Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 8 Issue 2

Study of periodic orbits around the triangular points in the circular restricted three-body problem when both the primaries are oblate spheroids and sources of radiation

Muthuruban Rajaram, John David Vincent, Ram Krishan Sharma

Department of Aerospace Engineering, Karunya Institute of Technology and Sciences, India

Correspondence: Ram Krishan Sharma, Department of Aerospace Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India

Received: May 21, 2024 | Published: June 17, 2024

Citation: Rajaram M,Vincent JD, Sharma RK. Study of periodic orbits around the triangular points in the circular restricted three-body problem when both the primaries are oblate spheroids and sources of radiation. Phys Astron Int J. 2024;8(2):111‒121. DOI: 10.15406/paij.2024.08.00338

Download PDF

Abstract

This paper deals with the planar circular restricted three-body problem when both the primaries are sources of radiation and oblate spheroids with their equatorial planes coincident with the plane of motion. A new mean motion is utilized which includes the secular effects of the oblateness of the primary on mean anomaly (M), the argument of perigee (ω), and right ascension of ascending node (Ω).1 The value of the critical mass ratio (μc) is obtained in the series form. It is found that it further decreases with the increase in oblateness of the primaries as well with their radiation effect. The angular frequencies of the long-periodic orbits (s4) and short-periodic orbits (s5) around the triangular Lagrangian point (L4) are computed in series form. It is observed that (s4) increases with mass ratio μ, oblateness, and radiation pressure of both the primaries, while (s5) decreases with mass ratio, oblateness, and radiation pressure of both the primaries. The eccentricities are also computed in the series form. It is observed that the eccentricity of long-periodic orbits (e4) decreases with mass ratio, oblateness, and radiation pressure of both the primaries, whereas the eccentricity of short-periodic orbits (e5) increases with mass ratio, oblateness, and radiation pressure of both the primaries. These results are confirmed with the numerical values. Comparisons of these solutions are made with the results of Singh and Ishwar2 Abouelmagd and El-Shaboury,3 Arohan and Sharma,4 and Jency et al.5

Keywords: Restricted Three Body Problem, Oblateness, Radiation Pressure, Perturbations, Equilateral Points, Critical mass ratio, Periodic Orbits, Angular Frequencies, Eccentricities, Time Periods.

Abbreviations

MB, Mitochondrial diseases; mtDNA, mitochondrial DNA; MRI, magnetic resonance imaging; GTCS, generalized tonic-clonic seizure; HSV, herpes simplex virus; ENMG, electroneuromyography

Introduction

From Newton to Lagrange, the restricted three-body problem caught the curiosity of many mathematicians and astronomers in the early days of its development. The applications of the restricted three-body problem to celestial mechanics have formed the basis of certain lunar and planetary theories in recent years, with the launch of artificial satellites in the Earth-Moon system and in the solar system. Euler was the first to contribute to the restricted three-body problem in 1772. The theory of restricted three-body problem begins with Euler and Lagrange in 1772 and continues with Jacobi in 1836, Hill in 1878, Brown in 1896, Poincare in 1892, Levi-Civita in 1904, Birkoff in 1915, and many more current mathematicians and astronomers.6 Two bodies of masses m1 and m2 revolve around their centre of mass (barycentre) in circular orbits under the influence of their mutual gravitational attraction and a third body of mass m3 attracted by the previous two bodies moves in a plane defined by the two revolving bodies. Here, the other two bodies are considerably having more mass than the third body (the mass of the third body is considered to be negligible and not in comparable with the other two heavier bodies). Since, the mass of the third body is restricted here; it will not influence the motion of other two revolving bodies. The two revolving bodies are called the primaries; they are also called as massive and smaller primaries, in accordance with their masses. The restricted three-body problem is to study the motion of third body around the primaries.

Sharma and Subba Rao7-9 studied the restricted three-body problem by considering the more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion by considering the secular effect of oblateness on mean motion.10 Sharma11 studies the restricted three-body problem by considering the more massive primary as an oblate spheroid as well as source of radiation. Sharma12 studies the restricted three-body problem by considering the more massive primary as a source of radiation and smaller primary as an oblate spheroid. Both the above studies used the mean motion of Subba Rao and Sharma.10 Many more studies were done with this mean motion expression literature.

Singh and Ishwar2 studied the effect of oblateness and radiation pressure of both the primaries on the location and linear stability of the triangular points in the restricted three-body problem using the above mean motion expression. They derived a series expression for critical mass μc. Subba Rao and Sharma13 studied the effect of oblateness of the more massive primary on the non-linear stability of L4 in the restricted three-body problem.

AbdulRaheem and Singh14 studied the combined effects of perturbations on the stability of equilibrium points in the restricted three-body problem. They investigated the perturbations due to small Coriolis and centrifugal forces, as well as the effects of oblateness and radiation pressure of the primaries for the equilibrium points. They calculated the critical mass by including all the perturbations. AbdulRaheem and Singh15 studied the effects of radiation and oblateness on the periodic orbits in the restricted three-body problem. Effect of Coriolis and centrifugal forces was also considered. Abouelmagd and El-Shaboury3 analyzed the periodic orbits under the combined effect of oblateness of three bodies and radiation pressure of both the primaries in circular restricted three-body problem. They calculated and plotted the variations of angular frequencies for perturbed and unperturbed cases with the mass ratio. Abouelmagd16 studied the linear stability of the triangular points with oblateness and radiation pressure in the restricted three-body problem. A series expression for critical mass μc is found. Ansari and Alam17 studied the circular restricted three body problem by considering one of the primaries as oblate and other one having the solar radiation pressure and all the masses are variable. They found that all the equilibrium points are linearly unstable. Khalifa18 carried out a semi-analytical study of the effect of ground-based laser radiation pressure on the location of triangular points in the framework of the planar circular restricted three-body problem. Jency et al.5 studied the stationary solutions, critical mass, tadpole orbits in the circular restricted three-body problem, where the massive primary is considered as an oblate spheroid. The authors utilized the new mean motion which included the secular effects of the oblateness of the primary on mean anomaly (M), the argument of perigee (ω), and right ascension of ascending node (Ω).1 They found the critical mass value μc to decrease further, which was compared with the μc value obtained by Subba Rao and Sharma.10 They further calculated the angular frequencies of long- and short-periodic orbits. They also computed the angle between the two coordinate systems.

Arohan and Sharma4 utilized the new mean motion expression to study the stationary solutions of the planar circular restricted three-body problem when the more massive primary is a source of radiation and the smaller primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. Locations of the Lagrangian points were found and an expression   for critical mass μc was obtained in the series form.  John and Sharma19 studied the circular restricted three body problem by considering with the more massive primary as an oblate spheroid and source of radiation by using the new mean motion expression.  The locations of the collinear Lagrangian points are found. The variations of the location of the Lagrangian points due to the unperturbed as well as the perturbed problem due to oblateness and radiation pressure were studied. A study on the eccentricity e and angular frequency s at the collinear points was carried out. Kumar et al.20 utilized the new mean motion by considering both the primaries as oblate spheroids with their equatorial planes coincident with the plane of motion. They studied the stability of the equilibrium points and observed that the collinear equilibrium points are always unstable. However, the non-collinear equilibrium points are stable for some combinations of the involved parameters. They plotted the zero velocity curves of the infinitesimal body for different values of the Jacobi constant C and oblateness parameters. It was observed that the value of C played a vital role in obtaining the permissible regions of motion of the infinitesimal body.

In our study, we have considered both the primaries as oblate spheroids and source of radiation in the planar circular restricted three-body problem. We have utilized the newly derived mean motion by Sharma et al.1 We have studied the effects of oblateness and radiation pressure of both the primaries on the critical mass ratio μc. We have also studied the variations of angular frequencies of long- and short periodic orbits at L4 with mass ratio μ. We have further studied the variation of eccentricities and time periods of long- and short periodic orbits around L4 with mass ratio. We have also generated an expression in series form for the angle α between the fixed and rotating coordinate system at L4.  We have compared our results with other authors wherever possible. There are few new results in our study.

Equations of motion

We consider the two bodies called primaries of larger mass (m1) and smaller mass (m2) moving about their centre of mass in circular orbits in a plane (Figure 1). The third body of infinitesimal mass at point (P), which does not affect the motion of m1 and m2, is moving under their gravitational influence in the same plane. The origin of the system lies on the barycentre (centre of mass) of the primaries. r1 and r2 are the distances of the third body P from the more massive (m1) and the smaller (m2) primaries, respectively.

The equations of motion are given as

¨x2n˙y=Ωx   (1)

¨y2n˙x=Ωy   (2)

The force function Ω is given by:

Ω=n2(x2+ y2)2+q1(1μ)r1+q2μr2+A1q1(1μ)2r13+A2q2μ2r23 ,  (3)

where q1 and q2 are the mass reduction factors with respect to m1 and m2, constant for the particle, with qi=1 – εi(i = 1, 2).εi are the ratio of radiation pressure forces to the gravitational forces [i.e., εi = FPi/Fgi].μ1 = m1m1+m2 ,   μ2 =m2m1+m2  ,are the mass ratios for the two masses (m1) and (m2), respectively.μ1+ μ2 = 1, If μ2 = μ, then μ1 = 1 – μ,  Ai = (AEi2 –APi2)/5R2, (i =1, 2). AE1 and AE2 are the equatorial radii of the more massive and smaller primary, respectively. AP1 and AP2 are the polar radii of the more massive and smaller primary, respectively. R is the distance between the primaries. A1 and A2 are oblateness coefficients of the more massive and smaller primaries, respectively.

The distances (r1) and (r2) of the third body from the two primaries (m1) and (m2), respectively, in the rotating coordinate system are given by

r21=(xμ)2+y2 ,  (4)

r22=(x+1μ)2+y2 ,  (5)

Ωx=n2xq1(1μ)(xμ)r13q2(μ+x+1)μr233A1q1(1μ)(xμ)2r153A2q2(μ+x+1)μ2r25   (6)

Ωy=y[n2q1(1μ)r13q2μr233A1q1(1μ)2r153A2q2μ2r25] .  (7)

ΩxandΩy are partial derivatives of Ω w.r.t. x and y, respectively.

Mean motion

Following Sharma and Subba Rao,7 AbdulRaheemand and Singh14 and Singh and Ishwar2 and others had used the mean motion (n) as:

n2=1 +32A1+32A2 .  (8)

Sharma et al.1 derived another expression of mean motion by including the secular effects of oblateness on mean anomaly (M), argument of perigee (ω) and right ascension of ascending node (Ω) as (for inclination i = 0 degrees):

dMsdt=n[1+3J22a2(1e2)32],dωsdt=n[3J2a2(1e2)2],dΩsdt=n[3J22a2(1e2)2].   (9)

Using the relationship,ndt=(1ecosE)dE  in Eq.(9)and averaging over one revolution:

12π2π0dMs=12π2π0[1+3Js2a2(1e2)32](1ecosE)dE   (10)

12π2π0dωs=12π2π0[3Jsa2(1e2)2](1ecosE)dE   (11)

12π2π0dΩs=12π2π0[3Js2a2(1e2)2](1ecosE)dE   (12)

we obtain

ˉn1+3Js2a2(1e2)32,     Δωs=3Jsa2(1e2)2,    ΔΩs=3Js2a2(1e2)2   (13)

Pseudo mean motion including the precession effect due to oblateness in view of Eq. (13) is calculated as:

˜n=ˉn+ Δωs+ΔΩs=1+3A1R22a2[(1e2)Re]2(1+1e2),A1=J2R2eR2,   (14)

which gives ñ = 1 for unperturbed case.

When the value of eccentricity e becomes zero, we get n = ñ = 1 + 3A1R2/(a2Re2), which upon non-dimensionalizing gives.1,5

n = 1 + 3 A1.  (15)

n2 = 1 + 6 A1, restricting to only first-order terms in A1.  (16)

In our problem both the primaries are considered as oblate spheroids. So, we consider the mean motion as:

n2=1+6A1+6A2.   (17)

This mean motion is also used by Jency et al.,5 Arohan and Sharma,4 John and Sharma19 and Kumar et al.20

Location of triangular equilibrium points

The location of the triangular points is found from the following two equations for y≠0:

Ωx=Ωy=0.   (18)

Equation (18) can be written in terms of equation (19) and (20) as:

n2xq1(1μ)(xμ)r13q2(μ+x+1)μr233A1q1(1μ)(xμ)2r153A2q2(μ+x+1)μ2r25=0   (19)

y[n2q1(1μ)r13q2μr233A1q1(1μ)2r153A2q2μ2r25]=0   (20)

We note for y≠0 in equation (20) and only second term is zero.

Following Singh and Ishwar,2 (19) and (20) can be written as

q1r133A1q12r15+n2=0   (21)

q2r233A2q22r25+n2=0   (22)

Substituting

q1=1ε1,   (23)

q2=1ε2,   (24)

and

r2=1+β.   (25)

r2=1+β.   (26)

Substituting(25) and (26) in (4) and (5) and noting that perturbation terms α and β << 1so that the higher order terms of α and β are neglected, we solve for x and y in terms of α and β and obtain:

x=12[12μ+2(αβ)],   (27)

y=±32[1+23(α+β)].   (28)

Substituting (17), (23), (24), (25) and (26) in (21) and (22) and solving for α and β with MAXIMA21 software, we obtain

α=2ε1+12A2+9A16,   (29)

β=2ε2+9A2+12A16 .  (30)

Substituting (29) and (30) in (27) and (28) and simplifying, we get

x=[6μ2ε2+2ε1+3A23A136]   (31)

y=±3[2ε22ε121A221A1+918]   (32)

The values of A1 and A2 are different in y in (32) from those of Singh and Ishwar2 due to different value of mean motion n.

For the unperturbed case, (31) and (32) become

x=μ12,   (33)

y=±32,   (34)

which matches with the case of unperturbed restricted three-body problem.

Stability of the triangular points

At the triangular point L4:

Ωxx=14[(6ε2+6ε1+12A212A1)μ+4ε22ε1+24A2+36A1+3],   (35)

Ωyy=14[(6ε26ε1)μ4ε2+2ε1+48A2+48A1+9],   (36)

Ωxy=312[(2ε2+2ε1+138A2+138A1+18)μ4ε2+2ε160A278A19].   (37)

The characteristic equation is

λ4+(4n2ΩxxΩyy)λ2+ΩxxΩyyΩxy2=0   (38)

Substituting (35), (36), (37) in (38) and simplifying with the help of MAXIMA, we get

λ4+λ2((6ε26ε112A2+12A1)μ4ε2+2ε124A236A134+(6ε26ε1)μ+4ε22ε148A248A194+4(6A2+6A1+1))+((6ε2+6ε1+12A212A1)μ+4ε22ε1+24A2+36A1+3)((6ε26ε1)μ4ε2+2ε1+48A2+48A1+9)16((2ε2+2ε1+138A2+138A1+18)μ4ε2+2ε160A278A19)248=0   (39)

Substituting Λ = λ2, in equation (39), we get this

Λ2+Λ {14[(6ε26ε112A2+12A1)μ4ε2+2ε124A236A13]+14[(6ε16ε2)μ+4ε22ε148A248A19+4(6A2+6A1+1)]}+116{[(6ε2+6ε1+12A212A1)μ+4ε22ε1+24A2+36A1+3]×[(6ε26ε1)μ4ε2+2ε1+48A2+48A1+9]}148[(2ε2+2ε1+138A2+138A1+18)μ4ε2+2ε160A278A19]2=0.   (40)

Solving the quadratic equation (40), we get the roots in the form:

Λ1=(6ε2+6ε1+414A2+414A1+27)μ2+(6ε26ε1420A2408A127)μ+12A2+6A1+1+(3A23A1)μ6A23A112   (41)

Λ2=(6ε2+6ε1+414A2+414A1+27)μ2+(6ε26ε1420A2408A127)μ+12A2+6A1+1+(3A13A2)μ6A23A112   (42)

Simplifying (41) and (42) in series form with MAXIMA21 and retaining the linear terms in A1, A2, ε1 and, ε2 we get

Λ1=(6ε2+6ε1+414A2+414A1+27)μ2+(6ε26ε1414A2414A127)μ4,   (43)

Λ2=(6ε2+6ε1+414A2+414A1+27)μ2+(6ε26ε1426A2402A127)μ+24A2+12A1+44   (44)

Critical mass ratio

Taking the discriminant D in (40) and after simplification, we get

D=(6ε2+6ε1+414A2+414A1+27)μ2+(6ε26ε1420A2408A127)μ+12A2+6A1+1.   (45)

Equating D = 0 and solving Eq. (45), we get two values of the mass ratio: (μ)

μ1=3100ε2+100ε1+6576A2+6576A1+207+6ε2+6ε1+420A2+408A1+2712ε2+12ε1+828A2+828A1+54   (46)

μ2=3100ε2+100ε1+6576A2+6576A1+207+6ε2+6ε1+420A2+408A1+2712ε2+12ε1+828A2+828A1+54   (47)

c) in the range [0, ½]. The triangular points are linearly stable for the mass parameter 0 ≤ μ <μc). After simplifications with MAXIMA21 and retaining first-order terms in A1, A2, ε1 and ε2, we get

μc=12[1699]A19[1+1969]+A29[11969]22769(ε1+ε2).   (48)

μc=0.03852089650.3652590232A10.1430368010A20.0089174706ε10.0089174706ε2.   (49)

The expression for μc up to first-order terms in A1, A2, ε1 and ε2, obtained by Singh and Ishwar2 is

μc=12[1699]2/{969 }(A1+A2)22769(ε1+ε2) .  (50)

or

μc=0.0385208965   (51)

From (49) and (51), we notice that with the new mean motion, the value of the critical mass μc further decreases.

It may be noted that the first two terms of critical mass ratio μ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiabeY7aTnaaBaaaleaaqaaaaaaaaaWdbiaabogaa8aabeaaaaa@3F2C@  in equation (49) match with Jency et al.,5 who utilize the same expression of mean motion as used here by considering the more massive primary as an oblate spheroid. It may also be pointed out that the critical mass ratio μ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiabeY7aTnaaBaaaleaaqaaaaaaaaaWdbiaabogaa8aabeaaaaa@3F2C@  obtained by Arohan and Sharma4 with the same mean motion expression by considering the smaller primary as an oblate spheroid does not match with our result here. They get the term 0.1194 A2 in the critical mass expression μ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiabeY7aTnaaBaaaleaaqaaaaaaaaaWdbiaabogaa8aabeaaaaa@3F2C@ i.e., it increases with oblateness of the smaller primary. However, our term with ε1 matched with the ε term of Arohan and Sharma.4

We conclude from the present study that the critical mass value μ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiabeY7aTnaaBaaaleaaqaaaaaaaaaWdbiaabogaa8aabeaaaaa@3F2C@ further decreases with oblateness with the new mean motion n when both the primaries are considered as oblate spheroids.

Periodic orbits

Angular frequencies

The angular frequencies can be calculated using the following relations

λ 1,2 =± ( Λ 1 ) 1 2 = ± is 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ud8aadaWgaaWcbaWdbiaaigdacaGGSaGa aGOmaaWdaeqaaOWdbiabg2da9iabgglaXoaabmaapaqaa8qacqGHsi slcaqGBoWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaape GaaGOmaaaaaaGccqGH9aqpcaqGGcGaeyySaeRaaeyAaiaabohapaWa aSbaaSqaa8qacaaI0aaapaqabaaaaa@5136@  

λ 3,4 =± ( Λ 2 ) 1 2 = ± is 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ud8aadaWgaaWcbaWdbiaaiodacaGGSaGa aGinaaWdaeqaaOWdbiabg2da9iabgglaXoaabmaapaqaa8qacqGHsi slcaqGBoWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaape GaaGOmaaaaaaGccqGH9aqpcaqGGcGaeyySaeRaaeyAaiaabohapaWa aSbaaSqaa8qacaaI1aaapaqabaaaaa@513C@  

for long-periodic (S4) and short-periodic (S3) orbits around L4, respectively.

s 4 = ( Λ 1 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ca8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qacqGH9aqpdaqadaWdaeaapeGaeyOeI0Iaae4Md8aadaWgaaWcba Wdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaa@4679@   (52)

s 5 = ( Λ 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ca8aadaWgaaWcbaWdbiaaiwdaa8aabeaa k8qacqGH9aqpdaqadaWdaeaapeGaeyOeI0Iaae4Md8aadaWgaaWcba Wdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaa@467B@   (53)

Substituting (43) and (44) in (52) and (53), respectively, we have

s 4 = ( 6 ε 2 +6 ε 1 +414 A 2 +414 A 1 +27 ) μ 2 +( 6 ε 2 6 ε 1 420 A 2 408 A 1 27 )μ+12 A 2 +6 A 1 +1 ( 3 A 2 3 A 1 )μ+6 A 2 +3 A 1 +1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ca8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeWaaOaaa8aaeaqabeaapeGaeyOeI0 YaaOaaa8aaeaqabeaapeWaaeWaa8aabaWdbiaaiAdacaqG1oWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiAdacaqG1oWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaisdacaaIXaGa aGinaiaabgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaS IaaGinaiaaigdacaaI0aGaaeyqa8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacqGHRaWkcaaIYaGaaG4naaGaayjkaiaawMcaaiaabY7apa WaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaey4kaSYaaeWaa8aa baWdbiabgkHiTiaaiAdacaqG1oWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabgkHiTiaaiAdacaqG1oWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgkHiTiaaisdacaaIYaGaaGimaiaabgeapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaGinaiaaicdacaaI4aGa aeyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaaIYa GaaG4naaGaayjkaiaawMcaaiaabY7acqGHRaWkcaaIXaGaaGOmaiaa bgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGOnai aabgeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGym aaaaleqaaaGcbaGaeyOeI0YaaeWaa8aabaWdbiaaiodacaqGbbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaiodacaqGbbWd amaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabY 7acqGHRaWkcaaI2aGaaeyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaa k8qacqGHRaWkcaaIZaGaaeyqa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacqGHRaWkcaaIXaaaaSqabaaak8aabaWdbmaakaaapaqaa8qa caaIYaaaleqaaaaaaaa@8F11@   (54)

s 5 = ( 6 ε 2 +6 ε 1 +414 A 2 +414 A 1 +27 ) μ 2 +( 6 ε 2 6 ε 1 420 A 2 408 A 1 27 )μ+12 A 2 +6 A 1 +1 +( 3 A 1 3 A 2 )μ+6 A 2 +3 A 1 +1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ca8aadaWgaaWcbaWdbiaaiwdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeWaaOaaa8aaeaqabeaapeWaaOaaa8 aaeaqabeaapeWaaeWaa8aabaWdbiaaiAdacaqG1oWdamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiAdacaqG1oWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaisdacaaIXaGaaGinaiaa bgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGinai aaigdacaaI0aGaaeyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHRaWkcaaIYaGaaG4naaGaayjkaiaawMcaaiaabY7apaWaaWbaaS qabeaapeGaaGOmaaaaaOWdaeaapeGaey4kaSYaaeWaa8aabaWdbiab gkHiTiaaiAdacaqG1oWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgkHiTiaaiAdacaqG1oWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biabgkHiTiaaisdacaaIYaGaaGimaiaabgeapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0IaaGinaiaaicdacaaI4aGaaeyqa8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaaIYaGaaG4naa GaayjkaiaawMcaaiaabY7acqGHRaWkcaaIXaGaaGOmaiaabgeapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGOnaiaabgeapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGymaaaaleqa aaGcbaGaey4kaSYaaeWaa8aabaWdbiaaiodacaqGbbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgkHiTiaaiodacaqGbbWdamaaBaaa leaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabY7acqGHRa WkcaaI2aGaaeyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH RaWkcaaIZaGaaeyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacq GHRaWkcaaIXaaaaSqabaaak8aabaWdbmaakaaapaqaa8qacaaIYaaa leqaaaaaaaa@8E1A@   (55)

Simplifying (54) and (55) with MAXIMA in terms of a series up to third-order terms in μ, we get

s 4 = 3 3 2 μ 2 [ ( 1+ 23μ 8 + 4439 μ 2 128 + 548711 μ 3 1024 ) +  A 1 ( 37 6 + 2291μ 48 + 680627 μ 2 768 + 114994403 μ 3 6144 )+ A 2 ( 14 3 + 157μ 6 + 83579 μ 2 192 + 3334505 μ 3 384 )+ ε 1 ( 1 9 + 77μ 72 + 23555 μ 2 1152 + 4040297 μ 3 9216 ) + ε 2 ( 1 9 + 77μ 72 + 23555 μ 2 1152 + 4040297 μ 3 9216 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaae4Ca8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGaaG4ma8aadaahaaWcbeqaa8qada WcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGcdaGcaaWdaeaa peGaaeiVdaWcbeaaaOWdaeaapeGaaGOmaaaadaWadaWdaqaabeqaa8 qadaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qacaaIYaGa aG4maiaabY7aa8aabaWdbiaaiIdaaaGaey4kaSYaaSaaa8aabaWdbi aaisdacaaI0aGaaG4maiaaiMdacaqG8oWdamaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiaaigdacaaIYaGaaGioaaaacqGHRaWkdaWcaa WdaeaapeGaaGynaiaaisdacaaI4aGaaG4naiaaigdacaaIXaGaaeiV d8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaaIXaGaaGimai aaikdacaaI0aaaaaGaayjkaiaawMcaaaqaaiabgUcaRiaabckacaqG bbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qada WcaaWdaeaapeGaaG4maiaaiEdaa8aabaWdbiaaiAdaaaGaey4kaSYa aSaaa8aabaWdbiaaikdacaaIYaGaaGyoaiaaigdacaqG8oaapaqaa8 qacaaI0aGaaGioaaaacqGHRaWkdaWcaaWdaeaapeGaaGOnaiaaiIda caaIWaGaaGOnaiaaikdacaaI3aGaaeiVd8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaaI3aGaaGOnaiaaiIdaaaGaey4kaSYaaSaa a8aabaWdbiaaigdacaaIXaGaaGinaiaaiMdacaaI5aGaaGinaiaais dacaaIWaGaaG4maiaabY7apaWaaWbaaSqabeaapeGaaG4maaaaaOWd aeaapeGaaGOnaiaaigdacaaI0aGaaGinaaaaaiaawIcacaGLPaaacq GHRaWkaeaacaqGbbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaa bmaapaqaa8qadaWcaaWdaeaapeGaaGymaiaaisdaa8aabaWdbiaaio daaaGaey4kaSYaaSaaa8aabaWdbiaaigdacaaI1aGaaG4naiaabY7a a8aabaWdbiaaiAdaaaGaey4kaSYaaSaaa8aabaWdbiaaiIdacaaIZa GaaGynaiaaiEdacaaI5aGaaeiVd8aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaaIXaGaaGyoaiaaikdaaaGaey4kaSYaaSaaa8aaba WdbiaaiodacaaIZaGaaG4maiaaisdacaaI1aGaaGimaiaaiwdacaqG 8oWdamaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiaaiodacaaI4a GaaGinaaaaaiaawIcacaGLPaaacqGHRaWkaeaacaqG1oWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qadaWcaaWdaeaape GaaGymaaWdaeaapeGaaGyoaaaacqGHRaWkdaWcaaWdaeaapeGaaG4n aiaaiEdacaqG8oaapaqaa8qacaaI3aGaaGOmaaaacqGHRaWkdaWcaa WdaeaapeGaaGOmaiaaiodacaaI1aGaaGynaiaaiwdacaqG8oWdamaa CaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaigdacaaIXaGaaGynai aaikdaaaGaey4kaSYaaSaaa8aabaWdbiaaisdacaaIWaGaaGinaiaa icdacaaIYaGaaGyoaiaaiEdacaqG8oWdamaaCaaaleqabaWdbiaaio daaaaak8aabaWdbiaaiMdacaaIYaGaaGymaiaaiAdaaaaacaGLOaGa ayzkaaaabaGaey4kaSIaaeyTd8aadaWgaaWcbaWdbiaaikdaa8aabe aak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa iMdaaaGaey4kaSYaaSaaa8aabaWdbiaaiEdacaaI3aGaaeiVdaWdae aapeGaaG4naiaaikdaaaGaey4kaSYaaSaaa8aabaWdbiaaikdacaaI ZaGaaGynaiaaiwdacaaI1aGaaeiVd8aadaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qacaaIXaGaaGymaiaaiwdacaaIYaaaaiabgUcaRmaa laaapaqaa8qacaaI0aGaaGimaiaaisdacaaIWaGaaGOmaiaaiMdaca aI3aGaaeiVd8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaaI 5aGaaGOmaiaaigdacaaI2aaaaaGaayjkaiaawMcaaaaacaGLBbGaay zxaaaaaa@ED2C@   (56)

s 5 =1 27μ 8 3213 μ 2 128 355023 μ 3 1024 + A 1 ( 3 2 561μ 16 133767 μ 2 256 21453741 μ 3 2048 ) + A 2 ( 3 183μ 8 34443 μ 2 128 5100327 μ 3 1024 )+ ε 1 ( 3μ 4 381 μ 2 32 124821 μ 3 512 )+ ε 2 ( 3μ 4 381 μ 2 32 124821 μ 3 512 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO abaeqabaaeaaaaaaaaa8qacaqGZbWdamaaBaaaleaapeGaaGynaaWd aeqaaOWdbiabg2da9iaaigdacqGHsisldaWcaaWdaeaapeGaaGOmai aaiEdacaqG8oaapaqaa8qacaaI4aaaaiabgkHiTmaalaaapaqaa8qa caaIZaGaaGOmaiaaigdacaaIZaGaaeiVd8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaaIXaGaaGOmaiaaiIdaaaGaeyOeI0YaaSaa a8aabaWdbiaaiodacaaI1aGaaGynaiaaicdacaaIYaGaaG4maiaabY 7apaWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaapeGaaGymaiaaicda caaIYaGaaGinaaaaaeaacqGHRaWkcaqGbbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaG4maaWd aeaapeGaaGOmaaaacqGHsisldaWcaaWdaeaapeGaaGynaiaaiAdaca aIXaGaaeiVdaWdaeaapeGaaGymaiaaiAdaaaGaeyOeI0YaaSaaa8aa baWdbiaaigdacaaIZaGaaG4maiaaiEdacaaI2aGaaG4naiaabY7apa WaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaaiwdacaaI 2aaaaiabgkHiTmaalaaapaqaa8qacaaIYaGaaGymaiaaisdacaaI1a GaaG4maiaaiEdacaaI0aGaaGymaiaabY7apaWaaWbaaSqabeaapeGa aG4maaaaaOWdaeaapeGaaGOmaiaaicdacaaI0aGaaGioaaaaaiaawI cacaGLPaaaaeaacqGHRaWkcaqGbbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbmaabmaapaqaa8qacaaIZaGaeyOeI0YaaSaaa8aabaWdbi aaigdacaaI4aGaaG4maiaabY7aa8aabaWdbiaaiIdaaaGaeyOeI0Ya aSaaa8aabaWdbiaaiodacaaI0aGaaGinaiaaisdacaaIZaGaaeiVd8 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaiaa iIdaaaGaeyOeI0YaaSaaa8aabaWdbiaaiwdacaaIXaGaaGimaiaaic dacaaIZaGaaGOmaiaaiEdacaqG8oWdamaaCaaaleqabaWdbiaaioda aaaak8aabaWdbiaaigdacaaIWaGaaGOmaiaaisdaaaaacaGLOaGaay zkaaGaey4kaScabaGaaeyTd8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qadaqadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaaiodacaqG8o aapaqaa8qacaaI0aaaaiabgkHiTmaalaaapaqaa8qacaaIZaGaaGio aiaaigdacaqG8oWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbi aaiodacaaIYaaaaiabgkHiTmaalaaapaqaa8qacaaIXaGaaGOmaiaa isdacaaI4aGaaGOmaiaaigdacaqG8oWdamaaCaaaleqabaWdbiaaio daaaaak8aabaWdbiaaiwdacaaIXaGaaGOmaaaaaiaawIcacaGLPaaa cqGHRaWkcaqG1oWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabm aapaqaa8qacqGHsisldaWcaaWdaeaapeGaaG4maiaabY7aa8aabaWd biaaisdaaaGaeyOeI0YaaSaaa8aabaWdbiaaiodacaaI4aGaaGymai aabY7apaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaG4maiaa ikdaaaGaeyOeI0YaaSaaa8aabaWdbiaaigdacaaIYaGaaGinaiaaiI dacaaIYaGaaGymaiaabY7apaWaaWbaaSqabeaapeGaaG4maaaaaOWd aeaapeGaaGynaiaaigdacaaIYaaaaaGaayjkaiaawMcaaiaac6caaa aa@D120@   (57)

It may be noted that s4 in (56) increases with oblateness (A1 and A2) and radiation pressure (ε1and ε2). It may also be noted that the unperturbed values in s4 in (56) match with the unperturbed expression in Sharma and Subba Rao.8 The A1 values in (56) match with the expression obtained by Jency et al.5 Similarly, the unperturbed values in s5 in (57) match with the unperturbed expression in Sharma and Subba Rao. The A1 values in (57) match with the expression obtained by Jency et al.5

Table 1 provides the variation of the angular frequencies (s4) and (s5) for mass ratioμ = 0.001 with different perturbations in A1, A2, ε1 and ε2. It may be noted that s4 increases with all the 4 perturbations. s5 decreases with radiation pressure perturbations ε1 and ε2. Figure 2 provided the angular frequency of the long- periodic orbits (s4) vs. Mass ratio μ for different values of perturbations. It is observed that s4 increases with the increase in μ for different cases of perturbations in A1, A2, ε1 and ε2.

Figure 1 Planar Restricted Three Body Problem in the fixed (sidereal) and rotating (synodic) coordinate system.

Figure 2 Angular frequency of the long-periodic orbits (s4) vs.mass ratio (μ).

μ

A1

A2

ε1

ε2

s4

s5

0.001

0

0

0

0

0.08239748223039

0.99659954596019

0.001

0.01

0

0

0

0.08750387289113

1.01124358864239

0.001

0

0.01

0

0

0.08625340301905

1.02636805425057

0.001

0.01

0.01

0

0

0.09135979367980

1.04101209693277

0.001

0

0

0.2

0

0.08424114003707

0.99644711487401

0.001

0

0

0

0.2

0.08424114003707

0.99644711487401

0.001

0.01

0.01

0.2

0.2

0.09504710929316

1.04070723476039

Table 1 Variation of angular frequencies (s4) and (s5) with mass ratio and perturbations

Figure 3 provided the angular frequency of the short- periodic orbits (s5) vs. Mass ratio μ for different values of perturbations.  It is observed that s5 decreases with the increase in μ for different cases of perturbations in A1, A2, ε1 and ε2.

Figure 3Angular frequency of the short-periodic orbits (s5) vs.mass ratio (μ).

Eccentricities

The eccentricities of the long-periodic and short-periodic orbits around L4 are given by

e= 2 ( ( Ω xx Ω yy ) 2 +4 Ω xy 2 ) 1 4 Ω yy + ( Ω xx Ω yy ) 2 +4 Ω xy 2 + Ω xx +2s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeyzaiabg2da9maalaaapaqaa8qadaGcaaWd aeaapeGaaGOmaaWcbeaakmaabmaapaqaa8qadaqadaWdaeaapeGaae yQd8aadaWgaaWcbaWdbiaabIhacaqG4baapaqabaGcpeGaeyOeI0Ia aeyQd8aadaWgaaWcbaWdbiaabMhacaqG5baapaqabaaak8qacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI0aGa aeyQd8aadaqhaaWcbaWdbiaabIhacaqG5baapaqaa8qacaaIYaaaaa GccaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaI0aaaaaaaaOWdaeaapeWaaOaaa8aabaWdbiaabM 6apaWaaSbaaSqaa8qacaqG5bGaaeyEaaWdaeqaaOWdbiabgUcaRmaa kaaapaqaa8qadaqadaWdaeaapeGaaeyQd8aadaWgaaWcbaWdbiaabI hacaqG4baapaqabaGcpeGaeyOeI0IaaeyQd8aadaWgaaWcbaWdbiaa bMhacaqG5baapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqaba WdbiaaikdaaaGccqGHRaWkcaaI0aGaaeyQd8aadaqhaaWcbaWdbiaa bIhacaqG5baapaqaa8qacaaIYaaaaaqabaGccqGHRaWkcaqGPoWdam aaBaaaleaapeGaaeiEaiaabIhaa8aabeaak8qacqGHRaWkcaaIYaGa ae4CaaWcbeaaaaaaaa@70EF@   (58)

By substituting the corresponding angular frequencies, ( s 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaacIcacaWGZbWaaSbaaSqaaiaaisdaaeqaaOGaaiykaaaa@3F79@ and ( s 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaacIcacaWGZbWaaSbaaSqaaiaaisdaaeqaaOGaaiykaaaa@3F79@ in Eq.(58) and simplifying in series form with MAXIMA,21 we get the corresponding eccentricities (e4) and (e5) of the long- and short-periodic orbits, respectively.

The eccentricity of long-periodic orbits (e4) is:

e 4 = 153713 ε 2 μ 4 128 153713 ε 1 μ 4 128 27673863 A 2 μ 4 1024 110019675 A 1 μ 4 2048 1316205 μ 4 1024 1763 ε 2 μ 3 32 1763 ε 1 μ 3 32 86631 A 2 μ 3 64 324039 A 1 μ 3 128 4977 μ 3 64 35 ε 2 μ 2 12 35 ε 1 μ 2 12 1285 A 2 μ 2 16 4325 A 1 μ 2 32 93 μ 2 16 ε 2 μ 3 ε 1 μ 3 19 A 2 μ 2 47 A 1 μ 4 3μ 2 +1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO abaeqabaaeaaaaaaaaa8qacaqGLbWdamaaBaaaleaapeGaaGinaaWd aeqaaOWdbiabg2da9iabgkHiTmaalaaapaqaa8qacaaIXaGaaGynai aaiodacaaI3aGaaGymaiaaiodacaqG1oWdamaaBaaaleaapeGaaGOm aaWdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaGinaaaaaOWdae aapeGaaGymaiaaikdacaaI4aaaaiabgkHiTmaalaaapaqaa8qacaaI XaGaaGynaiaaiodacaaI3aGaaGymaiaaiodacaqG1oWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaGin aaaaaOWdaeaapeGaaGymaiaaikdacaaI4aaaaiabgkHiTmaalaaapa qaa8qacaaIYaGaaG4naiaaiAdacaaI3aGaaG4maiaaiIdacaaI2aGa aG4maiaabgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaeiVd8 aadaahaaWcbeqaa8qacaaI0aaaaaGcpaqaa8qacaaIXaGaaGimaiaa ikdacaaI0aaaaaqaaiabgkHiTmaalaaapaqaa8qacaaIXaGaaGymai aaicdacaaIWaGaaGymaiaaiMdacaaI2aGaaG4naiaaiwdacaqGbbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabe aapeGaaGinaaaaaOWdaeaapeGaaGOmaiaaicdacaaI0aGaaGioaaaa cqGHsisldaWcaaWdaeaapeGaaGymaiaaiodacaaIXaGaaGOnaiaaik dacaaIWaGaaGynaiaabY7apaWaaWbaaSqabeaapeGaaGinaaaaaOWd aeaapeGaaGymaiaaicdacaaIYaGaaGinaaaacqGHsisldaWcaaWdae aapeGaaGymaiaaiEdacaaI2aGaaG4maiaabw7apaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaaeiVd8aadaahaaWcbeqaa8qacaaIZaaaaa Gcpaqaa8qacaaIZaGaaGOmaaaacqGHsislaeaadaWcaaWdaeaapeGa aGymaiaaiEdacaaI2aGaaG4maiaabw7apaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaeiVd8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqa a8qacaaIZaGaaGOmaaaacqGHsisldaWcaaWdaeaapeGaaGioaiaaiA dacaaI2aGaaG4maiaaigdacaqGbbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaape GaaGOnaiaaisdaaaGaeyOeI0YaaSaaa8aabaWdbiaaiodacaaIYaGa aGinaiaaicdacaaIZaGaaGyoaiaabgeapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaeiVd8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqa a8qacaaIXaGaaGOmaiaaiIdaaaGaeyOeI0YaaSaaa8aabaWdbiaais dacaaI5aGaaG4naiaaiEdacaqG8oWdamaaCaaaleqabaWdbiaaioda aaaak8aabaWdbiaaiAdacaaI0aaaaaqaaiabgkHiTmaalaaapaqaa8 qacaaIZaGaaGynaiaabw7apaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaaeiVd8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXa GaaGOmaaaacqGHsisldaWcaaWdaeaapeGaaG4maiaaiwdacaqG1oWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabe aapeGaaGOmaaaaaOWdaeaapeGaaGymaiaaikdaaaGaeyOeI0YaaSaa a8aabaWdbiaaigdacaaIYaGaaGioaiaaiwdacaqGbbWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaGOm aaaaaOWdaeaapeGaaGymaiaaiAdaaaGaeyOeI0cabaWaaSaaa8aaba WdbiaaisdacaaIZaGaaGOmaiaaiwdacaqGbbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaGOmaaaaaO WdaeaapeGaaG4maiaaikdaaaGaeyOeI0YaaSaaa8aabaWdbiaaiMda caaIZaGaaeiVd8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qaca aIXaGaaGOnaaaacqGHsisldaWcaaWdaeaapeGaaeyTd8aadaWgaaWc baWdbiaaikdaa8aabeaak8qacaqG8oaapaqaa8qacaaIZaaaaiabgk HiTmaalaaapaqaa8qacaqG1oWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiaabY7aa8aabaWdbiaaiodaaaGaeyOeI0YaaSaaa8aabaWdbi aaigdacaaI5aGaaeyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qa caqG8oaapaqaa8qacaaIYaaaaiabgkHiTmaalaaapaqaa8qacaaI0a GaaG4naiaabgeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaeiV daWdaeaapeGaaGinaaaacqGHsisldaWcaaWdaeaapeGaaG4maiaabY 7aa8aabaWdbiaaikdaaaGaey4kaSIaaGymaiaac6caaaaa@0103@   (59)

The eccentricity of short-periodic orbits (e5) is:

e 5 = 3 2 ( 4258317 ε 2 μ 4 4096 + 4258317 ε 1 μ 4 4096 + 383440059 A 2 μ 4 16384 + 3048483753 A 1 μ 4 65536 + 36506349 μ 4 32768 + 24153 ε 2 μ 3 512 + 24153 ε 1 μ 3 512 + 298629 A 2 μ 3 256 + 4473063 A 1 μ 3 2048 + 69147 μ 3 1024 + 199 ε 2 μ 2 96 + 199 ε 1 μ 2 96 + 3997 A 2 μ 2 64 + 28057 A 1 μ 2 256 + 573 μ 2 128 + ε 2 μ 12 + ε 1 μ 12 + 17 A 2 μ 2 + 183 A 1 μ 16 + 3μ 8 + A 1 2 +1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeyza8aadaWgaaWcbaWdbiaaiwdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeWaaOaaa8aabaWdbiaaiodaaSqaba aak8aabaWdbiaaikdaaaWaaeWaaqaabeqaamaalaaapaqaa8qacaaI 0aGaaGOmaiaaiwdacaaI4aGaaG4maiaaigdacaaI3aGaaeyTd8aada WgaaWcbaWdbiaaikdaa8aabeaak8qacaqG8oWdamaaCaaaleqabaWd biaaisdaaaaak8aabaWdbiaaisdacaaIWaGaaGyoaiaaiAdaaaGaey 4kaSYaaSaaa8aabaWdbiaaisdacaaIYaGaaGynaiaaiIdacaaIZaGa aGymaiaaiEdacaqG1oWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aabY7apaWaaWbaaSqabeaapeGaaGinaaaaaOWdaeaapeGaaGinaiaa icdacaaI5aGaaGOnaaaacqGHRaWkdaWcaaWdaeaapeGaaG4maiaaiI dacaaIZaGaaGinaiaaisdacaaIWaGaaGimaiaaiwdacaaI5aGaaeyq a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaqG8oWdamaaCaaale qabaWdbiaaisdaaaaak8aabaWdbiaaigdacaaI2aGaaG4maiaaiIda caaI0aaaaaqaaiabgUcaRmaalaaapaqaa8qacaaIZaGaaGimaiaais dacaaI4aGaaGinaiaaiIdacaaIZaGaaG4naiaaiwdacaaIZaGaaeyq a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaqG8oWdamaaCaaale qabaWdbiaaisdaaaaak8aabaWdbiaaiAdacaaI1aGaaGynaiaaioda caaI2aaaaiabgUcaRmaalaaapaqaa8qacaaIZaGaaGOnaiaaiwdaca aIWaGaaGOnaiaaiodacaaI0aGaaGyoaiaabY7apaWaaWbaaSqabeaa peGaaGinaaaaaOWdaeaapeGaaG4maiaaikdacaaI3aGaaGOnaiaaiI daaaGaey4kaSYaaSaaa8aabaWdbiaaikdacaaI0aGaaGymaiaaiwda caaIZaGaaeyTd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaqG8o WdamaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiaaiwdacaaIXaGa aGOmaaaaaeaacqGHRaWkdaWcaaWdaeaapeGaaGOmaiaaisdacaaIXa GaaGynaiaaiodacaqG1oWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biaabY7apaWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaapeGaaGynai aaigdacaaIYaaaaiabgUcaRmaalaaapaqaa8qacaaIYaGaaGyoaiaa iIdacaaI2aGaaGOmaiaaiMdacaqGbbWdamaaBaaaleaapeGaaGOmaa WdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaG4maaaaaOWdaeaa peGaaGOmaiaaiwdacaaI2aaaaiabgUcaRmaalaaapaqaa8qacaaI0a GaaGinaiaaiEdacaaIZaGaaGimaiaaiAdacaaIZaGaaeyqa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacaqG8oWdamaaCaaaleqabaWdbi aaiodaaaaak8aabaWdbiaaikdacaaIWaGaaGinaiaaiIdaaaaabaGa ey4kaSYaaSaaa8aabaWdbiaaiAdacaaI5aGaaGymaiaaisdacaaI3a GaaeiVd8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaaIXaGa aGimaiaaikdacaaI0aaaaiabgUcaRmaalaaapaqaa8qacaaIXaGaaG yoaiaaiMdacaqG1oWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa bY7apaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGyoaiaaiA daaaGaey4kaSYaaSaaa8aabaWdbiaaigdacaaI5aGaaGyoaiaabw7a paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaeiVd8aadaahaaWcbe qaa8qacaaIYaaaaaGcpaqaa8qacaaI5aGaaGOnaaaaaeaacqGHRaWk daWcaaWdaeaapeGaaG4maiaaiMdacaaI5aGaaG4naiaabgeapaWaaS baaSqaa8qacaaIYaaapaqabaGcpeGaaeiVd8aadaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacaaI2aGaaGinaaaacqGHRaWkdaWcaaWdae aapeGaaGOmaiaaiIdacaaIWaGaaGynaiaaiEdacaqGbbWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiaabY7apaWaaWbaaSqabeaapeGaaG OmaaaaaOWdaeaapeGaaGOmaiaaiwdacaaI2aaaaiabgUcaRmaalaaa paqaa8qacaaI1aGaaG4naiaaiodacaqG8oWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaaigdacaaIYaGaaGioaaaacqGHRaWkdaWc aaWdaeaapeGaaeyTd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qaca qG8oaapaqaa8qacaaIXaGaaGOmaaaacqGHRaWkdaWcaaWdaeaapeGa aeyTd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaqG8oaapaqaa8 qacaaIXaGaaGOmaaaaaeaacqGHRaWkdaWcaaWdaeaapeGaaGymaiaa iEdacaqGbbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaabY7aa8 aabaWdbiaaikdaaaGaey4kaSYaaSaaa8aabaWdbiaaigdacaaI4aGa aG4maiaabgeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaeiVda WdaeaapeGaaGymaiaaiAdaaaGaey4kaSYaaSaaa8aabaWdbiaaioda caqG8oaapaqaa8qacaaI4aaaaiabgUcaRmaalaaapaqaa8qacaqGbb WdamaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaaikdaaaGaey4k aSIaaGymaaaacaGLOaGaayzkaaGaaiOlaaaa@1E00@   (60)

The series expansion expressions for e4 and e5 in (59) and (60) are new results. It is noticed that e4 decreases with the increase in the perturbations A1, A2, ε1 and ε2. And e5 increases with the increase in the perturbations A1, A2, ε1 and ε2.

Table 2 provides the variation of the eccentricities (e4) and (e5) for mass ratio μ = 0.001 with different perturbations in A1, A2, ε1 and ε2. It may be noted that e4 decreases with all the 4 perturbations. e5 increases with all the 4 perturbations.

μ

A1

A2

ε1

ε2

e4

e5

0.001

0

0

0

0

0.99849410844902

0.86635409957208

0.001

0.01

0

0

0

0.99837523103377

0.87078424670792

0.001

0

0.01

0

0

0.99839829151767

0.86642826289636

0.001

0.01

0.01

0

0

0.99827941410242

0.87085841003220

0.001

0

0

0.2

0

0.99842684719009

0.86636890071932

0.001

0

0

0

0.2

0.99842684719009

0.86636890071932

0.001

0.01

0.01

0.2

0.2

0.99814489158457

0.87088801232669

Table 2 Variation of eccentricities (e4) and (e5) with mass ratio and perturbations

Figure 4 provides the eccentricity of the long- periodic orbits (e4) vs. Mass ratio μ for different values of perturbations. It is observed that e4decreases with the increase in the mass ratio (μ) for different cases of perturbations in A1, A2, ε1 and ε2.

Figure 4 Eccentricity of the long-periodic orbits (e4) vs.Mass ratio (μ).

 

Figure 5 provides the eccentricity of the short- periodic orbits (e5) vs. Mass ratio μ for different values of perturbations.  It is observed that e5increases with the increase in the mass ratio (μ) for different cases of perturbations in A1, A2, ε1 and ε2.

Figure 5 Eccentricity of the short-periodic orbits (e5) vs.Mass ratio (μ).

Time periods

Time periods of the long-periodic (T4) and short-periodic (T5) orbits around L4 are given respectively

T 4 = 2π s 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiva8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGaaGOmaiaabc8aa8aabaWdbiaabo hapaWaaSbaaSqaa8qacaaI0aaapaqabaaaaaaa@43C2@   (61)

T 5 = 2π s 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiva8aadaWgaaWcbaWdbiaaiwdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGaaGOmaiaabc8aa8aabaWdbiaabo hapaWaaSbaaSqaa8qacaaI1aaapaqabaaaaaaa@43C4@   (62)

Table 3 provides the variation of the time periods (T4) and (T5) for mass ratio μ = 0.001 with different perturbations in A1, A2, ε1 and ε2. It may be noted that T4 decreases with all the 4 perturbations, while T5 decreases with oblateness of the primaries and increases with radiation pressure perturbations ε1 and ε2. As seen in the last line over all it decreases significantly, showing the dominance of oblateness.

μ

A1

A2

ε1

ε2

T4

T5

0.001

0

0

0

0

76.25457886700097

6.304623890959079

0.001

0.01

0

0

0

71.80465389225638

6.213325234145472

0.001

0

0.01

0

0

72.84565115409855

6.121766242780639

0.001

0.01

0.01

0

0

68.77407505101253

6.035650618943157

0.001

0

0

0.2

0

74.58571078708923

6.305588338196981

0.001

0

0

0

0.2

74.58571078708923

6.305588338196981

0.001

0.01

0.01

0.2

0.2

66.10601157579605

6.037418687327769

Table 3 Variation of Time-Periods (T4) and (T5) with mass ratio and perturbations

Angle α:

(Figure 6) where α is the angle between the rotating and the fixed coordinate system.

Figure 6 Fixed and Rotating coordinate system at L4.6

The angle α given by

tan2α= 2 Ω xy Ω xx Ω yy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiDaiaabggacaqGUbGaaGOmaiaabg7acqGH 9aqpdaWcaaWdaeaapeGaaGOmaiaabM6apaWaaSbaaSqaa8qacaqG4b GaaeyEaaWdaeqaaaGcbaWdbiaabM6apaWaaSbaaSqaa8qacaqG4bGa aeiEaaWdaeqaaOWdbiabgkHiTiaabM6apaWaaSbaaSqaa8qacaqG5b GaaeyEaaWdaeqaaaaaaaa@4EA6@   (63)

Substituting (35), (36) and (37) in (63) and simplifying with MAXIMA, we get

tan2α= ( 2 ε 2 +2 ε 1 +138 A 2 +138 A 1 +18 )μ 4 ε 2 +2 ε 1 60 A 2 78 A 1 9 6( ( 6 ε 2 +6 ε 1 +12 A 2 12 A 1 )μ+4 ε 2 2 ε 1 +24 A 2 +36 A 1 +3 4 ( 6 ε 2 6 ε 1 )μ4 ε 2 +2 ε 1 +48 A 2 +48 A 1 +9 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiDaiaabggacaqGUbGaaGOmaiaabg7acqGH 9aqpdaWcaaWdaqaabeqaa8qadaqadaWdaeaapeGaaGOmaiaabw7apa WaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGOmaiaabw7a paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaaio dacaaI4aGaaeyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH RaWkcaaIXaGaaG4maiaaiIdacaqGbbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRiaaigdacaaI4aaacaGLOaGaayzkaaGaaeiV daqaaiabgkHiTiaaisdacaqG1oWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabgUcaRiaaikdacaqG1oWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgkHiTiaaiAdacaaIWaGaaeyqa8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qacqGHsislcaaI3aGaaGioaiaabgeapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaGyoaaaapaqaa8qaca aI2aWaaeWaa8aaeaqabeaapeWaaSaaa8aabaWdbmaabmaapaqaa8qa cqGHsislcaaI2aGaaeyTd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8 qacqGHRaWkcaaI2aGaaeyTd8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGHRaWkcaaIXaGaaGOmaiaabgeapaWaaSbaaSqaa8qacaaIYa aapaqabaGcpeGaeyOeI0IaaGymaiaaikdacaqGbbWdamaaBaaaleaa peGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabY7acqGHRaWkca aI0aGaaeyTd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsisl caaIYaGaaeyTd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRa WkcaaIYaGaaGinaiaabgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaey4kaSIaaG4maiaaiAdacaqGbbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRiaaiodaa8aabaWdbiaaisdaaaaabaGaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaI2aGaaeyTd8aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacqGHsislcaaI2aGaaeyTd8aadaWg aaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaqG8oGaey OeI0IaaGinaiaabw7apaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGa ey4kaSIaaGOmaiaabw7apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe Gaey4kaSIaaGinaiaaiIdacaqGbbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiabgUcaRiaaisdacaaI4aGaaeyqa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacqGHRaWkcaaI5aaapaqaa8qacaaI0aaaaaaa caGLOaGaayzkaaaaaaaa@B3B1@  (64)

Simplifying (64) with MAXIMA, we get

tan2α= 3 ( 2μ+ 8 A 2 (12μ) 3 + 20 A 1 (12μ) 3 4 ε 1 (27μ) 9 + 4 ε 2 (411μ) 9 +1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiGacshacaGGHbGaaiOBaiaaikdacqaHXoqycqGH9aqpdaGcaaqa aiaaiodaaSqabaGcdaqadaqaaiabgkHiTiaaikdacqaH8oqBcqGHRa WkdaWcaaqaaiaaiIdacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaaiik aiaaigdacqGHsislcaaIYaGaeqiVd0MaaiykaaqaaiaaiodaaaGaey 4kaSYaaSaaaeaacaaIYaGaaGimaiaadgeadaWgaaWcbaGaaGymaaqa baGccaGGOaGaaGymaiabgkHiTiaaikdacqaH8oqBcaGGPaaabaGaaG 4maaaacqGHsisldaWcaaqaaiaaisdacqaH1oqzdaWgaaWcbaGaaGym aaqabaGccaGGOaGaaGOmaiabgkHiTiaaiEdacqaH8oqBcaGGPaaaba GaaGyoaaaacqGHRaWkdaWcaaqaaiaaisdacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaGGOaGaaGinaiabgkHiTiaaigdacaaIXaGaeqiVd0 MaaiykaaqaaiaaiMdaaaGaey4kaSIaaGymaaGaayjkaiaawMcaaaba aaaaaaaapeGaaiOlaaaa@7455@   (65)

Eq. (65) shows that α increases with oblateness and decreases with radiation force of the more massive primary and increases with the radiation force of the smaller primary.  It is noticed that our expression of tan2α matches with that of Jency et al.5 for A1 term. Our results of tan2α do not match with ε1 and ε2 terms with that of Abouelmagd and El-Shaboury.3

Results and discussion

Location of the triangular Lagrangian points is found with the new mean motion of Sharma et al.1 The critical mass ratio μc is obtained. This value of critical mass ratio μc matches with that of Jency et al.5 for A1 term. This value also decreases with oblateness and radiation pressure of both the primaries. The angular frequencies (s4) of the long- and (s5) short-periodic orbits around L4 are obtained in the series form up to linear terms in oblateness and radiation pressure of both the primaries. These expressions match with Jency et al.5 with A1 terms. It may be noted that s4 increases with all the 4 perturbations and s5 decreases with radiation pressure perturbations ε1 and ε2. The series expansion expressions for e4 and e5 are derived. It may be noted that e4 decreases with all the 4 perturbations and e5 increases with all the 4 perturbations. It may be pointed out that the series expansion expressions for e4 and e5 are new results. We also found the time-periods of long-(T4) and short-periodic orbits (T5) around L4. It is that T4 decreases with all the 4 perturbations, while T5 decreases with oblateness of the primaries and increases with radiation pressure perturbations ε1 and ε2. The angle α between the rotating and the fixed coordinate system is also computed in series form. Our expression of tan2α matches with that of Jency et al.5 for A1 term and does not match with ε1 and ε2 terms with that of Abouelmagd and El-Shaboury.3 

Conclusion

Location of the triangular Lagrangian point (L4) is obtained with the new motion expression of Sharma et al.1 Linear stability of the triangular Lagrangian point is analyzed. In order to study the linear stability, the value of critical mass ratio (μc) is calculated. The angular frequencies of the long- and short-periodic orbits around L4 are computed in series form using MAXIMA software.21 The eccentricities of the long and short-periodic orbits around L4 are also calculated in the series form. The time-periods of the long- and short-periodic orbits around L4 are calculated and studied their variation with respect to the mass ratio (μ), oblateness and radiation pressure of both the primaries. The angle between the fixed and rotating coordinate system is also computed in the series form. Some of these results are new and are checked with the numerically integrated values.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Sharma RK, Sellamuthu H, Jency AA. Perturbed Trojan Dynamics in the Solar System. – In: AAS AIAA Astrodynamics Specialist Conference. 2019;20–704:3599–3618.
  2. Singh J, Ishwar B. Stability of the triangular points in the generalized photogravitational restricted three body problem. Bull Astr Soc India. 2019;27:415–424.
  3. Abouelmagd EI, El–Shaboury SM. Periodic orbits under combined effects of oblateness and radiation in the restricted problem of three bodies. Astrophys. Space Sci. 2012;341:331–341.
  4. Arohan R, Sharma RK. Periodic orbits in the planar restricted photo–gravitational problem when the smaller primary is an oblate spheroid. Indian Journal of Science and Technology. 2020;13(16):1630–1640.
  5. Jency AA, Sharma RK, Singh G. Stationary solutions, critical mass, Tadpole orbits in the circular restricted three–body problem with the more massive primary as an oblate spheroid. Indian Journal of Science and Technology. 2019;13(39):4168–4188.
  6. Szebehely V.  Theory of Orbits. Academic Press. New York; 1967.
  7. Sharma R, Subba Rao PV. Stationary Solutions and Their Characteristic Exponents in the Restricted Three–Body Problem When the More Massive Primary Is an Oblate Spheroid. Celestial mechanics. 1976;13:137–149.
  8. Sharma RK, Subba Rao PV. A case of commensurability induced by oblateness. Celestial Mechanics. 1978;18:185–194.
  9. Sharma RK, Subba Rao PV. Effect of oblateness on triangular solutions at critical mass. Astrophysics and Space Science. 1979;60:247–250.
  10. Subba Rao PV, Sharma RK. A note on the stability of the triangular points of equilibrium in the restricted three–body problem. Astronomy and Astrophysics. 1975;43:381–383.
  11. Sharma RK. On linear stability of triangular libration points of the photogravitational three–body problem when the more massive primary is an oblate spheroid. In: Fricke W, Teleki G, editors. Sun and Planetary System, D. Reidel Publishing Co. Dordrecht, Holland.1982;435–436.
  12. Sharma RK. The Linear Stability of Liberation Points of The Photogravitational Restricted Three–Body Problem When the Smaller Primary is an Oblate Spheroid. Astrophys Space Sci. 1987;135:271–281.
  13. Subba Rao PV, Sharma RK. Effect of oblateness on the non–linear stability of L4 in the restricted three–body problem. Celestial Mechanics and Dynamical Astronomy. 1997;65:291–312.
  14. AbdulRaheem A, Singh J. Combined effects of perturbations, radiation, and oblateness on the stability of equilibrium points in the restricted three–body problem. The Astronomical Journal. 2006;131:1880–1885.
  15. AbdulRaheem A, Singh J. Combined effects of perturbations, radiation and oblateness on the periodic orbits in the restricted three body problem. Astrophys Space Sci. 2008;317:9–13.
  16. Abouelmagd EI. Stability of the Triangular Points under Combined Effects of Radiation and Oblateness in the Restricted Three–Body Problem. Earth Moon Planets. 2013;110:143–155.
  17. Ansari AA, Alam M. Dynamics in the circular restricted three body problem with perturbations. International Journal of Advanced Astronomy. 2017;5(1):19–25.
  18. Khalifa NS. Location of triangular equilibrium points in the perturbed CR3BP with laser radiation pressure and oblateness. International Journal of Advanced Astronomy. 2018;6(1):8–11.
  19. John D, Sharma RK. Periodic orbit in the photo–gravitational restricted three body problem around the collinear Lagrangian points when more massive primary is an oblate spheroid and source of radiation. International Journal of Advanced Astronomy. 2021;9(1):32–37.
  20. Kumar D, Sharma RK, Aggarwal R, et al. A note on modified restricted three–body problem. Astronomy Reports. 2022;66(8) ;710–724.
  21. MAXIMA: A Computer Algebra System, 1998.
Creative Commons Attribution License

©2024 Rajaram, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.