MedCrave

Step into the Wonld of Research

i@

Physics & Astronomy International Journal

Research Article

8 Open Access ‘@

Temperature effect on optical filter based on fiber-
optic resonator using polarization and birefringence
effects in the resonator loop
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In this paper an analysis of optical filter based on fiber-optic ring resonator using polarization

and birefringence effects in the resonator loop is presented. The temperature variations,
which affect the refractive index and radius of the ring, would cause a change in the filter
response. The simulation results show that the resonant wavelengths would shift toward

Faramarz E Seraji, Saeede Gasemzade
Department of Communication Technology, Iran Telecom
Research Center, Iran

longer wavelengths and output intensity changes with increasing temperature. It is shown

that for every 10 deg C change in temperature, would cause the resonance wavelength to

increase by 0.1 pm .
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Introduction

Optical filters that are used today in fiber optic systems are
designed based on various methods, such as fiber-optic ring resonator
(FORR), Sagnac ring, fiber optic gratings, the use of arrayed
waveguide gratings, or the use of dielectric thin-film interference
structures and several other approaches. The tuning of these optical
filters is also one of the key elements that should be taken into
consideration, especially in WDM/DWDM optical communication
systems, with channel spacing of less than 50 GHz. In this paper,
the filter, which has been analyzed, is constructed on an FORR,
with a resonance loop made up with a birefringent fiber.! Today,
FORRs are used for various applications such as polarizing sensors,
biosensors, dispersion compensating devices, optical switches, and
other applications used in optical communication systems such as
biosensors,” optical switching,’ add/drop multiplexers,* micro disk
laser resonators,’ simultaneous measurement of refractive index and
temperature,® optical Bistability,” tunable optical filters,'® and several
other applications used in optical communication systems. The use of
FORR for tunable optical filters is analyzed, where the resonance loop
of the FORR was made of photonic crystal fibers.’

A fiber-optic ring resonator with a resonance loop made of a
conventional single-mode optical fiber as a nano-scale sensor for
measurement of physical quantities, such as pressure and temperature
is proposed.'® Recently, performance analyses of FORR under
steady'' and dynamic'’> states are reported, where the resonator
responses in terms of characteristic parameters, are investigated. In
our previous method, a Sagnac loop was used in an FORR to tune an
optical filter which was based on variations of coupling coefficient
and phase shift created by Sagnac rotation, and the fiber birefringence
and propagating light polarization in the FORR. In this paper, we now
want to study the effect of temperature variations on the filtering' and
analyze its tunability at different conditions.

Theoretical foundations

In an FORR, any change that occurs on the structure and parameter
of the loop, such as a change in loop radius and effective refractive
index, makes the wavelength of the resonator change. One of the most
important factors that change the radius of the FORR loop and the
effective refractive index of the fiber is the temperature variations of
the environment. Of course, the parameter that is more affected by the
temperature changes is the effective refractive index of the fiber used
in the FORR loop. The change in the wavelength of the FORR due
to changes in the effective refractive index is given by the following

equation:'
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To justify the above relation, we consider an optical fiber with
a certain cross-section with propagation constant g. We assume

that this optical fiber carries a wave with frequency o under the
influence of an external factor such as the variation of environmental

temperature q.

When we examine the output of the filter, two degrees of freedom
(q, w) must be considered. The first one g is a minor change, then
as a result, the propagation constant 4 changes as much as Jf; and

the resonance frequency is no longer ® . To revert the value of g to
the original state, we change the frequency to reach the resonance

condition, followed by a change J§f» in B. The newly obtained
frequency is considered to be tuned frequency. So, in general we have:

B —>B+8Bq - B=B+8Bq +0B,,-
As aresult, we have: Sﬁq +8p, =0. So, with the placement of the
parameters, we have:
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If this external factor o is due to temperature changes AT , we
will have:
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Since the refractive index of the core differs from that of the fiber
cladding, Eq. 3 changes as follows:
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where the terms (A / n, )(6neff /on, ) and (A/ n, )(6nff /on,)

[
are weighted coefficients that determine the amount of power in
the corresponding region. These coefficients are calculated for each
of the desired region as follows:
2
n, Ij'As|E| dxdy 5)
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where & denotes the dielectric coefficient of the environment,
n , represents the group refractive index, and n, is the refractive
index of the region where the light wave penetrates. As a result, the
refractive index of the core and the cladding regions change with
respect to relative temperature variations as follows:

dn
an, =T, ( r— (T—%)j
dT (6)
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dT
where T, I, and n,, n,, respectively, are weighted

coefficients and refractive indices of the core and cladding, and
dn, /dr and dn_ /dT are corresponding thermo-optical coefficients.
Different methods are used to calculate the thermo-optical coefficient
of the fiber, among which interference is one of these methods." If we
assume that fiber cladding is made of only pure silica and the fiber
core is made with 15% GeO, mole combined with SiO, , the amount
of thermo-optic coefficient will be 1.24 and 1.06, respectively. The
schematic diagram of the fiber optic ring resonator is shown in Figure 1,
where the incoming light wave enters the optical coupler with a definite
polarization. By twisting the fiber on the xy-plane by the polarization
rotator (PR) placed

2
Ap = w3+(ﬂj ™

The x and y components of the normalized electrical fields just
after PR are calculated as follows:

N,
D,
N, ®)
D,

where for parameters N, D_, N, and D, respectively, we can
write:
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In the above expressions, £ and « , respectively, are the coupling
coefficient of the optical coupler and fiber transmission coefficient
in the loop of the FORR. These two normalized electric fields are
obtained by passing through the loop at the output of the filter as
follows:

E E
ox :_i\/;Jr e (13)
Ein Ein
P 1k~ (14)
in Ein

where 7 =(An_, /c)L denotes the time delay of the FORR with

eff
the loop length of L and relative refractive index difference between

the core and the cladding of An . The fiber length is also increased by

€]

temperature variations. The longitudinal thermal expansion coefficient
. d . .
of fiber is equal to ~“~2x10°/" ¢ that is experimentally measured.'®
Ldr

Now, we introduce the temperature effects in corresponding Egs. (3)
to (6) in the normalized filter outputs expressed by Eqgs. (13) and (14).
If we choose the radius of the resonator ring at 15 um and assume
that the fiber is twisted through an angle 45 deg., thus the normalized
output of the filter for different temperatures is obtained, as shown
in Figure 2. As shown in Figure 2, when temperature increases, the
resonance wavelength of the filter moves toward longer wavelengths.
In Figure 3 the displacement of the resonance wavelengths at various
temperatures from 20 to 80°C is indicated by a step of 10 degrees. At
about 65°C onwards, the resonance wavelength varies linearly with
respect to temperature changes. As the temperature increases, the
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output intensity considerably decreases. A temperature increase of 20
°C from 40 °C to 60°C, would cause normalized output intensity drop
down from 1400 to about 260.

PR, polarization rotator

¥ ¢ Ein Coupler PR El:m ¥ 0

T e
Polarization polarization
at input after PR

Figure | Schematic diagram of the Fiber optic resonator.'
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Figure 2 Normalized filter output for various temperatures from 20 °C to
100 °C.
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Figure 3 The effect of temperature on resonance wavelength of the filter.

Conclusion

In this paper, the optical filter behavior is analyzed with the
effect of temperature variations using MATLAB software. In optical
communication systems, temperature rise can be considered in two
directions. In one way, whenever necessary, it could be used for
tuning the filter. On the other hand, when the target is not tuning,
the variations of the environmental temperature could drift the filter
response which is undesired condition in practice. In the analysis, it is
shown that for every 10 °C temperature change of the filter increases
the resonance wavelength about 0.1 pm.
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