Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 2

The baryon distribution function in the expanding universe after the recombination era

Hans Fahr

Argelander Institute for Astronomy, Bonn University, Germany

Correspondence: Hans Fahr, Argelander Institute for Astronomy, Bonn University, Germany, Tel 49-228-733677

Received: May 28, 2021 | Published: June 23, 2021

Citation: Fahr H. The baryon distribution function in the expanding universe after the recombination era. Phys Astron Int J. 2021;5(2):37-41. DOI: 10.15406/paij.2021.05.00232

Download PDF

Abstract

In this paper, we derive a specific kinetic transport equation which as a partial differential equation describes the distribution function of cosmic H-gas (i.e. hydrogen atoms). We can infact solve this transport equation and find the gas distribution function as function f(v,t) of the particle velocity v and of the cosmic time t, with the surprising result that the effective temperature of these cosmic particles is not decreasing, but increasing with cosmic time. At the end of the cosmic recombination era, about 400000 years after the Big-Bang, electrons and protons are thought to recombine to neutral cosmic H-atoms. The question poses itself, what happens to this hydrogen (baryon) gas in thermodynamic terms, when it is exposed to the cosmic expansion dynamics of a Robertson-Walker Hubble universe. The result presented here is explained as due to the Hubble-induced velocity drift of the particles in velocity space.

Keywords: Hubble universe, cosmic expansion, hydrogen gas, kinetic transport equation

Introduction

How to describe the kinetic situation of cosmic gases in an expanding universe

We start our theoretical considerations from the broadly accepted assumption of modern cosmology, that during the collision-dominated phase of the cosmic evolution, just before the time of matter recombination, matter and radiation in the universe, due to frequent energy exchange processes, are in complete thermodynamic equilibrium. That implies the belief that matter and radiation temperatures at this phase of cosmic evolution are identical, i.e. T m = T s = T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacqGH9aqpcaWG ubWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabg2da9iaadsfapa WaaSbaaSqaa8qacaaIWaaapaqabaaaaa@40C9@ . But in the following cosmic recombination era this equilibrium will certainly experience perturbations as had already been emphasized earlier in a paper by Fahr.1

The following part of the paper shall demonstrate that, even if a Maxwellian distribution would have prevailed at the entrance to the collision-free cosmic expansion phase, it would not continue to exist for later times. After the recombination phase when electrons and protons recombine to H-atoms, and photons start propagating through cosmic space practically without further interaction with matter, the thermodynamic contact between matter and radiation at the times there after is stopped. For this reason the initial Maxwellian atom distribution function does not persist in an expanding universe over times of the ongoing collision-free expansion.

We consider a collision-free particle population in an expanding, spatially symmetric Robertson-Walker universe (i.e. the so-called RW-Friedman-Lematre universe, see e.g2–4 Under these guide lines it is clear that due to the cosmological principle or the requirement of spatial homogeneity, the velocity distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  of the cosmic particles must be isotropic in velocity space v and independent on the local cosmic place x. Thus f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  must be of the following general form

f( v,t )=n( t ) f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGHflY1daqdaaqaaiaadAgaaaWaaeWaa8aabaWdbiaadAhacaGG SaGaamiDaaGaayjkaiaawMcaaaaa@49AF@   (1)

where n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BE0@  denotes the time-variable, cosmic density, only depending on the worldtime t, and f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaaaaa@3D94@  is the normalized, time-dependent, isotropic velocity distribution function with the time-independent property

: 4π f ¯ (v,t) v 2 dv=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiabec8aW9aadaqfGaqabSqabeaacaaMb8oaneaapeGaey4k IipaaOGaaeydGmaanaaabaGaamOzaaaacaGGOaGaamODaiaacYcaca GG0bGaaiykaiaacAhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamOD aiabg2da9iaaigdaaaa@49D4@ . If we now for cosmic particles respect the fact that particles moving freely with their velocity v into the direction v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaWcaaaa@3968@  over a distance l , at their new place have to be incorporated into the actual cosmic distribution there, despite the differential Hubble flow and the explicit time-dependence of f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@ , then a locally prevailing distribution function f( 'v`,t )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaGGNaGaamODaiaabcgacaGGSaGaamiD aaGaayjkaiaawMcaaiaacEcaaaa@3FBC@  must exist there ensuring that the two associated functions f( 'v`,t )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaGGNaGaamODaiaabcgacaGGSaGaamiD aaGaayjkaiaawMcaaiaacEcaaaa@3FBC@  and f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  are related to each other in an unequivocal, Liouville-conform way,5–7 simply to guarantee the particle conservation in the universe. As has been shown recently in a lengthy derivation by Fahr8 this connection is expressed by the following relation:

f ' ( v ' , t ' ) d 3 v` d 3 x`=f( v,t ) d 3 v d 3 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaahaa WcbeqaaiaacEcaaaGccaGGOaGaamODamaaCaaaleqabaGaai4jaaaa kiaacYcacaWG0bWaaWbaaSqabeaacaGGNaaaaOGaaiykaabaaaaaaa aapeGaamiza8aadaahaaWcbeqaa8qacaaIZaaaaOGaamODaiaabcga caWGKbWdamaaCaaaleqabaWdbiaaiodaaaGccaWG4bGaaeiyaiabg2 da9iaadAgadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOaGa ayzkaaGaamiza8aadaahaaWcbeqaa8qacaaIZaaaaOGaamODaiaads gapaWaaWbaaSqabeaapeGaaG4maaaakiaadIhaaaa@53BD@   (2)

When arriving at the place x these particles, after passage over a distance l are incorporated into a particle population which has as a bulk a relative Hubble drift with respect to the origin of the particle given by v H =lH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qacqGH9aqpcaWG SbGaeyyXICTaamisaaaa@3F96@ , co-aligned with v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaWcaaaa@3968@ . Here H= R ˙ /R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaiabg2da9iqadkfapaGbaiaapeGaai4laiaadkfaaaa@3CA8@  denotes the Hubble parameter and characterizes the homologous, dynamic expansion of the universe. Thus the original particle velocity v registered at the new place x is locally tuned down to   v`=vlH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiaabcgacqGH9aqpcaWG2bGaeyOeI0IaamiBaiabgwSixlaa dIeaaaa@4120@ . This is because at the present place x, deplaced from the original place x by the increment l, all velocities have to be judged with respect to the new local reference frame (standard of rest) with a differential Hubble drift of ( lH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabgwSixlaadIeaaaa@3C54@ ) with respect to the particles origin. When taking all of that into account, it has been shown Fahr8 that one is lead to the following kinetic transport equation for the distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@ :

f t =vH( f v )Hf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadAgaa8aabaWdbiabgkGi2kaadsha aaGaeyypa0JaamODaiaadIeacqGHflY1daqadaWdaeaapeWaaSaaa8 aabaWdbiabgkGi2kaadAgaa8aabaWdbiabgkGi2kaadAhaaaaacaGL OaGaayzkaaGaeyOeI0IaamisaiabgwSixlaadAgaaaa@4DF9@   (3)

The above partial diffreential equation describes the evolution of the function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  in cosmic time t and velocity space v. It was shown already by Fahr8 that the above kinetic transport equation does not allow for a solution in the form of a separation of variables, i.e. putting f( v,t )= f t ( t ) f v ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcaWGMbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyyXICTaamOza8aa daWgaaWcbaWdbiaadAhaa8aabeaak8qadaqadaWdaeaapeGaamODaa GaayjkaiaawMcaaaaa@4AC9@ , but one rather needs a different, non-straightforward method of finding a kinetic solution of this above transport equation, i.e. of Equ.(1). Thus in the following we shall look for such a solution in a more complicated form.

A new access to the kinetic problem

In the aforegoing section we have briefly reviewed the mathematical procedure to describe the physical and thermodynamical behaviour of a cosmic baryon gas, i.e. essentially of the H-atom gas just after the process of recombination of cosmic electrons and protons at and after the recombination phase of cosmic matter roughly about  years after the Big Bang. In Fahr8 the relevant kinetic transport equation has been derived given by Equ.(1) for this cosmic situation. This eqution in its original form, however, could not be solved by an associated kinetic distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@ . Only the velocity moments of this function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@ , like the density n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BDF@  and the pressure P( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BC2@ , could be precisely derived as function of the cosmic time t. With this knowledge of the excact form of the kinetic transport equation and the knowledge of the moments n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BDF@  and P( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BC2@  as functions of cosmic time one could be seduced to now be more ambitious and to find out more about the kinetic situation of the cosmic gas under these conditions just after the recombination era.

The kinetic transport equation

What kind of distribution function f(v,t> t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacIcacaWG2bGaaiilaiaadshacqGH+aGpcaWG0bWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbiaacMcaaaa@4063@  and what kind of temporal change of it should be expected for that period? To answer this question we want to approach the problem here a little bit from an other direction and want to use here a new independent way to access this kinetic problem, namely to use a slightly different kinetic transport equation compared to that used by Fahr8 however nevertheless treating the identical cosmophysical situation as already envisioned there. Starting from a kinetic transport equation used by Fahr9 for a plasma physical scenario which, however, for the purposes here is directly transferable, since only of importance in both cases are the two terms for a temporal derivative of f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  and for the particle redistribution in velocity space, in our case here due to the Hubble-induced velocity space drift v ˙ H = v ˙ H ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGaamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da 9iqadAhapaGbaiaadaWgaaWcbaWdbiaadIeaa8aabeaak8qadaqada WdaeaapeGaamODaaGaayjkaiaawMcaaaaa@407F@  of the particles. With these two terms the kinetic transport equation would then attain the following, surprisingly simple form describing the temporal change of the distribution function as due to the spherical Hubble drift of the particles on spherical shells in velocity space:

f( v,t ) t = 1 v 2 v [ v 2 v ˙ H f( v,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadAgadaqadaWdaeaapeGaamODaiaa cYcacaWG0baacaGLOaGaayzkaaaapaqaa8qacqGHciITcaWG0baaai abg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaa leqabaWdbiaaikdaaaaaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaape GaeyOaIyRaamODaaaadaWadaWdaeaapeGaamODa8aadaahaaWcbeqa a8qacaaIYaaaaOGabmODa8aagaGaamaaBaaaleaapeGaamisaaWdae qaaOWdbiaadAgadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaa@5561@

where the term on the left side denotes the explicit temporal change of the distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  and the term on the right side describes the temporal change of the distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  under the Hubble-induced velocity drift migration v ˙ H =vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGaamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da 9iabgkHiTiaadAhacqGHflY1caWGibaaaa@4096@ , quite analogous to the velocity space drift which was formulated as due to wave-particle-induced velocity diffusion for a different, but analogously operating plasma-physical scenario in Farh10 In this case here, this drift is connected with the fact that particles which move with a velocity v into the direction v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaWcaaaa@3968@  within a time increment dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@3A2E@  suffer a velocity change v ˙ H =dv/dt=vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGaamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da 9iaadsgacaWG2bGaai4laiaadsgacaWG0bGaeyypa0JaeyOeI0Iaam ODaiabgwSixlaadIeaaaa@4615@  with respect to the new reference place which is reached by the particle at time t`= t 0 +dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiaabcgacqGH9aqpcaWG0bWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiabgUcaRiaadsgacaWG0baaaa@4019@ . This consequently then allows to write the above kinetic transport equation after introduction of the normalized distribution in the form f( t,v )=n( t ) f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadAhaaiaawIcacaGL PaaacqGH9aqpcaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGHflY1daqdaaqaaiaadAgaaaWaaeWaa8aabaWdbiaadAhacaGG SaGaamiDaaGaayjkaiaawMcaaaaa@49AF@  by use of the explicit time-dependence of the density n=n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaad6gadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaaa@3DD9@  in the following form:

t [ n( t ) f ¯ ( v,t ) ]= 1 v 2 v [ v 2 ( vH )f( v,t ) ]= H v 2 n( t ) v [ v 3 f ¯ ( t,v ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaWa daWdaeaapeGaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa GaeyyXIC9aa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiil aiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcqGHsi sldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbeqa a8qacaaIYaaaaaaakmaalaaapaqaa8qacqGHciITa8aabaWdbiabgk Gi2kaadAhaaaWaamWaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGa aGOmaaaakmaabmaapaqaa8qacaWG2bGaamisaaGaayjkaiaawMcaai aadAgadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOaGaayzk aaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaadI eaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaWG UbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaadaWcaaWdaeaape GaeyOaIylapaqaa8qacqGHciITcaWG2baaamaadmaapaqaa8qacaWG 2bWdamaaCaaaleqabaWdbiaaiodaaaGcpaWaa0aaaeaacaWGMbaaa8 qadaqadaWdaeaapeGaamiDaiaacYcacaWG2baacaGLOaGaayzkaaaa caGLBbGaayzxaaaaaa@75C3@

which can then be developed into the following form:

f ¯ ( v,t ) n t +n( t ) t f ¯ ( v,t )= H v 2 n( t ) v [ v 3 f ¯ ( v,t ) ]= H v 2 n( t )[ 3 v 2 f ¯ ( v,t )+ v 3 v f ¯ ( v,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaadaWcaaWdaeaapeGaeyOaIyRaamOBaaWdaeaape GaeyOaIyRaamiDaaaacqGHRaWkcaWGUbWaaeWaa8aabaWdbiaadsha aiaawIcacaGLPaaadaWcaaWdaeaapeGaeyOaIylapaqaa8qacqGHci ITcaWG0baaamaanaaabaGaamOzaaaadaqadaWdaeaapeGaamODaiaa cYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaa8aaba WdbiaadIeaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaa aaGccaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaadaWcaa WdaeaapeGaeyOaIylapaqaa8qacqGHciITcaWG2baaamaadmaapaqa a8qacaWG2bWdamaaCaaaleqabaWdbiaaiodaaaGcpaWaa0aaaeaaca WGMbaaa8qadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGLOaGa ayzkaaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbi aadIeaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGc caWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaadaWadaWdae aapeGaaG4maiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaak8aadaqd aaqaaiaadAgaaaWdbmaabmaapaqaa8qacaWG2bGaaiilaiaadshaai aawIcacaGLPaaacqGHRaWkcaWG2bWdamaaCaaaleqabaWdbiaaioda aaGcdaWcaaWdaeaapeGaeyOaIylapaqaa8qacqGHciITcaWG2baaam aanaaabaGaamOzaaaadaqadaWdaeaapeGaamODaiaacYcacaWG0baa caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@85F2@

and further arranges into :

1 n( t ) n t + 1 f ¯ ( v,t ) t f ¯ ( v,t )=H3+ v f ¯ ( v,t ) v f ¯ ( v,t )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaadaWcaaWdaeaapeGaeyOaIyRaamOBaa WdaeaapeGaeyOaIyRaamiDaaaacqGHRaWkdaWcaaWdaeaapeGaaGym aaWdaeaapeWaa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaai ilaiaadshaaiaawIcacaGLPaaaaaWaaSaaa8aabaWdbiabgkGi2cWd aeaapeGaeyOaIyRaamiDaaaadaqdaaqaaiaadAgaaaWaaeWaa8aaba WdbiaadAhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHi TiaadIeacqGHflY1caaIZaGaey4kaSYaaSaaa8aabaWdbiaadAhaa8 aabaWdbmaanaaabaGaamOzaaaadaqadaWdaeaapeGaamODaiaacYca caWG0baacaGLOaGaayzkaaaaamaalaaapaqaa8qacqGHciITa8aaba WdbiabgkGi2kaadAhaaaWaa0aaaeaacaWGMbaaamaabmaapaqaa8qa caWG2bGaaiilaiaadshaaiaawIcacaGLPaaacaGGDbaaaa@69F5@

We now furthermore must take into account that the normalized distribution f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaaaaa@3D94@  also, however, is indirectly dependent on cosmic time t, because of the action of the Hubble-induced temporal velocity change which particles experience while moving to a new reference place. This implies that also f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaaaaa@3D94@ , though being a normalized function, has to be indirectly differentiated with respect to t in the following way:

1 f ¯ ( v,t ) t f ¯ ( v,t )= 1 f ¯ ( v,t ) v f ¯ ( v,t ) v t =[ 1 f ¯ ( v,t ) v f ¯ ( v,t ) ]( vH ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbmaanaaabaGaamOzaaaadaqa daWdaeaapeGaamODaiaacYcacaWG0baacaGLOaGaayzkaaaaamaala aapaqaa8qacqGHciITa8aabaWdbiabgkGi2kaadshaaaWaa0aaaeaa caWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcaca GLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeWaa0aaaeaa caWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcaca GLPaaaaaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamOD aaaadaqdaaqaaiaadAgaaaWaaeWaa8aabaWdbiaadAhacaGGSaGaam iDaaGaayjkaiaawMcaamaalaaapaqaa8qacqGHciITcaWG2baapaqa a8qacqGHciITcaWG0baaaiabg2da9maadmaapaqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeWaa0aaaeaacaWGMbaaamaabmaapaqaa8qa caWG2bGaaiilaiaadshaaiaawIcacaGLPaaaaaWaaSaaa8aabaWdbi abgkGi2cWdaeaapeGaeyOaIyRaamODaaaadaqdaaqaaiaadAgaaaWa aeWaa8aabaWdbiaadAhacaGGSaGaamiDaaGaayjkaiaawMcaaaGaay 5waiaaw2faamaabmaapaqaa8qacqGHsislcaWG2bGaamisaaGaayjk aiaawMcaaaaa@74DB@

Putting these things together with the upper differential equation we then obtain the following equation:

1 n( t ) n t +[ 1 f ¯ ( v,t ) v f ¯ ( v,t )] ( vH )= [3H Hv f ¯ ( v,t ) v f ¯ ( v,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaadaWcaaWdaeaapeGaeyOaIyRaamOBaa WdaeaapeGaeyOaIyRaamiDaaaacqGHRaWkdaWadaWdaeaapeWaaSaa a8aabaWdbiaaigdaa8aabaWdbmaanaaabaGaamOzaaaadaqadaWdae aapeGaamODaiaacYcacaWG0baacaGLOaGaayzkaaaaamaalaaapaqa a8qacqGHciITa8aabaWdbiabgkGi2kaadAhaaaWaa0aaaeaacaWGMb aaamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGLPaaa daqcJaWdaeaapeWaaeWaa8aabaWdbiabgkHiTiaadAhacaWGibaaca GLOaGaayzkaaGaeyypa0dacaGLDbGaay5waaGaeyOeI0IaaG4maiaa dIeacqGHsisldaWcaaWdaeaapeGaamisaiaadAhaa8aabaWdbmaana aabaGaamOzaaaadaqadaWdaeaapeGaamODaiaacYcacaWG0baacaGL OaGaayzkaaaaamaalaaapaqaa8qacqGHciITa8aabaWdbiabgkGi2k aadAhaaaWaa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiil aiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@7049@

consequently leading to the surprisingly simple equation:

1 n( t ) n t =3H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaadaWcaaWdaeaapeGaeyOaIyRaamOBaa WdaeaapeGaeyOaIyRaamiDaaaacqGH9aqpcqGHsislcaaIZaGaamis aaaa@456C@

and leading to the following solution

n( t )= n 0 exp[ 3H( t t 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOBa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaciGGLbGaaiiEai aacchadaWadaWdaeaapeGaeyOeI0IaaG4maiaadIeadaqadaWdaeaa peGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaapaqaba aak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4C1F@

The Baryon distribution function

In order to now solve for the rest of the remaining kinetics, we have to find the solution for the function f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaaaaa@3D94@ . In view of the fact that at time t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgsMiJkaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3D07@  (before the recombination) matter and radiation are expected to be in thermodynamical equilibrium, one may start with the assumption that f ¯ ( v, t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha paWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaaaa@3EC2@  has a Maxwellian shape, i.e. at time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@  one can expect the following function:

f ¯ ( v, t 0 )= 1 π 3/2 (K T 0 /m) 3/2 exp[ m v 2 K T 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha paWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaey ypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiabec8aW9aadaahaaWc beqaa8qacaaIZaGaai4laiaaikdaaaGccaGGOaGaam4saiaadsfapa WaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaai4laiaad2gacaGGPaWd amaaCaaaleqabaWdbiaaiodacaGGVaGaaGOmaaaaaaGcciGGLbGaai iEaiaacchadaWadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaad2ga caWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadUeaca WGubWdamaaBaaaleaapeGaaGimaaWdaeqaaaaaaOWdbiaawUfacaGL Dbaaaaa@5964@

where T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3A39@  is the Maxwellian particle temperature at time t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3A59@ , and f ¯ ( v, t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha paWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaaaa@3EC2@  in fact fullfills the normalization requirement as all Maxwellian do:

4π f ¯ ( v, t 0 ) v 2 dv=4π 1 π 3/2 (K T 0 /m) 3/2 exp[ m v 2 K T 0 ] v 2 dv=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiabec8aW9aadaqfGaqabSqabeaacaaMb8oaneaapeGaey4k IipaaOGaaeydGmaanaaabaGaamOzaaaadaqadaWdaeaapeGaamODai aacYcacaWG0bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjk aiaawMcaaiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaakiaadsgaca WG2bGaeyypa0JaaGinaiabec8aW9aadaqfGaqabSqabeaacaaMb8oa neaapeGaey4kIipaaOGaaeydGmaalaaapaqaa8qacaaIXaaapaqaa8 qacqaHapaCpaWaaWbaaSqabeaapeGaaG4maiaac+cacaaIYaaaaOGa aiikaiaadUeacaWGubWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi aac+cacaWGTbGaaiyka8aadaahaaWcbeqaa8qacaaIZaGaai4laiaa ikdaaaaaaOGaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTm aalaaapaqaa8qacaWGTbGaamODa8aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaWGlbGaamiva8aadaWgaaWcbaWdbiaaicdaa8aabe aaaaaak8qacaGLBbGaayzxaaGaamODa8aadaahaaWcbeqaa8qacaaI YaaaaOGaamizaiaadAhacqGH9aqpcaaIXaaaaa@7105@

To look for times t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgwMiZkaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3D18@  we now have to pay attention to the dynamical action of the Hubble drift v ˙ =vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGaa8qacqGH9aqpcqGHsislcaWG2bGaeyyXICTaamis aaaa@3F74@  suffered by all particles and therefore may guess the following solution:

f ¯ ( v,t t 0 )= 1 π 3/2 (K T 0 /m) 3/2 exp[ m (vvH( t t 0 )) 2 K T 0 ]= 1 π 3/2 (K T 0 /m) 3/2 exp[ m v 2 K T 0 ( 1H( t t 0 ) ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha cqGHLjYScaWG0bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaay jkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaH apaCpaWaaWbaaSqabeaapeGaaG4maiaac+cacaaIYaaaaOGaaiikai aadUeacaWGubWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+ca caWGTbGaaiyka8aadaahaaWcbeqaa8qacaaIZaGaai4laiaaikdaaa aaaOGaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTmaalaaa paqaa8qacaWGTbGaaiikaiaadAhacqGHsislcaWG2bGaamisamaabm aapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicda a8aabeaaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaadUeacaWGubWdamaaBaaaleaapeGaaGim aaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqpdaWcaaWdaeaape GaaGymaaWdaeaapeGaeqiWda3damaaCaaaleqabaWdbiaaiodacaGG VaGaaGOmaaaakiaacIcacaWGlbGaamiva8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacaGGVaGaamyBaiaacMcapaWaaWbaaSqabeaapeGa aG4maiaac+cacaaIYaaaaaaakiGacwgacaGG4bGaaiiCaiaacUfacq GHsisldaWcaaWdaeaapeGaamyBaiaadAhapaWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaam4saiaadsfapaWaaSbaaSqaa8qacaaIWa aapaqabaaaaOWdbmaajadapaqaa8qacaaIXaGaeyOeI0Iaamisamaa bmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaic daa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLDbaaaaa@8B50@

which for first glance looks reasonable, however, when reminding that we have required f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGMbaaamaabmaapaqaa8qacaWG2bGaaiilaiaadsha aiaawIcacaGLPaaaaaa@3D94@  to be a normalized function at all times with the property 4π f ¯ ( v,t ) v 2 dv=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiabec8aW9aadaqfGaqabSqabeaacaaMb8oaneaapeGaey4k IipaaOGaaeydGmaanaaabaGaamOzaaaadaqadaWdaeaapeGaamODai aacYcacaWG0baacaGLOaGaayzkaaGaamODa8aadaahaaWcbeqaa8qa caaIYaaaaOGaamizaiaadAhacqGH9aqpcaaIXaaaaa@4A45@ , we shall have to check now whether the above representation does fulfill this request at all times t, and find,

4π f ¯ ( v,t t 0 ) v 2 dv= 4π π 3/2 (K T 0 /m) 3/2 exp[ m v 2 K T 0 ( 1H( t t 0 ) ) 2 ] v 2 dv (1H( t t 0 )) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiabec8aW9aadaqfGaqabSqabeaacaaMb8oaneaapeGaey4k IipaaOGaaeydGmaanaaabaGaamOzaaaadaqadaWdaeaapeGaamODai aacYcacaWG0bGaeyyzImRaamiDa8aadaWgaaWcbaWdbiaaicdaa8aa beaaaOWdbiaawIcacaGLPaaacaWG2bWdamaaCaaaleqabaWdbiaaik daaaGccaWGKbGaamODaiabg2da9maalaaapaqaa8qacaaI0aGaeqiW dahapaqaa8qacqaHapaCpaWaaWbaaSqabeaapeGaaG4maiaac+caca aIYaaaaOGaaiikaiaadUeacaWGubWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiaac+cacaWGTbGaaiyka8aadaahaaWcbeqaa8qacaaIZa Gaai4laiaaikdaaaaaaOWdamaavacabeWcbeqaaiaaygW7a0qaa8qa cqGHRiI8aaGccaqGnaIaciyzaiaacIhacaGGWbGaai4waiabgkHiTm aalaaapaqaa8qacaWGTbGaamODa8aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaWGlbGaamiva8aadaWgaaWcbaWdbiaaicdaa8aabe aaaaGcpeWaaKama8aabaWdbiaaigdacqGHsislcaWGibWaaeWaa8aa baWdbiaadshacqGHsislcaWG0bWdamaaBaaaleaapeGaaGimaaWdae qaaaGcpeGaayjkaiaawMcaaiaacMcapaWaaWbaaSqabeaapeGaaGOm aaaaaOGaayjkaiaaw2faaiaadAhapaWaaWbaaSqabeaapeGaaGOmaa aakiaadsgacaWG2bGaeyyXICTaaiikaiaaigdacqGHsislcaWGibWa aeWaa8aabaWdbiaadshacqGHsislcaWG0bWdamaaBaaaleaapeGaaG imaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacMcapaWaaWbaaSqabeaa peGaaG4maaaaaaa@88E6@

which at a first glance does perhaps not make it evident that the normalization condition is fulfilled, but one can easily arrange things to make that evident, when introducing a new time-dependent Maxwellian temperature T( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3BC6@  given by:

T( t )= T 0 (1H( t t 0 )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caGGOa GaaGymaiabgkHiTiaadIeadaqadaWdaeaapeGaamiDaiabgkHiTiaa dshapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaa Gaaiyka8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaaaa@4C95@

One then can convince oneself that the normalization is fulfilled , because then the wanted normalized distribution function would lead to:

1=4π f ¯ ( v,t t 0 ) v 2 dv= 4π π 3/2 (KT( t )/m) 3/2 exp[ m v 2 KT( t ) ] v 2 dv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabg2da9iaaisdacqaHapaCpaWaaubiaeqaleqabaGaaGza VdqdbaWdbiabgUIiYdaakiaab2aidaqdaaqaaiaadAgaaaWaaeWaa8 aabaWdbiaadAhacaGGSaGaamiDaiabgwMiZkaadshapaWaaSbaaSqa a8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaamODa8aadaahaa Wcbeqaa8qacaaIYaaaaOGaamizaiaadAhacqGH9aqpdaWcaaWdaeaa peGaaGinaiabec8aWbWdaeaapeGaeqiWda3damaaCaaaleqabaWdbi aaiodacaGGVaGaaGOmaaaakiaacIcacaWGlbGaamivamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaai4laiaad2gacaGGPaWdamaaCa aaleqabaWdbiaaiodacaGGVaGaaGOmaaaaaaGcpaWaaubiaeqaleqa baGaaGzaVdqdbaWdbiabgUIiYdaakiaab2aiciGGLbGaaiiEaiaacc hadaWadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaad2gacaWG2bWd amaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadUeacaWGubWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGa amODa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamizaiaadAhaaaa@75EF@

Hence when putting things together we arrive at the final result for the wanted distribution function given in the following form:

f( v,t )=n( t ) f ¯ ( v,t t 0 )= n 0 exp[ 3H( t t 0 ) ] 1 π 3/2 (KT( t )/m) 3/2 exp[ m v 2 KT( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcaWGUbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aacqGHflY1daqdaaqaaiaadAgaaaWaaeWaa8aabaWdbiaadAhacaGG SaGaamiDaiabgwMiZkaadshapaWaaSbaaSqaa8qacaaIWaaapaqaba aak8qacaGLOaGaayzkaaGaeyypa0JaamOBa8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qaciGGLbGaaiiEaiaacchadaWadaWdaeaapeGaey OeI0IaaG4maiaadIeadaqadaWdaeaapeGaamiDaiabgkHiTiaadsha paWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaaca GLBbGaayzxaaGaeyyXIC9aaSaaa8aabaWdbiaaigdaa8aabaWdbiab ec8aW9aadaahaaWcbeqaa8qacaaIZaGaai4laiaaikdaaaGccaGGOa Gaam4saiaadsfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaa c+cacaWGTbGaaiyka8aadaahaaWcbeqaa8qacaaIZaGaai4laiaaik daaaaaaOGaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabgkHiTmaa laaapaqaa8qacaWGTbGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaa Gcpaqaa8qacaWGlbGaamivamaabmaapaqaa8qacaWG0baacaGLOaGa ayzkaaaaaaGaay5waiaaw2faaaaa@7CA7@

or in a more concise form given by:

f( v,t )= n 0 exp[ 3H( t t 0 ) ] (1H( t t 0 )) 3 π 3/2 (K T 0 /m) 3/2 exp[ m v 2 K T 0 ( 1H( t t 0 ) ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcaWGUbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi GacwgacaGG4bGaaiiCamaadmaapaqaa8qacqGHsislcaaIZaGaamis amaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbi aaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH flY1daWcaaWdaeaapeGaaiikaiaaigdacqGHsislcaWGibWaaeWaa8 aabaWdbiaadshacqGHsislcaWG0bWdamaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaayjkaiaawMcaaiaacMcapaWaaWbaaSqabeaapeGaaG 4maaaaaOWdaeaapeGaeqiWda3damaaCaaaleqabaWdbiaaiodacaGG VaGaaGOmaaaakiaacIcacaWGlbGaamiva8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacaGGVaGaamyBaiaacMcapaWaaWbaaSqabeaapeGa aG4maiaac+cacaaIYaaaaaaakiGacwgacaGG4bGaaiiCaiaacUfacq GHsisldaWcaaWdaeaapeGaamyBaiaadAhapaWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaam4saiaadsfapaWaaSbaaSqaa8qacaaIWa aapaqabaaaaOWdbmaajadapaqaa8qacaaIXaGaeyOeI0Iaamisamaa bmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaic daa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLDbaaaaa@7E4B@

Introduction of the mean thermal velocity v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3A5B@  at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@  by: v 0 2 =K T 0 /m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaGccqGH 9aqpcaWGlbGaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaca GGVaGaamyBaaaa@40B4@   then finally with x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@  leads to the following more usefull form:

f( v,t )= n 0 exp[ 3H( t t 0 ) ] (1H( t t 0 )) 3 π 3/2 v o 3 exp[ x 2 ( 1H( t t 0 ) ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL PaaacqGH9aqpcaWGUbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi GacwgacaGG4bGaaiiCamaadmaapaqaa8qacqGHsislcaaIZaGaamis amaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbi aaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH flY1daWcaaWdaeaapeGaaiikaiaaigdacqGHsislcaWGibWaaeWaa8 aabaWdbiaadshacqGHsislcaWG0bWdamaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaayjkaiaawMcaaiaacMcapaWaaWbaaSqabeaapeGaaG 4maaaaaOWdaeaapeGaeqiWda3damaaCaaaleqabaWdbiaaiodacaGG VaGaaGOmaaaakiaadAhapaWaa0baaSqaa8qacaWGVbaapaqaa8qaca aIZaaaaaaakiGacwgacaGG4bGaaiiCaiaacUfacqGHsislcaWG4bWd amaaCaaaleqabaWdbiaaikdaaaGccqGHflY1daqcWaWdaeaapeGaaG ymaiabgkHiTiaadIeadaqadaWdaeaapeGaamiDaiabgkHiTiaadsha paWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaai yka8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzxaaaaaa@774A@

In Figures 1 & 2 we show the above distribution function normalized by the density, i.e. f( x,t )/n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGL PaaacaGGVaGaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa aaaa@41CC@ , and the associated differential velocity space density, i.e. x 2 f( x,t )/n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOzamaabmaapaqa a8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaGGVaGaamOBam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@43DB@   as function of the normalized velocity x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@  for different times t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgwMiZkaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3D18@ .

Figure 1 The baryon probability distribution f( x,t )/n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGL PaaacaGGVaGaamOBamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa aaaa@41CC@ is shown as function of the normalized velocity x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@ for times 1, 2, 3, 4 Billion years after the recombination time at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@ .

Figure 2 The differential velocity space distribution x 2 f( x,t )/n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOzamaabmaapaqa a8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaGGVaGaamOBam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@43DB@ is shown as function of the normalized velocity x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@ for times of 1, 2, 3, 4 Billion years after the recombination point at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@ .

Conclusion

In this paper we have shown that the problem of the gas dynamic behaviour of a homogeneous cosmic baryon gas in an expanding universe can be solved on the basis of a special kinetic transport equation describing the temporal change of the kinetic distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  due to the decelerated motions of the particles in velocity space as reaction to the Hubble migration drift which cares for a typical velocity change per time of each particle according to v ˙ =vH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGaa8qacqGH9aqpcqGHsislcaWG2bGaeyyXICTaamis aaaa@3F74@ . The influence of these particle drifts we have described by a kind of spherical diffusion of the particles through spherical shells in velocity space and could find the solution of the particle distribution function f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2bGaaiilaiaadshaaiaawIcacaGL Paaaaaa@3D83@  as function of the velocity v and the cosmic time t (see section above and our Figures 1 & 2. As these figures do show the original Maxwellian with a temperature T= T 0 =4000K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyypa0JaaGinaiaaicdacaaIWaGaaGimaiaadUeaaaa@40F4@  is changing in the billions of years following the matter recombination at time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@  by systematically transporting the particles from higher to lower velocities which, however in such a regularized way that it in fact corresponds to the increase of the accociated, effective temperature of the distribution function by T( t )= T 0 (1H( t t 0 )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caGGOa GaaGymaiabgkHiTiaadIeadaqadaWdaeaapeGaamiDaiabgkHiTiaa dshapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaa Gaaiyka8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaaaa@4C95@ . This is shown in Figure 3 by means of the normalized, average kinetic energy E ¯ (xzt)=( 4π/ Ε 0 ) 0 x m x 4 f ¯ ( x,t )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam yraaaacaGGOaGaamiEaiaadQhacaWG0bGaaiykaabaaaaaaaaapeGa eyypa0ZaaeWaa8aabaWdbiabgsda0iabec8aWjabg+caViabfw5af9 aadaWgaaWcbaWdbiabgcdaWaWdaeqaaaGcpeGaayjkaiaawMcaamaa wahabeWcpaqaa8qacaaIWaaapaqaa8qacaWG4baan8aabaWdbiabgU IiYdaakiaab2aicaWGTbGaamiEa8aadaahaaWcbeqaa8qacaaI0aaa aOWdamaanaaabaGaamOzaaaapeWaaeWaa8aabaWdbiaadIhacaGGSa GaamiDaaGaayjkaiaawMcaaiaadsgacaWG4baaaa@5616@  as function of the upper integration border x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@  for different cosmic times of  Billion years after the recombination point at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@ .

Figure 3 The average thermal energy, normalized with its value E 0 =K T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaWG lbGaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3E07@ at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@ , i.e. ( 4π/ E 0 ) 0 x m x 4 f ¯ ( x,t )dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaisdacqaHapaCcaGGVaGaamyra8aadaWgaaWc baWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaadaGfWbqabSWdae aapeGaaGimaaWdaeaapeGaamiEaaqdpaqaa8qacqGHRiI8aaGccaqG naIaamyBaiaadIhapaWaaWbaaSqabeaapeGaaGinaaaak8aadaqdaa qaaiaadAgaaaWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaa wIcacaGLPaaacaWGKbGaamiEaaaa@4EAB@ , is shownas function of the upper integration border x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadAhacaGGVaGaamODa8aadaWgaaWcbaWdbiaa icdaa8aabeaaaaa@3E0C@ at times 1, 2, 3, 4 Billion years after the recombination point at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaaa aa@3C58@ .

Acknowledgments

None.

Conflicts of interest

The authors declare no conflicts of interest.

References

Creative Commons Attribution License

©2021 Fahr. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.