Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 1

The backlund transformation of the generalized Riccati equation and its applications to the nonlinear KPP equation

Elsayed ME Zayed,1 Khaled AE Alurrfi,2 Abdul Ghani Al Nowehy3

1Department of Mathematics, Faculty of Sciences, Zagazig University, Egypt
2Department of Mathematics, Faculty of Arts & Science, Mergib University, Libya
3Department of Mathematics, Faculty of Education and Science, Taiz University, Yemen

Correspondence: Elsayed ME Zayed, Department of Mathematics, Faculty of Sciences, Zagazig University, Zagazig, Egypt

Received: June 17, 2017 | Published: August 30, 2017

Citation: Zayed EME, Alurrfi KAE, Al-Nowehy AG. The backlund transformation of the generalized Riccati equation and its applications to the nonlinear KPP equation. Phys Astron Int J. 2017;1(1):39-47. DOI: 10.15406/paij.2017.01.00007

Download PDF

Abstract

The Bäcklund transformation of the generalized Riccati equation is applied in this article to construct many new exact traveling wave solutions for the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation. Solutions, trigonometric and rational solutions of this equation are obtained. This transformation is straightforward and concise. It gives much more general results than the well-known results obtaining by other methods. With the aid of Maple, some graphical representations for some results are presented by choosing suitable values of parameters.

Keywords: exact traveling wave solutions, bäcklund transformation of generalized Riccati equation, kolmogorov-petrovskii-piskunov equation, soliton solutions, trigonometric solutions, rational solutions

Mathematics subject classification

35K99, 35P05, 35P99, 35C05

Introduction

The investigation of exact traveling wave solutions to nonlinear PDEs plays an important role in the study of nonlinear physical phenomena. Nonlinear wave phenomena appears in various scientific and engineering fields, such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very important in nonlinear wave equations. In recent decades, many effective methods have been established to obtain exact solutions of nonlinear PDEs, such as the inverse scattering transform,1 the Hirota method,2 the truncated Painlevé expansion method,3 the Bäcklund transform method,1,4,5 the exp-function method,68 the simplest equation method,9,10 the Weierstrass elliptic function method,11 the Jacobi elliptic function method,1214 the tanh-function method,15,16 the ( G /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai qadEeagaqbaiaac+cacaGGhbGaaiykaaaa@3A33@ expansion method,1722 the modified simple equation method,2326 the Kudryashov method,2729 the multiple exp-function algorithm method,30,31 the transformed rational function method,32 the Frobenius decomposition technique,33 the local fractional variation iteration method,34 the local fractional series expansion method,35 the ( G G , 1 G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aadaWcaaqaaiqadEeagaqbaaqaaiaadEeaaaGaaiilamaalaaabaGa aGymaaqaaiaadEeaaaaacaGLOaGaayzkaaaaaa@3C08@ expansion method,3640 the generalized Riccati equation mapping method4145 and so on.

The objective of this article is to use the Bäcklund transformation of the generalized Riccati equation to construct new exact traveling wave solutions of the following nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation.22,26,46

u t u xx +μ u 2 +γ u 2 +δ u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaamiDaaqabaqcfaOaeyOeI0IaamyDamaaBaaajuai baGaamiEaiaadIhaaKqbagqaaiabgUcaRiabeY7aTjaadwhadaahaa qcfasabeaacaaIYaaaaKqbakabgUcaRiabeo7aNjaadwhadaahaaqc fasabeaacaaIYaaaaKqbakabgUcaRiabes7aKjaadwhalmaaCaaaju aibeqaaKqzadGaaG4maaaajuaGcqGH9aqpcaaIWaaaaa@5070@  (1.1)

Where μ, γ, δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 MaaiilaabaaaaaaaaapeGaaiiOa8aacqaHZoWzcaGGSaWdbiaaccka paGaeqiTdqgaaa@3F7C@ are real constants. Equation (1.1) includes the Fisher equation, Huxley equation, Burgers-Huxley equation, Chaffee-Infanfe equation and Fitzhugh-Nagumo equation as special cases. Recently, Feng et al.22 have discussed Equation (1.1) using the ( G /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai qadEeagaqbaiaac+cacaGGhbGaaiykaaaa@3A33@ -expansion method and found its exact solutions, while Zayed et al.26,46 have applied two methods via the modified simple equation method and the Riccati equation method combined with the ( G /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai qadEeagaqbaiaac+cacaGGhbGaaiykaaaa@3A33@ -expansion method respectively, to Equation (1.1) and determined the exact traveling wave solutions of it.

This paper is organized as follows: In Section 2, the description of the Bäcklund transformation of the generalized Riccati equation is given. In Section 3, we use the given method described in Section 2, to find many new exact traveling wave solutions of the nonlinear KPP equation. In Section 4, physical explanations of some results are presented. In Section 5, some conclusions are obtained.

Description of the bäcklund transformation of the generalized riccati equation

Suppose that we have the following nonlinear PDE:

F(u, u t , u x , u tt , u xx ,...)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOrai aacIcacaWG1bGaaiilaiaaykW7caWG1bWaaSbaaKqbGeaacaWG0baa juaGbeaacaGGSaGaaGPaVlaadwhadaWgaaqcfasaaiaadIhaaKqbag qaaiaacYcacaaMc8UaamyDamaaBaaajuaibaGaamiDaiaadshaaeqa aKqbakaacYcacaaMc8UaamyDamaaBaaajuaibaGaamiEaiaadIhaae qaaKqbakaacYcacaGGUaGaaiOlaiaac6cacaGGPaGaeyypa0JaaGim aiaacYcacaaMc8oaaa@568D@  (2.1)

Where F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOraa aa@374F@  is a polynomial in u(x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacaWG4bGaaiilaiaaykW7caWG0bGaaiykaaaa@3D08@  and its partial derivatives, in which the highest order derivatives and the nonlinear terms are involved. In the following, we give the main steps of this method [5]:

Step 1: Using the wave transformation

u(x,t)=u(ξ),                ξ=kx+ωt, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacaWG4bGaaiilaiaaykW7caWG0bGaaiykaiabg2da9iaadwha caGGOaGaeqOVdGNaaiykaiaacYcacaaMc8UaaeiiaiaabccacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiabe67a4jabg2da9iaadU gacaWG4bGaey4kaSIaeqyYdCNaamiDaiaacYcacaaMc8oaaa@5928@  (2.2)

where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aaa aa@3774@  and ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  are constants, to reduce Equation (2.1) to the following ODE:

P(u, u , u ,...)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuai aacIcacaWG1bGaaiilaiaaykW7ceWG1bGbauaacaGGSaGaaGPaVlqa dwhagaGbaiaacYcacaGGUaGaaiOlaiaac6cacaGGPaGaeyypa0JaaG imaiaacYcacaaMc8oaaa@46F0@  (2.3)

where P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuaa aa@3759@  is a polynomial in u(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacqaH+oaEcaGGPaaaaa@3A9A@  and its total derivatives while =d/dξ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaWbaae qabaGaeyOmGikaaiabg2da9iaadsgacaGGVaGaamizaiabe67a4jaa c6caaaa@3E26@

Step 2: Assume that Equation (2.3) has the formal solution

u(ξ)= i=0 N a i ψ (ξ) i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacqaH+oaEcaGGPaGaeyypa0ZaaybCaeqabaGaamyAaiabg2da 9iaaicdaaeaacaWGobaabaGaeyyeIuoaaiaadggadaWgaaqcfasaai aadMgaaeqaaKqbakabeI8a5jaacIcacqaH+oaEcaGGPaWaaWbaaKqb GeqabaGaamyAaaaajuaGcaGGSaGaaGPaVdaa@4CF5@  (2.4)

where a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaajuaibaGaamyAaaqabaaaaa@38A7@  are constants to be determined, such that a N 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaajuaibaGaamOtaaqcfayabaGaeyiyIKRaaGimaaaa@3B9B@  , while ψ(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK Naaiikaiabe67a4jaacMcaaaa@3B6E@  comes from the following Bäcklund transformation

ψ(ξ)= rB+Aφ(ξ) A+Bφ(ξ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK Naaiikaiabe67a4jaacMcacqGH9aqpdaWcaaqaaiabgkHiTiaadkha caWGcbGaey4kaSIaamyqaiabeA8aQjaacIcacqaH+oaEcaGGPaaaba GaamyqaiabgUcaRiaadkeacqaHgpGAcaGGOaGaeqOVdGNaaiykaaaa caGGSaGaaGPaVdaa@4F33@  (2.5)

where r,A,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aacYcacaWGbbGaaiilaiaadkeaaaa@3A68@  are constants with B0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqai abgcMi5kaaicdacaGGSaaaaa@3A7C@  while φ(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO Maaiikaiabe67a4jaacMcaaaa@3B5D@  satisfies the generalized Riccati equation:

φ (ξ)=r+pφ(ξ)+qφ (ξ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOXdO MbauaacaGGOaGaeqOVdGNaaiykaiabg2da9iaadkhacqGHRaWkcaWG WbGaeqOXdOMaaiikaiabe67a4jaacMcacqGHRaWkcaWGXbGaeqOXdO Maaiikaiabe67a4jaacMcadaahaaqcfasabeaacaaIYaaaaKqbakaa cYcacaaMc8oaaa@4E9C@  (2.6)

where p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aacYcacaaMc8UaamyCaaaa@3AAA@  are constants, such that q0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgcMi5kaaicdaaaa@39FB@ .

It is well-known41-45 that Equation (2.6) has many families of solutions as follows:

Family 1: When p 2 4qr>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbGaeyOpa4JaaGimaaaa@3E6D@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@  or qr0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadkhacqGHGjsUcaaIWaaaaa@3AF2@ , we have

φ 1 (ξ)= 1 2q ( p+ p 2 4qr tanh( p 2 4qr 2 ξ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaaajuaGbeaacaGGOaGaeqOVdGNaaiykaiab g2da9iabgkHiTmaaleaabaGaaGymaaqaaiaaikdacaWGXbaaamaabm aabaGaamiCaiabgUcaRmaakaaabaGaamiCamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaciGG0bGaai yyaiaac6gacaGGObGaaiikamaaleaabaWaaOaaaeaacaWGWbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamyCaiaadkhaae qaaaqaaiaaikdaaaGaeqOVdGNaaiykaaGaayjkaiaawMcaaiaacYca aaa@598A@

  φ 2 (ξ)= 1 2q ( p+ p 2 4qr coth( p 2 4qr 2 ξ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9iabgkHiTmaaleaabaGaaGymaaqaaiaaikdacaWGXbaaamaabm aabaGaamiCaiabgUcaRmaakaaabaGaamiCamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaciGGJbGaai 4BaiaacshacaGGObGaaiikamaaleaabaWaaOaaaeaacaWGWbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamyCaiaadkhaae qaaaqaaiaaikdaaaGaeqOVdGNaaiykaaGaayjkaiaawMcaaiaacYca aaa@598E@

  φ 3 (ξ)= 1 2q ( p+ p 2 4qr ( coth( p 2 4qr ξ)±csch( p 2 4qr ξ) ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIZaaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9iabgkHiTmaaleaabaGaaGymaaqaaiaaikdacaWGXbaaamaabm aabaGaamiCaiabgUcaRmaakaaabaGaamiCamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaadaqadaqaai GacogacaGGVbGaaiiDaiaacIgacaGGOaWaaOaaaeaacaWGWbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamyCaiaadkhaae qaaiabe67a4jaacMcacqGHXcqScaGGJbGaai4CaiaacogacaGGObGa aiikamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey OeI0IaaGinaiaadghacaWGYbaabeaacqaH+oaEcaGGPaaacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaiilaaaa@693D@

  φ 4 (ξ)= 1 4q ( 2p+ p 2 4qr ( tanh( p 2 4qr 4 ξ )+coth( p 2 4qr 4 ξ ) ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI0aaajuaGbeaacaGGOaGaeqOVdGNaaiykaiab g2da9iabgkHiTmaaleaabaGaaGymaaqaaiaaisdacaWGXbaaamaabm aabaGaaGOmaiaadchacqGHRaWkdaGcaaqaaiaadchadaahaaqabKqb GeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGXbGaamOCaaqabaWaae WaaeaaciGG0bGaaiyyaiaac6gacaGGObWaaeWaaeaadaWcbaqaamaa kaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaG inaiaadghacaWGYbaabeaaaeaacaaI0aaaaiabe67a4bGaayjkaiaa wMcaaiabgUcaRiGacogacaGGVbGaaiiDaiaacIgadaqadaqaamaale aabaWaaOaaaeaacaWGWbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGH sislcaaI0aGaamyCaiaadkhaaeqaaaqaaiaaisdaaaGaeqOVdGhaca GLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaa @6AFA@

  φ 5 (ξ)= 1 2q ( p+ ± ( R 2 + M 2 )( p 2 4qr ) A p 2 4qr cosh( p 2 4qr ξ ) Rsinh( p 2 4qr ξ )+M ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI1aaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9maaleaabaGaaGymaaqaaiaaikdacaWGXbaaamaabmaabaGaey OeI0IaamiCaiabgUcaRmaalaaabaGaeyySae7aaOaaaeaadaqadaqa aiaadkfadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaad2eada ahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaaykW7daqa daqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaais dacaWGXbGaamOCaaGaayjkaiaawMcaaaqabaGaeyOeI0Iaamyqamaa kaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaG inaiaadghacaWGYbaabeaaciGGJbGaai4BaiaacohacaGGObWaaeWa aeaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgk HiTiaaisdacaWGXbGaamOCaaqabaGaeqOVdGhacaGLOaGaayzkaaaa baGaamOuaiGacohacaGGPbGaaiOBaiaacIgadaqadaqaamaakaaaba GaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaa dghacaWGYbaabeaacqaH+oaEaiaawIcacaGLPaaacqGHRaWkcaWGnb aaaaGaayjkaiaawMcaaiaacYcaaaa@7D09@

  φ 6 (ξ)= 1 2q ( p ± ( M 2 R 2 )( p 2 4qr ) +A p 2 4qr sinh( p 2 4qr ξ ) Rcosh( p 2 4qr ξ )+M ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI2aaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9maaleaabaGaaGymaaqaaiaaikdacaWGXbaaamaabmaabaGaey OeI0IaamiCaiabgkHiTmaalaaabaGaeyySae7aaOaaaeaadaqadaqa aiaad2eadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaadkfada ahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaaykW7daqa daqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaais dacaWGXbGaamOCaaGaayjkaiaawMcaaaqabaGaey4kaSIaamyqamaa kaaabaGaamiCamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaG inaiaadghacaWGYbaabeaaciGGZbGaaiyAaiaac6gacaGGObWaaeWa aeaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgk HiTiaaisdacaWGXbGaamOCaaqabaGaeqOVdGhacaGLOaGaayzkaaaa baGaamOuaiGacogacaGGVbGaai4CaiaacIgadaqadaqaamaakaaaba GaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaa dghacaWGYbaabeaacqaH+oaEaiaawIcacaGLPaaacqGHRaWkcaWGnb aaaaGaayjkaiaawMcaaiaacYcaaaa@7D15@

Where R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@  and M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@  are nonzero real constants satisfying M 2 R 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaamOuamaaCaaajuai beqaaiaaikdaaaqcfaOaeyOpa4JaaGimaaaa@3E10@ .

φ 7 (ξ)= 2rcosh( p 2 4qr 2 ξ ) p 2 4qr sinh( p 2 4qr 2 ξ )pcosh( p 2 4qr 2 ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI3aaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9maalaaabaGaaGOmaiaadkhaciGGJbGaai4BaiaacohacaGGOb WaaeWaaeaadaWcbaqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaa ikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaaeaacaaIYa aaaiabe67a4bGaayjkaiaawMcaaaqaamaakaaabaGaamiCamaaCaaa juaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabe aaciGGZbGaaiyAaiaac6gacaGGObWaaeWaaeaadaWcbaqaamaakaaa baGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinai aadghacaWGYbaabeaaaeaacaaIYaaaaiabe67a4bGaayjkaiaawMca aiabgkHiTiaadchaciGGJbGaai4BaiaacohacaGGObWaaeWaaeaada WcbaqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOa eyOeI0IaaGinaiaadghacaWGYbaabeaaaeaacaaIYaaaaiabe67a4b GaayjkaiaawMcaaaaacaGGSaaaaa@72BF@  

φ 8 (ξ)= 2rsinh( p 2 4qr 2 ξ ) psinh( p 2 4qr 2 ξ ) p 2 4qr cosh( p 2 4qr 2 ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI4aaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9maalaaabaGaeyOeI0IaaGOmaiaadkhaciGGZbGaaiyAaiaac6 gacaGGObWaaeWaaeaadaWcbaqaamaakaaabaGaamiCamaaCaaajuai beqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaae aacaaIYaaaaiabe67a4bGaayjkaiaawMcaaaqaaiaadchaciGGZbGa aiyAaiaac6gacaGGObWaaeWaaeaadaWcbaqaamaakaaabaGaamiCam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbaabeaaaeaacaaIYaaaaiabe67a4bGaayjkaiaawMcaaiabgkHiTm aakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0Ia aGinaiaadghacaWGYbaabeaaciGGJbGaai4BaiaacohacaGGObWaae WaaeaadaWcbaqaamaakaaabaGaamiCamaaCaaabeqcfasaaiaaikda aaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaaeaacaaIYaaaai abe67a4bGaayjkaiaawMcaaaaacaGGSaaaaa@73B2@   φ 9 (ξ)= 2rsinh( p 2 4qr ξ ) psinh( p 2 4qr ξ )+ p 2 4qr cosh( p 2 4qr ξ )± p 2 4qr , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaI5aaabeaajuaGcaGGOaGaeqOVdGNaaiykaiab g2da9maalaaabaGaaGOmaiaadkhaciGGZbGaaiyAaiaac6gacaGGOb WaaeWaaeaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqb akabgkHiTiaaisdacaWGXbGaamOCaaqabaGaeqOVdGhacaGLOaGaay zkaaaabaGaeyOeI0IaamiCaiGacohacaGGPbGaaiOBaiaacIgadaqa daqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey OeI0IaaGinaiaadghacaWGYbaabeaacqaH+oaEaiaawIcacaGLPaaa cqGHRaWkdaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbak abgkHiTiaaisdacaWGXbGaamOCaaqabaGaci4yaiaac+gacaGGZbGa aiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHsislcaaI0aGaamyCaiaadkhaaeqaaiabe67a4bGaayjk aiaawMcaaiabgglaXoaakaaabaGaamiCamaaCaaajuaibeqaaiaaik daaaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaaaaGaaiilaaaa @7966@   φ 10 (ξ)= 4rsinh( 1 4 p 2 4qr ξ )cosh( 1 4 p 2 4qr ξ ) 2psinh( 1 4 p 2 4qr ξ )cosh( 1 4 p 2 4qr ξ )+2 p 2 4qr cosh 2 ( 1 4 p 2 4qr ξ ) p 2 4qr . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGimaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaisdacaWGYbGaci4CaiaacMgacaGGUb GaaiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqa aiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdaca WGXbGaamOCaaqabaGaeqOVdGhacaGLOaGaayzkaaGaaGPaVlGacoga caGGVbGaai4CaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaais daaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH sislcaaI0aGaamyCaiaadkhaaeqaaiabe67a4bGaayjkaiaawMcaaa qaaiabgkHiTiaaikdacaWGWbGaci4CaiaacMgacaGGUbGaaiiAamaa bmaabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqaaiaadchada ahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGXbGaamOC aaqabaGaeqOVdGhacaGLOaGaayzkaaGaaGPaVlGacogacaGGVbGaai 4CaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaa aeaacaWGWbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislcaaI0a GaamyCaiaadkhaaeqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiaa ikdadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgk HiTiaaisdacaWGXbGaamOCaaqabaGaci4yaiaac+gacaGGZbGaaiiA amaaCaaajuaibeqaaiaaikdaaaqcfa4aaeWaaeaadaWcbaqaaiaaig daaeaacaaI0aaaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikda aaqcfaOaeyOeI0IaaGinaiaadghacaWGYbaabeaacqaH+oaEaiaawI cacaGLPaaacqGHsisldaGcaaqaaiaadchadaahaaqcfasabeaacaaI YaaaaKqbakabgkHiTiaaisdacaWGXbGaamOCaaqabaaaaiaac6caaa a@A17A@

Family 2: When p 2 4qr<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbGaeyipaWJaaGimaaaa@3E69@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@  or qr0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadkhacqGHGjsUcaaIWaaaaa@3AF2@ , we have

φ 11 (ξ)= 1 2q ( p+ 4qr p 2 tan( 4qr p 2 2 ξ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGymaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaigdaaeaacaaIYaGaamyCaaaadaqada qaaiabgkHiTiaadchacqGHRaWkdaGcaaqaaiaaisdacaWGXbGaamOC aiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaGaci iDaiaacggacaGGUbWaaeWaaeaadaWcbaqaamaakaaabaGaaGinaiaa dghacaWGYbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaaju aGbeaaaeaacaaIYaaaaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaa wMcaaiaacYcaaaa@5989@

φ 12 (ξ)= 1 2q ( p+ 4qr p 2 cot( 4qr p 2 2 ξ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGOmaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpcqGHsisldaWcbaqaaiaaigdaaeaacaaIYaGaamyCaa aadaqadaqaaiaadchacqGHRaWkdaGcaaqaaiaaisdacaWGXbGaamOC aiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaGaci 4yaiaac+gacaGG0bWaaeWaaeaadaWcbaqaamaakaaabaGaaGinaiaa dghacaWGYbGaeyOeI0IaamiCamaaCaaabeqcfasaaiaaikdaaaaaju aGbeaaaeaacaaIYaaaaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaa wMcaaiaacYcaaaa@598D@  

φ 13 (ξ)= 1 2q ( p+ 4qr p 2 ( tan( 4qr p 2 ξ )±sec( 4qr p 2 ξ ) ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaG4maaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaigdaaeaacaaIYaGaamyCaaaadaqada qaaiabgkHiTiaadchacqGHRaWkdaGcaaqaaiaaisdacaWGXbGaamOC aiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaWaae WaaeaaciGG0bGaaiyyaiaac6gadaqadaqaamaakaaabaGaaGinaiaa dghacaWGYbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaaju aGbeaacqaH+oaEaiaawIcacaGLPaaacqGHXcqSciGGZbGaaiyzaiaa cogadaqadaqaamaakaaabaGaaGinaiaadghacaWGYbGaeyOeI0Iaam iCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaawIca caGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@6881@   φ 14 (ξ)= 1 2q ( p+ 4qr p 2 ( cot( 4qr p 2 ξ )±csc( 4qr p 2 ξ ) ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGinaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpcqGHsisldaWcbaqaaiaaigdaaeaacaaIYaGaamyCaa aadaqadaqaaiaadchacqGHRaWkdaGcaaqaaiaaisdacaWGXbGaamOC aiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaWaae WaaeaaciGGJbGaai4BaiaacshadaqadaqaamaakaaabaGaaGinaiaa dghacaWGYbGaeyOeI0IaamiCamaaCaaabeqcfasaaiaaikdaaaaaju aGbeaacqaH+oaEaiaawIcacaGLPaaacqGHXcqSciGGJbGaai4Caiaa cogadaqadaqaamaakaaabaGaaGinaiaadghacaWGYbGaeyOeI0Iaam iCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaawIca caGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@6883@   φ 15 (ξ)= 1 4q ( 2p+ 4qr p 2 ( tan( 4qr p 2 4 ξ )cot( 4qr p 2 4 ξ ) ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKazfa4=baGaaGymaiaaiwdaaeqaaKqbakaacIcacqaH+oaE caGGPaGaeyypa0ZaaSqaaeaacaaIXaaabaGaaGinaiaadghaaaWaae WaaeaacqGHsislcaaIYaGaamiCaiabgUcaRmaakaaabaGaaGinaiaa dghacaWGYbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaaju aGbeaadaqadaqaaiGacshacaGGHbGaaiOBamaabmaabaWaaSqaaeaa daGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaaqabK qbGeaacaaIYaaaaaqcfayabaaabaGaaGinaaaacqaH+oaEaiaawIca caGLPaaacqGHsislciGGJbGaai4Baiaacshadaqadaqaamaaleaaba WaaOaaaeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaaKqb GeqabaGaaGOmaaaaaKqbagqaaaqaaiaaisdaaaGaeqOVdGhacaGLOa GaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaa@6BAC@   φ 16 (ξ)= 1 2q ( p+ ± ( R 2 M 2 )( 4qr p 2 ) A 4qr p 2 cos( 4qr p 2 ξ ) Rsin( 4qr p 2 ξ )+M ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGOnaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaigdaaeaacaaIYaGaamyCaaaadaqada qaaiabgkHiTiaadchacqGHRaWkdaWcaaqaaiabgglaXoaakaaabaWa aeWaaeaacaWGsbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislca WGnbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaM c8+aaeWaaeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaae qajuaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaeqaaiabgkHiTiaa dgeadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaa qabKqbGeaacaaIYaaaaaqcfayabaGaci4yaiaac+gacaGGZbWaaeWa aeaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaa qcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaa baGaamOuaiGacohacaGGPbGaaiOBamaabmaabaWaaOaaaeaacaaI0a GaamyCaiaadkhacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiaad2eaaaaaca GLOaGaayzkaaGaaiilaaaa@7BF8@  

φ 17 (ξ)= 1 2q ( p ± ( R 2 M 2 )( 4qr p 2 ) +A 4qr p 2 sin( 4qr p 2 ξ ) Rcos( 4qr p 2 ξ )+M ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaG4naaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaigdaaeaacaaIYaGaamyCaaaadaqada qaaiabgkHiTiaadchacqGHsisldaWcaaqaaiabgglaXoaakaaabaWa aeWaaeaacaWGsbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislca WGnbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaM c8+aaeWaaeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaaK qbGeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaaaeqaaiabgUcaRiaa dgeadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaa qcfasabeaacaaIYaaaaaqcfayabaGaci4CaiaacMgacaGGUbWaaeWa aeaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaa qcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaa baGaamOuaiGacogacaGGVbGaai4CamaabmaabaWaaOaaaeaacaaI0a GaamyCaiaadkhacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiaad2eaaaaaca GLOaGaayzkaaGaaiilaaaa@7BF9@

where R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@  and M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@  are two nonzero real constants satisfying R 2 M 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaS WaaWbaaKqbagqajuaibaqcLbmacaaIYaaaaKqbakabgkHiTiaad2ea daahaaqcfasabeaajugWaiaaikdaaaqcfaOaeyOpa4JaaGimaaaa@4105@ .

φ 18 (ξ)= 2rcos( 4qr p 2 2 ξ ) 4qr p 2 sin( 4qr p 2 2 ξ )+pcos( 4qr p 2 2 ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGioaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiabgkHiTiaaikdacaWGYbGaci4yaiaac+ gacaGGZbWaaeWaaeaadaWcbaqaamaakaaabaGaaGinaiaadghacaWG YbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaaae aacaaIYaaaaiabe67a4bGaayjkaiaawMcaaaqaamaakaaabaGaaGin aiaadghacaWGYbGaeyOeI0IaamiCamaaCaaabeqcfasaaiaaikdaaa aajuaGbeaaciGGZbGaaiyAaiaac6gadaqadaqaamaaleaabaWaaOaa aeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaaeqajuaiba GaaGOmaaaaaKqbagqaaaqaaiaaikdaaaGaeqOVdGhacaGLOaGaayzk aaGaey4kaSIaamiCaiGacogacaGGVbGaai4CamaabmaabaWaaSqaae aadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchadaahaaqc fasabeaacaaIYaaaaaqcfayabaaabaGaaGOmaaaacqaH+oaEaiaawI cacaGLPaaaaaGaaiilaaaa@7199@  

φ 19 (ξ)= 2rsin( 4qr p 2 2 ξ ) psin( 4qr p 2 2 ξ )+ 4qr p 2 cos( 4qr p 2 2 ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIXaGaaGyoaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiaaikdacaWGYbGaci4CaiaacMgacaGGUb WaaeWaaeaadaWcbaqaamaakaaabaGaaGinaiaadghacaWGYbGaeyOe I0IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaaaeaacaaIYa aaaiabe67a4bGaayjkaiaawMcaaaqaaiabgkHiTiaadchaciGGZbGa aiyAaiaac6gadaqadaqaamaaleaabaWaaOaaaeaacaaI0aGaamyCai aadkhacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqa aaqaaiaaikdaaaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSYaaOaaae aacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWcdaahaaqcfasabeaa jugWaiaaikdaaaaajuaGbeaaciGGJbGaai4Baiaacohadaqadaqaam aaleaabaWaaOaaaeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWa aWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaaqaaiaaikdaaaGaeqOVdG hacaGLOaGaayzkaaaaaiaacYcaaaa@72D8@   φ 20 (ξ)= 2rcos( 4qr p 2 ξ ) 4qr p 2 sin( 4qr p 2 ξ )+pcos( 4qr p 2 ξ )± 4qr p 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaGaaGimaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiabgkHiTiaaikdacaWGYbGaci4yaiaac+ gacaGGZbWaaeWaaeaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHi TiaadchadaahaaqcKvaG=hqabaGaaGOmaaaaaKqbagqaaiabe67a4b GaayjkaiaawMcaaaqaamaakaaabaGaaGinaiaadghacaWGYbGaeyOe I0IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaaciGGZbGaai yAaiaac6gadaqadaqaamaakaaabaGaaGinaiaadghacaWGYbGaeyOe I0IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEai aawIcacaGLPaaacqGHRaWkcaWGWbGaci4yaiaac+gacaGGZbWaaeWa aeaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchalmaaCa aajuaibeqaaKqzadGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaa wMcaaiabgglaXoaakaaabaGaaGinaiaadghacaWGYbGaeyOeI0Iaam iCamaaCaaabeqcKvaG=haajugWaiaaikdaaaaajuaGbeaaaaGaaiOl aaaa@7D3F@   φ 21 (ξ)= 2rsin( 4qr p 2 ξ ) psin( 4qr p 2 ξ )+ 4qr p 2 cos( 4qr p 2 ξ )± 4qr p 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaGaaGymaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiaaikdacaWGYbGaci4CaiaacMgacaGGUb WaaeWaaeaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadcha daahaaqcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaay zkaaaabaGaeyOeI0IaamiCaiGacohacaGGPbGaaiOBamaabmaabaWa aOaaaeaacaaI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaaKqbGe qabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgUca RmaakaaabaGaaGinaiaadghacaWGYbGaeyOeI0IaamiCamaaCaaaju aibeqaaiaaikdaaaaajuaGbeaaciGGJbGaai4Baiaacohadaqadaqa amaakaaabaGaaGinaiaadghacaWGYbGaeyOeI0IaamiCamaaCaaaju aibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGH XcqSdaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTiaadchalmaaCa aajuaibeqaaKqzadGaaGOmaaaaaKqbagqaaaaacaGGSaaaaa@788F@   φ 22 (ξ)= 4rsin( 1 4 4qr p 2 ξ )cos( 1 4 4qr p 2 ξ ) 2psin( 1 4 4qr p 2 ξ )cos( 1 4 4qr p 2 ξ )+2 4qr p 2 cos 2 ( 1 4 4qr p 2 ξ ) 4qr p 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaGaaGOmaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcbaqaaiaaisdacaWGYbGaci4CaiaacMgacaGGUb WaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGaaGin aiaadghacaWGYbGaeyOeI0IaamiCamaaCaaabeqcfasaaiaaikdaaa aajuaGbeaacqaH+oaEaiaawIcacaGLPaaacaaMc8Uaci4yaiaac+ga caGGZbWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaakaaaba GaaGinaiaadghacaWGYbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaa ikdaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaaaeaacqGHsislca aIYaGaamiCaiGacohacaGGPbGaaiOBamaabmaabaWaaSqaaeaacaaI XaaabaGaaGinaaaadaGcaaqaaiaaisdacaWGXbGaamOCaiabgkHiTi aadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGL OaGaayzkaaGaaGPaVlGacogacaGGVbGaai4CamaabmaabaWaaSqaae aacaaIXaaabaGaaGinaaaadaGcaaqaaiaaisdacaWGXbGaamOCaiab gkHiTiaadchalmaaCaaajuaibeqaaKqzadGaaGOmaaaaaKqbagqaai abe67a4bGaayjkaiaawMcaaiabgUcaRiaaikdadaGcaaqaaiaaisda caWGXbGaamOCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaa qcfayabaGaci4yaiaac+gacaGGZbWaaWbaaKqbGeqabaGaaGOmaaaa juaGdaqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaaca aI0aGaamyCaiaadkhacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOm aaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgkHiTmaakaaaba GaaGinaiaadghacaWGYbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaa ikdaaaaajuaGbeaaaaGaaiOlaaaa@9E1A@

Family 3: When r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaicdaaaa@393B@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@ , we have

φ 23 (ξ)= pd q( d+cosh(pξ)sinh(pξ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaGaaG4maaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiabgkHiTiaadchacaWGKbaabaGaamyCam aabmaabaGaamizaiabgUcaRiGacogacaGGVbGaai4CaiaacIgacaGG OaGaamiCaiabe67a4jaacMcacqGHsislciGGZbGaaiyAaiaac6gaca GGObGaaiikaiaadchacqaH+oaEcaGGPaaacaGLOaGaayzkaaaaaiaa cYcaaaa@5720@

φ 24 (ξ)= p( cosh(pξ)+sinh(pξ) ) q( d+cosh(pξ)+sinh(pξ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaaIYaGaaGinaaqabaqcfaOaaiikaiabe67a4jaa cMcacqGH9aqpdaWcaaqaaiabgkHiTiaadchadaqadaqaaiGacogaca GGVbGaai4CaiaacIgacaGGOaGaamiCaiabe67a4jaacMcacqGHRaWk ciGGZbGaaiyAaiaac6gacaGGObGaaiikaiaadchacqaH+oaEcaGGPa aacaGLOaGaayzkaaaabaGaamyCamaabmaabaGaamizaiabgUcaRiGa cogacaGGVbGaai4CaiaacIgacaGGOaGaamiCaiabe67a4jaacMcacq GHRaWkciGGZbGaaiyAaiaac6gacaGGObGaaiikaiaadchacqaH+oaE caGGPaaacaGLOaGaayzkaaaaaiaacYcaaaa@683D@

where d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizaa aa@376D@  is an arbitrary constant.

Family 4: When q0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgcMi5kaaicdaaaa@39FB@  and r=p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaJbjuaGca WGYbGaeyypa0JaamiCaiabg2da9iaaicdaaaa@3B6F@  , we have

φ 25 (ξ)= 1 qξ+ c 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaajugWaiaaikdacaaI1aaajuaGbeaacaGGOaGaeqOV dGNaaiykaiabg2da9maalaaabaGaeyOeI0IaaGymaaqaaiaadghacq aH+oaEcqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaabeaaaaqcfaOa aiilaaaa@486C@

where c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yam aaBaaajuaibaGaaGymaaqcfayabaaaaa@3904@  is an arbitrary constant.

Step 3: We determine the positive integer N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtaa aa@3757@  in (2.4) by using the homogeneous balance between the highest-order derivatives and the nonlinear terms in Equation (2.3). More precisely we define the degree of u(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacqaH+oaEcaGGPaaaaa@3A9A@  as D[ u(ξ) ]=N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aadmaabaGaamyDaiaacIcacqaH+oaEcaGGPaaacaGLBbGaayzxaaGa eyypa0JaamOtaaaa@3F2E@  which gives rise to the degree of other expressions as follows:

D[ d l u d ξ l ]=N+l, D[ u m ( d l u d ξ l ) s ]=Nm+s(l+N). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGebWaamWaaeaadaWcaaqaaiaadsgadaahaaqabKqbGeaacaWGSbaa aKqbakaadwhaaeaacaWGKbGaeqOVdG3aaWbaaKqbGeqabaGaamiBaa aaaaaajuaGcaGLBbGaayzxaaGaeyypa0JaaCjaVlaad6eacqGHRaWk caWGSbGaaiilaiaaykW7aOqaaKqbakaadseadaWadaqaaiaadwhada ahaaqabeaacaWGTbaaamaabmaabaWaaSaaaeaacaWGKbWaaWbaaKqb GeqabaGaamiBaaaajuaGcaWG1baabaGaamizaiabe67a4naaCaaaju aibeqaaiaadYgaaaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqaaiaa dohaaaaacaGLBbGaayzxaaGaeyypa0JaaCjaVlaad6eacaWGTbGaey 4kaSIaam4CaiaacIcacaWGSbGaey4kaSIaamOtaiaacMcacaGGUaaa aaa@6411@  (2.7)

Therefore, we can get the value of N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtaa aa@3757@  in (2.4).

Step 4: We substitute (2.4) along with Equations (2.5) and (2.6) into Equation (2.3), collect all the terms with the same powers of φ i (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaWbaaKqbGeqabaGaamyAaaaajuaGcaGGOaGaeqOVdGNaaiykaaaa @3D29@ and set them to zero, we obtain a system of algebraic equations, which can be solved by Maple to get the values of a i  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaajuaibaGaamyAaiaabccaaKqbagqaaaaa@39D8@ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aaa aa@3774@ and ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ . Consequently, we obtain the exact traveling wave solutions of Equation (2.1).

An application

In this section, we will apply the method described in Section 2 to find the exact traveling wave solutions of the nonlinear KPP equation (1.1). To this end, we use the wave transformation (2.2) to reduce Equation (1.1) to the following ODE:

ω u ( ξ ) k 2 u ( ξ )+μu( ξ )+γ u 2 ( ξ )+δ u 3 ( ξ )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NabmyDayaafaWaaeWaaeaacqaH+oaEaiaawIcacaGLPaaacqGHsisl caWGRbWaaWbaaKqbGeqabaGaaGOmaaaajuaGceWG1bGbayaadaqada qaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiabeY7aTjaadwhadaqa daqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiabeo7aNjaadwhada ahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaGaeqOVdGhacaGLOaGa ayzkaaGaey4kaSIaeqiTdqMaamyDamaaCaaajuaibeqaaiaaiodaaa qcfa4aaeWaaeaacqaH+oaEaiaawIcacaGLPaaacqGH9aqpcaaIWaGa aiOlaaaa@5E8E@  (3.1)

By balancing u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyDay aagaaaaa@378B@  with u 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaaiodaaaaaaa@388B@  in Equation (3.1), we get N=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai abg2da9iaaigdaaaa@3918@ . Consequently, we have the formal solution

u(ξ)= a 0 + a 1 ψ(ξ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aacIcacqaH+oaEcaGGPaGaeyypa0JaamyyamaaBaaajuaibaGaaGim aaqabaqcfaOaey4kaSIaamyyamaaBaaajuaibaGaaGymaaqabaqcfa OaeqiYdKNaaiikaiabe67a4jaacMcacaGGSaaaaa@4717@  (3.2)

where a 0 , a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaajuaibaGaaGimaaqabaqcfaOaaiilaiaaysW7caWGHbWaaSba aKqbGeaacaaIXaaabeaaaaa@3D2E@  are constants to be determined, such that a 1  0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaabaqcfaIaaGymaKqbakaabccaaeqaaiabgcMi5kaaicdacaGG Saaaaa@3CD6@  while ψ(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK Naaiikaiabe67a4jaacMcaaaa@3B6E@  is given by (2.5).

Now, substituting (3.2) along with Equations (2.5) and (2.6) into (3.1), collecting the coefficients of φ i (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaWbaaeqajuaibaGaamyAaaaajuaGcaGGOaGaeqOVdGNaaiykaaaa @3D29@  and setting them to zero, we get the following system of algebraic equations:

φ 3 :δ A 3 a 1 3 2 A 3 k 2 q 2 a 1 +p A 2 B k 2 q a 1 +ω A 2 Bq a 1 +3δ A 2 B a 0 a 1 2 +γ A 2 B a 1 2 2rA B 2 k 2 q 2 a 1 +3δA B 2 a 0 2 a 1 +2γA B 2 a 0 a 1 +μA B 2 a 1 +pr B 3 k 2 q a 1 +rω B 3 q a 1 +δ B 3 a 0 3 +γ B 3 a 0 2 +μ B 3 a 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaWbaaeqajuaibaGaaG4maaaajuaGcaaMe8UaaGjbVlaacQdacaaM e8UaaGjbVlabes7aKjaadgeadaahaaqabKqbGeaacaaIZaaaaKqbak aadggadaqhaaqcfasaaiaaigdaaeaacaaIZaaaaKqbakabgkHiTiaa ikdacaWGbbWaaWbaaeqajuaibaGaaG4maaaajuaGcaWGRbWaaWbaae qajuaibaGaaGOmaaaajuaGcaWGXbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcaWGWb GaamyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaadUgadaah aaqcfasabeaacaaIYaaaaKqbakaadghacaWGHbWaaSbaaKqbGeaaca aIXaaabeaajuaGcqGHRaWkcqaHjpWDcaWGbbWaaWbaaeqajuaibaGa aGOmaaaajuaGcaWGcbGaamyCaiaadggadaWgaaqcfasaaiaaigdaae qaaKqbakabgUcaRiaaiodacqaH0oazcaWGbbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcaWGcbGaamyyamaaBaaabaGaaGimaaqabaGaamyyam aaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaey4kaSIaeq4SdCMa amyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaadggadaqhaa qcfasaaiaaigdaaeaacaaIYaaaaKqbakabgkHiTiaaikdacaWGYbGa amyqaiaadkeadaahaaqcfasabeaacaaIYaaaaKqbakaadUgadaahaa qcfasabeaacaaIYaaaaKqbakaadghadaahaaqcfasabeaacaaIYaaa aKqbakaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaaio dacqaH0oazcaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqcfaOa amyyamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaamyyamaaBa aajuaibaGaaGymaaqabaqcfaOaey4kaSIaaGOmaiabeo7aNjaadgea caWGcbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGHbWaaSbaaeaaca aIWaaabeaacaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWk cqaH8oqBcaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqcfaOaam yyamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaamiCaiaadkha caWGcbWcdaahaaqcKvaq=hqabaqcLbmacaaIZaaaaKqbakaadUgada ahaaqcfasabeaacaaIYaaaaKqbakaadghacaWGHbWaaSbaaeaacaaI XaaabeaacqGHRaWkcaWGYbGaeqyYdCNaamOqamaaCaaajuaibeqaai aaiodaaaqcfaOaamyCaiaadggadaWgaaqcfasaaiaaigdaaeqaaKqb akabgUcaRiabes7aKjaadkeadaahaaqcfasabeaacaaIZaaaaKqbak aadggadaqhaaqcfasaaiaaicdaaeaacaaIZaaaaKqbakabgUcaRiab eo7aNjaadkealmaaCaaajuaqbeqaaKqzadGaaG4maaaajuaGcaWGHb Waa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcqGHRaWkcqaH8oqB caWGcbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGHbWaaSbaaKqbGe aacaaIWaaabeaajuaGcqGH9aqpcaaIWaGaaiilaaaa@DAE7@

+3δA B 2 a 0 2 a 1 +2γA B 2 a 0 a 1 +μA B 2 a 1 +pr B 3 k 2 q a 1 +rω B 3 q a 1 +δ B 3 a 0 3 +γ B 3 a 0 2 +μ B 3 a 0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4kaS IaaG4maiabes7aKjaadgeacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcaWGHbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcaWGHb WaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcaaIYaGaeq4SdCMa amyqaiaadkeadaahaaqcfasabeaacaaIYaaaaKqbakaadggadaWgaa qaaiaaicdaaeqaaiaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakab gUcaRiabeY7aTjaadgeacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcaWGWbGa amOCaiaadkealmaaCaaajqwba9FabeaajugWaiaaiodaaaqcfaOaam 4AamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyCaiaadggadaWgaaqa aiaaigdaaeqaaiabgUcaRiaadkhacqaHjpWDcaWGcbWaaWbaaKqbGe qabaGaaG4maaaajuaGcaWGXbGaamyyamaaBaaajuaibaGaaGymaaqa baqcfaOaey4kaSIaeqiTdqMaamOqamaaCaaajuaibeqaaiaaiodaaa qcfaOaamyyamaaDaaajuaibaGaaGimaaqaaiaaiodaaaqcfaOaey4k aSIaeq4SdCMaamOqaSWaaWbaaKqbafqabaqcLbmacaaIZaaaaKqbak aadggadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakabgUcaRiab eY7aTjaadkeadaahaaqcfasabeaacaaIZaaaaKqbakaadggadaWgaa qcfasaaiaaicdaaeqaaKqbakabg2da9iaaicdacaGGSaaaaa@87C2@

φ 2 :3δ A 3 a 0 a 1 2 3q A 3 k 2 p a 1 +γ A 3 a 1 2 +qω A 3 a 1 + A 2 B k 2 p 2 a 1 +2q A 2 B k 2 r a 1 +ω A 2 Bp a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaWbaaeqajuaibaGaaGOmaaaajuaGcaaMe8UaaGjbVlaacQdacaaM e8UaaGjbVlaaiodacqaH0oazcaWGbbWaaWbaaKqbGeqabaGaaG4maa aajuaGcaWGHbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaWGHbWaa0ba aKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHsislcaaIZaGaamyCai aadgeadaahaaqcfasabeaacaaIZaaaaKqbakaadUgadaahaaqcfasa beaacaaIYaaaaKqbakaadchacaWGHbWaaSbaaKqbGeaacaaIXaaabe aajuaGcqGHRaWkcqaHZoWzcaWGbbWaaWbaaKqbGeqabaGaaG4maaaa juaGcaWGHbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHRa WkcaWGXbGaeqyYdCNaamyqamaaCaaajuaibeqaaiaaiodaaaqcfaOa amyyamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaamyqamaaCa aajuaibeqaaiaaikdaaaqcfaOaamOqaiaadUgadaahaaqcfasabeaa caaIYaaaaKqbakaadchadaahaaqcfasabeaacaaIYaaaaKqbakaadg gadaWgaaqcfasaaiaaigdaaKqbagqaaiabgUcaRiaaikdacaWGXbGa amyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaadUgadaahaa qcfasabeaacaaIYaaaaKqbakaadkhacaWGHbWaaSbaaKqbGeaacaaI XaaabeaajuaGcqGHRaWkcqaHjpWDcaWGbbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcaWGcbGaamiCaiaadggadaWgaaqcfasaaiaaigdaaeqa aaaa@8704@

3δ A 2 Br a 1 3 +6δ A 2 B a 0 2 a 1 +4γ A 2 B a 0 a 1 +2μ A 2 B a 1 3qA B 2 k 2 pr a 1 6δA B 2 r a 0 a 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaG4maiabes7aKjaadgeadaahaaqcfasabeaacaaIYaaaaKqbakaa dkeacaWGYbGaamyyamaaDaaajuaibaGaaGymaaqaaiaaiodaaaqcfa Oaey4kaSIaaGOnaiabes7aKjaadgeadaahaaqcfasabeaacaaIYaaa aKqbakaadkeacaWGHbWcdaqhaaqcfasaaKqzadGaaGimaaqcfasaaK qzadGaaGOmaaaajuaGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaG cqGHRaWkcaaI0aGaeq4SdCMaamyqamaaCaaajuaibeqaaiaaikdaaa qcfaOaamOqaiaadggadaWgaaqcfasaaiaaicdaaKqbagqaaiaadgga daWgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaaikdacqaH8oqBca WGbbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGcbGaamyyamaaBaaa juaibaGaaGymaaqabaqcfaOaeyOeI0IaaG4maiaadghacaWGbbGaam OqamaaCaaajuaibeqaaiaaikdaaaqcfaOaam4AaSWaaWbaaKazfa4= beqaaKqzadGaaGOmaaaajuaGcaWGWbGaamOCaiaadggadaWgaaqcfa saaiaaigdaaeqaaKqbakabgkHiTiaaiAdacqaH0oazcaWGbbGaamOq aSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqbakaadkhacaWGHbWaaS baaeaacaaIWaaabeaacaWGHbWcdaqhaaqcKvaG=haajugWaiaaigda aKazfa4=baqcLbmacaaIYaaaaaaa@8733@

2γA B 2 r a 1 2 +qωA B 2 r a 1 +3δA B 2 a 0 3 +3γA B 2 a 0 2 +3μA B 2 a 0 + B 3 k 2 p 2 r a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGOmaiabeo7aNjaadgeacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcaWGYbGaamyyamaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfa Oaey4kaSIaamyCaiabeM8a3jaadgeacaWGcbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcaWGYbGaamyyamaaBaaajuaibaGaaGymaaqabaqcfa Oaey4kaSIaaG4maiabes7aKjaadgeacaWGcbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcaWGHbWaa0baaKqbGeaacaaIWaaabaGaaG4maaaaju aGcqGHRaWkcaaIZaGaeq4SdCMaamyqaiaadkeadaahaaqcfasabeaa caaIYaaaaKqbakaadggalmaaDaaajuaibaqcLbmacaaIWaaajuaiba qcLbmacaaIYaaaaKqbakabgUcaRiaaiodacqaH8oqBcaWGbbGaamOq amaaCaaajuaibeqaaiaaikdaaaqcfaOaamyyaSWaaSbaaKqbGeaaju gWaiaaicdaaKqbGeqaaKqbakabgUcaRiaadkeadaahaaqcfasabeaa caaIZaaaaKqbakaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadc hadaahaaqcfasabeaacaaIYaaaaKqbakaadkhacaWGHbWaaSbaaKqb GeaacaaIXaaabeaaaaa@76F4@

+2q B 3 k 2 r 2 a 1 +ω B 3 pr a 1 3δ B 3 r a 0 2 a 1 2γ B 3 r a 0 a 1 μ B 3 r a 1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4kaS IaaGOmaiaadghacaWGcbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWG RbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGYbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH RaWkcqaHjpWDcaWGcbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGWb GaamOCaiaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakabgkHiTiaa iodacqaH0oazcaWGcbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGYb GaamyyamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaamyyamaa BaaabaGaaGymaaqabaGaeyOeI0IaaGOmaiabeo7aNjaadkeadaahaa qcfasabeaacaaIZaaaaKqbakaadkhacaWGHbWaaSbaaKqbGeaacaaI WaaabeaajuaGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHsi slcqaH8oqBcaWGcbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGYbGa amyyamaaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaaGimaiaacY caaaa@6EC0@

φ:ω A 3 p a 1 2q A 3 k 2 r a 1 A 3 k 2 p 2 a 1 +3δ A 3 a 0 2 a 1 +2γ A 3 a 0 a 1 +μ A 3 a 1 +3 A 2 B k 2 pr a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO MaaGjbVlaaysW7caGG6aGaaGjbVlaaysW7cqaHjpWDcaWGbbWcdaah aaqcfasabeaajugWaiaaiodaaaqcfaOaamiCaiaadggadaWgaaqcfa saaiaaigdaaeqaaKqbakabgkHiTiaaikdacaWGXbGaamyqamaaCaaa beqcfasaaiaaiodaaaqcfaOaam4AamaaCaaajuaibeqaaiaaikdaaa qcfaOaamOCaiaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakabgkHi TiaadgeadaahaaqcfasabeaacaaIZaaaaKqbakaadUgadaahaaqcfa sabeaacaaIYaaaaKqbakaadchadaahaaqcfasabeaacaaIYaaaaKqb akaadggadaWgaaqcfasaaiaaigdaaKqbagqaaiabgUcaRiaaiodacq aH0oazcaWGbbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGHbWaa0ba aKqbGeaacaaIWaaabaGaaGOmaaaajuaGcaWGHbWaaSbaaKqbGeaaca aIXaaajuaGbeaacqGHRaWkcaaIYaGaeq4SdCMaamyqamaaCaaajuai beqaaiaaiodaaaqcfaOaamyyamaaBaaajuaibaGaaGimaaqabaqcfa OaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaeqiVd0Ma amyqamaaCaaajuaibeqaaiaaiodaaaqcfaOaamyyamaaBaaajuaiba GaaGymaaqabaqcfaOaey4kaSIaaG4maiaadgeadaahaaqcfasabeaa caaIYaaaaKqbakaadkeacaWGRbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcaWGWbGaamOCaiaadggadaWgaaqcfasaaiaaigdaaeqaaaaa@8692@

6δ A 2 Br a 0 a 1 2 2γ A 2 Br a 1 2 +ω A 2 Br a 1 +3δ A 2 B a 0 3 +3γ A 2 B a 0 2 +3μ A 2 B a 0 A B 2 k 2 p 2 r a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGOnaiabes7aKjaadgeadaahaaqcfasabeaacaaIYaaaaKqbakaa dkeacaWGYbGaamyyamaaBaaajuaibaGaaGimaaqabaqcfaOaamyyam aaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaeyOeI0IaaGOmaiab eo7aNjaadgeadaahaaqcfasabeaacaaIYaaaaKqbakaadkeacaWGYb GaamyyaSWaa0baaKqbGeaajugWaiaaigdaaKqbGeaajugWaiaaikda aaqcfaOaey4kaSIaeqyYdCNaamyqamaaCaaajuaibeqaaiaaikdaaa qcfaOaamOqaiaadkhacaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaG cqGHRaWkcaaIZaGaeqiTdqMaamyqamaaCaaajuaibeqaaiaaikdaaa qcfaOaamOqaiaadggadaqhaaqcfasaaiaaicdaaeaacaaIZaaaaKqb akabgUcaRiaaiodacqaHZoWzcaWGbbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcaWGcbGaamyyamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqc faOaey4kaSIaaG4maiabeY7aTjaadgeadaahaaqcfasabeaacaaIYa aaaKqbakaadkeacaWGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH sislcaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqcfaOaam4Aam aaCaaajuaibeqaaiaaikdaaaqcfaOaamiCamaaCaaajuaibeqaaiaa ikdaaaqcfaOaamOCaiaadggadaWgaaqcfasaaiaaigdaaeqaaaaa@828F@

2qA B 2 k 2 r 2 a 1 +ωA B 2 pr a 1 +3δA B 2 r 2 a 1 3 6δA B 2 r a 0 2 a 1 4γA B 2 r a 0 a 1 2μA B 2 r a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGOmaiaadghacaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqc faOaam4AamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOCamaaCaaaju aibeqaaiaaikdaaaqcfaOaamyyaSWaaSbaaKqbGeaajugWaiaaigda aKqbGeqaaKqbakabgUcaRiabeM8a3jaadgeacaWGcbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcaWGWbGaamOCaiaadggadaWgaaqcfasaaiaa igdaaeqaaKqbakabgUcaRiaaiodacqaH0oazcaWGbbGaamOqamaaCa aajuaibeqaaiaaikdaaaqcfaOaamOCamaaCaaajuaibeqaaiaaikda aaqcfaOaamyyamaaDaaajuaibaGaaGymaaqaaiaaiodaaaqcfaOaey OeI0IaaGOnaiabes7aKjaadgeacaWGcbWaaWbaaKqbGeqabaGaaGOm aaaajuaGcaWGYbGaamyyamaaDaaajuaibaGaaGimaaqaaiaaikdaaa qcfaOaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaeyOeI0IaaGin aiabeo7aNjaadgeacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaajuaGca WGYbGaamyyamaaBaaajuaibaGaaGimaaqabaqcfaOaamyyamaaBaaa juaibaGaaGymaaqabaqcfaOaeyOeI0IaaGOmaiabeY7aTjaadgeaca WGcbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGYbGaamyyamaaBaaa juaibaGaaGymaaqabaaaaa@7EC2@

+3 B 3 k 2 p r 2 a 1 +3δ B 3 r 2 a 0 a 1 2 +γ B 3 r 2 a 1 2 +ω B 3 r 2 a 1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4kaS IaaG4maiaadkeadaahaaqabKqbGeaacaaIZaaaaKqbakaadUgadaah aaqcfasabeaacaaIYaaaaKqbakaadchacaWGYbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH RaWkcaaIZaGaeqiTdqMaamOqamaaCaaajuaibeqaaiaaiodaaaqcfa OaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyyamaaBaaajuai baGaaGimaaqabaqcfaOaamyyamaaDaaajuaibaGaaGymaaqaaiaaik daaaqcfaOaey4kaSIaeq4SdCMaamOqamaaCaaajuaibeqaaiaaioda aaqcfaOaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyyamaaDa aajuaibaGaaGymaaqaaiaaikdaaaqcfaOaey4kaSIaeqyYdCNaamOq amaaCaaajuaibeqaaiaaiodaaaqcfaOaamOCamaaCaaajuaibeqaai aaikdaaaqcfaOaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaeyyp a0JaaGimaiaacYcaaaa@6849@

φ 0 :ω A 3 r a 1 p A 3 k 2 r a 1 +δ A 3 a 0 3 +γ A 3 a 0 2 +μ A 3 a 0 +2 A 2 B k 2 r 2 a 1 3δ A 2 Br a 0 2 a 1 2γ A 2 Br a 0 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaWbaaeqajuaibaGaaGimaaaajuaGcaaMe8UaaGjbVlaacQdacaaM e8UaaGjbVlabeM8a3jaadgealmaaCaaajuaGbeqaaKqzadGaaG4maa aajuaGcaWGYbGaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaeyOe I0IaamiCaiaadgeadaahaaqcfasabeaacaaIZaaaaKqbakaadUgada ahaaqcfasabeaacaaIYaaaaKqbakaadkhacaWGHbWaaSbaaKqbGeaa caaIXaaabeaajuaGcqGHRaWkcqaH0oazcaWGbbWaaWbaaKqbGeqaba GaaG4maaaajuaGcaWGHbWaa0baaKqbGeaacaaIWaaabaGaaG4maaaa juaGcqGHRaWkcqaHZoWzcaWGbbWaaWbaaKqbGeqabaGaaG4maaaaju aGcaWGHbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcqGHRaWk cqaH8oqBcaWGbbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGHbWaaS baaKqbGeaacaaIWaaabeaajuaGcqGHRaWkcaaIYaGaamyqamaaCaaa juaibeqaaiaaikdaaaqcfaOaamOqaiaadUgadaahaaqcfasabeaaca aIYaaaaKqbakaadkhadaahaaqcfasabeaacaaIYaaaaKqbakaadgga lmaaBaaajuaibaqcLbmacaaIXaaajuaibeaajuaGcqGHsislcaaIZa GaeqiTdqMaamyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaa dkhacaWGHbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcaWGHb WaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHsislcaaIYaGaeq4SdCMa amyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaadkhacaWGHb WaaSbaaKqbGeaacaaIWaaajuaGbeaacaWGHbWaaSbaaKqbGeaacaaI Xaaabeaaaaa@92CB@ μ A 2 Br a 1 pA B 2 k 2 r 2 a 1 +3δA B 2 r 2 a 0 a 1 2 +γA B 2 r 2 a 1 2 +ωA B 2 r 2 a 1 +2 B 3 k 2 r 3 a 1 δ B 3 r 3 a 1 3 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqiVd0MaamyqamaaCaaajuaibeqaaiaaikdaaaqcfaOaamOqaiaa dkhacaWGHbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHsislcaWGWb GaamyqaiaadkeadaahaaqcfasabeaacaaIYaaaaKqbakaadUgadaah aaqcfasabeaacaaIYaaaaKqbakaadkhadaahaaqcfasabeaacaaIYa aaaKqbakaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaa iodacqaH0oazcaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqcfa OaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyyaSWaaSbaaKqb GeaajugWaiaaicdaaKqbGeqaaKqbakaadggadaqhaaqcfasaaiaaig daaeaacaaIYaaaaKqbakabgUcaRiabeo7aNjaadgeacaWGcbWaaWba aKqbGeqabaGaaGOmaaaajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcaWGHbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGH RaWkcqaHjpWDcaWGbbGaamOqamaaCaaajuaibeqaaiaaikdaaaqcfa OaamOCaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqbakaadggadaWg aaqcfasaaiaaigdaaeqaaKqbakabgUcaRiaaikdacaWGcbWaaWbaaK qbGeqabaGaaG4maaaajuaGcaWGRbWaaWbaaeqajuaibaGaaGOmaaaa juaGcaWGYbWaaWbaaKqbGeqabaGaaG4maaaajuaGcaWGHbWaaSbaaK qbGeaacaaIXaaabeaajuaGcqGHsislcqaH0oazcaWGcbWaaWbaaKqb GeqabaGaaG4maaaajuaGcaWGYbWaaWbaaKqbGeqabaGaaG4maaaaju aGcaWGHbWaa0baaKqbGeaacaaIXaaabaGaaG4maaaajuaGcqGH9aqp caaIWaGaaiOlaaaa@8CE8@

On solving the above algebraic equations with the aid of Maple or Mathematical, we have the following results:

Result 1:

a 0 =0 a 1 = 2 k 2 p γ r= ω 2 4 k 4 , p=p, q=1, δ= γ 2 k 2 2 ω 2 ,  μ= 1 2 k 2 p 2 ,A= ωB 2 k 2 , B=B, k=k, ω=ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGHbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGH9aqpcaWLa8UaaGim aiaabYcacaqGGaGaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaey ypa0ZaaSaaaeaacaaIYaGaam4AamaaCaaajuaibeqaaiaaikdaaaqc faOaamiCaaqaaiabeo7aNbaacaqGSaGaaeiiaiaadkhacqGH9aqpda WcaaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaaGin aiaadUgadaahaaqcfasabeaacaaI0aaaaaaajuaGcaGGSaGaaGPaVl aabccacaWGWbGaeyypa0JaamiCaiaacYcacaaMc8Uaaeiiaiaadgha cqGH9aqpcqGHsislcaaIXaGaaiilaiaaykW7caqGGaGaeqiTdqMaey ypa0ZaaSaaaeaacqaHZoWzdaahaaqcfasabeaacaaIYaaaaKqbakaa dUgadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaaikdacqaHjpWDda ahaaqabKqbGeaacaaIYaaaaaaajuaGcaGGSaGaaGPaVlaabccaaOqa aKqbakabeY7aTjabg2da9iaaxcW7cqGHsisldaWcaaqaaiaaigdaae aacaaIYaaaaiaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadcha daahaaqcfasabeaacaaIYaaaaKqbakaacYcacaaMc8Uaamyqaiabg2 da9iabgkHiTmaalaaabaGaeqyYdCNaamOqaaqaaiaaikdacaWGRbWa aWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaaiilaiaaykW7caqGGaGaam Oqaiabg2da9iaadkeacaGGSaGaaGPaVlaabccacaWGRbGaeyypa0Ja am4AaiaacYcacaaMc8UaaeiiaiabeM8a3jabg2da9iabeM8a3jaac6 caaaaa@9A8A@  (3.3)

Form this result, we have p 2 4qr= p 2 + ω 2 k 4 >0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbGaeyypa0JaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaS YaaSaaaeaacqaHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaa dUgadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGH+aGpcaaIWaGaai Olaaaa@4999@  

Consequently, we have the following exact solutions:

u 1 (ξ)= pω γ [ (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 tanh( 1 2 p 2 + ω 2 k 4 ξ ) (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 tanh( 1 2 p 2 + ω 2 k 4 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaacIcacqaHjpWDcqGHRaWkcaWGRbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcaWGWbGaaiykaiabgUcaRiaadUgadaahaa qabKqbGeaacaaIYaaaaKqbaoaakaaabaGaamiCamaaCaaajuaibeqa aiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaaqcfasabe aacaaIYaaaaaqcfayaaiaadUgadaahaaqcfasabeaacaaI0aaaaaaa aKqbagqaaiGacshacaGGHbGaaiOBaiaacIgadaqadaqaamaaleaaba GaaGymaaqaaiaaikdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaabeqcfasaai aaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaaqc fayabaGaeqOVdGhacaGLOaGaayzkaaaabaGaaiikaiabgkHiTiabeM 8a3jabgUcaRiaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadcha caGGPaGaey4kaSIaam4AamaaCaaajuaibeqaaiaaikdaaaqcfa4aaO aaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWc baqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4Aam aaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaciiDaiaacggacaGG UbGaaiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaa qaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaa baGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaW baaKqbGeqabaGaaGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGL PaaaaaaacaGLBbGaayzxaaGaaiilaaaa@935B@

u 2 (ξ)= pω γ [ (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 coth( 1 2 p 2 + ω 2 k 4 ξ ) (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 coth( 1 2 p 2 + ω 2 k 4 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaKqbakaacIcacqaH+oaE caGGPaGaeyypa0JaeyOeI0YaaSqaaeaacaWGWbGaeqyYdChabaGaeq 4SdCgaamaadmaabaWaaSqaaeaacaGGOaGaeqyYdCNaey4kaSIaam4A aSWaaWbaaKazfa4=beqaaKqzadGaaGOmaaaajuaGcaWGWbGaaiykai abgUcaRiaadUgadaahaaqcfasabeaacaaIYaaaaKqbaoaakaaabaGa amiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacq aHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadUgalmaaCaaa juaibeqaaKqzadGaaGinaaaaaaaajuaGbeaaciGGJbGaai4Baiaacs hacaGGObWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaIYaaaamaakaaa baGaamiCaSWaaWbaaKazfa4=beqaaKqzadGaaGOmaaaajuaGcqGHRa WkdaWcbaqaaiabeM8a3TWaaWbaaKazfa4=beqaaKqzadGaaGOmaaaa aKqbagaacaWGRbWaaWbaaKqbGeqabaGaaGinaaaaaaaajuaGbeaacq aH+oaEaiaawIcacaGLPaaaaeaacaGGOaGaeyOeI0IaeqyYdCNaey4k aSIaam4AamaaCaaajuaibeqaaiaaikdaaaqcfaOaamiCaiaacMcacq GHRaWkcaWGRbWaaWbaaKqbGeqabaGaaGOmaaaajuaGdaGcaaqaaiaa dchadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeq yYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqb GeqabaGaaGinaaaaaaaajuaGbeaaciGGJbGaai4BaiaacshacaGGOb WaaeWaaeaadaWcbaqaaiaaigdaaeaacaaIYaaaamaakaaabaGaamiC amaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjp WDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadUgadaahaaqcfasa beaacaaI0aaaaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaaaaai aawUfacaGLDbaacaGGSaaaaa@9EF6@

u 3 (ξ)= pω γ [ (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 ( coth( p 2 + ω 2 k 4 ξ )±csch( p 2 + ω 2 k 4 ξ ) ) (ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 ( coth( p 2 + ω 2 k 4 ξ )±csch( p 2 + ω 2 k 4 ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaacIcacqaHjpWDcqGHRaWkcaWGRbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcaWGWbGaaiykaiabgUcaRiaadUgadaahaa qcfasabeaacaaIYaaaaKqbaoaakaaabaGaamiCamaaCaaajuaibeqa aiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaaqcfasabe aacaaIYaaaaaqcfayaaiaadUgadaahaaqcfasabeaacaaI0aaaaaaa aKqbagqaamaabmaabaGaci4yaiaac+gacaGG0bGaaiiAamaabmaaba WaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWk daWcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam 4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGL OaGaayzkaaGaeyySaeRaai4yaiaacohacaGGJbGaaiiAamaabmaaba WaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWk daWcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam 4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGL OaGaayzkaaaacaGLOaGaayzkaaaabaGaaiikaiabgkHiTiabeM8a3j abgUcaRiaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadchacaGG PaGaey4kaSIaam4AamaaCaaajuaibeqaaiaaikdaaaqcfa4aaOaaae aacaWGWbWcdaahaaqcfasabeaajugWaiaaikdaaaqcfaOaey4kaSYa aSqaaeaacqaHjpWDdaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaadU gadaahaaqcfasabeaacaaI0aaaaaaaaKqbagqaamaabmaabaGaci4y aiaac+gacaGG0bGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaa juaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaais daaaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaeyySaeRaai4y aiaacohacaGGJbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaa juaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaabeqcfasaaiaais daaaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzk aaaaaaGaay5waiaaw2faaiaacYcaaaa@B97E@

  u 4 (ξ)= pω γ [ 2(ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 ( tanh( 1 4 p 2 + ω 2 k 4 ξ )+coth( 1 4 p 2 + ω 2 k 4 ξ ) ) 2(ω+ k 2 p)+ k 2 p 2 + ω 2 k 4 ( tanh( 1 4 p 2 + ω 2 k 4 ξ )+coth( 1 4 p 2 + ω 2 k 4 ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGinaaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaaikdacaGGOaGaeqyYdCNaey4kaSIaam4Aamaa CaaajuaibeqaaiaaikdaaaqcfaOaamiCaiaacMcacqGHRaWkcaWGRb WcdaahaaqcfasabeaajugWaiaaikdaaaqcfa4aaOaaaeaacaWGWbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3n aaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqa aiaaisdaaaaaaaqcfayabaWaaeWaaeaaciGG0bGaaiyyaiaac6gaca GGObWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGa amiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacq aHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadUgadaahaaqc fasabeaacaaI0aaaaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaai abgUcaRiGacogacaGGVbGaaiiDaiaacIgadaqadaqaamaaleaabaGa aGymaaqaaiaaisdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaajuaibeqaaiaa ikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfa yabaGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGOm aiaacIcacqGHsislcqaHjpWDcqGHRaWkcaWGRbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaWGWbGaaiykaiabgUcaRiaadUgadaahaaqcfasa beaajugWaiaaikdaaaqcfa4aaOaaaeaacaWGWbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaajuaibeqa aiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaa qcfayabaWaaeWaaeaaciGG0bGaaiyyaiaac6gacaGGObWaaeWaaeaa daWcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGaamiCamaaCaaaju aibeqaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaaqc fasabeaacaaIYaaaaaqcfayaaiaadUgadaahaaqcfasabeaacaaI0a aaaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiGacoga caGGVbGaaiiDaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaais daaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH RaWkdaWcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGba Gaam4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGha caGLOaGaayzkaaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacY caaaa@C04D@

  u 5 (ξ)= pω γ [ (ω+ k 2 p) k 2 ( ± ( R 2 + M 2 )( p 2 k 4 + ω 2 ) k 4 R p 2 + ω 2 k 4 cosh( p 2 + ω 2 k 4 ξ ) Rsinh( p 2 + ω 2 k 4 ξ )+M ) (ω+ k 2 p) k 2 ( ± ( R 2 + M 2 )( p 2 k 4 + ω 2 ) k 4 R p 2 + ω 2 k 4 cosh( p 2 + ω 2 k 4 ξ ) Rsinh( p 2 + ω 2 k 4 ξ )+M ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGynaaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaacIcacqaHjpWDcqGHRaWkcaWGRbWcdaahaaqc fasabeaajugWaiaaikdaaaqcfaOaamiCaiaacMcacqGHsislcaWGRb WaaWbaaKqbGeqabaGaaGOmaaaajuaGdaqadaqaamaaleaabaGaeyyS ae7aaOaaaeaadaWcbaqaaiaacIcacaWGsbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcqGHRaWkcaWGnbWaaWbaaKqbGeqabaGaaGOmaaaajuaG caGGPaGaaiikaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakaadU gadaahaaqcfasabeaacaaI0aaaaKqbakabgUcaRiabeM8a3TWaaWba aKqbGeqabaqcLbmacaaIYaaaaKqbakaacMcaaeaacaWGRbWaaWbaae qajuaibaqcLbmacaaI0aaaaaaaaKqbagqaaiabgkHiTiaadkfadaGc aaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaale aabaGaeqyYdC3cdaahaaqcfasabeaajugWaiaaikdaaaaajuaGbaGa am4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaci4yaiaac+ gacaGGZbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaajuaibe qaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaa aaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaabaGaamOuaiGacohaca GGPbGaaiOBaiaacIgadaqadaqaamaakaaabaGaamiCaSWaaWbaaKqb GeqabaqcLbmacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaW baaeqajuaibaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGa aGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGHRaWkca WGnbaaaaGaayjkaiaawMcaaaqaaiaacIcacqGHsislcqaHjpWDcqGH RaWkcaWGRbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbGaaiykai abgkHiTiaadUgadaahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaWa aSqaaeaacqGHXcqSdaGcaaqaamaaleaabaGaaiikaiaadkfadaahaa qcfasabeaacaaIYaaaaKqbakabgUcaRiaad2eadaahaaqcfasabeaa caaIYaaaaKqbakaacMcacaGGOaGaamiCamaaCaaajuaibeqaaiaaik daaaqcfaOaam4AamaaCaaajuaibeqaaiaaisdaaaqcfaOaey4kaSIa eqyYdC3cdaahaaqcfasabeaajugWaiaaikdaaaqcfaOaaiykaaqaai aadUgadaahaaqabKqbGeaacaaI0aaaaaaaaKqbagqaaiabgkHiTiaa dkfadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgU caRmaaleaabaGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaa caWGRbWaaWbaaeqajuaibaGaaGinaaaaaaaajuaGbeaaciGGJbGaai 4BaiaacohacaGGObWaaeWaaeaadaGcaaqaaiaadchadaahaaqcfasa beaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaWbaaKqbGe qabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGaaGinaaaa aaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaaaeaacaWGsbGaci4Cai aacMgacaGGUbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaaju aibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisda aaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaamytaa aaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@F190@

  u 6 (ξ)= pω γ [ (ω+ k 2 p)+ k 2 ( ± ( R 2 + M 2 )( p 2 k 4 + ω 2 ) k 4 +R p 2 + ω 2 k 4 sinh( p 2 + ω 2 k 4 ξ ) Rcosh( p 2 + ω 2 k 4 ξ )+M ) (ω+ k 2 p)+ k 2 ( ± ( R 2 + M 2 )( p 2 k 4 + ω 2 ) k 4 +R p 2 + ω 2 k 4 sinh( p 2 + ω 2 k 4 ξ ) Rcosh( p 2 + ω 2 k 4 ξ )+M ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbGeaajugWaiaaiAdaaKqbGeqaaKqbakaacIcacqaH+oaE caGGPaGaeyypa0JaeyOeI0YaaSqaaeaacaWGWbGaeqyYdChabaGaeq 4SdCgaamaadmaabaWaaSaaaeaacaGGOaGaeqyYdCNaey4kaSIaam4A amaaCaaajuaibeqaaiaaikdaaaqcfaOaamiCaiaacMcacqGHRaWkca WGRbWcdaahaaqcfasabeaajugWaiaaikdaaaqcfa4aaeWaaeaadaWc baqaaiabgglaXoaakaaabaWaaSqaaeaacaGGOaGaamOuamaaCaaaju aibeqaaiaaikdaaaqcfaOaey4kaSIaamytamaaCaaajuaibeqaaiaa ikdaaaqcfaOaaiykaiaacIcacaWGWbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcaWGRbWaaWbaaKqbGeqabaGaaGinaaaajuaGcqGHRaWkcqaH jpWDdaahaaqcfasabeaacaaIYaaaaKqbakaacMcaaeaacaWGRbWcda ahaaqcfasabeaajugWaiaaisdaaaaaaaqcfayabaGaey4kaSIaamOu amaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaS YaaSqaaeaacqaHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaa dUgadaahaaqcfasabeaacaaI0aaaaaaaaKqbagqaaiGacohacaGGPb GaaiOBaiaacIgadaqadaqaamaakaaabaGaamiCamaaCaaajuaibeqa aiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaaqcfasabe aacaaIYaaaaaqcfayaaiaadUgadaahaaqabKqbafaajugWaiaaisda aaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaabaGaamOuaiGaco gacaGGVbGaai4CaiaacIgadaqadaqaamaakaaabaGaamiCamaaCaaa beqcfasaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaa qcfasabeaacaaIYaaaaaqcfayaaiaadUgalmaaCaaajuaibeqaaKqz adGaaGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGHRa WkcaWGnbaaaaGaayjkaiaawMcaaaqaaiaacIcacqGHsislcqaHjpWD cqGHRaWkcaWGRbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGWbGaai ykaiabgUcaRiaadUgadaahaaqcfasabeaacaaIYaaaaKqbaoaabmaa baWaaSqaaeaacqGHXcqSdaGcaaqaamaaleaabaGaaiikaiaadkfada ahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaad2eadaahaaqcfasa beaacaaIYaaaaKqbakaacMcacaGGOaGaamiCamaaCaaajuaibeqaai aaikdaaaqcfaOaam4AamaaCaaajuaibeqaaiaaisdaaaqcfaOaey4k aSIaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGPaaabaGaam 4AamaaCaaabeqcfasaaiaaisdaaaaaaaqcfayabaGaey4kaSIaamOu amaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaS YaaSqaaeaacqaHjpWDdaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaa dUgadaahaaqabKqbGeaacaaI0aaaaaaaaKqbagqaaiGacohacaGGPb GaaiOBaiaacIgadaqadaqaamaakaaabaGaamiCaSWaaWbaaKqbagqa baqcLbmacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaWbaaK qbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGaaGin aaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaaaeaacaWGsbGaci 4yaiaac+gacaGGZbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3naaCa aajuaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaa isdaaaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaam ytaaaaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@F212@   u 7 (ξ)= pω γ [ p 2 k 4 + ω 2 sinh( 1 2 p 2 + ω 2 k 4 ξ )+(ωp k 2 )cosh( 1 2 p 2 + ω 2 k 4 ξ ) p 2 k 4 + ω 2 sinh( 1 2 p 2 + ω 2 k 4 ξ )+(ω+p k 2 )cosh( 1 2 p 2 + ω 2 k 4 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4naaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikda aaqcfaOaam4AamaaCaaajuaibeqaaiaaisdaaaqcfaOaey4kaSIaeq yYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiGacohacaGGPbGa aiOBaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaaikdaaaWaaO aaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWc baqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4Aam aaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGLOaGa ayzkaaGaey4kaSIaaiikaiabeM8a3jabgkHiTiaadchacaWGRbWcda ahaaqcfasabeaajugWaiaaikdaaaqcfaOaaiykaiGacogacaGGVbGa ai4CaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaaikdaaaWaaO aaaeaacaWGWbWcdaahaaqcKvaG=hqabaqcLbmacaaIYaaaaKqbakab gUcaRmaaleaabaGaeqyYdC3cdaahaaqcfasabeaajugWaiaaikdaaa aajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGa eqOVdGhacaGLOaGaayzkaaaabaGaeyOeI0YaaOaaaeaacaWGWbWaaW baaKqbGeqabaGaaGOmaaaajuaGcaWGRbWaaWbaaKqbGeqabaGaaGin aaaajuaGcqGHRaWkcqaHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfa yabaGaci4CaiaacMgacaGGUbGaaiiAamaabmaabaWaaSqaaeaacaaI XaaabaGaaGOmaaaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYa aaaKqbakabgUcaRmaaleaabaGaeqyYdC3cdaahaaqcfasabeaajugW aiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaa qcfayabaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaaiikaiabeM8a 3jabgUcaRiaadchacaWGRbWaaWbaaKqbGeqabaGaaGOmaaaajuaGca GGPaGaci4yaiaac+gacaGGZbGaaiiAamaabmaabaWaaSqaaeaacaaI XaaabaGaaGOmaaaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYa aaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaWbaaKqbGeqabaGaaGOm aaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGaaGinaaaaaaaajuaGbe aacqaH+oaEaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa @B91B@

  u 8 (ξ)= pω γ [ (ωp k 2 )sinh( 1 2 p 2 + ω 2 k 4 ξ )+ p 2 k 4 + ω 2 cosh( 1 2 p 2 + ω 2 k 4 ξ ) (ω+p k 2 )sinh( 1 2 p 2 + ω 2 k 4 ξ ) p 2 k 4 + ω 2 cosh( 1 2 p 2 + ω 2 k 4 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGioaaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaacIcacqaHjpWDcqGHsislcaWGWbGaam4Aamaa CaaajuaibeqaaiaaikdaaaqcfaOaaiykaiGacohacaGGPbGaaiOBai aacIgadaqadaqaamaaleaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaa caWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaai abeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaa juaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaa Gaey4kaSYaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaG caWGRbWaaWbaaKqbGeqabaGaaGinaaaajuaGcqGHRaWkcqaHjpWDda ahaaqcfasabeaacaaIYaaaaaqcfayabaGaci4yaiaac+gacaGGZbGa aiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaai aadchadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGa eqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWcdaahaa qcfasabeaajugWaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGLOaGa ayzkaaaabaGaaiikaiabeM8a3jabgUcaRiaadchacaWGRbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaGGPaGaci4CaiaacMgacaGGUbGaaiiA amaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaadc hadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyY dC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGe qabaGaaGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGH sisldaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakaadU gadaahaaqcfasabeaacaaI0aaaaKqbakabgUcaRiabeM8a3naaCaaa juaibeqaaiaaikdaaaaajuaGbeaaciGGJbGaai4BaiaacohacaGGOb WaaeWaaeaadaWcbaqaaiaaigdaaeaacaaIYaaaamaakaaabaGaamiC amaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSqaaeaacqaHjp WDdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadUgadaahaaqcfasa beaacaaI0aaaaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaaaaai aawUfacaGLDbaacaGGSaaaaa@B2CC@

  u 9 (ξ)= pω γ [ (ωp k 2 )sinh( p 2 + ω 2 k 4 ξ )+ p 2 k 4 + ω 2 ( cosh( p 2 + ω 2 k 4 ξ )±1 ) (ω+p k 2 )sinh( p 2 + ω 2 k 4 ξ ) p 2 k 4 + ω 2 ( cosh( p 2 + ω 2 k 4 ξ )±1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGyoaaqabaqcfaOaaiikaiabe67a4jaacMcacqGH 9aqpcqGHsisldaWcbaqaaiaadchacqaHjpWDaeaacqaHZoWzaaWaam WaaeaadaWcbaqaaiaacIcacqaHjpWDcqGHsislcaWGWbGaam4Aamaa CaaajuaibeqaaiaaikdaaaqcfaOaaiykaiGacohacaGGPbGaaiOBai aacIgadaqadaqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikda aaqcfaOaey4kaSYaaSqaaeaacqaHjpWDdaahaaqcfasabeaacaaIYa aaaaqcfayaaiaadUgadaahaaqcfasabeaacaaI0aaaaaaaaKqbagqa aiabe67a4bGaayjkaiaawMcaaiabgUcaRmaakaaabaGaamiCaSWaaW baaKqbafqabaqcLbmacaaIYaaaaKqbakaadUgadaahaaqcfasabeaa caaI0aaaaKqbakabgUcaRiabeM8a3naaCaaajuaibeqaaiaaikdaaa aajuaGbeaadaqadaqaaiGacogacaGGVbGaai4CaiaacIgadaqadaqa amaakaaabaGaamiCaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqbak abgUcaRmaaleaabaGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqb agaacaWGRbWaaWbaaKqbGeqabaGaaGinaaaaaaaajuaGbeaacqaH+o aEaiaawIcacaGLPaaacqGHXcqScaaIXaaacaGLOaGaayzkaaaabaGa aiikaiabeM8a3jabgUcaRiaadchacaWGRbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcaGGPaGaci4CaiaacMgacaGGUbGaaiiAamaabmaabaWa aOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkda WcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4A amaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGLOa GaayzkaaGaeyOeI0YaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOm aaaajuaGcaWGRbWaaWbaaKqbGeqabaGaaGinaaaajuaGcqGHRaWkcq aHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfayabaWaaeWaaeaaciGG JbGaai4BaiaacohacaGGObWaaeWaaeaadaGcaaqaaiaadchadaahaa qcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaWba aKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGaaG inaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGHXcqScaaI XaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYcaaaa@B66A@

  u 10 (ξ)= pω γ [ 2(ωp k 2 )sinh( 1 4 p 2 + ω 2 k 4 ξ )cosh( 1 4 p 2 + ω 2 k 4 ξ )+ p 2 k 4 + ω 2 ( 2 cosh 2 ( 1 4 p 2 + ω 2 k 4 ξ )1 ) 2(ω+p k 2 )sinh( 1 4 p 2 + ω 2 k 4 ξ )cosh( 1 4 p 2 + ω 2 k 4 ξ ) p 2 k 4 + ω 2 ( 2 cosh 2 ( 1 4 p 2 + ω 2 k 4 ξ )1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbGeaajugWaiaaigdacaaIWaaajuaGbeaacaGGOaGaeqOV dGNaaiykaiabg2da9iabgkHiTmaaleaabaGaamiCaiabeM8a3bqaai abeo7aNbaadaWadaqaamaaleaabaGaaGOmaiaacIcacqaHjpWDcqGH sislcaWGWbGaam4AamaaCaaajuaibeqaaiaaikdaaaqcfaOaaiykai GacohacaGGPbGaaiOBaiaacIgadaqadaqaamaaleaabaGaaGymaaqa aiaaisdaaaWaaOaaaeaacaWGWbWaaWbaaeqajuaibaGaaGOmaaaaju aGcqGHRaWkdaWcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaa juaGbaGaam4AamaaCaaabeqcfasaaiaaisdaaaaaaaqcfayabaGaeq OVdGhacaGLOaGaayzkaaGaaGPaVlGacogacaGGVbGaai4CaiaacIga daqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaWGWb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a 3naaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4AaSWaaWbaaKqbGe qabaqcLbmacaaI0aaaaaaaaKqbagqaaiabe67a4bGaayjkaiaawMca aiabgUcaRmaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfa Oaam4AamaaCaaajuaibeqaaiaaisdaaaqcfaOaey4kaSIaeqyYdC3a aWbaaKqbGeqabaGaaGOmaaaaaKqbagqaamaabmaabaGaaGOmaiGaco gacaGGVbGaai4CaiaacIgadaahaaqcfasabeaacaaIYaaaaKqbaoaa bmaabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqaaiaadchada ahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3a aWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaeqajuaiba GaaGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGHsisl caaIXaaacaGLOaGaayzkaaaabaGaaGOmaiaacIcacqaHjpWDcqGHRa WkcaWGWbGaam4AamaaCaaajuaibeqaaiaaikdaaaqcfaOaaiykaiGa cohacaGGPbGaaiOBaiaacIgadaqadaqaamaaleaabaGaaGymaaqaai aaisdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaG cqGHRaWkdaWcbaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaaju aGbaGaam4AamaaCaaajuaibeqaaiaaisdaaaaaaaqcfayabaGaeqOV dGhacaGLOaGaayzkaaGaaGPaVlGacogacaGGVbGaai4CaiaacIgada qadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaWGWbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcbaqaaiabeM8a3n aaCaaajuaibeqaaiaaikdaaaaajuaGbaGaam4AamaaCaaajuaibeqa aiaaisdaaaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0 YaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGRbWc daahaaqcfasabeaajugWaiaaisdaaaqcfaOaey4kaSIaeqyYdC3aaW baaKqbGeqabaGaaGOmaaaaaKqbagqaamaabmaabaGaaGOmaiGacoga caGGVbGaai4CaiaacIgadaahaaqcfasabeaacaaIYaaaaKqbaoaabm aabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqaaiaadchadaah aaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaleaabaGaeqyYdC3aaW baaKqbGeqabaGaaGOmaaaaaKqbagaacaWGRbWaaWbaaKqbGeqabaGa aGinaaaaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacqGHsislca aIXaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYcaaaa@E9C9@

where ξ=kx+ωt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0Jaam4AaiaadIhacqGHRaWkcqaHjpWDcaWG0bGaaiOlaaaa @3F94@  

Result 2:

a 0 =0 a 1 = (ω+3 k 2 p)(AqBp) γA r=0, p=p, q=q, δ= 2 γ 2 k 2 (ω+3 k 2 p) 2 ,  A=A, B=B, μ=p(ω+ k 2 p),k=k, ω=ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaWLa8UaaGim aiaabYcacaqGGaGaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaey ypa0ZaaSaaaeaacaGGOaGaeyOeI0IaeqyYdCNaey4kaSIaaG4maiaa dUgalmaaCaaajuaqbeqaaKqzadGaaGOmaaaajuaGcaWGWbGaaiykai aacIcacaWGbbGaamyCaiabgkHiTiaadkeacaWGWbGaaiykaaqaaiab eo7aNjaadgeaaaGaaeilaiaabccacaWGYbGaeyypa0JaaGimaiaacY cacaaMc8UaaeiiaiaadchacqGH9aqpcaWGWbGaaiilaiaaykW7caqG GaGaamyCaiabg2da9iaadghacaGGSaGaaGPaVlaabccacqaH0oazcq GH9aqpdaWcaaqaaiaaikdacqaHZoWzdaahaaqcfasabeaacaaIYaaa aKqbakaadUgadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaacIcacq GHsislcqaHjpWDcqGHRaWkcaaIZaGaam4AamaaCaaajuaibeqaaiaa ikdaaaqcfaOaamiCaiaacMcadaahaaqcfasabeaacaaIYaaaaaaaju aGcaGGSaGaaGPaVlaabccaaOqaaKqbakaadgeacqGH9aqpcaWLa8Ua amyqaiaacYcacaaMc8UaaeiiaiaadkeacqGH9aqpcaWGcbGaaiilai aaykW7caqGGaGaeqiVd0Maeyypa0JaamiCaiaacIcacqGHsislcqaH jpWDcqGHRaWkcaWGRbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaWGWb GaaiykaiaacYcacaaMc8Uaam4Aaiabg2da9iaadUgacaGGSaGaaGPa VlaabccacqaHjpWDcqGH9aqpcqaHjpWDcaGGUaaaaaa@A3D3@  (3.4)

Since r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaicdaaaa@393B@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@ , then we have the following exact solutions:

u 11 (ξ)= (ω+3 k 2 p)(AqBp) γ [ pd (AqBp)d+Aq( cosh( pξ )sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaigdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0ZaaSqaaeaacaGGOaGaeyOeI0IaeqyYdCNaey4kaSIaaG 4maiaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadchacaGGPaGa aiikaiaadgeacaWGXbGaeyOeI0IaamOqaiaadchacaGGPaaabaGaeq 4SdCgaamaadmaabaWaaSqaaeaacqGHsislcaWGWbGaamizaaqaaiaa cIcacaWGbbGaamyCaiabgkHiTiaadkeacaWGWbGaaiykaiaadsgacq GHRaWkcaWGbbGaamyCamaabmaabaGaci4yaiaac+gacaGGZbGaaiiA amaabmaabaGaamiCaiabe67a4bGaayjkaiaawMcaaiabgkHiTiGaco hacaGGPbGaaiOBaiaacIgadaqadaqaaiaadchacqaH+oaEaiaawIca caGLPaaaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@6FD8@

u 12 (ξ)= (ω+3 k 2 p)(AqBp) γ [ p( cosh( pξ )+sinh( pξ ) ) Aqd+(AqBp)( cosh( pξ )+sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaikdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0ZaaSqaaeaacaGGOaGaeyOeI0IaeqyYdCNaey4kaSIaaG 4maiaadUgadaahaaqcfasabeaacaaIYaaaaKqbakaadchacaGGPaGa aiikaiaadgeacaWGXbGaeyOeI0IaamOqaiaadchacaGGPaaabaGaeq 4SdCgaamaadmaabaWaaSqaaeaacqGHsislcaWGWbWaaeWaaeaaciGG JbGaai4BaiaacohacaGGObWaaeWaaeaacaWGWbGaeqOVdGhacaGLOa GaayzkaaGaey4kaSIaci4CaiaacMgacaGGUbGaaiiAamaabmaabaGa amiCaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaadg eacaWGXbGaamizaiabgUcaRiaacIcacaWGbbGaamyCaiabgkHiTiaa dkeacaWGWbGaaiykamaabmaabaGaci4yaiaac+gacaGGZbGaaiiAam aabmaabaGaamiCaiabe67a4bGaayjkaiaawMcaaiabgUcaRiGacoha caGGPbGaaiOBaiaacIgadaqadaqaaiaadchacqaH+oaEaiaawIcaca GLPaaaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@8155@

,p>where ξ=kx+ωt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0Jaam4AaiaadIhacqGHRaWkcqaHjpWDcaWG0bGaaiOlaaaa @3F94@  

Result 3:

a 0 =0 a 1 =± k(AqBp) 2 δ A r=0, p=p, q=q, A=A, B=B,  μ=kp( 2 γ 2 δ 2kp ),k=k, ω=k( 2 γ 2 δ 3kp ),    δ>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaWLa8UaaGim aiaabYcacaqGGaGaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaey ypa0JaeyySae7aaSaaaeaacaWGRbGaaiikaiaadgeacaWGXbGaeyOe I0IaamOqaiaadchacaGGPaWaaOaaaeaadaWcbaqaaiaaikdaaeaacq aH0oazaaaabeaaaeaacaWGbbaaaiaabYcacaqGGaGaamOCaiabg2da 9iaaicdacaGGSaGaaGPaVlaabccacaWGWbGaeyypa0JaamiCaiaacY cacaaMc8UaaeiiaiaadghacqGH9aqpcaWGXbGaaiilaiaaykW7caqG GaGaamyqaiabg2da9iaadgeacaGGSaGaaGPaVlaabccacaWGcbGaey ypa0JaamOqaiaacYcacaaMc8oakeaajuaGcaqGGaGaeqiVd0Maeyyp a0JaaCjaVlaadUgacaWGWbWaaeWaaeaadaGcaaqaamaalaaabaGaaG Omaiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaeqiTdqga aaqabaGaeyOeI0IaaGOmaiaadUgacaWGWbaacaGLOaGaayzkaaGaai ilaiaaykW7caWGRbGaeyypa0Jaam4AaiaacYcacaaMc8Uaaeiiaiab eM8a3jabg2da9iabgkHiTiaadUgadaqadaqaamaakaaabaWaaSaaae aacaaIYaGaeq4SdC2aaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacqaH 0oazaaaabeaacqGHsislcaaIZaGaam4AaiaadchaaiaawIcacaGLPa aacaGGSaGaaGPaVlaabccacaqGGaGaaeiiaiaabccacqaH0oazcqGH +aGpcaaIWaGaaiOlaaaaaa@9C84@  (3.5)

,p>Since r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaicdaaaa@393B@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@  , then we have the following exact solutions:

u 13 (ξ)=±k(AqBp) 2 δ [ pd (AqBp)d+Aq( cosh( pξ )sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiodaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyySaeRaam4AaiaacIcacaWGbbGaamyCaiabgkHiTi aadkeacaWGWbGaaiykamaakaaabaWaaSqaaeaacaaIYaaabaGaeqiT dqgaaaqabaWaamWaaeaadaWcbaqaaiabgkHiTiaadchacaWGKbaaba GaaiikaiaadgeacaWGXbGaeyOeI0IaamOqaiaadchacaGGPaGaamiz aiabgUcaRiaadgeacaWGXbWaaeWaaeaaciGGJbGaai4Baiaacohaca GGObWaaeWaaeaacaWGWbGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0Ia ci4CaiaacMgacaGGUbGaaiiAamaabmaabaGaamiCaiabe67a4bGaay jkaiaawMcaaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacaGGSaaa aa@6A51@

u 14 (ξ)=±k(AqBp) 2 δ [ p( cosh( pξ )+sinh( pξ ) ) Aqd+(AqBp)( cosh( pξ )+sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaisdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyySaeRaam4AaiaacIcacaWGbbGaamyCaiabgkHiTi aadkeacaWGWbGaaiykamaakaaabaWaaSqaaeaacaaIYaaabaGaeqiT dqgaaaqabaWaamWaaeaadaWcbaqaaiabgkHiTiaadchadaqadaqaai GacogacaGGVbGaai4CaiaacIgadaqadaqaaiaadchacqaH+oaEaiaa wIcacaGLPaaacqGHRaWkciGGZbGaaiyAaiaac6gacaGGObWaaeWaae aacaWGWbGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGa amyqaiaadghacaWGKbGaey4kaSIaaiikaiaadgeacaWGXbGaeyOeI0 IaamOqaiaadchacaGGPaWaaeWaaeaaciGGJbGaai4BaiaacohacaGG ObWaaeWaaeaacaWGWbGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaci 4CaiaacMgacaGGUbGaaiiAamaabmaabaGaamiCaiabe67a4bGaayjk aiaawMcaaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacaGGSaaaaa@7BCE@

where ξ=kxk( 2 γ 2 δ 3kp )t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0Jaam4AaiaadIhacqGHsislcaWGRbWaaeWaaeaadaGcaaqa amaaleaabaGaaGOmaiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaaju aGbaGaeqiTdqgaaaqabaGaeyOeI0IaaG4maiaadUgacaWGWbaacaGL OaGaayzkaaGaaGPaVlaadshacaGGUaaaaa@4B28@

Result 4:

a 0 = Aγ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) a 1 = Bγ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) r=r,  p=p, q=q, A=A, B=B, μ= q γ 2 ( ABp+q A 2 +r B 2 ) δ ( pB+2Aq ) 2 , k= 2B γ 2 8δ pB+2Aq , ω= B γ 2 2δ( pB+2Aq ) ,    δ>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGHbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaWLa8UaeyOe I0YaaSaaaeaacaWGbbGaeq4SdC2aaeWaaeaacqGHsislcaWGbbGaam OqaiaadchacqGHRaWkcaWGXbGaamyqamaaCaaajuaibeqaaiaaikda aaqcfaOaey4kaSIaamOCaiaadkeadaahaaqcfasabeaacaaIYaaaaa qcfaOaayjkaiaawMcaaaqaaiabes7aKnaabmaabaGaeyOeI0IaamiC aiaadkeacqGHRaWkcaaIYaGaamyqaiaadghaaiaawIcacaGLPaaaca aMc8+aaeWaaeaacaWGbbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH RaWkcaWGYbGaamOqamaaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOa GaayzkaaaaaiaabYcacaqGGaGaamyyamaaBaaajuaibaGaaGymaaqa baqcfaOaeyypa0ZaaSaaaeaacaWGcbGaeq4SdC2aaeWaaeaacqGHsi slcaWGbbGaamOqaiaadchacqGHRaWkcaWGXbGaamyqamaaCaaajuai beqaaiaaikdaaaqcfaOaey4kaSIaamOCaiaadkeadaahaaqcfasabe aacaaIYaaaaaqcfaOaayjkaiaawMcaaaqaaiabes7aKnaabmaabaGa eyOeI0IaamiCaiaadkeacqGHRaWkcaaIYaGaamyqaiaadghaaiaawI cacaGLPaaacaaMc8+aaeWaaeaacaWGbbWaaWbaaKqbGeqabaGaaGOm aaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaaiaaikdaaa aajuaGcaGLOaGaayzkaaaaaiaabYcacaqGGaGaamOCaiabg2da9iaa dkhacaGGSaGaaGPaVdqaaiaabccacaWGWbGaeyypa0JaaCjaVlaadc hacaGGSaGaaGPaVlaabccacaWGXbGaeyypa0JaamyCaiaacYcacaaM c8UaaeiiaiaadgeacqGH9aqpcaWGbbGaaiilaiaaykW7caqGGaGaam Oqaiabg2da9iaadkeacaGGSaGaaGPaVlaabccacqaH8oqBcqGH9aqp daWcaaqaaiaadghacqaHZoWzdaahaaqcfasabeaacaaIYaaaaKqbao aabmaabaGaeyOeI0IaamyqaiaadkeacaWGWbGaey4kaSIaamyCaiaa dgeadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaadkhacaWGcb WaaWbaaKqbGeqabaGaaGOmaaaaaKqbakaawIcacaGLPaaaaeaacqaH 0oazdaqadaqaaiabgkHiTiaadchacaWGcbGaey4kaSIaaGOmaiaadg eacaWGXbaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaaqc faOaaiilaiaaykW7aOqaaKqbakaadUgacqGH9aqpcaWLa8+aaSaaae aacaaIYaGaamOqamaakaaabaWaaSqaaeaacqaHZoWzdaahaaqcfasa beaacaaIYaaaaaqcfayaaiaaiIdacqaH0oazaaaabeaaaeaacqGHsi slcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaaacaGGSaGa aGPaVlaabccacqaHjpWDcqGH9aqpdaWcaaqaaiaadkeacqaHZoWzda ahaaqcfasabeaacaaIYaaaaaqcfayaaiaaikdacqaH0oazdaqadaqa aiabgkHiTiaadchacaWGcbGaey4kaSIaaGOmaiaadgeacaWGXbaaca GLOaGaayzkaaaaaiaacYcacaaMc8UaaeiiaiaabccacaqGGaGaaeii aiabes7aKjabg6da+iaaicdacaGGUaaaaaa@F591@  (3.6)

In this case, we deduce that Equation (1.1) has many types of the exact traveling wave solutions as follows:

Type 1: When p 2 4qr>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbGaeyOpa4JaaGimaaaa@3E6D@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@  or qr0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadkhacqGHGjsUcaaIWaaaaa@3AF2@ , we have

u 15 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+A p 2 4rq tanh( 1 2 p 2 4rq ξ ) ) 2AqpBB p 2 4rq tanh( 1 2 p 2 4rq ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiwdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHRaWkcaWGbbWaaOaaaeaacaWGWbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiGacs hacaGGHbGaaiOBaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaa ikdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcq GHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiaaikdacaWGbbGaamyCaiabgkHiTiaadc hacaWGcbGaeyOeI0IaamOqamaakaaabaGaamiCamaaCaaajuaibeqa aiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabeaaciGG0b Gaaiyyaiaac6gacaGGObWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI YaaaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey OeI0IaaGinaiaadkhacaWGXbaabeaacqaH+oaEaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaGaaiilaaaa@A018@

  u 16 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+A p 2 4rq coth( 1 2 p 2 4rq ξ ) ) 2AqpBB p 2 4rq coth( 1 2 p 2 4rq ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiAdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHRaWkcaWGbbWaaOaaaeaacaWGWbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiGaco gacaGGVbGaaiiDaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaa ikdaaaWaaOaaaeaacaWGWbWcdaahaaqcfasabeaajugWaiaaikdaaa qcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabeaacqaH+oaEaiaawIca caGLPaaaaiaawIcacaGLPaaaaeaacaaIYaGaamyqaiaadghacqGHsi slcaWGWbGaamOqaiabgkHiTiaadkeadaGcaaqaaiaadchadaahaaqc fasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqaba Gaci4yaiaac+gacaGG0bGaaiiAamaabmaabaWaaSqaaeaacaaIXaaa baGaaGOmaaaadaGcaaqaaiaadchadaahaaqabKqbGeaacaaIYaaaaK qbakabgkHiTiaaisdacaWGYbGaamyCaaqabaGaeqOVdGhacaGLOaGa ayzkaaaaaaGaay5waiaaw2faaiaacYcaaaa@A158@

  u 17 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+A p 2 4rq ( coth( p 2 4rq ξ )±csch( p 2 4rq ξ ) ) ) 2AqpBB p 2 4rq ( coth( p 2 4rq ξ )±csch( p 2 4rq ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiEdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWcdaahaaqcfasa beaajugWaiaaikdaaaqcfaOaey4kaSIaamOCaiaadkeadaahaaqcfa sabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaqaaiabes7aKnaabmaa baGaeyOeI0IaamiCaiaadkeacqGHRaWkcaaIYaGaamyqaiaadghaai aawIcacaGLPaaacaaMc8+aaeWaaeaacaWGbbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaaiaaik daaaaajuaGcaGLOaGaayzkaaaaamaadmaabaGaamyqaiabgUcaRmaa leaabaGaamOqamaabmaabaGaaGOmaiaadkhacaWGXbGaamOqaiabgU caRiaadchacaWGbbGaey4kaSIaamyqamaakaaabaGaamiCamaaCaaa juaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabe aadaqadaqaaiGacogacaGGVbGaaiiDaiaacIgadaqadaqaamaakaaa baGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinai aadkhacaWGXbaabeaacqaH+oaEaiaawIcacaGLPaaacqGHXcqScaGG JbGaai4CaiaacogacaGGObWaaeWaaeaadaGcaaqaaiaadchadaahaa qcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqa baGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaay zkaaaabaGaaGOmaiaadgeacaWGXbGaeyOeI0IaamiCaiaadkeacqGH sislcaWGcbWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcqGHsislcaaI0aGaamOCaiaadghaaeqaamaabmaabaGaci4yaiaa c+gacaGG0bGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiab e67a4bGaayjkaiaawMcaaiabgglaXkaacogacaGGZbGaai4yaiaacI gadaqadaqaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqc faOaeyOeI0IaaGinaiaadkhacaWGXbaabeaacqaH+oaEaiaawIcaca GLPaaaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@BF9F@

  u 18 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 4rqB+2pA+A p 2 4rq ( coth( 1 4 p 2 4rq ξ )+tanh( 1 4 p 2 4rq ξ ) ) ) 4Aq2pBB p 2 4rq ( coth( 1 4 p 2 4rq ξ )+tanh( 1 4 p 2 4rq ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiIdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaI0aGaamOCaiaadghacaWGcbGaey4kaSIaaG OmaiaadchacaWGbbGaey4kaSIaamyqamaakaaabaGaamiCamaaCaaa juaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabe aadaqadaqaaiGacogacaGGVbGaaiiDaiaacIgadaqadaqaamaaleaa baGaaGymaaqaaiaaisdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a 4bGaayjkaiaawMcaaiabgUcaRiGacshacaGGHbGaaiOBaiaacIgada qadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaWGWbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadg haaeqaaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayjk aiaawMcaaaqaaiaaisdacaWGbbGaamyCaiabgkHiTiaaikdacaWGWb GaamOqaiabgkHiTiaadkeadaGcaaqaaiaadchadaahaaqcfasabeaa caaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaWaaeWaae aaciGGJbGaai4BaiaacshacaGGObWaaeWaaeaadaWcbaqaaiaaigda aeaacaaI0aaaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaa qcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabeaacqaH+oaEaiaawIca caGLPaaacqGHRaWkciGG0bGaaiyyaiaac6gacaGGObWaaeWaaeaada WcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGaamiCamaaCaaajuai beqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabeaacq aH+oaEaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaaacaGLBbGaayzx aaGaaiilaaaa@C40B@

  u 19 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA A p 2 4rq ( Rcosh( p 2 4rq ξ )± R 2 + M 2 ) Rsinh( p 2 4rq ξ )+M ) 2AqpB+ B p 2 4rq ( Rcosh( p 2 4rq ξ )± R 2 + M 2 ) Rsinh( p 2 4rq ξ )+M ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiMdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHsisldaWcbaqaaiaadgeadaGcaaqaaiaadchadaah aaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaa qabaWaaeWaaeaacqGHsislcaWGsbGaci4yaiaac+gacaGGZbGaaiiA amaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaa wMcaaiabgglaXoaakaaabaGaamOuamaaCaaajuaibeqaaiaaikdaaa qcfaOaey4kaSIaamytamaaCaaabeqcfasaaiaaikdaaaaajuaGbeaa aiaawIcacaGLPaaaaeaacaWGsbGaci4CaiaacMgacaGGUbGaaiiAam aabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaG cqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawM caaiabgUcaRiaad2eaaaaacaGLOaGaayzkaaaabaGaaGOmaiaadgea caWGXbGaeyOeI0IaamiCaiaadkeacqGHRaWkdaWcbaqaaiaadkeada GcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaa isdacaWGYbGaamyCaaqabaWaaeWaaeaacqGHsislcaWGsbGaci4yai aac+gacaGGZbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaai abe67a4bGaayjkaiaawMcaaiabgglaXoaakaaabaGaamOuamaaCaaa juaibeqaaiaaikdaaaqcfaOaey4kaSIaamytamaaCaaajuaibeqaai aaikdaaaaajuaGbeaaaiaawIcacaGLPaaaaeaacaWGsbGaci4Caiaa cMgacaGGUbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWcdaahaaqcfa sabeaajugWaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaa beaacqaH+oaEaiaawIcacaGLPaaacqGHRaWkcaWGnbaaaaaaaiaawU facaGLDbaacaGGSaaaaa@D423@

  u 20 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+ A p 2 4rq ( Rsinh( p 2 4rq ξ )± R 2 + M 2 ) Rcosh( p 2 4rq ξ )+M ) 2AqpB B p 2 4rq ( Rsinh( p 2 4rq ξ )± R 2 + M 2 ) Rcosh( p 2 4rq ξ )+M ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaicdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHRaWkdaWcbaqaaiaadgeadaGcaaqaaiaadchadaah aaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaa qabaWaaeWaaeaacaWGsbGaci4CaiaacMgacaGGUbGaaiiAamaabmaa baWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsi slcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaaiab gglaXoaakaaabaGaamOuamaaCaaajuaibeqaaiaaikdaaaqcfaOaey 4kaSIaamytamaaCaaabeqcfasaaiaaikdaaaaajuaGbeaaaiaawIca caGLPaaaaeaacaWGsbGaci4yaiaac+gacaGGZbGaaiiAamaabmaaba WaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsisl caaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaaiabgU caRiaad2eaaaaacaGLOaGaayzkaaaabaGaaGOmaiaadgeacaWGXbGa eyOeI0IaamiCaiaadkeacqGHsisldaWcbaqaaiaadkeadaGcaaqaai aadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWG YbGaamyCaaqabaWaaeWaaeaacaWGsbGaci4CaiaacMgacaGGUbGaai iAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkai aawMcaaiabgglaXoaakaaabaGaamOuamaaCaaajuaibeqaaiaaikda aaqcfaOaey4kaSIaamytamaaCaaajuaibeqaaiaaikdaaaaajuaGbe aaaiaawIcacaGLPaaaaeaacaWGsbGaci4yaiaac+gacaGGZbGaaiiA amaabmaabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaa wMcaaiabgUcaRiaad2eaaaaaaaGaay5waiaaw2faaiaacYcaaaa@D108@

  u 21 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(pB+2A)cosh( 1 2 p 2 4rq ξ )Br p 2 4rq sinh( 1 2 p 2 4rq ξ ) ) (pA2rB)cosh( 1 2 p 2 4rq ξ )A p 2 4rq sinh( 1 2 p 2 4rq ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaigdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaadchacaWGcbGaey4kaSIaaG OmaiaadgeacaGGPaGaci4yaiaac+gacaGGZbGaaiiAamaabmaabaWa aSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaadchadaahaaqcfa sabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaGa eqOVdGhacaGLOaGaayzkaaGaeyOeI0IaamOqaiaadkhadaGcaaqaai aadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWG YbGaamyCaaqabaGaci4CaiaacMgacaGGUbGaaiiAamaabmaabaWaaS qaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaadchadaahaaqcfasa beaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaGaeq OVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaiikaiaadcha caWGbbGaeyOeI0IaaGOmaiaadkhacaWGcbGaaiykaiGacogacaGGVb Gaai4CaiaacIgadaqadaqaamaaleaabaGaaGymaaqaaiaaikdaaaWa aOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislca aI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaaiabgkHi TiaadgeadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbak abgkHiTiaaisdacaWGYbGaamyCaaqabaGaci4CaiaacMgacaGGUbGa aiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaai aadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWG YbGaamyCaaqabaGaeqOVdGhacaGLOaGaayzkaaaaaaGaay5waiaaw2 faaiaacYcaaaa@C076@

  u 22 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(pB+2A)sinh( 1 2 p 2 4rq ξ )Br p 2 4rq cosh( 1 2 p 2 4rq ξ ) ) (pA2rB)sinh( 1 2 p 2 4rq ξ )A p 2 4rq cosh( 1 2 p 2 4rq ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbGeaajugWaiaaikdacaaIYaaajuaibeaajugWaiaacIca juaGcqaH+oaEcaGGPaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzda qadaqaaiabgkHiTiaadgeacaWGcbGaamiCaiabgUcaRiaadghacaWG bbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqam aaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiT dq2aaeWaaeaacqGHsislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbb GaamyCaaGaayjkaiaawMcaaiaaykW7daqadaqaaiaadgeadaahaaqc fasabeaacaaIYaaaaKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGe qabaGaaGOmaaaaaKqbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGa ey4kaSYaaSqaaeaacaWGcbWaaeWaaeaacaWGYbGaaiikaiaadchaca WGcbGaey4kaSIaaGOmaiaadgeacaGGPaGaci4CaiaacMgacaGGUbGa aiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaai aadchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWG YbGaamyCaaqabaGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0IaamOqai aadkhadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakab gkHiTiaaisdacaWGYbGaamyCaaqabaGaci4yaiaac+gacaGGZbGaai iAamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaaiaa dchadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYb GaamyCaaqabaGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaa baGaaiikaiaadchacaWGbbGaeyOeI0IaaGOmaiaadkhacaWGcbGaai ykaiGacohacaGGPbGaaiOBaiaacIgadaqadaqaamaaleaabaGaaGym aaqaaiaaikdaaaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjk aiaawMcaaiabgkHiTiaadgeadaGcaaqaaiaadchadaahaaqcfasabe aacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaGaci4y aiaac+gacaGGZbGaaiiAamaabmaabaWaaSqaaeaacaaIXaaabaGaaG OmaaaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbakab gkHiTiaaisdacaWGYbGaamyCaaqabaGaeqOVdGhacaGLOaGaayzkaa aaaaGaay5waiaaw2faaiaacYcaaaa@C30C@

  u 23 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(pB+2A)sinh( p 2 4rq ξ )Br p 2 4rq ( cosh( p 2 4rq ξ )±1 ) ) (pA2rB)sinh( p 2 4rq ξ )A p 2 4rq ( cosh( p 2 4rq ξ )±1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiodaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaadchacaWGcbGaey4kaSIaaG OmaiaadgeacaGGPaGaci4CaiaacMgacaGGUbGaaiiAamaabmaabaWa aOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislca aI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaaiabgkHi TiaadkeacaWGYbWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaa aajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqaamaabmaabaGaci4y aiaac+gacaGGZbGaaiiAamaabmaabaWaaOaaaeaacaWGWbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcqGHsislcaaI0aGaamOCaiaadghaaeqa aiabe67a4bGaayjkaiaawMcaaiabgglaXkaaigdaaiaawIcacaGLPa aaaiaawIcacaGLPaaaaeaacaGGOaGaamiCaiaadgeacqGHsislcaaI YaGaamOCaiaadkeacaGGPaGaci4CaiaacMgacaGGUbGaaiiAamaabm aabaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH sislcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaai abgkHiTiaadgeadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaa aKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaWaaeWaaeaaciGGJb Gaai4BaiaacohacaGGObWaaeWaaeaadaGcaaqaaiaadchadaahaaqc fasabeaacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqaba GaeqOVdGhacaGLOaGaayzkaaGaeyySaeRaaGymaaGaayjkaiaawMca aaaaaiaawUfacaGLDbaacaGGSaaaaa@C2BC@

u 24 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) ×[ A+ B( 2r(pB+2A)sinh( 1 4 p 2 4rq ξ )cosh( 1 4 p 2 4rq ξ )Br p 2 4rq ( 2 cosh 2 ( 1 4 p 2 4rq ξ )1 ) ) 2(pA2rB)sinh( 1 4 p 2 4rq ξ )cosh( 1 4 p 2 4rq ξ )A p 2 4rq ( 2 cosh 2 ( 1 4 p 2 4rq ξ )1 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaisdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaeqajuai baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaabeqcfasaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqabKqbGeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaeqajuaibaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaGaey41aqRaaGPaVpaadmaabaGaamyqaiab gUcaRmaaleaabaGaamOqamaabmaabaGaaGOmaiaadkhacaGGOaGaam iCaiaadkeacqGHRaWkcaaIYaGaamyqaiaacMcaciGGZbGaaiyAaiaa c6gacaGGObWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaaka aabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGin aiaadkhacaWGXbaabeaacqaH+oaEaiaawIcacaGLPaaacaaMc8Uaci 4yaiaac+gacaGGZbGaaiiAamaabmaabaWaaSqaaeaacaaIXaaabaGa aGinaaaadaGcaaqaaiaadchadaahaaqcfasabeaacaaIYaaaaKqbak abgkHiTiaaisdacaWGYbGaamyCaaqabaGaeqOVdGhacaGLOaGaayzk aaGaeyOeI0IaamOqaiaadkhadaGcaaqaaiaadchadaahaaqcfasabe aacaaIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaWaaeWa aeaacaaIYaGaci4yaiaac+gacaGGZbGaaiiAamaaCaaabeqcfasaai aaikdaaaqcfa4aaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaa kaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaG inaiaadkhacaWGXbaabeaacqaH+oaEaiaawIcacaGLPaaacqGHsisl caaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGOmaiaacI cacaWGWbGaamyqaiabgkHiTiaaikdacaWGYbGaamOqaiaacMcaciGG ZbGaaiyAaiaac6gacaGGObWaaeWaaeaadaWcbaqaaiaaigdaaeaaca aI0aaaamaakaaabaGaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOa eyOeI0IaaGinaiaadkhacaWGXbaabeaacqaH+oaEaiaawIcacaGLPa aacaaMc8Uaci4yaiaac+gacaGGZbGaaiiAamaabmaabaWaaSqaaeaa caaIXaaabaGaaGinaaaadaGcaaqaaiaadchadaahaaqcfasabeaaca aIYaaaaKqbakabgkHiTiaaisdacaWGYbGaamyCaaqabaGaeqOVdGha caGLOaGaayzkaaGaeyOeI0IaamyqamaakaaabaGaamiCamaaCaaaju aibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadkhacaWGXbaabeaa daqadaqaaiaaikdaciGGJbGaai4BaiaacohacaGGObWaaWbaaKqbGe qabaGaaGOmaaaajuaGdaqadaqaamaaleaabaGaaGymaaqaaiaaisda aaWaaOaaaeaacaWGWbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsi slcaaI0aGaamOCaiaadghaaeqaaiabe67a4bGaayjkaiaawMcaaiab gkHiTiaaigdaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiOlaa aa@F159@

Type 2: When p 2 4qr<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaaGinaiaadghacaWG YbGaeyipaWJaaGimaaaa@3E69@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@  or qr0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadkhacqGHGjsUcaaIWaaaaa@3AF2@ , we have

u 25 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pAA 4rq p 2 tan( 1 2 4rq p 2 ξ ) ) 2AqpB+B 4rq p 2 tan( 1 2 4rq p 2 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiwdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHsislcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiGacs hacaGGHbGaaiOBamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaa daGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfa sabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaaGOmaiaadgeacaWGXbGaeyOeI0IaamiCaiaadk eacqGHRaWkcaWGcbWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsisl caWGWbWaaWbaaeqajuaibaGaaGOmaaaaaKqbagqaaiGacshacaGGHb GaaiOBamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqa aiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaaca aIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaaaaGaay5waiaa w2faaiaacYcaaaa@9E41@   u 26 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+A 4rq p 2 cot( 1 2 4rq p 2 ξ ) ) 2AqpBB 4rq p 2 cot( 1 2 4rq p 2 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiAdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHRaWkcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiGaco gacaGGVbGaaiiDamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaa daGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfa sabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaacaGL OaGaayzkaaaabaGaaGOmaiaadgeacaWGXbGaeyOeI0IaamiCaiaadk eacqGHsislcaWGcbWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsisl caWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiGacogacaGGVb GaaiiDamaabmaabaWaaSqaaeaacaaIXaaabaGaaGOmaaaadaGcaaqa aiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqabKqbGeaaca aIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaaaaaGaay5waiaa w2faaiaacYcaaaa@9E48@   u 27 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pAA 4rq p 2 ( tan( 4rq p 2 ξ )±sec( 4rq p 2 ξ ) ) ) 2AqpB+B 4rq p 2 ( tan( 4rq p 2 ξ )±sec( 4rq p 2 ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiEdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaeqajuaibaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHsislcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaamaabm aabaGaciiDaiaacggacaGGUbWaaeWaaeaadaGcaaqaaiaaisdacaWG YbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfa yabaGaeqOVdGhacaGLOaGaayzkaaGaeyySaeRaci4CaiaacwgacaGG JbWaaeWaaeaadaGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadc hadaahaaqcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGa ayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGOmaiaadg eacaWGXbGaeyOeI0IaamiCaiaadkeacqGHRaWkcaWGcbWaaOaaaeaa caaI0aGaamOCaiaadghacqGHsislcaWGWbWcdaahaaqcfasabeaaju gWaiaaikdaaaaajuaGbeaadaqadaqaaiGacshacaGGHbGaaiOBamaa bmaabaWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWaaW baaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMca aiabgglaXkGacohacaGGLbGaai4yamaabmaabaWaaOaaaeaacaaI0a GaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaai aawUfacaGLDbaacaGGSaaaaa@BBF2@   u 28 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2rqB+pA+A 4rq p 2 ( cot( 4rq p 2 ξ )±csc( 4rq p 2 ξ ) ) ) 2AqpBB 4rq p 2 ( cot( 4rq p 2 ξ )±csc( 4rq p 2 ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiIdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaabeqcfasaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaaIYaGaamOCaiaadghacaWGcbGaey4kaSIaam iCaiaadgeacqGHRaWkcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaeqajuaibaGaaGOmaaaaaKqbagqaamaabm aabaGaci4yaiaac+gacaGG0bWaaeWaaeaadaGcaaqaaiaaisdacaWG YbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfa yabaGaeqOVdGhacaGLOaGaayzkaaGaeyySaeRaci4yaiaacohacaGG JbWaaeWaaeaadaGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadc hadaahaaqcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGa ayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaGOmaiaadg eacaWGXbGaeyOeI0IaamiCaiaadkeacqGHsislcaWGcbWaaOaaaeaa caaI0aGaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaG OmaaaaaKqbagqaamaabmaabaGaci4yaiaac+gacaGG0bWaaeWaaeaa daGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfa sabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaeyyS aeRaci4yaiaacohacaGGJbWaaeWaaeaadaGcaaqaaiaaisdacaWGYb GaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfaya baGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaaGaay5wai aaw2faaiaacYcaaaa@BABC@   u 29 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( 2(2rqB+pA)+A 4rq p 2 ( cot( 1 4 4rq p 2 ξ )tan( 1 4 4rq p 2 ξ ) ) ) 2(2AqpB)B 4rq p 2 ( cot( 1 4 4rq p 2 ξ )tan( 1 4 4rq p 2 ξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbagaajugWaiaaikdacaaI5aaajuaGbeaacaGGOaGaeqOV dGNaaiykaiabg2da9iabgkHiTmaaleaabaGaeq4SdC2aaeWaaeaacq GHsislcaWGbbGaamOqaiaadchacqGHRaWkcaWGXbGaamyqamaaCaaa juaibeqaaiaaikdaaaqcfaOaey4kaSIaamOCaiaadkeadaahaaqcfa sabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaqaaiabes7aKnaabmaa baGaeyOeI0IaamiCaiaadkeacqGHRaWkcaaIYaGaamyqaiaadghaai aawIcacaGLPaaacaaMc8+aaeWaaeaacaWGbbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaaiaaik daaaaajuaGcaGLOaGaayzkaaaaamaadmaabaGaamyqaiabgUcaRmaa leaabaGaamOqamaabmaabaGaaGOmaiaacIcacaaIYaGaamOCaiaadg hacaWGcbGaey4kaSIaamiCaiaadgeacaGGPaGaey4kaSIaamyqamaa kaaabaGaaGinaiaadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibe qaaiaaikdaaaaajuaGbeaadaqadaqaaiGacogacaGGVbGaaiiDamaa bmaabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqaaiaaisdaca WGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqc fayabaGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0IaciiDaiaacggaca GGUbWaaeWaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGa aGinaiaadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaik daaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaaaiaawIcacaGLPaaa aiaawIcacaGLPaaaaeaacaaIYaGaaiikaiaaikdacaWGbbGaamyCai abgkHiTiaadchacaWGcbGaaiykaiabgkHiTiaadkeadaGcaaqaaiaa isdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYa aaaaqcfayabaWaaeWaaeaaciGGJbGaai4Baiaacshadaqadaqaamaa leaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaaI0aGaamOCaiaadg hacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiab e67a4bGaayjkaiaawMcaaiabgkHiTiGacshacaGGHbGaaiOBamaabm aabaWaaSqaaeaacaaIXaaabaGaaGinaaaadaGcaaqaaiaaisdacaWG YbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfa yabaGaeqOVdGhacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaaGaay5w aiaaw2faaiaacYcaaaa@C4BA@   u 30 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) ×[ A+ B( (2rqB+pA)( M+Rsin( 4rq p 2 ξ ) )A 4rq p 2 ( Rcos( 4rq p 2 ξ )± R 2 M 2 ) ) (2AqpB)( M+Rsin( 4rq p 2 ξ ) )+B 4rq p 2 ( Rcos( 4rq p 2 ξ )± R 2 M 2 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaicdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaGaey41aq7aamWaaeaacaWGbbGaey4kaSYa aSqaaeaacaWGcbWaaeWaaeaacaGGOaGaaGOmaiaadkhacaWGXbGaam OqaiabgUcaRiaadchacaWGbbGaaiykamaabmaabaGaamytaiabgUca RiaadkfaciGGZbGaaiyAaiaac6gadaqadaqaamaakaaabaGaaGinai aadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaa juaGbeaacqaH+oaEaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsi slcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWa aWbaaKqbGeqabaGaaGOmaaaaaKqbagqaamaabmaabaGaeyOeI0Iaam OuaiGacogacaGGVbGaai4CamaabmaabaWaaOaaaeaacaaI0aGaamOC aiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbag qaaiabe67a4bGaayjkaiaawMcaaiabgglaXoaakaaabaGaamOuamaa CaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaamytamaaCaaajuaibe qaaiaaikdaaaaajuaGbeaaaiaawIcacaGLPaaaaiaawIcacaGLPaaa aeaacaGGOaGaaGOmaiaadgeacaWGXbGaeyOeI0IaamiCaiaadkeaca GGPaWaaeWaaeaacaWGnbGaey4kaSIaamOuaiGacohacaGGPbGaaiOB amaabmaabaWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWb WaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaa wMcaaaGaayjkaiaawMcaaiabgUcaRiaadkeadaGcaaqaaiaaisdaca WGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqc fayabaWaaeWaaeaacqGHsislcaWGsbGaci4yaiaac+gacaGGZbWaae WaaeaadaGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaah aaqcfasabeaacaaIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaa GaeyySae7aaOaaaeaacaWGsbWaaWbaaKqbGeqabaGaaGOmaaaajuaG cqGHsislcaWGnbWcdaahaaqcfasabeaajugWaiaaikdaaaaajuaGbe aaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@D83B@

u 31 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) ×[ A+ B( (2rqB+pA)( M+Rsin( 4rq p 2 ξ ) )+A 4rq p 2 ( Rcos( 4rq p 2 ξ )± R 2 M 2 ) ) (2AqpB)( M+Rsin( 4rq p 2 ξ ) )B 4rq p 2 ( Rcos( 4rq p 2 ξ )± R 2 M 2 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaigdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaGaey41aq7aamWaaeaacaWGbbGaey4kaSYa aSqaaeaacaWGcbWaaeWaaeaacaGGOaGaaGOmaiaadkhacaWGXbGaam OqaiabgUcaRiaadchacaWGbbGaaiykamaabmaabaGaamytaiabgUca RiaadkfaciGGZbGaaiyAaiaac6gadaqadaqaamaakaaabaGaaGinai aadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaa juaGbeaacqaH+oaEaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRa WkcaWGbbWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWa aWbaaeqajuaibaGaaGOmaaaaaKqbagqaamaabmaabaGaamOuaiGaco gacaGGVbGaai4CamaabmaabaWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe6 7a4bGaayjkaiaawMcaaiabgglaXoaakaaabaGaamOuamaaCaaajuai beqaaiaaikdaaaqcfaOaeyOeI0IaamytamaaCaaajuaibeqaaiaaik daaaaajuaGbeaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaGG OaGaaGOmaiaadgeacaWGXbGaeyOeI0IaamiCaiaadkeacaGGPaWaae WaaeaacaWGnbGaey4kaSIaamOuaiGacohacaGGPbGaaiOBamaabmaa baWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWaaWbaae qajuaibaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaaGa ayjkaiaawMcaaiabgkHiTiaadkeadaGcaaqaaiaaisdacaWGYbGaam yCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfayabaWa aeWaaeaacaWGsbGaci4yaiaac+gacaGGZbWaaeWaaeaadaGcaaqaai aaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaI YaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaeyySae7aaOaaae aacaWGsbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsislcaWGnbWa aWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaaGaayjkaiaawMcaaaaaai aawUfacaGLDbaacaGGSaaaaa@D529@

u 32 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(2A+pB)cos( 1 2 4rq p 2 ξ )+Br 4rq p 2 sin( 1 2 4rq p 2 ξ ) ) (Ap2rB)cos( 1 2 4rq p 2 ξ )+A 4rq p 2 sin( 1 2 4rq p 2 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaikdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaaikdacaWGbbGaey4kaSIaam iCaiaadkeacaGGPaGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcbaqa aiaaigdaaeaacaaIYaaaamaakaaabaGaaGinaiaadkhacaWGXbGaey OeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaE aiaawIcacaGLPaaacqGHRaWkcaWGcbGaamOCamaakaaabaGaaGinai aadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaa juaGbeaaciGGZbGaaiyAaiaac6gadaqadaqaamaaleaabaGaaGymaa qaaiaaikdaaaWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWG WbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkai aawMcaaaGaayjkaiaawMcaaaqaaiaacIcacaWGbbGaamiCaiabgkHi TiaaikdacaWGYbGaamOqaiaacMcaciGGJbGaai4Baiaacohadaqada qaamaaleaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaacaaI0aGaamOC aiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbag qaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiaadgeadaGcaaqaaiaa isdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqabKqbGeaacaaIYa aaaaqcfayabaGaci4CaiaacMgacaGGUbWaaeWaaeaadaWcbaqaaiaa igdaaeaacaaIYaaaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0 IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@BCB2@   u 33 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(2A+pB)sin( 1 2 4rq p 2 ξ )Br 4rq p 2 cos( 1 2 4rq p 2 ξ ) ) (Ap2rB)sin( 1 2 4rq p 2 ξ )A 4rq p 2 cos( 1 2 4rq p 2 ξ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaiodaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaeqajuai baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaaikdacaWGbbGaey4kaSIaam iCaiaadkeacaGGPaGaci4CaiaacMgacaGGUbWaaeWaaeaadaWcbaqa aiaaigdaaeaacaaIYaaaamaakaaabaGaaGinaiaadkhacaWGXbGaey OeI0IaamiCamaaCaaabeqcfasaaiaaikdaaaaajuaGbeaacqaH+oaE aiaawIcacaGLPaaacqGHsislcaWGcbGaamOCamaakaaabaGaaGinai aadkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaa juaGbeaaciGGJbGaai4BaiaacohadaqadaqaamaaleaabaGaaGymaa qaaiaaikdaaaWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWG WbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkai aawMcaaaGaayjkaiaawMcaaaqaaiaacIcacaWGbbGaamiCaiabgkHi TiaaikdacaWGYbGaamOqaiaacMcaciGGZbGaaiyAaiaac6gadaqada qaamaaleaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaacaaI0aGaamOC aiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbag qaaiabe67a4bGaayjkaiaawMcaaiabgkHiTiaadgeadaGcaaqaaiaa isdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYa aaaaqcfayabaGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcbaqaaiaa igdaaeaacaaIYaaaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0 IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiilaaaa@BCC9@   u 34 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(2A+pB)cos( 4rq p 2 ξ )+Br 4rq p 2 ( sin( 4rq p 2 ξ )±1 ) ) (Ap2rB)cos( 4rq p 2 ξ )+A 4rq p 2 ( sin( 4rq p 2 ξ )±1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaisdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaaikdacaWGbbGaey4kaSIaam iCaiaadkeacaGGPaGaci4yaiaac+gacaGGZbWaaeWaaeaadaGcaaqa aiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaaca aIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaamOq aiaadkhadaGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchada ahaaqabKqbGeaacaaIYaaaaaqcfayabaWaaeWaaeaaciGGZbGaaiyA aiaac6gadaqadaqaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0 IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaa wIcacaGLPaaacqGHXcqScaaIXaaacaGLOaGaayzkaaaacaGLOaGaay zkaaaabaGaaiikaiaadgeacaWGWbGaeyOeI0IaaGOmaiaadkhacaWG cbGaaiykaiGacogacaGGVbGaai4CamaabmaabaWaaOaaaeaacaaI0a GaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgUcaRiaadgeadaGcaa qaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaa caaIYaaaaaqcfayabaWaaeWaaeaaciGGZbGaaiyAaiaac6gadaqada qaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0IaamiCamaaCaaa juaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacq GHXcqScaaIXaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYca aaa@BEF8@   u 35 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) [ A+ B( r(2A+pB)sin( 4rq p 2 ξ )Br 4rq p 2 ( cos( 4rq p 2 ξ )±1 ) ) (Ap2rB)sin( 4rq p 2 ξ )A 4rq p 2 ( cos( 4rq p 2 ξ )±1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaiwdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadgeacaWGcbGaamiCaiabgUcaRiaadghacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaabaGaeqiTdq2aaeWaaeaacqGH sislcaWGWbGaamOqaiabgUcaRiaaikdacaWGbbGaamyCaaGaayjkai aawMcaaiaaykW7daqadaqaaiaadgeadaahaaqcfasabeaacaaIYaaa aKqbakabgUcaRiaadkhacaWGcbWaaWbaaKqbGeqabaGaaGOmaaaaaK qbakaawIcacaGLPaaaaaWaamWaaeaacaWGbbGaey4kaSYaaSqaaeaa caWGcbWaaeWaaeaacaWGYbGaaiikaiaaikdacaWGbbGaey4kaSIaam iCaiaadkeacaGGPaGaci4CaiaacMgacaGGUbWaaeWaaeaadaGcaaqa aiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaaca aIYaaaaaqcfayabaGaeqOVdGhacaGLOaGaayzkaaGaeyOeI0IaamOq aiaadkhadaGcaaqaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchada ahaaqcfasabeaacaaIYaaaaaqcfayabaWaaeWaaeaaciGGJbGaai4B aiaacohadaqadaqaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0 IaamiCamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaa wIcacaGLPaaacqGHXcqScaaIXaaacaGLOaGaayzkaaaacaGLOaGaay zkaaaabaGaaiikaiaadgeacaWGWbGaeyOeI0IaaGOmaiaadkhacaWG cbGaaiykaiGacohacaGGPbGaaiOBamaabmaabaWaaOaaaeaacaaI0a GaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgkHiTiaadgeadaGcaa qaaiaaisdacaWGYbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaa caaIYaaaaaqcfayabaWaaeWaaeaaciGGJbGaai4Baiaacohadaqada qaamaakaaabaGaaGinaiaadkhacaWGXbGaeyOeI0IaamiCamaaCaaa juaibeqaaiaaikdaaaaajuaGbeaacqaH+oaEaiaawIcacaGLPaaacq GHXcqScaaIXaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYca aaa@BF0F@   u 36 (ξ)= γ( ABp+q A 2 +r B 2 ) δ( pB+2Aq )( A 2 +r B 2 ) ×[ A+ B( 2r(2A+pB)sin( 1 4 4rq p 2 ξ )cos( 1 4 4rq p 2 ξ )Br 4rq p 2 ( 2 cos 2 ( 1 4 4rq p 2 ξ )1 ) ) 2(Ap2rB)sin( 1 4 4rq p 2 ξ )( 1 4 4rq p 2 ξ )A 4rq p 2 ( 2 cos 2 ( 1 4 4rq p 2 ξ )1 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaS WaaSbaaKqbGeaajugWaiaaiodacaaI2aaajuaibeaajuaGcaGGOaGa eqOVdGNaaiykaiabg2da9iabgkHiTmaaleaabaGaeq4SdC2aaeWaae aacqGHsislcaWGbbGaamOqaiaadchacqGHRaWkcaWGXbGaamyqamaa CaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaamOCaiaadkeadaahaa qcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaqaaiabes7aKnaa bmaabaGaeyOeI0IaamiCaiaadkeacqGHRaWkcaaIYaGaamyqaiaadg haaiaawIcacaGLPaaacaaMc8+aaeWaaeaacaWGbbWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHRaWkcaWGYbGaamOqamaaCaaajuaibeqaai aaikdaaaaajuaGcaGLOaGaayzkaaaaaiabgEna0oaadmaabaGaamyq aiabgUcaRmaaleaabaGaamOqamaabmaabaGaaGOmaiaadkhacaGGOa GaaGOmaiaadgeacqGHRaWkcaWGWbGaamOqaiaacMcaciGGZbGaaiyA aiaac6gadaqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaae aacaaI0aGaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGa aGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiaaykW7ciGGJb Gaai4BaiaacohadaqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWa aOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGe qabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgkHi TiaadkeacaWGYbWaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislca WGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaamaabmaabaGaaGOm aiGacogacaGGVbGaai4CamaaCaaajuaibeqaaiaaikdaaaqcfa4aae WaaeaadaWcbaqaaiaaigdaaeaacaaI0aaaamaakaaabaGaaGinaiaa dkhacaWGXbGaeyOeI0IaamiCamaaCaaajuaibeqaaiaaikdaaaaaju aGbeaacqaH+oaEaiaawIcacaGLPaaacqGHsislcaaIXaaacaGLOaGa ayzkaaaacaGLOaGaayzkaaaabaGaaGOmaiaacIcacaWGbbGaamiCai abgkHiTiaaikdacaWGYbGaamOqaiaacMcaciGGZbGaaiyAaiaac6ga daqadaqaamaaleaabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaaI0a GaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaa aKqbagqaaiabe67a4bGaayjkaiaawMcaaiaaykW7daqadaqaamaale aabaGaaGymaaqaaiaaisdaaaWaaOaaaeaacaaI0aGaamOCaiaadgha cqGHsislcaWGWbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaiabe6 7a4bGaayjkaiaawMcaaiabgkHiTiaadgeadaGcaaqaaiaaisdacaWG YbGaamyCaiabgkHiTiaadchadaahaaqcfasabeaacaaIYaaaaaqcfa yabaWaaeWaaeaacaaIYaGaci4yaiaac+gacaGGZbWaaWbaaKqbGeqa baGaaGOmaaaajuaGdaqadaqaamaaleaabaGaaGymaaqaaiaaisdaaa WaaOaaaeaacaaI0aGaamOCaiaadghacqGHsislcaWGWbWaaWbaaKqb GeqabaGaaGOmaaaaaKqbagqaaiabe67a4bGaayjkaiaawMcaaiabgk HiTiaaigdaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaaiOlaaaa @E8DD@

Type 3: When r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaicdaaaa@393B@  and pq0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadghacqGHGjsUcaaIWaaaaa@3AF0@ , we have

u 37 (ξ)= γ( Bp+qA ) δ( pB+2Aq ) [ 1+ Bpd (AqBp)d+Aq( cosh( pξ )sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaiEdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadkeacaWGWbGaey4kaSIaamyCaiaadgeaaiaawIcacaGLPaaaaeaa cqaH0oazdaqadaqaaiabgkHiTiaadchacaWGcbGaey4kaSIaaGOmai aadgeacaWGXbaacaGLOaGaayzkaaaaamaadmaabaGaaGymaiabgUca RmaaleaabaGaamOqaiaadchacaWGKbaabaGaaiikaiaadgeacaWGXb GaeyOeI0IaamOqaiaadchacaGGPaGaamizaiabgUcaRiaadgeacaWG XbWaaeWaaeaaciGGJbGaai4BaiaacohacaGGObWaaeWaaeaacaWGWb GaeqOVdGhacaGLOaGaayzkaaGaeyOeI0Iaci4CaiaacMgacaGGUbGa aiiAamaabmaabaGaamiCaiabe67a4bGaayjkaiaawMcaaaGaayjkai aawMcaaaaaaiaawUfacaGLDbaacaGGSaaaaa@7356@

u 38 (ξ)= γ( Bp+qA ) δ( pB+2Aq ) [ 1+ Bp( cosh( pξ )+sinh( pξ ) ) Aqd+(AqBp)( cosh( pξ )+sinh( pξ ) ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaiIdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSqaaeaacqaHZoWzdaqadaqaaiabgkHiTi aadkeacaWGWbGaey4kaSIaamyCaiaadgeaaiaawIcacaGLPaaaaeaa cqaH0oazdaqadaqaaiabgkHiTiaadchacaWGcbGaey4kaSIaaGOmai aadgeacaWGXbaacaGLOaGaayzkaaaaamaadmaabaGaaGymaiabgUca RmaaleaabaGaamOqaiaadchadaqadaqaaiGacogacaGGVbGaai4Cai aacIgadaqadaqaaiaadchacqaH+oaEaiaawIcacaGLPaaacqGHRaWk ciGGZbGaaiyAaiaac6gacaGGObWaaeWaaeaacaWGWbGaeqOVdGhaca GLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamyqaiaadghacaWGKbGa ey4kaSIaaiikaiaadgeacaWGXbGaeyOeI0IaamOqaiaadchacaGGPa WaaeWaaeaaciGGJbGaai4BaiaacohacaGGObWaaeWaaeaacaWGWbGa eqOVdGhacaGLOaGaayzkaaGaey4kaSIaci4CaiaacMgacaGGUbGaai iAamaabmaabaGaamiCaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaa wMcaaaaaaiaawUfacaGLDbaacaGGSaaaaa@84D3@

where ξ=( 2B pB+2Aq γ 2 8δ )x+( B γ 2 2δ( pB+2Aq ) )t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0ZaaeWaaeaadaWcbaqaaiaaikdacaWGcbaabaGaeyOeI0Ia amiCaiaadkeacqGHRaWkcaaIYaGaamyqaiaadghaaaWaaOaaaeaada Wcbaqaaiabeo7aNnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaaGio aiabes7aKbaaaeqaaaGaayjkaiaawMcaaiaaykW7caWG4bGaey4kaS YaaeWaaeaadaWcbaqaaiaadkeacqaHZoWzdaahaaqcfasabeaacaaI YaaaaaqcfayaaiaaikdacqaH0oazdaqadaqaaiabgkHiTiaadchaca WGcbGaey4kaSIaaGOmaiaadgeacaWGXbaacaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaiaaykW7caWG0baaaa@5DB3@ .

Type 4: When r=p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaadchacqGH9aqpcaaIWaaaaa@3B36@  and q0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgcMi5kaaicdaaaa@39FB@ , we have

u 39 (ξ)= γ 2δ [ 1+ B Aqξ+A c 1 B ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaiMdaaeqaaKqbakaacIcacqaH+oaEcaGG PaGaeyypa0JaeyOeI0YaaSaaaeaacqaHZoWzaeaacaaIYaGaeqiTdq gaamaadmaabaGaaGymaiabgUcaRmaalaaabaGaamOqaaqaaiaadgea caWGXbGaeqOVdGNaey4kaSIaamyqaiaadogadaWgaaqaaiaaigdaae qaaiabgkHiTiaadkeaaaaacaGLBbGaayzxaaGaaiilaaaa@50B7@

where ξ= B Aq γ 2 8δ x+ B γ 2 4δAq t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0ZaaSqaaeaacaWGcbaabaGaamyqaiaadghaaaWaaOaaaeaa daWcbaqaaiabeo7aNnaaCaaajuaibeqaaiaaikdaaaaajuaGbaGaaG ioaiabes7aKbaaaeqaaiaadIhacqGHRaWkdaWcbaqaaiaadkeacqaH ZoWzdaahaaqcfasabeaacaaIYaaaaaqcfayaaiaaisdacqaH0oazca WGbbGaamyCaaaacaWG0baaaa@4CBA@  .

Physical explanations of our obtained solutions

The obtained exact traveling wave solutions for the nonlinear KPP equation (1.1) are hyperbolic, trigonometric and rational. In this section, we have presented some graphs of the exact solutions u 1 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaaqabaqcfaOaaiikaiaadIhacaGGSaGaaGPa VlaadshacaGGPaaaaa@3EA0@ , u 7 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4naaqcfayabaGaaiikaiaadIhacaGGSaGaaGPa VlaadshacaGGPaaaaa@3EA6@ , u 11 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaigdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5B@ , u 14 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaisdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5E@ , u 16 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiAdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F60@ , u 19 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiMdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F63@ , u 25 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiwdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F60@  and u 31 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaigdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5D@  constructed by taking suitable values of involved unknown parameters to visualize the mechanism of the original equation (1.1). These solutions are kink, singular kink-shaped soliton solution, hyperbolic solutions and trigonometric solutions. For more convenience the graphical representations of these solutions are shown in the following figures 1 to 8:

Figure 1 Plot of the solution u 1 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaaqabaqcfaOaaiikaiaadIhacaGGSaGaaGPa VlaadshacaGGPaaaaa@3EA0@  when k=2,p=ω=1,γ=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaikdacaGGSaGaamiCaiabg2da9iabeM8a3jabg2da9iaa igdacaGGSaGaeq4SdCMaeyypa0JaeyOeI0IaaGymaiaac6caaaa@4526@

Figure 2 Plot of the solution u 7 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4naaqcfayabaGaaiikaiaadIhacaGGSaGaaGPa VlaadshacaGGPaaaaa@3EA6@  when k=1,p=3,ω=2,γ=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaigdacaGGSaGaamiCaiabg2da9iaaiodacaGGSaGaaGPa VlabeM8a3jabg2da9iaaikdacaGGSaGaeq4SdCMaeyypa0JaeyOeI0 IaaGymaiaac6caaaa@481E@  

Figure 3 Plot of the solution u 11 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaigdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5B@  when k=1,p=3,q=4,ω=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaigdacaGGSaGaamiCaiabg2da9iaaiodacaGGSaGaaGPa VlaadghacqGH9aqpcaaI0aGaaiilaiabeM8a3jabg2da9iaaigdaca GGSaaaaa@4680@ γ=3,d=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaeyOeI0IaaG4maiaacYcacaaMc8Uaamizaiabg2da9iaa igdacaGGSaaaaa@4070@ B=2,A=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqai abg2da9iaaikdacaGGSaGaaGPaVlaadgeacqGH9aqpcaaIXaGaaiOl aaaa@3E81@

Figure 4 Plot of the solution u 14 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaisdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5E@  when k=1,p=1,δ=2,q=3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaigdacaGGSaGaamiCaiabg2da9iaaigdacaGGSaGaaGPa Vlabes7aKjabg2da9iaaikdacaGGSaGaaGPaVlaadghacqGH9aqpca aIZaGaaiilaaaa@47E1@ γ=1,d=3,B=1,A=2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaeyOeI0IaaGymaiaacYcacaaMc8Uaamizaiabg2da9iaa iodacaGGSaGaamOqaiabg2da9iaaigdacaGGSaGaaGPaVlaadgeacq GH9aqpcaaIYaGaaiOlaaaa@486D@

Figure 5 Plot of the solution u 16 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiAdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F60@  when p=3,δ=4,q=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9iaaiodacaGGSaGaaGPaVlabes7aKjabg2da9iaaisdacaGG SaGaaGPaVlaadghacqGH9aqpcaaIXaGaaiilaaaa@4482@ γ=3,r=1,B=2,A=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaeyOeI0IaaG4maiaacYcacaaMc8UaamOCaiabg2da9iaa igdacaGGSaGaamOqaiabg2da9iabgkHiTiaaikdacaGGSaGaaGPaVl aadgeacqGH9aqpcqGHsislcaaIXaGaaiOlaaaa@4A55@

Figure 6 Plot of the solution u 19 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGymaiaaiMdaaKqbagqaaiaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F63@  when p=5, δ=1,q=1,γ=3,r=1,B=2,A=2,R=2,M=2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaeyypa0JaaGynaiaacYcacaGGGcGaeqiTdqMaeyyp a0JaaGymaiaacYcacaWGXbGaeyypa0JaaGymaiaacYcapaGaeq4SdC Maeyypa0JaeyOeI0IaaG4maiaacYcacaaMc8UaamOCaiabg2da9iaa igdacaGGSaGaamOqaiabg2da9iaaikdacaGGSaGaaGPaVlaadgeacq GH9aqpcaaIYaGaaiilaiaadkfacqGH9aqpcaaIYaGaaiilaiaac2ea cqGH9aqpcaaIYaGaaiOlaaaa@5B42@

Figure 7 Plot of the solution u 25 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaGOmaiaaiwdaaeqaaKqbakaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F60@  when p=1,δ=1,q=5, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9iaaigdacaGGSaGaaGPaVlabes7aKjabg2da9iaaigdacaGG SaGaaGPaVlaadghacqGH9aqpcaaI1aGaaiilaaaa@4481@ γ=1,r=4,B=3,A=2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGymaiaacYcacaaMc8UaamOCaiabg2da9iaaisdacaGG SaGaamOqaiabg2da9iaaiodacaGGSaGaaGPaVlaadgeacqGH9aqpca aIYaGaaiOlaaaa@4791@

Figure 8 Plot of the solution u 31 (x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaaG4maiaaigdaaKqbagqaaiaacIcacaWG4bGaaiil aiaaykW7caWG0bGaaiykaaaa@3F5D@  when p=1, δ=1,q=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaeyypa0JaaGymaiaacYcacaGGGcGaeqiTdqMaeyyp a0JaaGymaiaacYcacaWGXbGaeyypa0JaaGOmaiaacYcaaaa@42AC@ γ=1,r=4, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGymaiaacYcacaaMc8UaamOCaiabg2da9iaaisdacaGG Saaaaa@3F92@ B=2,A=2,R=3,M=2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqai abg2da9iaaikdacaGGSaGaaGPaVlaadgeacqGH9aqpcaaIYaGaaiil aiaaykW7caWGsbGaeyypa0JaaG4maiaacYcacaaMc8Uaamytaiabg2 da9iaaikdacaGGUaaaaa@4826@

Conclusion

In this article, we have employed the Bäcklund transformation of the generalized Riccati equation to obtain many new exact traveling wave solutions of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation (1.1). On comparing our results in this paper with the well-known results obtained in22,26,46 we deduce that our results in this article are new and are not published elsewhere. The Bäcklund transformation of the generalized Riccati equation obtained in this article is more effective and gives more exact solutions than the generalized Riccati equation mapping method obtained in.4145 Further, all solutions obtained in this article have been checked with the Maple by putting them back into the original equations. Finally, the proposed method in this article can be applied to many other nonlinear PDEs in mathematical physics, which will be done in forthcoming papers.

Acknowledgments

None.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. MJ Ablowitz, PA Clarkson. Solitons, Nonlinear Evolution Equation and Inverse Scattering. Cambridge University press, USA. 1991.
  2. R Hirota. Exact solutions of KdV equation for multiple collisions of solitons. Physical Review Letters. 1971;27(18):1192–1194.
  3. NA Kudryashov. On types of nonlinear non-integrable equations with exact solutions. Physics Letters A. 1991;155:269–275.
  4. MR Miura. Bäcklund Transformation. Berlin, Springer, Germany. 1978.
  5. B Lu. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Physics Letters A. 2012;376(28):2045–2048.
  6. SA EL Wakil, MA Madkour, et al. Application of exp-function method for nonlinear evolution equations with variable coefficients. Physics Letters A. 2012;369(1):62–69.
  7. YP Wang. Solving the (3+1)-dimensional potential-YTSF equation with Exp-function method. Journal of Physics: Conference Series. 2008. p. 96.
  8. K Khan, MA Akbar. Traveling wave solutions of the (2+1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method. Ain Shams Engineering Journal. 2014;5:247–256.
  9. NA Kudryashov, NB Loguinova. Extended simplest equation method for nonlinear differential equations. Applied Mathematics and Computation. 2008;205:396–402.
  10. YM Zhao. New exact solutions for a higher-order wave equation of KdV type using the multiple simplest equation method. Journal of Applied Mathematics. 2014.
  11. NA Kudryashov. Exact solutions of generalized Kuramoto-Sivashinsky equation. Physics Letters A. 1990;147(5-6):287–291.
  12. S Liu, Z Fu, S Liu, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A. 2001;289:69–74.
  13. D Lu, Q Shi. New Jacobi elliptic functions solutions for the combined KdV-mKdV equation. International Journal of Nonlinear Science. 2010;10(3):320–325.
  14. EME Zayed, YA Amer, RM A Shohib. The Jacobi elliptic function expansion method and its applications for solving the higher order dispersive nonlinear Schrö dinger equation. Scientific Journal of Mathematics Research. 2010;4:53–72.
  15. EJ Parkes, BR Duffy. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Computer Physics Communications. 2005;698:288–300.
  16. DL Sekulic, MV Sataric, MB Zivanov. Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method. Applied Mathematics and Computation. 2010;218:3499–3506.
  17. M Wang, X Li, J Zhang. The (G′/G) expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A. 2008;372(4):417–423.
  18. EME Zayed. The (G′/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics. Journal of Applied Mathematics and Computing. 2009;30(1):89–103.
  19. EME Zayed, KA Gepreel. The (G′/G) expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. Journal of Mathematical Physics. 2009.
  20. ZL Li. Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by (G′/G)-expansion method. Applied Mathematics and Computation. 2010;217:1398–1403.
  21. B Ayhan, A Bekir. The (G′/G) expansion method for the nonlinear lattice equations. Communications in Nonlinear Science and Numerical Simulation. 2012;17:3490–3498.
  22. J Feng, W Li, Q Wan. Using (G′/G) expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation. Applied Mathematics and Computation. 2011;217:5860–5865.
  23. AJM Jawad, MD Petkovic, A Biswas. Modified simple equation method for nonlinear evolution equations. Applied Mathematics and Computation. 2010;217:869–877.
  24. EME Zayed. A note on the modified simple equation method applied to Sharma-Tasso-Olver equation. Applied Mathematics and Computation. 2011;218:3962–3964.
  25. EME Zayed, YA Amer. The modified simple equation method for solving nonlinear diffusive predator-prey system and Bogoyavlenskii equations. International Jornal of Physiacal Scienace. 2015;10(4):133–141.
  26. EME Zayed, SA Hoda Ibrahim. Exact solutions of Kolmogorov-Petrovskii- Piskunov equation using the modified simple equation method. Acta Mathematicae Applicatae Sinica English Series. 2014;30(3):749–754.
  27. NA Kudryashov. On one of methods for finding exact solutions of nonlinear differential equations, arXiv:1108.3288v1. 2011.
  28. PN Ryabov, DI Sinelshchikov, MB Kochanov. Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Applied Mathematics and Computation. 2011;218:3965–3972.
  29. EME Zayed, KAE Alurrfi. The homogeneous balance method and its applications for finding the exact solutions for nonlinear evolution equations. Italian Journal of Pure and Applied mathematics. 2014;33:307–318.
  30. WX Ma, Z Zhu. Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithms. Applied Mathematics and Computation. 2012;218:11871–11879.
  31. WX Ma, T Huang, Y Zhang. A multiple exp-function method for nonlinear differential equations and its application. Phys Script. 2010;82:1–8.
  32. WX Ma, JH Lee. A transformed rational function method and exact solutions to the (3+1)-dimensional Jimbo-Miwa equation. Chaos Solitons Fractls. 2009;42:1356–1363.
  33. WX Ma, HY Wu, JS He. partial differential equations possessing Frobenius integrable decomposition technique. Physics Letters A. 2007;364:29–32.
  34. YJ Yang, D Baleanu, XJ Yang. A Local fractional variational iteration method for Laplace equation within local fractional operators. Abstract and Applied Analysis. 2013.
  35. AM Yang, XJ Yang, ZB Li. Local fractional series expansion method for solving wave and diffusion equations on cantor sets. Abstract and Applied Analysis. 2013.
  36. EME Zayed, MAM Abdelaziz. The two variables (G′/G, 1/G) expansion method for solving the nonlinear KdV-mKdV equation. Mathematical Problems in Engineering. 2012.
  37. EME Zayed, SA Hoda Ibrahim. The (G′/G, 1/G) expansion method and its applications for constructing the exact solutions of the nonlinear Zoomeron equation. World Journal of Modelling and Simulation. 2015;11(2):104–110.
  38. EME Zayed, KAE Alurrfi. The (G′/G, 1/G) expansion method and its applications to find the exact solutions of nonlinear PDEs for nanobiosciences. Mathematical Problems in Engineering. 2014.
  39. EME Zayed, KAE Alurrfi. The (G′/G, 1/G) expansion method and its applications for solving two higher order nonlinear evolution equations. Mathematical Problems in Engineering. 2014.
  40. EME Zayed, KAE Alurrfi. On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the (G′/G, 1/G) expansion method. Ricerche di Matematica. 2015;64(1):167–194.
  41. SD Zhu. The generalized Riccati equation mapping method in nonlinear evolution equation: application to (2+1)-dimensional Boiti-leon-Pempinelle equation, Chaos, Solitons and Fractals. Science research publisher. 2008;37:1335–1342.
  42. Z Li and X Zhang. new exact kink solutions and periodic form solutions for a generalized Zakharov-Kuznetsov equation with variable coefficients. Communications in Nonlinear Science and Numerical Simulation. 2010;15(11):3418–3422.
  43. EME Zayed, AH Arnous. Many exact solutions for nonlinear dynamics of DNA model using the generalized Riccati equation mapping method. Scientific Research and Essays. 2013;8(8):340–346.
  44. EME Zayed, YA Amer, RMA Shohib. The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules. Scientific Research and Essays. 2008;9(8):238–248.
  45. HNaher, FA Abdullah, MA Akbar, A Yildirim. The extended generalized Riccati equation mapping method for the (1+1)-dimensional modified KdV equation. World Applied Sciences Journal. 2013;25(4):543–553.
  46. EME Zayed, YA Amer. Exact solutions for the nonlinear KPP equation by using the Riccati equation method combined with the (G′/G) expansion method. Scientific Research and Essays. 2015;10(3):86–96.
Creative Commons Attribution License

©2017 Zayed, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.