by Cassado
(2020) who therefore was voting for quasi-coastal universe with a
quasi-linear expansion like R(r) ~ "7’ with y <« 1. But it should be
pointed out here that an empty universe neither is in fact a severe need
of the coastal universe, nor can a vanishing of the average cosmic
mass density simply be excluded as we are going to show in the
following part of the paper. To our knowledge one of the first authors
presenting a coastal cosmology was Kolb* who introduced a special
form of matter which he called K-matter with an equation of state
Pk =—(1/3)px in between the poly-tropic behavior of photonic
matter and massive matter. For this form of matter the second
Friedmann equation delivers

R 4zG
EZ__Z (px +3px)=0 ()

It can be shown that this K-matter leads to a density decrease by
Px ~ R and by its polytropic behaviour pK +3pK =0 induces a
coasting universe.

This form of a K-matter unfortunately is not a physically very handy
and easy to understand form of matter and thus may be disfavored
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for that reason in offering a physically reliable cosmological solution.
As was shown, however, in papers by Fahr?' and Fahr?? and this
unconventional sub-adiabatic behavior of density with the scale R
of the universe is naturally obtained for a Machian form of scale-
related masses of cosmic particles with m ~ R which then evidently
with p~R™ leads to a coasting cosmology. But as we shall show
in the following part of the paper, one does not need to believe in
such a Machian mass behavior tuning the cosmic masses with the size
R of the universe, but it can be shown that an empty universe with
vanishing mass density p, =0 creating a coasting cosmology is in
fact physically reasonable - even in view of the cosmic masses seen
around us, if the universe has a scale-invariant hierarchical structuring.

The cosmic mass density in a hierarchically
structured universe

In the afore presented argumentation® it became obvious, that the
theoretical interpretation of distant high-redshift SN1a luminosity
data is well possible, instead by the new ACDM - cosmological
models, as well on the basis of a coasting expansion cosmology>*2*
with a linear expansion of the scale of the universe with cosmic time
t according to R(t) ~t. The attractive advantage on one hand in the
use of these latter cosmological models is that neither dark matter nor
dark energy is required (i.e Qp =, =0) for the interpretation, the
disadvantage on the other hand, as seen by many of the present main-
stream cosmologists, is that such coasting models as given by Kolb et
al.,”*?" have to assume an empty energy-momentum tensor I, for the
universe, i.e. a tensor with vanishing ingredients at all cosmic times
t. Especially such coasting universes should have either, as we are
going to show, the special Machian property of scale-related cosmic
masses leading to vanishing mass densities at the largest scales,
or the property that mass density Py is zero at all relevant cosmic
times due to reasons which are connected with a full compensation
of contributions from masses through those from pressures in the
universe.

Most cosmologists are hesitating to accept this rather unlikely
balance in the T, — ingredients leading to a coasting universe.
This zero-mass universe seems to be too much an artifact like the
assumption of cosmic vacuum energy A is too. In the following
section, however, just for that purpose, we want to introduce a
universe leading to a vanishing cosmic mass density p; — 0! at the
largest cosmic distances without such artifacts which in contrast is
even supported by astrophysical measurements as we are going to
show below.

We start from the astronomical observations carried out by Bahcall
et al.,”»* and or equally well in more recent times by Sylos-Labini
et al.,® and or Sylos-Labini®' and take their two-point correlation
function & (l ) denoting the probability to find other stellar objects at a
distance / from any other arbitrarily taken stellar object. The quantity
[ has to be considered as the so-called distance parameter taken by
astronomers to be identical with the redshift distance, making it
evidently a cosmologically biased quantity. From this star-correlation
function & ( / ) we will deduce in the following an associated model for
the underlying cosmic matter density distribution p, = p, (/). This
we first did for a different aspect in a recent paper Fahr etal.,*?. We use
the well confirmed correlation function §(l) based on astronomical
observations of the visible star and galaxy constellation which is
surrounding us seen from our cosmic vantage point, - and, according
to the generally assumed cosmological principle, also should surround
every other cosmic vantage point in an analogous and equivalent
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manner, unless the generally accepted, sacrosanct cosmological
principle would turn out to be violated,- in which case, however,
all the other Robertson-Walker cosmologies would as well become
invalid, and even taken broader, all cosmology had to be given up.

This two-point correlation function &(/) defines the probability
to find another star (or galaxy) at a distance ! from our arbitrary
standpoint and, based on astronomical observations, is expressed in
the following mathematical form:

£ =&y @)

where £y is a reference value valid at the reference distance /,. The
correlation index & has been observationally determined by Bahcall
et al.”® with « =1.8 By the way, as we do show in the appendix, this
above hierarchic distribution of stars naturally explains why no Olbers
Paradox (Paradox of the dark night sky!) has to be expected in such
a universe.

An interesting problem connected with the above mentioned
clustering is the cosmologically important point, that the validity
of the above correlation function can evidently also be interpreted
as an expression for the structured stellar mass density p = p(l ) or
stellar mass density distribution of surrounding stars or galaxies in
our cosmic environment. In this view it also expresses a standpoint-
oriented mass density distribution p = p(l ) when it is recognized that
the mass dM (Z) in this case is closely associated with the number of
stars with a typical average stellar or galactic mass m, on a spherical
shell at distance /, and is given for a Euklidean space geometry (i.c. a
flat universe with £ =0 ) by

dM (1) = 4xl’myé, (170)‘1 dl=4zxl’p, - (170)“ di 3)

with p, denoting the hierarchy-typical reference value of mass
density.

Bahcall and Chokski* do furthermore point out the astonishing
fact that the general type of the above mentioned two-point
correlation function & (l) is observationally confirmed as well for
galaxy correlations, as for cluster correlations, as also for super-
cluster correlations, with the difference that only the reference scale
Iy and the reference probability &, or mass density p, have to be
adapted from the galaxy-case up to the super-cluster case, while
as a surprise the same correlation index of a;=a. =g =18 is
reappearing as a number common for all these hierarchies (i.e. scale
invariant structuring!).

To comprehend and correctly describe space at the largest
achievable distances g, of the order 100Mpc or more, we take

the largest hierarchy, i.e. super-clusters, and use the corresponding
SC — SC correlation function. Connected with that correlation the
following, associated mass increment with distance / is given:

/
dM (1) = 471" pyc.o ()5 -l )

In order to address scientifically correct the largest achievable
cosmic distances / = R , with R denoting the scale of the universe, we
have also to pay attention to the prevailing cosmic space geometry
conditions and need to face the situation that, in order to keep our
considerations open to the widest generality, that we are perhaps
embedded not in a Euklidean universe, but in a curved general-
relativistic space-time geometry. We for the sake of this generality
should pay attention to the fact that the radial distance parameter /
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, in the Robertson-Walker approximation of the cosmic geometry, is
transformed into a geometrical distance r(l ) given by the following
function:¥3

r(l)=1-Q+k*)" Q)

i.e. the spherical area associated to the distance parameter l
then is O(Z ) =47r* (l ) where k& denotes the cosmic curvature
parameter. The latter e.g. is determined by looking for the best
fitting cosmological FLRW-model*® which supports the value k=0
. This latter uncurved cosmological model is, however, associated
with and enforced by specifically equilibrated average cosmic T
-ingredients like pA, pM,pD . These latter ingredients, however,
under the perspectives given here, are shown to be highly problematic
quantities. Nevertheless and besides of that, anticipating the indicated
curvature value k as an apriori input, one can then take account of
this above geometric distance transformation by bringing the above
formula for dM (1) into the following form:

/

dM (1) =4xl* - (1+ k) -mge oEgc o+ ( 55’0 * x
(1 - klz) p "
)
(1+k*)? )
and after a little rearrangement of the terms.
i 1-kl?
dM (1) = 4rpge o -| 2y -ulzdl (7)

! (1+k*H?*

The cosmic curvature parameter k can be restricted to values
of k=0; ork==I1, if /is scaled with the cosmic scale parameter
R= R(t) by k = K-R*, K being the cosmic curvature scalar or the
contracted Ricci tensor K = R; . Therefore, besides the Euklidean
case k =0, favored by Benett et al.,*> one should also consider the
following two more options:

. R
am (l ) =47mpscolsco | 5
I+
R

®)

After this inspection one can then state that the expression for the
average cosmic density in such a hierarchically structured universe,
for instance with & =+1finally takes the following form:

1u&?
Tastoy I G 2)49‘2'“55
M) P e, ' [08)
P(l) =—>=4mp5c olsc 0 =405 "
1400 0°SC 1ﬂ£ " R ¥ (1752) .
2 P , .‘.0 (1+§2)4§5§
I A
(1+F)4

(€))
In Figure 1 we show the quantity p(l ) as function of /, for all
relevant cosmic geometries, i.e. k=+landk=0.

As one can see in Figure 1 there exists only one model which leads
to a finite cosmic density at large scales, namely for the positively

Copyright:

©2020 Fahr etal. 158

curved universe withk=+1; the other two models with k=0,
k =—1show cosmic densities which fall below every lower density
limit with increasing scales, i.e. at largest scales they fall down to a
density value of p,, = 0!

a5

Density of the Universe

Figure | Shown is the average cosmic density p(l) in units of the super-
cluster density pSC,0 as function of the averaging scale I/R for three different
cosmic geometries characterized by curvature values k = 0 and k =%1.

Coming back to the question whether coasting universes should be
considered as a physical possibility, one can thus see from the above
considerations that in universes with curvatures k=0or k=-land a
hierarchical mass distribution one finds the appropriate prerequisites
fulfilled for a coasting universe with a vanishing average cosmic
mass density, i.e. o, =0!, despite the visible stars and galaxies
around us. One more cosmological possibility might perhaps need
to be considered here, namely that the hierarchical structuring of
masses in the universe which was considered in the above calculation
could perhaps also be a time-invariant cosmic structuring, meaning
that even though the universe undergoes an expansion in cosmic
time, its hierarchical structuring endures or persists. Of course an
expanding hierarchical universe must also change its mass density,
however in such a way that the hierarchical structuring of matter
persists, i.e. a time-invariant scale-invariance under these auspices
must be considered. This form of a structure persistence is given
when only the reference density of the reference structure undergoes
an associated cosmological time-dependence. Under these auspices
the mass increment dM (l ) derived above would then instead now be
given by the expression:

aM (1) =4x1py. (,).(M)m dl

7 (10

One may assume that the dimension lsco(7) of super-clusters
increases with cosmic timet like the cosmic scale parameter,
i.e.lgc o (t) ~ R(t). The reference value for the super-cluster density
on the other hand most probably scales according to

Psc.o(t)=psco (R /R(f))3 (11)

which then all-together leads to a mixed expression in time ¢ and
distance / given by:
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dM (1)=4x1’psc o+ (R, /R(z))%%t))“sc -dl (12)

and again herewith brings up the already well-identified problem
that in the cosmological GTR field equations time-averaging and
space-averaging cannot be exchanged.’¢3® One way to overcome this
problem in the above described case would be to connect distances of
cosmic masses with the time it takes to bring over the information on
their mass locations by their gravity signals, i.e. gravitons, through
the velocity € of light by correspondingly retarding the relevant
evolutionary state of the universe. This would then lead to the easily
integrable expression:

RO )3(R(t0 _l/c))asc -dl

dM (1) = 4rl? .
() =471 pscq Rlo-170) !

(13)

and shows that influences of the distant matter structures now
are attaining a cosmologically historical pronunciation making the
universe by this view a really authentic space-time unity. To further
evaluate the above expression one would need to know the scale
evolution R =R(¢) in this universe. The latter, however, depends on
the prevailing cosmic energy ingredients as especially the average
mass density of cosmic matter p(/ — o) which, however, is only
found from the integration of expression (13). Not knowing in advance
what the integrated expression starting with Equ. (13) will deliver, we
can make two alternative assumptions in advance:

a. The average mass density is positive and finite with
p(lox)=p,.
or

b. The average mass density is p(l - oo) =0

The correctness of the assumption a) or b) will then be proven
a posteriori after having carried out the necessary integrations.
Starting with case a) we would be based on a matter-dominated flat
universe (k=0) the scale evolution of which is known to follow the law
R(1)~ £*3 3 Thus in this case one has

t 2 ty—1/c>
Rt =Ry (1 = Ry 0=
ty ty

(14)

when using R(¢)=
Equ. (13) to:

R(ty—1/c)witht=t,—1/c. This then leads

M (1) =4 picy (5 )3) (RO)“SC x

1/¢ 28¢

xS g (15)
IO
or
R
dM (1)=4xl Zoyasc
() ”psco(l Z/to)(l) X
2asc

x(1-1/cty) 3 dl (16)

We now use the substitution z =1—1/ ct,, hereby keeping in mind
that the relation t=1,—//c leads to [(t=0)=ctyand [(t=1,)=0
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which means z=0 for l(t = 0) =ctyand z :1f0rl(t:t0):0.
Furthermore, €1 is given by dl = —ctydz. This finally results in the
following equation:

M = ety P (R0y55C g x
ct, ’
1 (2-asc) (2

xj(l — z) z 3%5¢ 72sz
0

amn

The retarded average density p(l - R) is then given by:

M(R)

= ()

Ry \a
=dr(cty) (—2)s¢ Psc,o*
ct,

2
—asc-2
(crof(%)“sc Psco| L(l—z)”‘“SC’z(S o),
Cly

[0 12 dl (18)
Now, with the typical correlation index ag-=1.8 mentioned
before in section 2 of this paper, and expressing the volume V' by

47”(0% ) we get:

02
p=3(Roymse o j d Z) dz~
ct,

<3 iy 45 (19)

Cly
This shows that in case a) for the universe with a time-invariant
and scale-invariant matter structuring one obtains a finite and positive

average mass density which then a posteriori also justifies the use

2/3

of the scale evolution law R~ valid for the matter-dominated

universe.
Case b):

For this case we in advance want to assume that one obtains
a vanishing average cosmic mass density with p(/—R)=0.
Consequently the scale evolution law for this universe is a “coasting
cosmology evolution” given by the law f1 (£} ~ £, and by carrying out
the analogue calculation of the mass density as above for this universe
we should be able to a posteriori prove that in this case the associated
average density in fact is p(/— R)=0!But in fact we have carried
out this alternative integration for case b) and it turns out that the
resulting average mass density is again positive and even greater than
in case a). But this then means that the use of the coasting cosmology
scale law R(t) ~1is not a posteriori justified in this case b).

Deceleration of differential mass motions
with respect to the local standard of rest

Let us consider now a single mass 1 embedded in a homogeneous,
infinite universe. Then one may want to study the question: What will
happen in case this mass 71 has a peculiar motion by a certain velocity
U with respect to the local standard of rest of the ambient universe?
How does this velocity behave in time? For the case that this peculiar
motion is changing in time by an amountb = dU /dt, alocal force
must be identifiable causing this de-/ac-celeration b. In the absence
of any viscous forces or electromagnetic forces etc. one may be able
to reduce the force candidate to some effective force caused by the net
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gravitational pull of all the cosmic masses surrounding this peculiar
mass , and one should be able to quantify a locally acting force as due
to the net gravitational force of the ambient universe influencing this
peculiar mass 7 at its peculiar motion U.

In order to study this problem more quantitatively one could
follow the approach that already was used by Thirring® or Soergel-
Fabricius*! to study centrifugal forces acting on a mass rotating with
respect to the rest of a universe with a homogeneous mass distribution.
The idea there was to represent the mass of the universe as a system
of congruent spherical mass shells. While Thirring® or later Fahr*
and along this way had faced the problem of a rotating central mass to
study the origin of cosmic centrifugal forces, we here instead have to
look for a solution of the problem connected with a central mass # in
peculiar motion U with respect to the rest of the universe. Question:
Would this motion persist unchanged in time or will it undergo a
temporal change and by what amount would it do it?

To answer this question on the basis of post-Newtonian SRT gravity
one has to realize that due to the finite propagation speed of gravitons,
communicating the surrounding mass constellation by gravitons to
the position of the moving central mass m with the velocity of light
¢, the individual mass sources dM,, of the surrounding gravity field
of the universe are all effectively acting from “apparently retarded”
positions when judged from the position of the moving central mass
(a phenomenon analogous to stars appearing at positions shifted
from their true positions due to the motion of the observer: i.e. stellar
aberration). That means, if the mass element 6, on a spherical mass
shell is seen by a central object at rest under an angle 0, it instead acts
effectively from the aberration angle 6'on the central object, when
the latter moves with the velocity U with respect to the local standard
of rest. According to STR relations these two angles are connected by
the following STR Doppler relation:

cos@ +

1+ Bcos@ (20)

cosf'=

where fis givenby f=U/c.

Assuming a homogeneous and constant cosmic mass density
distribution with p= p;;, then one arrives at the following effective
gravitational force K = (E U U ) /U, aligned with the direction of the
peculiar velocity U, acting in the direction (—U ) on the central mass
m, due to the net gravitational pull of the surrounding cosmic mass
assembly of the universe:

Rmax T

K== [ dr, [dox
0 0

2
x_[ dgpUR;, G—Tcosﬁsin@ (21)
0 Ry
evidently leading to
R max T
K, =-2mo,Gm J. 5Pyjc059'sin0d9 (22)
0 0
and to
K, = —Zﬂpyl",uRmaXIcosﬁ'sin 0do (23)

0

This expression already in this form reveals that K|, can only be

a finite quantity, if the product p, R, stays finite, requiring that

max
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the average density should be either strictly zero or proportional to
Py ~ R inan infinite universe.

On the other way, with the average cosmic density p,,, expressed
through the total mass M, for the Euclidean universe, given by
py =(3/47)My I R, - Ry, being the radius of the matter-filled

universe -, leads to the following expression:

3G My, J- cosf+ f

m— sindd 6
Ry o 1+ Beosd

24)

and, to obtain a finite quantity K, would then require My, ~ erm .
For a positively/negatively curved space k =+1/—-1we would instead
find the following relation:

Py =(3/47) My /(R =(1/5)(k/ 7)1 +..) = (3/207) My, / R

max max

/(18/207) My, I R}

max * *

By substituting coordinates 8 by x =cos6 one obtains:

-1
K iGm My J-de

= U 25
TR, 11+ B ()
-1
K, =>Gn v [+ P \ix (26)
2 Ry iL1+Bx 1+ px
which can be further integrated to yield:
1-p
3. M, 1 (y-1)av
K ==Gm—%[—x | ~———+|n(1-B)-In(1+B)| 27
Il 2 leax ﬂz lJﬂ ¥ I: :I
and:
,ﬂ _
K, :—iGm Ag“ [% 6% +ln1 ﬁ] (28)
2 Ry B 6+l 1+4
or finally leading to:
Q2
Ky(p)=3 om st o A2 )
2 Rmax ﬂ 1_ﬁ ﬁ

From Figure 2 it becomes evident that this force K is vanishing
for # — 0which is a natural requirement, since for an object at rest,
the masses of the homogeneous universe around, due to symmetry
reasons, should not induce any net force. Interestingly enough, one can
also calculate the typical cosmic braking period T(ﬁ) =-p/dp/dt
until differential motions die out given by:
2 R? B

max

3GM, {1—% m(uﬂ]_ﬂ
s 1-5) B

which for M, ~Rr2mx is a finite time period and in general
determines the time after which all peculiar galaxy motions should
have died out in the universe, i.e. only the rigorous Hubble motion
continues to exist in such a “crystalline” universe after that period.
This time evidently is dependent on the cosmic value prevalent for
Rfm /M, or equivalently for p R, . If these latter values are
finite, then the cosmic braking period T( p ) is finite too, and when the

universe has an age 7, =1/ H = R/ R larger than this period, then all
peculiar motions in this universe should have died out.

7(B)= (30)
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1-5% (1+
f In (ﬂ
B 1-5
power K” in Eq. (29) as function of f#=U /¢ decelerating peculiar motions

2
max *

2
)_ﬂ:| of the cosmic braking

U of stars or galaxies in a universe with a constant value of fracM R

In an infinite universe R, — oo with finite density the expression
for K| ( p ) can only be finite, if the density in such a universe scales
with p, ~1/R,.. Otherwise, if such a physical connection cannot
be supported and required with physical sense, the density in such
a universe should then simply vanish; i.e. p, =0!, as it does in a
scale-invariant hierarchically structured universe (see Figure 1 in the
section above for k = 0;k = —1).

This above consideration may become a little bit more complicated,
if also hereby the problem of the expanding universe has to be taken
into account in this problem. Then looking into larger distances
may mean that evolutionary earlier cosmic phases of cosmic matter
distribution are determining the considered gravitational influences.
This means that, with growing distances and longer times it takes to
communicate through gravitons the cosmic mass positions to the local
position, gravitational influences of earlier evolutionary states of the
universe with a higher mass density physically come into the game.
This may be taken into account by modifying the above expression for
the braking power by:

K, = 727erJ‘pY(r)§RUJ‘cos9 sin0d 6
0 0

€))

leading by inclusion of the cosmologically retarded densities to the
following expression:

K, = —27[Gmfp(t0 -R,/ c)dRUIcosﬁ' sin@d @
0 0

(32)

leading with R, = Ry, (¢,) to:
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I3 R
K, =-22GmpU0 j (R U0 V4R, x
0

u(to—R, /¢

xIcos&'sin@d@ (33)
0
© Vid 2z Gm
K = —deUjd@j d¢.p,,R§,R—2cos9' sin@ (34)
0 0 0 U

This expression, in a hierarchically structured universe, would
write the following way:

T

0 2z
K, =-Gm j pUdRUjae j d¢.cos6 'sin@ (35)
0 0 0

and with the differential mass increase in a hierarchic universe
given by:

Zsﬂ a (l_klz) lZdl

dM (1) =4n . 36
( ) Psc,0 ] (1+klz)4 (36)
then would lead to:
1 /
K, = meJ‘O47szC,0 . [(%)a x
(37

2 2z
1- R z
XMdl]jo dﬁj d¢ . cos@'.sinf
0

1+k(I/R,))

showing that under a hierarchically structured universe this force
K| in any case is finite.

Redshifting of cosmic photons

In the above sections the asymmetric action of cosmic mass
distributions on a single mass ™ with a peculiar motion by a velocity
U with respect to the rest of the universe (i.e. local standard of rest)
was considered, and with f =U / ¢ the following expression has been
derived for the net gravitational force that acts on this mass

3 0 M, |1-82. (1 2
Kn(ﬂ)ZEGmRzU { ,Bf 1“(1i§]‘ﬂ}

max
As one can see in Figure 2 this expression can also be evaluated for
P — 1, ie. relativistic particles or photons moving with the velocity
U =c. For photons one would obtain the following result:

(38)

3 M
2 Ry

[-2] (39)

Talking about photons here, one can interpret this equation as
stating that the temporal change of the momentum of the photon
dP,/dt=d/dt(hv/c)is given as the function of the mass of the
photon, i.e. m=hv/c by

hdv
c dt

hw M
-3G U 40
C R, 0

or describing the change of the photon frequency v by
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v _
dt

v My
¢ R?

max

-3G—

(41)

yielding the following solution for the cosmic frequency shift of
cosmic photons during the course of cosmic time:

) vl)on| 261y

Ry

Interestingly enough, this result must be interpreted as a photon
redshift which is caused by the asymmetric action of cosmic gravity
during the mere passage time or travel distance of the photon since
its emission. This cosmic redshift would thus be a pure indicator of
the distance which the photon has covered since its emission, and
would not have anything to do with the cosmic expansion dynamics
of the universe. Galactic photon redshifts could thus not be ascribed
to the recession velocity of the photon emitting galaxies. We now use
Av =cand Ay, = c for a photon with wavelength 4 and frequency v

(42)

as well as 4 =/4,(1+z) ata given redshift z and the above mentioned
travel distance D =c(t—t,) to get:

M, M
1+z=exp|3G f:.x (t—to)]:exp[3G%D (43)
or:
My & In(1+2) (44)
R:_ 3GD

max

With z=0.5und D =300Mpc ~10% m as typical given values for
a galaxy® the expression M, / R2 yields:

M 10%)2
2U z G 071)1 25 l”(l""-)kigzz
Ry 3:6.67-100 .10 m
ELIPE- SUTL. 4 (45)
6.67 m m’
. kg
With z=0.1and D =500Mpc we get~3—-.
m

On the other hand, we can also calculate the expression M, / Réax

with typical values of M, ~10¥kg and R, ~ct, ~10*m * - with
£g the age of the universe - to retrieve:
M, 107 kg
2107 0
max

which is a very satisfying result since it is in the same order of
magnitude.

Conclusion

In this paper we have picked up the idea of Cassado® that a
“coasting universe”, i.e. a universe with an unaccelerated scale
expansion velocity R = const, may well explain the redshifts of
distant supernovae SN-Ia. These puzzling redshifts had led authors
like Perlmutter et al.,>® to the conclusion that in the more recent
cosmic evolution times the universe shows an accelerated expansion
and thus requires a non-vanishing positive vacuum energy density A.
In order, however, to accept a coasting universe one would need to
see very specific cosmic conditions as fulfilled. Kolb* was the first to

Copyright:

©2020 Fahr etal. 162

study such conditions and concluded that, for this case to be fulfilled,
pressure P and matter density p of the relevant cosmic matter should
be related by a poly-tropic relation of the formP:—(l/ 3) p. This
then, as shown by the second Friedman equation, leads to a vanishing
scale acceleration R. The needed poly-tropic relation, as Kolb*
showed, would characterize a form of matter behavior between
baryonic and photonic matter, called by him “K-matter” (Koino-
matter). In more recent papers by Fahr et al.,>'?? it was then shown
that a coasting universe also results for the Machian case of scale-
related cosmic masses leading to a mass density behavior according to
p oc R, In this paper here we looked into a further possibility to have
a coasting universe realized, namely by having a vanishing cosmic
mass density. This, at a first glance, looks quite unlikely in view of
the stars around us, but as we do show here, such an “empty universe”
with (p) » =0 naturally results for universes with a pervasive scale-
invariant mass structuring as indicated by the observed two-point
correlation functions describing stellar or galactic positions (Bahcall
et al., 1988). For such universes we can show that the average mass
density pj only is finite for a positively curved universe with k = +1,

while for universes with k=0or k =-1the mass density vanishes
, L.e. ( p) » = 0!. These latter universes would be “coasting ones” and
thus would, as pointed out by Cassado® explain the distances of

supernovae of type SN-Ia without any need for a vacuum energy A.

Appendix:The Olbers paradox in a
hierarchically structured universe

The result for the stellar density distribution in a hierarchically
structured universe has an interesting consequence for the night-
sky luminosity which we want to mention here: If we may assume
here that this form of a stellar or galactic clustering continues to
larger and larger cosmic distances (i.e.: scale-invariant clustering!),
then this fact perhaps could give an evident solution of the Olbers
paradox,*' namely the fact that the sky during night is dark. Several
other possible solutions meanwhile have been offered, all perhaps
worth a discussion, but none convincing up to the present, only one
has been overlooked up to now. Because under these above mentioned
conditions of a scale-invariant stellar clustering one would simply
obtain the following growth O(lw) of the illuminated part of the sky
in any arbitrary direction with a view cone of d’Q:

1 10022 71'72
0(L,) =——— [ Pd*Qé(1) Eedl =
(t) ,idzgl{ £
jlz Ygoza 41
oo]o IO

2 2 b 1-
=7 Soly [( ) “-1] (47)

with 7, the standard radius of a standard light candle. First here
one can see that for & =0 (i.e. no structuring; homogeneous matter

distribution!) one would have the following result

O(L,) = mrl&dy' Hi:] - 1}

clearly showing that for increasing values of (I,//,) the sky
coverage would grow to O(L,)>1(i.e. illuminated sky =Olbers
paradox!). To the contrast, however, for values as observationally

(48)
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confirmed, namely=1.8, one can see that 0(100) always leads to
values O(l00 ) <1(i.e. non-illuminated sky = no Olbers paradox!).*
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