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Introduction
During many decades after the first Friedman-Lemaitre FLRW- 

cosmological models1,2 on the basis of Einstein‘s GTR field equations3,4 
the expansion of the universe was assumed to occur as decelerated by 
the internal gravitation of the universe due to its matter and energy 
contents. In the recent decades, however, measurements of the 
luminosity of distant high-redshift type Ia supernovae seemed to show 
that these standard candles are looking fainter than could be expected 
on the basis of these classical cosmological models.5–10 For the 
purpose to nevertheless fit these new observations with cosmological 
models, an artificial term - called  and denoting the dynamical effect 
of a cosmic vacuum energy density of completely unknown nature 
- has been introduced into the earlier Friedman equations with the 
wholesome effect of accelerating the cosmic expansion at large scales 
of our present epoch. Meanwhile, however, the need for this artificial 
enlargement of the Friedman equations has been doubted on several 
grounds; one is that the interpretations of luminosities of the most 
distant supernovae SNe-Ia may not be correctly carried out and thus 
misleading in the conclusions derived with them, the other is that so-
called “coastal cosmology” - models , without cosmic vacuum energy 
density as ingredient, can in fact be proposed that can well fit the 
observed SNe-Ia luminosities (e.g. see Cassado, 2020).

Most recently Kang et al.,11 have found evidences for an 
evolutionary trend in SN Ia supernova brightnesses which in principle 
were pointed out all the time since the publication by Tinsley12. Their 
most recent studies namely seem to have shown that the brightness 
of standardized SN Ia supernovae is intrinsically correlated to the 
morphology, the mass, and the local star formation rate of the host 
galaxy, while in the works by Perlmutter et al.,13 and contemporary 
publishers it had been assumed that the standardized SN Ia brightness 
does not evolve with redshift or look-back time. This indicates the 
problem that the present SN Ia light curve fitters supporting the 
standard CDM cosmological models are not taking care for a 
correction for this population age effect which would therefore create 
a serious systematic bias with increasing redshift. Just those most red-
shifted SN Ia objects which presently give the strongest support for 
an accelerating cosmic expansion and the action of a cosmic vacuum 
energy would be most concerned by this bias. Meanwhile Riess et 
al.,14 recognized that a luminosity evolution of 25 percent over a 

look-back-time of 5 Gyr would be sufficient to nullify the present 
cosmological claims.

In this respect it is highly interesting to read in the most recent 
publication by Cassado (2020) that the presently discussed SNe Ia 
data are also fitted nicely by a universe with a “coasting cosmology” 
which expands according to a linear expansion model ( )R t t∼ with 
no deceleration and no acceleration, but with a permanently vanishing 
deceleration parameter 2/ 0.q RR R= − =   This was already found in 
earlier publications by Dev et al.,15–18 This fact of an equally nice fit 
of a coasting universe compared to the prominent CDMΛ − model 
concerning compatibility with SNe Ia data had already shown up 
clearly in a figure given in a publication by Perlmutter et al.19. But in 
his publication the author favored the fit by the CDMΛ −  model as 
compared to disfavored coasting model, because the latter needed an 
empty universe with vanishing mass density (i.e. M k; 0)Ω Ω = which 
obviously, in view of the present matter in the universe, cannot be 
assumed to prevail.

This latter conclusion was in principle also shared by Cassado 
(2020) who therefore was voting for quasi-coastal universe with a 
quasi-linear expansion like (1 )( )R t t γ−

 with 1.γ   But it should be 
pointed out here that an empty universe neither is in fact a severe need 
of the coastal universe, nor can a vanishing of the average cosmic 
mass density simply be excluded as we are going to show in the 
following part of the paper. To our knowledge one of the first authors 
presenting a coastal cosmology was Kolb20 who introduced a special 
form of matter which he called K-matter with an equation of state 

( )1/ 3K Kp ρ= −  in between the poly-tropic behavior of photonic 
matter and massive matter. For this form of matter the second 
Friedmann equation delivers

                        ( )4 3 0
3 K K

R G p
R

π ρ= − + =


                                    (1)

It can be shown that this K-matter leads to a density decrease by 
2

K Rρ −∼ and by its polytropic behaviour 3 0K pKρ + =  induces a 
coasting universe.

This form of a K-matter unfortunately is not a physically very handy 
and easy to understand form of matter and thus may be disfavored 
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Abstract

One of the strongest supports for the existence of a cosmological vacuum energy density 
Λ is given by the SN-Ia luminosities as function of the redshift z of the host galaxies, 
since they seem to indicate an accelerated expansion of the universe in more recent cosmic 
times. In this paper, we show that one in fact, however, can start out from the astronomical 
observations of two-point correlation functions regulating the positions of galaxies and 
clusters of galaxies and derive from them the average cosmic mass density in the universe. 
We obtained that for the scale-invariant mass distribution derived from these correlation 
functions we only obtain a finite mass density for a positive curvature parameter 1,k = +  
while for curvature parameters 0k = and 1k = − one obtains vanishing cosmic mass 
densities. In these latter universes one consequently would find conditions for a “coasting 
cosmology” fulfilled which abolishes the need for a cosmic vacuum energy .Λ  
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for that reason in offering a physically reliable cosmological solution. 
As was shown, however, in papers by Fahr21 and Fahr22 and this 
unconventional sub-adiabatic behavior of density with the scale R
of the universe is naturally obtained for a Machian form of scale-
related masses of cosmic particles with m R∼ which then evidently 
with 2Rρ −∼  leads to a coasting cosmology. But as we shall show 
in the following part of the paper, one does not need to believe in 
such a Machian mass behavior tuning the cosmic masses with the size 
R of the universe, but it can be shown that an empty universe with 
vanishing mass density 0Uρ =  creating a coasting cosmology is in 
fact physically reasonable - even in view of the cosmic masses seen 
around us, if the universe has a scale-invariant hierarchical structuring.

The cosmic mass density in a hierarchically 
structured universe

In the afore presented argumentation25 it became obvious, that the 
theoretical interpretation of distant high-redshift SN1a luminosity 
data is well possible, instead by the new CDMΛ − cosmological 
models, as well on the basis of a coasting expansion cosmology23,24 
with a linear expansion of the scale of the universe with cosmic time 
 according to ( ) .R t t∼  The attractive advantage on one hand in the 

use of these latter cosmological models is that neither dark matter nor 
dark energy is required (i.e D 0)ΛΩ = Ω =  for the interpretation, the 
disadvantage on the other hand, as seen by many of the present main-
stream cosmologists, is that such coasting models as given by Kolb et 
al.,20–27 have to assume an empty energy-momentum tensor ikT  for the 
universe, i.e. a tensor with vanishing ingredients at all cosmic times 
. Especially such coasting universes should have either, as we are 

going to show, the special Machian property of scale-related cosmic 
masses leading to vanishing mass densities at the largest scales, 
or the property that mass density  is zero at all relevant cosmic 
times due to reasons which are connected with a full compensation 
of contributions from masses through those from pressures in the 
universe.

Most cosmologists are hesitating to accept this rather unlikely 
balance in the ikT −  ingredients leading to a coasting universe. 
This zero-mass universe seems to be too much an artifact like the 
assumption of cosmic vacuum energy Λ  is too. In the following 
section, however, just for that purpose, we want to introduce a 
universe leading to a vanishing cosmic mass density 0!Uρ →  at the 
largest cosmic distances without such artifacts which in contrast is 
even supported by astrophysical measurements as we are going to 
show below.

We start from the astronomical observations carried out by Bahcall 
et al.,28,29 and or equally well in more recent times by Sylos-Labini 
et al.,30 and or Sylos-Labini31 and take their two-point correlation 
function ( )lξ denoting the probability to find other stellar objects at a 
distance l from any other arbitrarily taken stellar object. The quantity 
 has to be considered as the so-called distance parameter taken by 

astronomers to be identical with the redshift distance, making it 
evidently a cosmologically biased quantity. From this star-correlation 
function ( )lξ we will deduce in the following an associated model for 
the underlying cosmic matter density distribution ( ).U U lρ ρ=  This 
we first did for a different aspect in a recent paper Fahr etal.,32. We use 
the well confirmed correlation function ( )lξ based on astronomical 
observations of the visible star and galaxy constellation which is 
surrounding us seen from our cosmic vantage point, - and, according 
to the generally assumed cosmological principle, also should surround 
every other cosmic vantage point in an analogous and equivalent 

manner, unless the generally accepted, sacrosanct cosmological 
principle would turn out to be violated,- in which case, however, 
all the other Robertson-Walker cosmologies would as well become 
invalid, and even taken broader, all cosmology had to be given up.

This two-point correlation function ( )lξ defines the probability 
to find another star (or galaxy) at a distance  from our arbitrary 
standpoint and, based on astronomical observations, is expressed in 
the following mathematical form: 

                                 
( ) 0

0 ( )ll
l

αξ ξ= ⋅ 	                               (2)

where  is a reference value valid at the reference distance 0.l  The 
correlation index  has been observationally determined by Bahcall 
et al.28 with 1.8α =  By the way, as we do show in the appendix, this 
above hierarchic distribution of stars naturally explains why no Olbers 
Paradox (Paradox of the dark night sky!) has to be expected in such 
a universe.

An interesting problem connected with the above mentioned 
clustering is the cosmologically important point, that the validity 
of the above correlation function can evidently also be interpreted 
as an expression for the structured stellar mass density ( )lρ ρ= or 
stellar mass density distribution of surrounding stars or galaxies in 
our cosmic environment. In this view it also expresses a standpoint-
oriented mass density distribution ( )lρ ρ=  when it is recognized that 
the mass ( )dM l  in this case is closely associated with the number of 
stars with a typical average stellar or galactic mass 0m  on a spherical 
shell at distance ,l and is given for a Euklidean space geometry (i.e. a 
flat universe with 0k = ) by

             
( ) 2 20 0

0 0 04 ( ) 4 ( )l ldM l l m dl l dl
l l

α απ ξ π ρ= = ⋅                    (3)

with 0ρ  denoting the hierarchy-typical reference value of mass 
density.

Bahcall and Chokski29 do furthermore point out the astonishing 
fact that the general type of the above mentioned two-point 
correlation function ( )lξ is observationally confirmed as well for 
galaxy correlations, as for cluster correlations, as also for super-
cluster correlations, with the difference that only the reference scale 

0l  and the reference probability 0ξ  or mass density 0ρ  have to be 
adapted from the galaxy-case up to the super-cluster case, while 
as a surprise the same correlation index of 1.8G C SCα α α= = =  is 
reappearing as a number common for all these hierarchies (i.e. scale 
invariant structuring!).

To comprehend and correctly describe space at the largest 
achievable distances ,0SCl  of the order 100Mpc  or more, we take 
the largest hierarchy, i.e. super-clusters, and use the corresponding 
SC SC− correlation function. Connected with that correlation the 
following, associated mass increment with distance l is given:

                ( ) ,02
,04 ( )SC SC

SC
l

dM l l dl
l

απ ρ= ⋅ ⋅ 	                               (4)

In order to address scientifically correct the largest achievable 
cosmic distances l R , with  denoting the scale of the universe, we 
have also to pay attention to the prevailing cosmic space geometry 
conditions and need to face the situation that, in order to keep our 
considerations open to the widest generality, that we are perhaps 
embedded not in a Euklidean universe, but in a curved general-
relativistic space-time geometry. We for the sake of this generality 
should pay attention to the fact that the radial distance parameter l
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, in the Robertson-Walker approximation of the cosmic geometry, is 
transformed into a geometrical distance ( )r l given by the following 
function:33,34

                        	 ( ) 2 1(1 )r l l kl −= ⋅ +
                                

(5)

i.e. the spherical area associated to the distance parameter l
then is ( ) ( )2Ö 4l r lπ= where k denotes the cosmic curvature 
parameter. The latter e.g. is determined by looking for the best 
fitting cosmological FLRW-model35 which supports the value 0k 
. This latter uncurved cosmological model is, however, associated 
with and enforced by specifically equilibrated average cosmic ikT
-ingredients like , ,M Dρ ρ ρΛ . These latter ingredients, however, 
under the perspectives given here, are shown to be highly problematic 
quantities. Nevertheless and besides of that, anticipating the indicated 
curvature value k as an apriori input, one can then take account of 
this above geometric distance transformation by bringing the above 
formula for ( )dM l into the following form:

	 ( ) ,02 2 2
,0 ,04 (1 ) ( )SC

SC SC
l

dM l l kl m
l

απ ξ−= ⋅ + ⋅ ⋅ ×

	                           
( )2

2 2

1

(1 )

kl
dl

kl

−
×

+
	                                (6)

and after a little rearrangement of the terms.

	 ( )
( )2

,0 2
,0 2 4

1
4 )

(1 )
SC

SC

kll
dM l l dl

l kl
απρ

 −
 = ⋅ ⋅
 +
 

	                   (7)

The cosmic curvature parameter k can be restricted to values 
of 0k = ; or 1k = ± , if l is scaled with the cosmic scale parameter 

( )R R t= by 2k K R= ⋅ , K being the cosmic curvature scalar or the 
contracted Ricci tensor i

iK R= . Therefore, besides the Euklidean 
case 0k = , favored by Benett et al.,35 one should also consider the 
following two more options:

	       ( )

2

2
2

,0 ,0 2
4

2

1
4

(1 )
SC SC

l
R

dM l l l dl
l
R

α απρ −

  
  
  = ⋅  
 ±
  



	                  (8)

After this inspection one can then state that the expression for the 
average cosmic density in such a hierarchically structured universe, 
for instance with 1k = ± finally takes the following form:

( ) ( )
( )

( )

( )

2

2
2 2

20 24
2 42 0

,0
,0 ,0 ,02 2

2
2 2 402
20 4
2

1
ž 1

ž(1 ) (1 )
4 4

11 ž
(1 )ž

(1 )

X

SC
SC SC SC

X

lM l
l l

V l R

λ α

α

α
α

α

λ

λµ
λ δλ µξλ ξ δξ

ξ
ρ πρ πρ

λ ξµ ξ δξ
ξλ δλ

λ

−

−

  
  

Ρ       +   +Ρ    = = =
     −
    

Ρ     +
  

+ 
Ρ  

∫
∫

∫
∫

     

                                                                                                      

                                                                                                            (9)
  

 In Figure 1 we show the quantity ( )lρ as function of l , for all 
relevant cosmic geometries, i.e. 1k = ± and 0k = .

As one can see in Figure 1 there exists only one model which leads 
to a finite cosmic density at large scales, namely for the positively 

curved universe with 1k = + ; the other two models with 0k = , 
1k = − show cosmic densities which fall below every lower density 

limit with increasing scales, i.e. at largest scales they fall down to a 
density value of 0!Uρ 

Figure 1 Shown is the average cosmic density ( )1ρ in units of the super-
cluster density ρSC,0 as function of the averaging scale l/R for three different 
cosmic geometries characterized by curvature values k = 0 and k =±1.

Coming back to the question whether coasting universes should be 
considered as a physical possibility, one can thus see from the above 
considerations that in universes with curvatures 0k = or 1k = − and a 
hierarchical mass distribution one finds the appropriate prerequisites 
fulfilled for a coasting universe with a vanishing average cosmic 
mass density, i.e. 0Uρ = !, despite the visible stars and galaxies 
around us. One more cosmological possibility might perhaps need 
to be considered here, namely that the hierarchical structuring of 
masses in the universe which was considered in the above calculation 
could perhaps also be a time-invariant cosmic structuring, meaning 
that even though the universe undergoes an expansion in cosmic 
time, its hierarchical structuring endures or persists. Of course an 
expanding hierarchical universe must also change its mass density, 
however in such a way that the hierarchical structuring of matter 
persists, i.e. a time-invariant scale-invariance under these auspices 
must be considered. This form of a structure persistence is given 
when only the reference density of the reference structure undergoes 
an associated cosmological time-dependence. Under these auspices 
the mass increment ( )dM l derived above would then instead now be 
given by the expression:

                        ( ) ( ) ( ),02
,04 ( )SC SC

SC
l t

dM l l t dl
l

απ ρ= ⋅ ⋅                           (10)

One may assume that the dimension ( ),0SCl t  of super-clusters 
increases with cosmic time t like the cosmic scale parameter, 
i.e. ( ) ( ),0 .SCl t R t∼  The reference value for the super-cluster density 
on the other hand most probably scales according to

                	 ( ) ( ) 3
,0 ,0 0( / )SC SCt R R tρ ρ= ⋅ 	                                 (11)

which then all-together leads to a mixed expression in time t and 
distance l given by:
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           ( ) ( ) ( )2 3

,0 04 ( / ) ( ) SC
SC

R t
dM l l R R t dl

l
απ ρ= ⋅ ⋅ 	                 (12)

and again herewith brings up the already well-identified problem 
that in the cosmological GTR field equations time-averaging and 
space-averaging cannot be exchanged.36–38 One way to overcome this 
problem in the above described case would be to connect distances of 
cosmic masses with the time it takes to bring over the information on 
their mass locations by their gravity signals, i.e. gravitons, through 
the velocity  of light by correspondingly retarding the relevant 
evolutionary state of the universe. This would then lead to the easily 
integrable expression:

	 ( ) ( )
( )02 30

,0
0

/
4 ( ) ( )

/
SC

SC
R t l cRdM l l dl

R t l c l
απ ρ

−
= ⋅ ⋅

−
	  

                                                                                                          (13)

and shows that influences of the distant matter structures now 
are attaining a cosmologically historical pronunciation making the 
universe by this view a really authentic space-time unity. To further 
evaluate the above expression one would need to know the scale 
evolution ( )R R t= in this universe. The latter, however, depends on 
the prevailing cosmic energy ingredients as especially the average 
mass density of cosmic matter ( )lρ →∞ which, however, is only 
found from the integration of expression (13). Not knowing in advance 
what the integrated expression starting with Equ. (13) will deliver, we 
can make two alternative assumptions in advance:

a.	 The average mass density is positive and finite with 
( ) .lρ ρ∞→∞ =

or

b.	 The average mass density is ( ) 0lρ →∞ =

The correctness of the assumption a) or b) will then be proven 
a posteriori after having carried out the necessary integrations. 
Starting with case a) we would be based on a matter-dominated flat 
universe (k=0) the scale evolution of which is known to follow the law 
( ) 2/3R t t∼ .39 Thus in this case one has

	            ( )
2 2

03 3
0 0

0 0

/( ) ( )t l ctR t R R
t t

−
= ⋅ = ⋅ 	                (14)

when using ( ) ( )0 /R t R t l c= − with 0 / .t t l c= −  This then leads 
Equ. (13) to:

	 ( )
2

2 30 03
,0

0
4 (( ) ) ( )

/
SC

SC
t RdM l l

t l c l
απ ρ= ⋅ ×

−

	                        
2

0 3

0

/( )
SCt l c dl

t

α
−

× 	                              (15)

or 

	 ( ) 2 2 0
,0

0

14 ( ) ( )
1 /

SC
SC

RdM l l
l ct l

απ ρ= ⋅ ×
−

	                         
2

3
0(1 / )

SC

l ct dl
α

× − 	                                (16)

We now use the substitution 01 / ,z l ct= −  hereby keeping in mind 
that the relation 0 /t t l c= − leads to ( ) 00l t ct= = and ( )0 0l t t= =

which means 0z = for ( ) 00l t ct= = and 1z = for ( )0 0.l t t= =  
Furthermore,  is given by 0 .dl ct dz= −  This finally results in the 
following equation:

	             3 0
0 ,0

0
4 ( ) ( ) SC

SC
RM ct
ct

απ ρ= ×

 	             ( )
( )2 21 2

3

0

1
SC

SC
z z dz

α
α

−  − 
 × −∫ 	

                                   
(17)

The retarded average density ( )l Rρ → is then given by:

	      ( ) ( )
( )

3 0
0 ,0

0
4 ( ) ( ) SC

SC
M R RR ct
V R ct

αρ π ρ= = ×

	
( )

2 21 23 30
0 ,0 0

0
20

0

1

 

SCSCSC
SC

ct

Rct z z dz
ct

l dl

ααα ρ
 − −  ( ) ( ) ⋅ ( − )

×
∫

∫ 	
                                                                                                        (18)

Now, with the typical correlation index 1.8SCα =  mentioned 
before in section 2 of this paper, and expressing the volume V  by 

34 ( )
3 octπ  we get:

	                  
0.2

0
,0 0.8

0

(1 ) .    SC
SC

R z dz
ct z

αρ ρ
1

0

−
= 3( ) ≈∫

                             0
,0

0
3( ) 4.75SC

SC
R
ct

α ρ≈ ⋅ 	                                 (19)

This shows that in case a) for the universe with a time-invariant 
and scale-invariant matter structuring one obtains a finite and positive 
average mass density which then a posteriori also justifies the use 
of the scale evolution law 2/3R t∼ valid for the matter-dominated 
universe.

Case b):

For this case we in advance want to assume that one obtains 
a vanishing average cosmic mass density with ( ) 0.l Rρ → =
Consequently the scale evolution law for this universe is a “coasting 
cosmology evolution” given by the law , and by carrying out 
the analogue calculation of the mass density as above for this universe 
we should be able to a posteriori prove that in this case the associated 
average density in fact is ( ) 0l Rρ → = !But in fact we have carried 
out this alternative integration for case b) and it turns out that the 
resulting average mass density is again positive and even greater than 
in case a). But this then means that the use of the coasting cosmology 
scale law ( )R t t∼ is not a posteriori justified in this case b).

Deceleration of differential mass motions 
with respect to the local standard of rest

Let us consider now a single mass  embedded in a homogeneous, 
infinite universe. Then one may want to study the question: What will 
happen in case this mass  has a peculiar motion by a certain velocity 
U


 with respect to the local standard of rest of the ambient universe? 
How does this velocity behave in time? For the case that this peculiar 
motion is changing in time by an amount / ,b dU dt=




 a local force 
must be identifiable causing this de-/ac-celeration .b



 In the absence 
of any viscous forces or electromagnetic forces etc. one may be able 
to reduce the force candidate to some effective force caused by the net 
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gravitational pull of all the cosmic masses surrounding this peculiar 
mass , and one should be able to quantify a locally acting force as due 
to the net gravitational force of the ambient universe influencing this 
peculiar mass  at its peculiar motion .U



In order to study this problem more quantitatively one could 
follow the approach that already was used by Thirring40 or Soergel-
Fabricius41 to study centrifugal forces acting on a mass rotating with 
respect to the rest of a universe with a homogeneous mass distribution. 
The idea there was to represent the mass of the universe as a system 
of congruent spherical mass shells. While Thirring40 or later Fahr24 
and along this way had faced the problem of a rotating central mass to 
study the origin of cosmic centrifugal forces, we here instead have to 
look for a solution of the problem connected with a central mass  in 
peculiar motion U



 with respect to the rest of the universe. Question: 
Would this motion persist unchanged in time or will it undergo a 
temporal change and by what amount would it do it?

To answer this question on the basis of post-Newtonian SRT gravity 
one has to realize that due to the finite propagation speed of gravitons, 
communicating the surrounding mass constellation by gravitons to 
the position of the moving central mass m with the velocity of light

,c  the individual mass sources UMδ of the surrounding gravity field 
of the universe are all effectively acting from “apparently retarded” 
positions when judged from the position of the moving central mass 
(a phenomenon analogous to stars appearing at positions shifted 
from their true positions due to the motion of the observer: i.e. stellar 
aberration). That means, if the mass element UMδ  on a spherical mass 
shell is seen by a central object at rest under an angle ,θ  it instead acts 
effectively from the aberration angle 'θ on the central object, when 
the latter moves with the velocityU



 with respect to the local standard 
of rest. According to STR relations these two angles are connected by 
the following STR Doppler relation:

	                             cos '
1
cos

cos
θ βθ
β θ
+

=
+

	
                                    

(20)

where β is given by / .U cβ =

Assuming a homogeneous and constant cosmic mass density 
distribution with ,Uρ ρ=  then one arrives at the following effective 
gravitational force ( ) / ,UK K U U= ⋅



 

 aligned with the direction of the 
peculiar velocity ,U



 acting in the direction ( )U−


 on the central mass 
,m  due to the net gravitational pull of the surrounding cosmic mass 

assembly of the universe:

                   	
max

   
R

UK dR d
π

θ
0 0

= − ×∫ ∫

	            
2

2
2

0

cos sinU
U

Gmd UR
R

π

φρ θ θ× ∫ 	
                                    

(21)

evidently leading to

              
max

0 0

2 cos 'sin d
R

U YK Gm P
π

πρ δ θ θ θ= − ∫ ∫

                     (22)

and to

	             max
0

2 cos 'sinYK R d
π

πρ µ θ θ θ= − Γ ∫

	                (23)

This expression already in this form reveals that K


 can only be 
a finite quantity, if the product maxU Rρ  stays finite, requiring that 

the average density should be either strictly zero or proportional to 
1

maxU Rρ −∼  in an infinite universe.

On the other way, with the average cosmic density ,Uρ  expressed 
through the total mass UM  for the Euclidean universe, given by

( ) 3
max3 / 4 ,/U UM Rρ π=  - maxR  being the radius of the matter-filled 

universe -, leads to the following expression:

	           2
max 0

3 cos sin
2 1 cos

UMK Gm d
R

π θ β θ θ
β θ

+
= −

+∫

                   (24)

and, to obtain a finite quantity ,K


 would then require 2
maxUM R∼ . 

For a positively/negatively curved space 1/ 1k = + − we would instead 
find the following relation:

( ) ( )( ) ( ) ( )3 2 5 3 3
max max max3 / 4 / ( 1/ 5 / ...) 3 / 20 / / 18 / 20 . :/U U U UM R k r r M R M Rρ π π π= − + =

By substituting coordinates θ by cosx θ= one obtains:

	                    
1

2
max 1

3
2 1

UM xK Gm dx
xR
β
β

− +
= −

+∫

	                (25)

        	
1

2
max 1

3
2 1 1

UM xK Gm dx
x xR

β
β β

−  
= + + + 

∫

	                (26)

which can be further integrated to yield:

        ( ) ( ) ( )
1

2 2
max 1

13 1[ 1 ln 1
2

U y dyMK Gm n
yR

β

β

β β
β

−

+

−
= × +  − − +  ∫

  (27)

and:

                   2 2
max

3 1 1[ ln ]
2 1

UMK Gm
R

β

β

ζδζ β
ζ ββ

−

+

−
= − +

+1 +∫

	            (28)

or finally leading to:

               ( )
2

2 2
max

3 1 1 2ln
2 1

UMK Gm
R

β ββ
β ββ

  − +
= −  −  



               (29)

From Figure 2 it becomes evident that this force K


 is vanishing 
for 0β → which is a natural requirement, since for an object at rest, 
the masses of the homogeneous universe around, due to symmetry 
reasons, should not induce any net force. Interestingly enough, one can 
also calculate the typical cosmic braking period ( ) / /d dtτ β β β= −
until differential motions die out given by:

	      ( )
2
max

2

2

2
3 1 1 2ln

1
u

R
GM

βτ β
β β

β ββ

=
  − +

−  −  

	                (30)

which for 2
maxUM R∼  is a finite time period and in general 

determines the time after which all peculiar galaxy motions should 
have died out in the universe, i.e. only the rigorous Hubble motion 
continues to exist in such a “crystalline” universe after that period. 
This time evidently is dependent on the cosmic value prevalent for 

2
max / UR M  or equivalently for max.U Rρ  If these latter values are 

finite, then the cosmic braking period ( )τ β is finite too, and when the 
universe has an age 1 / /H H R Rτ = =   larger than this period, then all 
peculiar motions in this universe should have died out.
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Figure 2 The bracket term 
2

2
1 1 2ln

1
β β

β ββ
  − +

−  −  
 of the cosmic braking 

power K


 in Eq. (29) as function of /U cβ = decelerating peculiar motions 

 of stars or galaxies in a universe with a constant value of 2
maxUfracM R . 

In an infinite universe maxR →∞  with finite density the expression 
for ( )K β



 can only be finite, if the density in such a universe scales 
with max .1/U Rρ ∼  Otherwise, if such a physical connection cannot 
be supported and required with physical sense, the density in such 
a universe should then simply vanish; i.e. 0!,Uρ =  as it does in a 
scale-invariant hierarchically structured universe (see Figure 1 in the 
section above for 0; 1).k k= = −

This above consideration may become a little bit more complicated, 
if also hereby the problem of the expanding universe has to be taken 
into account in this problem. Then looking into larger distances 
may mean that evolutionary earlier cosmic phases of cosmic matter 
distribution are determining the considered gravitational influences. 
This means that, with growing distances and longer times it takes to 
communicate through gravitons the cosmic mass positions to the local 
position, gravitational influences of earlier evolutionary states of the 
universe with a higher mass density physically come into the game. 
This may be taken into account by modifying the above expression for 
the braking power by:

 	         ( )
0 0

2 cos si nY UK Gm R d
π

π ρ τ δ θ θ θ
∞

= − ∫ ∫

 	                  (31)

leading by inclusion of the cosmologically retarded densities to the 
following expression:

               ( )0
0 0

2 / cos ' sin du UK Gm t R c dR
π

π ρ θ θ θ
∞

= − −∫ ∫

	        (32)

leading with 0 0( )U UR R t=  to:
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U
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−∫
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2
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0 0 0
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U

GmK dRU d d R
R

π π

θ φ ρ θ θ
∞

= −∫ ∫ ∫

	               (34)

This expression, in a hierarchically structured universe, would 
write the following way:

 	      
2

0 0 0

.cos  'sinU UK Gm dR d
π π

ρ δθ φ θ θ
∞

= − ∫ ∫ ∫

	                 (35)

and with the differential mass increase in a hierarchic universe 
given by:

	            ( )
( )2

,0 2
,0 2 4

1
4 )

(1 )
SC

SC

kll
dM l l dl

l kl
απρ
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	                (36)

then would lead to:

           ( )
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,
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−
×

+

∫

∫ ∫



	               (37)

showing that under a hierarchically structured universe this force 
K


 in any case is finite.

Redshifting of cosmic photons
In the above sections the asymmetric action of cosmic mass 

distributions on a single mass  with a peculiar motion by a velocity 
U with respect to the rest of the universe (i.e. local standard of rest) 
was considered, and with /U cβ = the following expression has been 
derived for the net gravitational force that acts on this mass

 	 ( )
2

2 2
3 1 1 2ln
2 1

U

max

MK Gm
R

β ββ
β ββ

  − +
= −  −  



	              (38)

As one can see in Figure 2 this expression can also be evaluated for
1,β →  i.e. relativistic particles or photons moving with the velocity
.U c=  For photons one would obtain the following result:

                  	 ( ) 2
max

31 [ 2]
2

UMK Gm
R

β = = ⋅ −


	                           (39)

Talking about photons here, one can interpret this equation as 
stating that the temporal change of the momentum of the photon 

( )/ / /dP dt d dt h cν ν= is given as the function of the mass of the 
photon, i.e. 2/m h cν= by

	                          2 2
max

3 UMh d hG
c dt c R

ν ν
= − 	                               (40)

or describing the change of the photon frequency ν by
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                               2

max

3 UMd G
dt c R
ν ν
= − 	                                       (41)

yielding the following solution for the cosmic frequency shift of 
cosmic photons during the course of cosmic time:

             	 ( ) ( ) ( )0 02
max

exp 3 UMt t G t t
cR

ν ν
 

= − − 
 

	                 (42)

Interestingly enough, this result must be interpreted as a photon 
redshift which is caused by the asymmetric action of cosmic gravity 
during the mere passage time or travel distance of the photon since 
its emission. This cosmic redshift would thus be a pure indicator of 
the distance which the photon has covered since its emission, and 
would not have anything to do with the cosmic expansion dynamics 
of the universe. Galactic photon redshifts could thus not be ascribed 
to the recession velocity of the photon emitting galaxies. We now use 

cλν = and 0 0 cλ ν = for a photon with wavelength  and frequency ν
as well as 0 (1 )zλ λ= +  at a given redshift z and the above mentioned 
travel distance 0 )(D c t t= −  to get:

	 ( ) ] [02 2 2
max max

1 exp 3 exp 3U UM Mz G t t G D
cR c R

 
+ = − = 

 
               (43)

or:

	                       ( )
2

2
max

1
3

UM c ln z
GDR

= + 	                                (44)

With 0.5z = und 25300 10D Mpc m= ≈ as typical given values for 
a galaxy33 the expression 2

max/UM R  yields:

	              ( )
8 2

2 11 25 2
max

(3 10 ) 1.5
3 6.67 10 10

UM kgln
R m−

⋅
≈ ≈

⋅ ⋅ ⋅

                             2 2
300 0.4 18
6.67

kg kg
m m

≈                                      (45)

With 0.1z = and 500D Mpc= we get 23 .kg
m

≈

On the other hand, we can also calculate the expression 2
max/UM R  

with typical values of 5310UM kg≈ and 2610max oR ct m≈ ≈ 33 - with 
 the age of the universe - to retrieve:

                            
53

2 52 2
max

10 10
10

UM kg
R m

≈ =
                                    

(46)

which is a very satisfying result since it is in the same order of 
magnitude.

Conclusion
 In this paper we have picked up the idea of Cassado25 that a 

“coasting universe”, i.e. a universe with an unaccelerated scale 
expansion velocity ,R const=  may well explain the redshifts of 
distant supernovae SN-Ia. These puzzling redshifts had led authors 
like Perlmutter et al.,5–10 to the conclusion that in the more recent 
cosmic evolution times the universe shows an accelerated expansion 
and thus requires a non-vanishing positive vacuum energy density .Λ  
In order, however, to accept a coasting universe one would need to 
see very specific cosmic conditions as fulfilled. Kolb20 was the first to 

study such conditions and concluded that, for this case to be fulfilled, 
pressure P and matter density ρ of the relevant cosmic matter should 
be related by a poly-tropic relation of the form ( )1/ 3 .P ρ= −  This 
then, as shown by the second Friedman equation, leads to a vanishing 
scale acceleration .R  The needed poly-tropic relation, as Kolb20 
showed, would characterize a form of matter behavior between 
baryonic and photonic matter, called by him “K-matter” (Koino-
matter). In more recent papers by Fahr et al.,21,22 it was then shown 
that a coasting universe also results for the Machian case of scale-
related cosmic masses leading to a mass density behavior according to

2.Rρ −∝  In this paper here we looked into a further possibility to have 
a coasting universe realized, namely by having a vanishing cosmic 
mass density. This, at a first glance, looks quite unlikely in view of 
the stars around us, but as we do show here, such an “empty universe” 
with 0Rρ =  naturally results for universes with a pervasive scale-
invariant mass structuring as indicated by the observed two-point 
correlation functions describing stellar or galactic positions (Bahcall 
et al., 1988). For such universes we can show that the average mass 
density Rρ  only is finite for a positively curved universe with 1,k = +  
while for universes with 0k = or 1k = − the mass density vanishes 
, i.e. 0!.Rρ = These latter universes would be “coasting ones” and 
thus would, as pointed out by Cassado25 explain the distances of 
supernovae of type SN-Ia without any need for a vacuum energy .Λ

Appendix: The Olbers paradox in a 
hierarchically structured universe

The result for the stellar density distribution in a hierarchically 
structured universe has an interesting consequence for the night-
sky luminosity which we want to mention here: If we may assume 
here that this form of a stellar or galactic clustering continues to 
larger and larger cosmic distances (i.e.: scale-invariant clustering!), 
then this fact perhaps could give an evident solution of the Olbers 
paradox,41 namely the fact that the sky during night is dark. Several 
other possible solutions meanwhile have been offered, all perhaps 
worth a discussion, but none convincing up to the present, only one 
has been overlooked up to now. Because under these above mentioned 
conditions of a scale-invariant stellar clustering one would simply 
obtain the following growth ( )O l∞ of the illuminated part of the sky 
in any arbitrary direction with a view cone of 2 :d Ω

              ( ) ( )
2

2 2
2 2 2
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1 l
s

l

rO l l d l dl
l d l
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∞
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−
− −∞= −

−
	                            (47)

with sr  the standard radius of a standard light candle. First here 
one can see that for 0α = (i.e. no structuring; homogeneous matter 
distribution!) one would have the following result

            	 ( ) 2 1
0 0

0
1s

lO l r l
l

π ξ − ∞
∞

  
= −  

   
	                                  (48)

clearly showing that for increasing values of ( )0/l l∞  the sky 
coverage would grow to ( ) 1O l∞ > (i.e. illuminated sky =Olbers 
paradox!). To the contrast, however, for values as observationally 
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confirmed, namely 1.8= , one can see that ( )O l∞ always leads to 
values ( ) 1O l∞ < (i.e. non-illuminated sky = no Olbers paradox!).43
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