Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 3 Issue 4

Temperature effect on optical filter based on fiber-optic resonator using polarization and birefringence effects in the resonator loop

Faramarz E Seraji, Saeede Gasemzade

Department of Communication Technology, Iran Telecom Research Center, Iran

Correspondence: Faramarz E Seraji, Faculty member Optical Communication Group, Department of Communication Technology, Iran Telecom Research Center, Tehran, Iran, Tel +98–21–84977723

Received: June 29, 2019 | Published: August 30, 2019

Citation: Seraji FE, Gasemzade S. Temperature effect on optical filter based on fiber-optic resonator using polarization and birefringence effects in the resonator loop. Phys Astron Int J. 2015;3(4):159-161. DOI: 10.15406/paij.2019.03.00176

Download PDF

Abstract

In this paper an analysis of optical filter based on fiber-optic ring resonator using polarization and birefringence effects in the resonator loop is presented. The temperature variations, which affect the refractive index and radius of the ring, would cause a change in the filter response. The simulation results show that the resonant wavelengths would shift toward longer wavelengths and output intensity changes with increasing temperature. It is shown that for every 10 deg C change in temperature, would cause the resonance wavelength to increase by 0.1 .

Keywords: optical filter, tunability, fiber-optic ring resonator, thermo-optic tuning, wavelength, refractive index, resonator loop, Sagnac ring, fiber optic gratings, polarizing sensors, biosensors, dispersion compensating devices

Abbreviations

FORR, fiber-optic ring resonator; PR, polarization rotator

Introduction

Optical filters that are used today in fiber optic systems are designed based on various methods, such as fiber-optic ring resonator (FORR), Sagnac ring, fiber optic gratings, the use of arrayed waveguide gratings, or the use of dielectric thin-film interference structures and several other approaches. The tuning of these optical filters is also one of the key elements that should be taken into consideration, especially in WDM/DWDM optical communication systems, with channel spacing of less than 50 GHz. In this paper, the filter, which has been analyzed, is constructed on an FORR, with a resonance loop made up with a birefringent fiber.1 Today, FORRs are used for various applications such as polarizing sensors, biosensors, dispersion compensating devices, optical switches, and other applications used in optical communication systems such as biosensors,2 optical switching,3 add/drop multiplexers,4 micro disk laser resonators,5 simultaneous measurement of refractive index and temperature,6 optical Bistability,7 tunable optical filters,1,8 and several other applications used in optical communication systems. The use of FORR for tunable optical filters is analyzed, where the resonance loop of the FORR was made of photonic crystal fibers.9

A fiber-optic ring resonator with a resonance loop made of a conventional single-mode optical fiber as a nano-scale sensor for measurement of physical quantities, such as pressure and temperature is proposed.10 Recently, performance analyses of FORR under steady11 and dynamic12 states are reported, where the resonator responses in terms of characteristic parameters, are investigated. In our previous method, a Sagnac loop was used in an FORR to tune an optical filter which was based on variations of coupling coefficient and phase shift created by Sagnac rotation, and the fiber birefringence and propagating light polarization in the FORR. In this paper, we now want to study the effect of temperature variations on the filtering1 and analyze its tunability at different conditions.

Theoretical foundations

In an FORR, any change that occurs on the structure and parameter of the loop, such as a change in loop radius and effective refractive index, makes the wavelength of the resonator change. One of the most important factors that change the radius of the FORR loop and the effective refractive index of the fiber is the temperature variations of the environment. Of course, the parameter that is more affected by the temperature changes is the effective refractive index of the fiber used in the FORR loop. The change in the wavelength of the FORR due to changes in the effective refractive index is given by the following equation:13

Δλ λ 0 =| Δ n eff n group | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacqqHuoarcqaH7oaBaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqa aKqzadGaaGimaaWcbeaaaaqcLbsacqGH9aqpjuaGdaabdaGcbaqcfa 4aaSaaaOqaaKqzGeGaeuiLdqKaamOBaKqbaoaaBaaaleaajugWaiaa dwgacaWGMbGaamOzaaWcbeaaaOqaaKqzGeGaamOBaKqbaoaaBaaale aajugWaiaadEgacaWGYbGaam4BaiaadwhacaWGWbaaleqaaaaaaOGa ay5bSlaawIa7aaaa@5502@   (1)

To justify the above relation, we consider an optical fiber with a certain cross-section with propagation constant β. We assume that this optical fiber carries a wave with frequency ω under the influence of an external factor such as the variation of environmental temperature q.

When we examine the output of the filter, two degrees of freedom ( q,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGe9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajuaGdaqadaGcba qcLbsacaWGXbGaaiilaiabeM8a3bGccaGLOaGaayzkaaaaaa@3C21@  must be considered. The first one q is a minor change, then as a result, the propagation constant β changes as much as δ β q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaks7aca GIYoqcfa4aaSbaaSqaaKqzadGaamyCaaWcbeaaaaa@3BD2@  and the resonance frequency is no longer ω. To revert the value of β to the original state, we change the frequency to reach the resonance condition, followed by a change δ β ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaks7aca GIYoqcfa4aaSbaaSqaaKqzadGaaOyYdaWcbeaaaaa@3C34@  in β. The newly obtained frequency is considered to be tuned frequency. So, in general we have: ββ+δ β q β=β+δ β q +δ β ω . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiabek7aIj abgkziUkabek7aIjabgUcaRiabes7aKjabek7aILqbaoaaBaaaleaa jugWaiaadghaaSqabaqcLbsacqGHsgIRcqaHYoGycqGH9aqpcqaHYo GycqGHRaWkcqaH0oazcqaHYoGyjuaGdaWgaaWcbaqcLbmacaWGXbaa leqaaKqzGeGaey4kaSIaeqiTdqMaeqOSdiwcfa4aaSbaaSqaaKqzad GaeqyYdChaleqaaKqzGeGaaiOlaaaa@5A30@

As a result, we have: δ β q +δ β ω =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiabes7aKj abek7aILqbaoaaBaaaleaajugWaiaadghaaSqabaqcLbsacqGHRaWk cqaH0oazcqaHYoGyjuaGdaWgaaWcbaqcLbmacqaHjpWDaSqabaqcLb sacqGH9aqpcaaIWaGaaiOlaaaa@480A@   So, with the placement of the parameters, we have:

ω c n eff q Δq+ n g c Δω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacqaHjpWDaOqaaKqzGeGaam4yaaaajuaGdaWcaaGcbaqcLbsa cqGHciITcaWGUbqcfa4aaSbaaSqaaKqzadGaamyzaiaadAgacaWGMb aaleqaaaGcbaqcLbsacqGHciITcaWGXbaaaiabfs5aejaadghacqGH RaWkjuaGdaWcaaGcbaqcLbsacaWGUbqcfa4aaSbaaSqaaKqzadGaam 4zaaWcbeaaaOqaaKqzGeGaam4yaaaacqqHuoarcqaHjpWDcqGH9aqp caaIWaaaaa@544C@   (2)

If this external factor Δq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGe9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs5aej aadghaaaa@38E1@  is due to temperature changes ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiabfs5aej aadsfaaaa@38A2@ , we will have:

Δω ω = Δλ λ = 1 n g n eff T ΔT,forΔω<<ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacqqHuoarcqaHjpWDaOqaaKqzGeGaeqyYdChaaiabg2da9Kqb aoaalaaakeaajugibiabfs5aejabeU7aSbGcbaqcLbsacqaH7oaBaa Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGUbqc fa4aaSbaaOqaaKqzadGaam4zaaWcbeaaaaqcfa4aaSaaaOqaaKqzGe GaeyOaIyRaamOBaKqbaoaaBaaaleaajugWaiaadwgacaWGMbGaamOz aaWcbeaaaOqaaKqzGeGaeyOaIyRaamivaaaacqqHuoarcaWGubGaai ilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7qqa6 daaaaaGuLrgapeGaamOzaiaad+gacaWGYbGaaGPaVlaaykW7cqqHuo arcqaHjpWDcqGH8aapcqGH8aapcqaHjpWDaaa@739F@   (3)

Since the refractive index of the core differs from that of the fiber cladding, Eq. 3 changes as follows:

Δλ ΔT =| λ n g ( n eff n co n co T + n eff n cl n cl T ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacqqHuoarcqaH7oaBaOqaaKqzGeGaeuiLdqKaamivaaaacqGH 9aqpjuaGdaabdaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaaju gibiaad6gajuaGdaWgaaWcbaqcLbmacaWGNbaaleqaaaaajuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOBaKqbaoaaBaaale aajugWaiaadwgacaWGMbGaamOzaaWcbeaaaOqaaKqzGeGaeyOaIyRa amOBaKqbaoaaBaaaleaajugWaiaadogacaWGVbaaleqaaaaajuaGda WcaaGcbaqcLbsacqGHciITcaWGUbqcfa4aaSbaaSqaaKqzadGaam4y aiaad+gaaSqabaaakeaajugibiabgkGi2kaadsfaaaGaey4kaSscfa 4aaSaaaOqaaKqzGeGaeyOaIyRaamOBaKqbaoaaBaaaleaajugWaiaa dwgacaWGMbGaamOzaaWcbeaaaOqaaKqzGeGaeyOaIyRaamOBaKqbao aaBaaaleaajugWaiaadogacaWGSbaaleqaaaaajuaGdaWcaaGcbaqc LbsacqGHciITcaWGUbqcfa4aaSbaaSqaaKqzadGaam4yaiaadYgaaS qabaaakeaajugibiabgkGi2kaadsfaaaaakiaawIcacaGLPaaaaiaa wEa7caGLiWoaaaa@7E90@   (4)

where the terms (λ/ n g )( n eff / n co ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiaacIcacq aH7oaBcaGGVaGaamOBaKqbaoaaBaaaleaajugWaiaadEgaaSqabaqc LbsacaGGPaGaaiikaiabgkGi2kaad6gajuaGdaWgaaWcbaqcLbmaca WGLbGaamOzaiaadAgaaSqabaqcLbsacaGGVaGaeyOaIyRaamOBaKqb aoaaBaaaleaajugWaiaadogacaWGVbaaleqaaKqzGeGaaiykaaaa@4EE2@  and (λ/ n g )( n eff / n cl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiaacIcacq aH7oaBcaGGVaGaamOBaKqbaoaaBaaaleaajugWaiaadEgaaSqabaqc LbsacaGGPaGaaiikaiabgkGi2kaad6gajuaGdaWgaaWcbaqcLbmaca WGLbGaamOzaiaadAgaaSqabaqcLbsacaGGVaGaeyOaIyRaamOBaKqb aoaaBaaaleaajugWaiaadogacaWGSbaaleqaaKqzGeGaaiykaaaa@4EDF@  are weighted coefficients that determine the amount of power in the corresponding region. These coefficients are calculated for each of the desired region as follows:

Γ= n g n A A ε | E | 2 dxdy ε | E | 2 dxdy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGI8VfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiabfo5ahj abg2da9Kqbaoaalaaakeaajugibiaad6gajuaGdaWgaaWcbaqcLbma caWGNbaaleqaaaGcbaqcLbsacaWGUbqcfa4aaSbaaSqaaKqzadGaam yqaaWcbeaaaaqcfa4aaSaaaOqaaKqbaoaapibakeaajugibiabew7a LLqbaoaaemaakeaajugibiaadweaaOGaay5bSlaawIa7aKqbaoaaCa aaleqabaqcLbmacaaIYaaaaKqzGeGaamizaiaadIhacaWGKbGaamyE aaWcbaqcLbmacaWGbbaaleqajugibiabgUIiYlabgUIiYdaakeaaju aGdaWdsbGcbaqcLbsacqaH1oqzjuaGdaabdaGcbaqcLbsacaWGfbaa kiaawEa7caGLiWoajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibi aadsgacaWG4bGaamizaiaadMhaaSqaaKqzadGaeyOhIukaleqajugi biabgUIiYlabgUIiYdaaaaaa@6E00@   (5)

where ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzaaa@382C@  denotes the dielectric coefficient of the environment, n g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaju aGdaWgaaWcbaqcLbmacaWGNbaaleqaaaaa@3A37@  represents the group refractive index, and n A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaWGUb qcfa4aaSbaaSqaaKqzadGaamyqaaWcbeaaaaa@3A2F@  is the refractive index of the region where the light wave penetrates. As a result, the refractive index of the core and the cladding regions change with respect to relative temperature variations as follows:

Δ n co = Γ co ( n co + d n co dT ( T T 0 ) ) Δ n cl = Γ cl ( n cl + d n cl dT ( T T 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaeu iLdqKaamOBaKqbaoaaBaaaleaajugWaiaadogacaWGVbaaleqaaKqz GeGaeyypa0Jaeu4KdCucfa4aaSbaaSqaaKqzadGaam4yaiaad+gaaS qabaqcfa4aaeWaaOqaaKqzGeGaamOBaKqbaoaaBaaaleaajugWaiaa dogacaWGVbaaleqaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaam izaiaad6gajuaGdaWgaaWcbaqcLbmacaWGJbGaam4BaaWcbeaaaOqa aKqzGeGaamizaiaadsfaaaqcfa4aaeWaaOqaaKqzGeGaamivaiabgk HiTiaadsfajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaaabaqcLbsacqqHuoarcaWGUbqcfa4aaS baaSqaaKqzadGaam4yaiaadYgaaSqabaqcLbsacqGH9aqpcqqHtoWr juaGdaWgaaWcbaqcLbmacaWGJbGaamiBaaWcbeaajuaGdaqadaGcba qcLbsacaWGUbqcfa4aaSbaaSqaaKqzadGaam4yaiaadYgaaSqabaqc LbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGKbGaamOBaKqbaoaaBa aaleaajugibiaadogacaWGSbaaleqaaaGcbaqcLbsacaWGKbGaamiv aaaajuaGdaqadaGcbaqcLbsacaWGubGaeyOeI0IaamivaKqbaoaaBa aaleaajugWaiaaicdaaSqabaaakiaawIcacaGLPaaaaiaawIcacaGL Paaaaaaa@8482@   (6)

where Γ cl , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaykW7cq qHtoWrkmaaBaaaleaajugWaiaadogacaWGSbaaleqaaKqzGeGaaiil aaaa@3DBF@   Γ co , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfo5ahP WaaSbaaSqaaKqzadGaam4yaiaad+gaaSqabaqcLbsacaGGSaaaaa@3C37@  and n cl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaju aGdaWgaaWcbaqcLbmacaWGJbGaamiBaaWcbeaaaaa@3B24@ , n co , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaju aGdaWgaaWcbaqcLbmacaWGJbGaam4BaaWcbeaajugibiaacYcaaaa@3C66@  respectively, are weighted coefficients and refractive indices of the core and cladding, and d n cl /dT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadsgaca WGUbqcfa4aaSbaaSqaaKqzadGaam4yaiaadYgaaSqabaqcLbsacaGG VaGaamizaiaadsfaaaa@3F11@  and d n co /dT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaykW7ca WGKbGaamOBaKqbaoaaBaaaleaajugWaiaadogacaWGVbaaleqaaKqz GeGaai4laiaadsgacaWGubaaaa@409F@  are corresponding thermo-optical coefficients. Different methods are used to calculate the thermo-optical coefficient of the fiber, among which interference is one of these methods.14 If we assume that fiber cladding is made of only pure silica and the fiber core is made with 15%  mole combined with , the amount of thermo-optic coefficient will be 1.24 and 1.06, respectively. The schematic diagram of the fiber optic ring resonator is shown in Figure 1, where the incoming light wave enters the optical coupler with a definite polarization. By twisting the fiber on the xy-plane by the polarization rotator (PR) placed in the resonator loop, a circular birefringence is created in the fiber. Thus, in the resonator loop, two types of birefringence are created: one is a linear birefringence due to bending and the other is a circular birefringence caused by a twist. These two birefringences create phase differences of φ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA8aQL qbaoaaBaaaleaajugWaiaadogaaSqabaaaaa@3AFD@  and φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeA8aQL qbaoaaBaaaleaajugWaiaaigdaaSqabaaaaa@3AD0@  in the light wave entering resonator loop. Thus, the total phase difference is expressed as follows:15

Δφ= φ c 2 + ( φ 1 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs5aej abeA8aQjabg2da9OWaaOaaaeaajugibiabeA8aQPWaa0baaSqaaKqz adGaam4yaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaSIcdaqadaqaam aalaaabaqcLbsacqaHgpGAkmaaBaaaleaajugibiaaigdaaSqabaaa keaajugibiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaKqzad GaaGOmaaaaaSqabaaaaa@4B82@   (7)

Figure 1 Schematic diagram of the Fiber optic resonator.1
PR, polarization rotator.

The x and y components of the normalized electrical fields just after PR are calculated as follows:

E tx E in = N x D x E ty E in = N y D y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGfbqcfa4aaSbaaSqaaKqzadGaamiDaiaadIha aSqabaaakeaajugibiaadweajuaGdaWgaaWcbaqcLbmacaWGPbGaam OBaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGobqc fa4aaSbaaSqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaamiraKqbao aaBaaaleaajugWaiaadIhaaSqabaaaaaGcbaqcfa4aaSaaaOqaaKqz GeGaamyraKqbaoaaBaaaleaajugWaiaadshacaWG5baaleqaaaGcba qcLbsacaWGfbqcfa4aaSbaaSqaaKqzadGaamyAaiaad6gaaSqabaaa aKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOtaKqbaoaaBaaale aajugWaiaadMhaaSqabaaakeaajugibiaadseajuaGdaWgaaWcbaqc LbmacaWG5baaleqaaaaaaaaa@620E@   (8)

where for parameters N x , D x , N y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GcdaWgaaWcbaqcLbmacaWG4baaleqaaOGaaiilaKqzGeGaamiraOWa aSbaaSqaaKqzadGaamiEaaWcbeaakiaacYcajugibiaad6eakmaaBa aaleaajugWaiaadMhaaSqabaGccaGGSaaaaa@4365@ and D y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GcdaWgaaWcbaqcLbmacaWG5baaleqaaaaa@399B@ , respectively, we can write:

N x =[ 1+i αk e iωτ ( cosΔφi φ 1 2 sinΔφ Δφ ) ] ( E ty E in )+iα k( 1k ) e 2iωτ ( φ c sinΔφ Δφ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam OtaOWaaSbaaSqaaKqzadGaamiEaaWcbeaajugibiabg2da9iabgkHi TOWaamWaaeaajugibiaaigdacqGHRaWkcaWGPbGcdaGcaaqaaKqzGe GaeqySdeMaam4AaaWcbeaajugibiaadwgakmaaCaaaleqabaqcLbma cqGHsislcaWGPbGaeqyYdCNaeqiXdqhaaOWaaeWaaeaajugibiGaco gacaGGVbGaai4Caiabfs5aejabeA8aQjabgkHiTiaadMgakmaalaaa baqcLbsacqaHgpGAkmaaBaaaleaajugWaiaaigdaaSqabaaakeaaju gibiaaikdaaaGcdaWcaaqaaKqzGeGaci4CaiaacMgacaGGUbGaeuiL dqKaeqOXdOgakeaajugibiabfs5aejabeA8aQbaaaOGaayjkaiaawM caaaGaay5waiaaw2faaaqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVRWaaeWaaeaadaWcaaqaaKqzGeGaamyraOWaaSbaaSqaaKqz adGaamiDaiaadMhaaSqabaaakeaajugibiaadweakmaaBaaaleaaju gWaiaadMgacaWGUbaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGaey4k aSIaamyAaiabeg7aHPWaaOaaaeaajugibiaadUgakmaabmaabaqcLb sacaaIXaGaeyOeI0Iaam4AaaGccaGLOaGaayzkaaaaleqaaKqzGeGa amyzaOWaaWbaaSqabeaajugWaiabgkHiTiaaikdacaWGPbGaeqyYdC NaeqiXdqhaaOWaaeWaaeaajugibiabeA8aQPWaaSbaaSqaaKqzadGa am4yaaWcbeaakmaalaaabaqcLbsaciGGZbGaaiyAaiaac6gacqqHuo arcqaHgpGAaOqaaKqzGeGaeuiLdqKaeqOXdOgaaaGccaGLOaGaayzk aaWaaWbaaSqabeaajugWaiaaikdaaaaaaaa@ACD2@   (9)

D x =i αk e iωτ φ c sinΔφ Δφ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiaadseakm aaBaaaleaajugWaiaadIhaaSqabaqcLbsacqGH9aqpcaWGPbGcdaGc aaqaaKqzGeGaeqySdeMaam4AaaWcbeaajugibiaadwgakmaaCaaale qabaqcLbmacqGHsislcaWGPbGaeqyYdCNaeqiXdqhaaKqzGeGaeqOX dOMcdaWgaaWcbaqcLbmacaWGJbaaleqaaOWaaSaaaeaajugibiGaco hacaGGPbGaaiOBaiabfs5aejabeA8aQbGcbaqcLbsacqqHuoarcqaH gpGAaaaaaa@568C@   (10)

N y =[ φ 1 φ c 2 ( sinΔφ Δφ ) 2 ]× [ e iωτ α ( k + 1k ( φ c sinΔφ Δφ ) ) α k( 1k ) e 2iωτ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam OtaOWaaSbaaSqaaKqzadGaamyEaaWcbeaajugibiabg2da9OWaamWa aeaadaWcaaqaaKqzGeGaeqOXdOMcdaWgaaWcbaqcLbmacaaIXaaale qaaKqzGeGaeqOXdOMcdaWgaaWcbaqcLbmacaWGJbaaleqaaaGcbaqc LbsacaaIYaaaaOWaaeWaaeaadaWcaaqaaKqzGeGaci4CaiaacMgaca GGUbGaeuiLdqKaeqOXdOgakeaajugibiabfs5aejabeA8aQbaaaOGa ayjkaiaawMcaamaaCaaaleqabaqcLbmacaaIYaaaaaGccaGLBbGaay zxaaqcLbsacqGHxdaTaOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7kmaadmaajugibqaabeGcbaqcLbsacaWGLbGcdaah aaWcbeqaaKqzadGaeyOeI0IaamyAaiabeM8a3jabes8a0baakmaaka aabaqcLbsacqaHXoqyaSqabaGcdaqadaqaamaakaaabaqcLbsacaWG RbaaleqaaKqzGeGaey4kaSIcdaGcaaqaaKqzGeGaaGymaiabgkHiTi aadUgaaSqabaGcdaqadaqaamaalaaabaqcLbsacqaHgpGAkmaaBaaa leaajugWaiaadogaaSqabaqcLbsaciGGZbGaaiyAaiaac6gacqqHuo arcqaHgpGAaOqaaKqzGeGaeuiLdqKaeqOXdOgaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaabaqcLbsacqGHsislcqaHXoqykmaakaaaba qcLbsacaWGRbGcdaqadaqaaKqzGeGaaGymaiabgkHiTiaadUgaaOGa ayjkaiaawMcaaaWcbeaajugibiaadwgakmaaCaaaleqabaqcLbmacq GHsislcaaIYaGaamyAaiabeM8a3jabes8a0baaaaGccaGLBbGaayzx aaaaaaa@A6D4@   (11)

D y =1+2i αk e iωτ cosΔφ αk e 2iωτ [ cos 2 Δφ+ φ 1 2 4 sin 2 Δφ Δ φ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam iraOWaaSbaaSqaaKqzadGaamyEaaWcbeaajugibiabg2da9iaaigda cqGHRaWkcaaIYaGaamyAaOWaaOaaaeaajugibiabeg7aHjaadUgaaS qabaqcLbsacaWGLbGcdaahaaWcbeqaaKqzadGaeyOeI0IaamyAaiab eM8a3jabes8a0baajugibiGacogacaGGVbGaai4Caiabfs5aejabeA 8aQbGcbaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiabeg7a HjaadUgacaWGLbGcdaahaaWcbeqaaKqzadGaeyOeI0IaaGOmaiaadM gacqaHjpWDcqaHepaDaaGcdaWadaqaaKqzGeGaci4yaiaac+gacaGG ZbGcdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabfs5aejabeA8aQj abgUcaROWaaSaaaeaajugibiabeA8aQPWaa0baaSqaaKqzadGaaGym aaWcbaqcLbmacaaIYaaaaaGcbaqcLbsacaaI0aaaaOWaaSaaaeaaju gibiGacohacaGGPbGaaiOBaOWaaWbaaSqabeaajugWaiaaikdaaaqc LbsacqqHuoarcqaHgpGAaOqaaKqzGeGaeuiLdqKaeqOXdOMcdaahaa WcbeqaaKqzadGaaGOmaaaaaaaakiaawUfacaGLDbaaaaaa@9EF8@   (12)

In the above expressions, k and α, respectively, are the coupling coefficient of the optical coupler and fiber transmission coefficient in the loop of the FORR. These two normalized electric fields are obtained by passing through the loop at the output of the filter as follows:

E ox E in =i k + 1k E tx E in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacaWGfbqcfa4aaSbaaSqaaKqzadGaam4BaiaadIhaaSqabaaa keaajugibiaadweajuaGdaWgaaWcbaqcLbmacaWGPbGaamOBaaWcbe aaaaqcLbsacqGH9aqpcqGHsislcaWGPbqcfa4aaOaaaOqaaKqzGeGa am4AaaWcbeaajugibiabgUcaRKqbaoaakaaakeaajugibiaaigdacq GHsislcaWGRbaaleqaaKqbaoaalaaakeaajugibiaadweajuaGdaWg aaWcbaqcLbmacaWG0bGaamiEaaWcbeaaaOqaaKqzGeGaamyraKqbao aaBaaaleaajugWaiaadMgacaWGUbaaleqaaaaaaaa@5700@   (13)

E oy E in = 1k E ty E in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacaWGfbqcfa4aaSbaaSqaaKqzadGaam4BaiaadMhaaSqabaaa keaajugibiaadweajuaGdaWgaaWcbaqcLbmacaWGPbGaamOBaaWcbe aaaaqcLbsacqGH9aqpjuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0Ia am4AaaWcbeaajuaGdaWcaaGcbaqcLbsacaWGfbqcfa4aaSbaaSqaaK qzadGaamiDaiaadMhaaSqabaaakeaajugibiaadweajuaGdaWgaaWc baqcLbmacaWGPbGaamOBaaWcbeaaaaaaaa@5184@   (14)

where τ=(Δ n eff /c)L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0j abg2da9iaacIcacqqHuoarcaWGUbGcdaWgaaWcbaqcLbmacaWGLbGa amOzaiaadAgaaSqabaqcLbsacaGGVaGaam4yaiaacMcacaWGmbaaaa@43EC@  denotes the time delay of the FORR with the loop length of L and relative refractive index difference between the core and the cladding of Δ n eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfs5aej aad6gajuaGdaWgaaWcbaqcLbmacaWGLbGaamOzaiaadAgaaSqabaaa aa@3D71@  The fiber length is also increased by temperature variations. The longitudinal thermal expansion coefficient of fiber is equal to 1 L dL dT =2× 10 6 / o C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVGc9Vf0Jb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaaGcba qcLbsacaaIXaaakeaajugibiaadYeaaaqcfa4aaSaaaOqaaKqzGeGa amizaiaadYeaaOqaaKqzGeGaamizaiaadsfaaaGaeyypa0JaaGOmai abgEna0kaaigdacaaIWaqcfa4aaWbaaSqabeaajugWaiabgkHiTiaa iAdaaaqcLbsacaaMc8Uaai4laKqbaoaaCaaajeaObeqcbawaaKqzad GaaO4Baaaajugibiaakoeaaaa@4F7A@  that is experimentally measured.16 Now, we introduce the temperature effects in corresponding Eqs. (3) to (6) in the normalized filter outputs expressed by Eqs. (13) and (14). If we choose the radius of the resonator ring at 15  and assume that the fiber is twisted through an angle 45 deg., thus the normalized output of the filter for different temperatures is obtained, as shown in Figure 2. As shown in Figure 2, when temperature increases, the resonance wavelength of the filter moves toward longer wavelengths. In Figure 3 the displacement of the resonance wavelengths at various temperatures from 20 to 80°C is indicated by a step of 10 degrees. At about 65°C onwards, the resonance wavelength varies linearly with respect to temperature changes. As the temperature increases, the output intensity considerably decreases. A temperature increase of 20 °C from 40 °C to 60°C, would cause normalized output intensity drop down from 1400 to about 260.

Figure 2 Normalized filter output for various temperatures from 20 °C to 100 °C.

Figure 3 The effect of temperature on resonance wavelength of the filter.

Conclusion

In this paper, the optical filter behavior is analyzed with the effect of temperature variations using MATLAB software. In optical communication systems, temperature rise can be considered in two directions. In one way, whenever necessary, it could be used for tuning the filter. On the other hand, when the target is not tuning, the variations of the environmental temperature could drift the filter response which is undesired condition in practice. In the analysis, it is shown that for every 10 °C temperature change of the filter increases the resonance wavelength about 0.1 μm.

Acknowledgments

The authors are grateful to departmental authority for the allotment of the research work for running academic project of optical group at Iran Telecom Research Center for the post-graduate program.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. FE Seraji, F Asghari, A Yekrangi Sendi. Tunability of optical filter based on fiber-optic ring resonator using polarization and birefringence effect in the resonator loop. Ukr J Phys Opt. 2010;11:185–192.
  2. Ian M White, Hesam Oveys, Xudong Fan. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides. Appl Phys Lett. 2006;89:191106–191108.
  3. Li Junqing, Li Li, Zhao Jiaqun, et al. Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator. Opt Commun. 2005;256(27):319–325.
  4. O Schwelb. Crosstalk and Bandwidth of Lossy Micro-ring Add/Drop Multiplexers. Opt Commun. 2006;265(1):175–179.
  5. SL McCall, AFJ Levi, RE Slusher, et al. Whispering-gallery mode microdisk lasers. Appl Phy Lett. 1992;60(3):289–291.
  6. Nai Lin, Lan Jiang, Sumei Wang, et al. Simultaneous measurement of refractive index and temperature using a microring resonator. Chin Opt Lett. 2012;10(5):052802(1–4).
  7. Y Dumeige, C Arnau, P Féron. Combining FDTD with Coupled Mode Theories for Bistability in Micro-Ring Resonators. Optics Communications. 2005;250(4–6):376–383.
  8. Faramarz E Seraji, F Asghari. Tunable optical filter based on Sagnac phase-shift using single optical ring resonato. Opt & Laser Technol. 2010;42:115–119.
  9. Kazhal Shalmashi, Faramarz E Seraji, M Rezaei Mersagh. Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop. Eur Phys J Appl Phys. 2012;58:20502(1–7).
  10. Melika E Seraji, Faramarz E Seraji, H Golnabi. A Possible Use of Fiber-Optic Ring Resonator as a Nano-Scale Optical Sensor for Detection of Physical Quantities. Int’l J Opt App. 2002;2(5):76–79.
  11. FE Seraji. Steady-State Performance Analysis of Fiber- Optic Ring Resonator. Progress in Quantum Electronics. 2009;33(1):1–16.
  12. Faramarz E. Seraji. Dynamic response of a fiber-optic ring resonator: Analysis with influences of light-source parameters. Prog Quant Electron. 2009;33(2–4):110–125.
  13. M. Popovic. Theory and Design of High-Index-Contrast Microphotonic Circuit. Ph.D. Thesis, Massuchusetts Institute of Technol., Cambridge. 2008. p. 1–358.
  14. YJ Kim, UC Paek, BH Lee. Measurement of refractive-index variation with temperature by use of long-period fiber grating. Opt Lett. 2002;27:1297–1299.
  15. Alan Roger. Polarisation in optical fiber. Artech House, 2008.
  16. Y Okada, Y Tokumaru. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys. 1984;56:314–320.
Creative Commons Attribution License

©2019 Seraji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.