Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 6 Issue 3

Structure formation from stability criteria

Abhik Kumar Sanyal

Department of Physics, Jangipur College, Murshidabad, West Bengal, India

Correspondence: Abhik Kumar Sanyal, Department of Physics, Jangipur College, Murshidabad, West Bengal, India 742213

Received: July 30, 2022 | Published: August 10, 2022

Citation: Sanyal AK. Structure formation from stability criteria. Phys Astron Int J. 2022;6(3):97-99. DOI: 10.15406/paij.2022.06.00259

Download PDF

Abstract

In the short article we show that in view of the simple stability criteria an approximate estimation of the sizes and masses of planets, stars and galaxies may be predicted. Although no new result emerges, it might help to understand structure formation from the very first principle, which is essentially the stability criterion.

Introduction

The fact that atoms are stable, initiated formulation of quantum mechanics, at the very beginning. Likewise, we observe that the planets, the stars the galaxies, all are stable objects as well. Therefore, stability criterion is the first principle that should be studied to understand why these objects do not encounter catastrophic collapse due to self-gravitational attraction. Newtonian dynamics suffices to study stability criterion of these objects. A galaxy is a gravitationally bound system containing about 1011 stars of different types, each of which is having 1011 cm. radius on an average. The size of a galaxy is of the order of 1023 cm and its mass is around 1045 gm. We show that it is possible to apprehend the existence of stars and galaxies from fundamental physical considerations. Referring to commonly used symbols (such as     m e ,  m p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaqaaaaaaaaaWdbiaacckaa8aabaWdbiaacckaaaGaamyBa8aadaWg aaWcbaWdbiaadwgaa8aabeaak8qacaGGSaGaaiiOaiaad2gapaWaaS baaSqaa8qacaWGWbaapaqabaaaaa@4006@ being the masses of electron and proton respectively, ϵ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfiaeaaaaaaaaa8qacqWF1pG8 paWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@443D@ is the permittivity of the vacuum, etc.) one of the fundamental physical aspects is the ratio of the electromagnetic (e-m) and the gravitational forces:

F e F G  = e 2 4π ϵ 0 G  m P 2  = e 2 4π ϵ 0 c α G  = α α G   10 36 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadAeapaWaaSbaaSqaa8qacaWGLbaapaqabaaa keaapeGaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaGcpeGaai iOaiabg2da9maalaaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiaaisdacqaHapaCtuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaaicda a8aabeaak8qacaWGhbGaaiiOaiaad2gapaWaa0baaSqaa8qacaWGqb aapaqaa8qacaaIYaaaaaaakiaacckacqGH9aqpdaWcaaWdaeaapeGa amyza8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaI0aGaeq iWdaNae8x9di=damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabl+qi OjaadogacqaHXoqypaWaaSbaaSqaa8qacaWGhbaapaqabaaaaOWdbi aacckacqGH9aqpdaWcaaWdaeaapeGaeqySdegapaqaa8qacqaHXoqy paWaaSbaaSqaa8qacaWGhbaapaqabaaaaOWdbiabloKi7iaacckaca aIXaGaaGima8aadaahaaWcbeqaa8qacaaIZaGaaGOnaaaak8aacaGG Uaaaaa@7161@   (1)

In analogy to the e-m fine structure constant α= e 2 4π c = 1 137 10 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisda cqaHapaCcqGHiiIZdaWgaaWcbaGaeyykICmabeaakiabl+qiOjaado gaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiaaiodacaaI3aaa aiabloKi7iaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIYaaaaO Gaaiilaaaa@4CC4@ we dub the dimensionless quantity α G  = G m p 2  c   10 38 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaam4raaWdaeqaaOWdbiaacckacqGH 9aqpdaWcaaWdaeaapeGaam4raiaad2gapaWaa0baaSqaa8qacaWGWb aapaqaa8qacaaIYaaaaaGcpaqaa8qacqWIpecAcaGGGcGaam4yaaaa cqWIdjYocaGGGcGaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0 IaaG4maiaaiIdaaaaaaa@4A20@ as the gravitational fine structure constant, since it essentially measures the gravitational attraction between two electrons. This implies that gravity is much weaker than e-m interaction and therefore at small scales, physical processes are dominated by-and-large by e-m interaction only. By small scale we mean the atomic scale of dimension

a 0 = 4π ϵ 0 c m e e 2 ( c )= ( m e α) 1 ( c ) 10 10 m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaicdaa8aabeaakiabg2da9maalaaa baGaaGina8qacqaHapaCtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaaicdaa8aabeaakiab l+qiOjaadogaaeaacaWGTbWaaSbaaSqaaiaadwgaaeqaaOGaamyzam aaCaaaleqabaGaaGOmaaaaaaGcpeWaaeWaa8aabaWdbmaalaaapaqa a8qacqWIpecAa8aabaWdbiaadogaaaaacaGLOaGaayzkaaGaeyypa0 Jaaiika8aacaWGTbWaaSbaaSqaaiaadwgaaeqaaOGaeqySde2dbiaa cMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaWdaeaapeWaaS aaa8aabaWdbiabl+qiObWdaeaapeGaam4yaaaaaiaawIcacaGLPaaa cqWIdjYocaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislcaaIXa GaaGimaaaak8aacaWGTbGaaiilaaaa@6727@   (2)

the binding energy E b    m e   c 2 α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacaGGGcGaeS4q ISJaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaai iOaiaadogapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaah aaWcbeqaa8qacaaIYaaaaaaa@44E1@ and typical densities of matter ρ=A( m p 4 3 π a 0 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabg2 da9iaadgeaqaaaaaaaaaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGa amyBamaaBaaaleaacaWGWbaabeaaaOWdaeaapeWaaSaaaeaacaaI0a aabaGaaG4maaaacqaHapaCcaWGHbWaa0baaSqaaiaaicdaaeaacaaI ZaaaaaaaaOGaayjkaiaawMcaaiaacYcaaaa@4559@ whereis the atomic mass.

  1. Formation of planets:

Let us now consider a spherical body made up of N hydrogen atoms having mass M = N m p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacckacqGH9aqpcaGGGcGaamOtaiaad2gapaWaaSbaaSqa a8qacaWGWbaapaqabaaaaa@3E62@ and radius R =  a 0   N 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacckacqGH9aqpcaGGGcGaamyya8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacaGGGcGaamOta8aadaahaaWcbeqaa8qadaWcaa WdaeaapeGaaGymaaWdaeaapeGaaG4maaaaaaaaaa@4170@ . Gravitational potential and the Binding energy of such a body are E G G M 2 R G N 2 m p 2 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqWIdjYodaWc aaWdaeaapeGaam4raiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaaaO WdaeaapeGaamOuaaaacqWIdjYodaWcaaWdaeaapeGaam4raiaad6ea paWaaWbaaSqabeaapeGaaGOmaaaakiaad2gapaWaa0baaSqaa8qaca WGWbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGsbaaaaaa@465D@ , and E 0  N α 2 m e c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqWIdjYocaGG GcGaamOtaiabeg7aH9aadaahaaWcbeqaa8qacaaIYaaaaOGaamyBa8 aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacaWGJbWdamaaCaaaleqa baWdbiaaikdaaaaaaa@433F@  respectively. Since gravity is attractive, we have introduced binding energy instead of the electrostatic repulsion, to get rid of the sign from both sides. This means we are simply considering the numerical values. Such a body remains in stable equilibrium provided E 0  >  E G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGGcGaeyOp a4JaaiiOaiaadweapaWaaSbaaSqaa8qacaWGhbaapaqabaaaaa@3E66@ . Now substituting the above expression of R, and that of a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3928@ (Eqn. 2) as well, we can express as E G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ ,

E G   N 5 3 G m p 2 a 0  = N 5 3 G m p 2 α 2 m e α × c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqWIdjYocaGG GcGaamOta8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGynaaWdae aapeGaaG4maaaaaaGcdaWcaaWdaeaapeGaam4raiaad2gapaWaa0ba aSqaa8qacaWGWbaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGHbWdam aaBaaaleaapeGaaGimaaWdaeqaaaaak8qacaGGGcGaeyypa0ZaaSaa a8aabaWdbiaad6eapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiw daa8aabaWdbiaaiodaaaaaaOGaam4raiaad2gapaWaa0baaSqaa8qa caWGWbaapaqaa8qacaaIYaaaaOGaeqySde2damaaCaaaleqabaWdbi aaikdaaaGccaWGTbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcbaWd biabeg7aHbaacqGHxdaTdaWcaaWdaeaapeGaam4yaaWdaeaapeGaeS 4dHGgaaaaa@590C@ .  (3)

Now, for N =  N max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaacckacqGH9aqpcaGGGcGaamOta8aadaWgaaWcbaWdbiaa d2gacaWGHbGaamiEaaWdaeqaaaaa@3F51@ , stability of the spherical body under consideration requires E G( max )    <  E 0( max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEeadaqadaWdaeaapeGaamyBaiaa dggacaWG4baacaGLOaGaayzkaaaapaqabaGcpeGaaiiOaiaacckaca GGGcGaeyipaWJaaiiOaiaadweapaWaaSbaaSqaa8qacaaIWaWaaeWa a8aabaWdbiaad2gacaWGHbGaamiEaaGaayjkaiaawMcaaaWdaeqaaa aa@49A4@ , i.e.

N max 5 3   G m p 2 α   α 2   m e × c  <  N max   α 2   m e   c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaqhaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeaapeWa aSaaa8aabaWdbiaaiwdaa8aabaWdbiaaiodaaaaaaOGaaiiOamaala aapaqaa8qacaWGhbGaamyBa8aadaqhaaWcbaWdbiaadchaa8aabaWd biaaikdaaaaak8aabaWdbiabeg7aHbaacaGGGcGaeqySde2damaaCa aaleqabaWdbiaaikdaaaGccaGGGcGaamyBa8aadaWgaaWcbaWdbiaa dwgaa8aabeaak8qacqGHxdaTdaWcaaWdaeaapeGaam4yaaWdaeaape GaeS4dHGgaaiaacckacqGH8aapcaGGGcGaamOta8aadaWgaaWcbaWd biaad2gacaWGHbGaamiEaaWdaeqaaOWdbiaacckacqaHXoqypaWaaW baaSqabeaapeGaaGOmaaaakiaacckacaWGTbWdamaaBaaaleaapeGa amyzaaWdaeqaaOWdbiaacckacaWGJbWdamaaCaaaleqabaWdbiaaik daaaGcpaGaaiilaaaa@6257@

0r,  N max  < ( αc G m p 2 ) 3 2 = ( α α G ) 3 2   10 36× 3 2  =  10 54 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaOWd biaacckacqGH8aapdaqadaWdaeaapeWaaSaaa8aabaWdbiabeg7aHj abl+qiOjaadogaa8aabaWdbiaadEeacaWGTbWdamaaDaaaleaapeGa amiCaaWdaeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaaaOGa eyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacqaHXoqya8aabaWdbi abeg7aH9aadaWgaaWcbaWdbiaadEeaa8aabeaaaaaak8qacaGLOaGa ayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8 qacaaIYaaaaaaakiabloKi7iaacckacaaIXaGaaGima8aadaahaaWc beqaa8qacaaIZaGaaGOnaiabgEna0oaalaaapaqaa8qacaaIZaaapa qaa8qacaaIYaaaaaaakiaacckacqGH9aqpcaGGGcGaaGymaiaaicda paWaaWbaaSqabeaapeGaaGynaiaaisdaaaGcpaGaaiOlaaaa@6382@   (4)

Such a limiting value of a spherical body has radius R =  N max 1 3   a 0 α α G   a 0   10 10  cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacckacqGH9aqpcaGGGcGaamOta8aadaqhaaWcbaWdbiaa d2gacaWGHbGaamiEaaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aaba WdbiaaiodaaaaaaOGaaiiOaiaadggapaWaaSbaaSqaa8qacaaIWaaa paqabaGcpeGaeS4qISZaaOaaa8aabaWdbmaalaaapaqaa8qacqaHXo qya8aabaWdbiabeg7aH9aadaWgaaWcbaWdbiaadEeaa8aabeaaaaaa peqabaGccaGGGcGaamyya8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqWIdjYocaGGGcGaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGym aiaaicdaaaGccaGGGcGaam4yaiaad2gaaaa@5665@ , having a maximum (critical) mass of M c N max   m p   10 30 gm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacqWIdjYocaWG obWdamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaGcpeGaai iOaiaad2gapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeS4qISJa aiiOaiaaigdacaaIWaWdamaaCaaaleqabaWdbiaaiodacaaIWaaaaO Gaam4zaiaad2gaaaa@499D@ . This clearly corresponds to the radius and the mass of Jupiter, the largest planet of our solar system. Hence at this end we find that, stability criteria result in the maximum mass and size of a planet. 

  1. Formation of stars:

Next, if we want to go beyond and consider large bodies having mass M >  M c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacckacqGH+aGpcaGGGcGaamyta8aadaWgaaWcbaWdbiaa dogaa8aabeaaaaa@3D64@ , we need to consider several physical processes, in addition. Firstly, we need to consider the evolution of a gaseous sphere of hydrogen (say), with N >  N max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaacckacqGH+aGpcaGGGcGaamOta8aadaWgaaWcbaWdbiaa d2gacaWGHbGaamiEaaWdaeqaaaaa@3F53@ . For such a system, gravity dominates and in the steady state, Virial theorem implies: | K | | U | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiaadUeaaiaawEa7caGLiWoacqWIdjYocaGGGcWa aqWaa8aabaWdbiaadwfaaiaawEa7caGLiWoaaaa@41AF@ , where, K = NkT and | U | G M 2 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiaacckacqGH9aqpcaGGGcGaamOtaiaadUgacaWGubGaaiiO aiaabggacaqGUbGaaeizaiaacckadaabdaWdaeaapeGaamyvaaGaay 5bSlaawIa7aiabloKi7maalaaapaqaa8qacaWGhbGaamyta8aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGsbaaaaaa@4C0D@ stand for the kinetic and the potential energies of the system respectively, and k being the Boltzmann constant. Thus, kT GM m P R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacqWIdjYodaWcaaWdaeaapeGaam4raiaad2eacaWG TbWdamaaBaaaleaapeGaamiuaaWdaeqaaaGcbaWdbiaadkfaaaaaaa@3F07@ where we have substituted M = N m p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacckacqGH9aqpcaGGGcGaamOtaiaad2gapaWaaSbaaSqa a8qacaWGWbaapaqabaaaaa@3E62@ . It is to be noted that for N >  N max ,  kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaacckacqGH+aGpcaGGGcGaamOta8aadaWgaaWcbaWdbiaa d2gacaWGHbGaamiEaaWdaeqaaOWdbiaacYcacaGGGcGaaiiOaiaadU gacaWGubaaaa@442E@ is higher than the typical binding energy of solids and hence it is reasonable to consider the associated matter to be in plasma state, with electrons moving freely around the nuclei. However, when the body contracts under the action of its own gravitational force, its temperature increases according to the relation: NkT G M 2 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaadUgacaWGubGaeS4qISZaaSaaa8aabaWdbiaadEeacaWG nbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadkfaaaaaaa@3ED0@ . It appears that the temperature increases without bound as the sphere shrinks to R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabgkziUkaacckacaaIWaaaaa@3BD0@ , which is uncanny. To resolve the issue, let us express the temperature in terms of the inter-nuclear separation (dR N 1 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadsgacqWIdjYocaWGsbGaamOtamaaCaaaleqabaGaeyOe I0YaaSaaaeaacaaIXaaabaGaaG4maaaaaaGccaGGPaGaaiOlaaaa@3FA9@  Since NkT G M 2 R = G N 2 m p 2 d N 1 3 = G N 5 3 m p 2 d , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaadUgacaWGubGaeS4qISZaaSaaaeaacaWGhbGaamytamaa CaaaleqabaGaaGOmaaaaaOqaaiaadkfaaaGaeyypa0ZaaSaaaeaaca WGhbGaamOta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyBa8aadaqh aaWcbaWdbiaadchaa8aabaWdbiaaikdaaaaakeaacaWGKbGaamOtam aaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaaaaOGaeyyp a0ZaaSaaaeaacaWGhbGaamOtamaaCaaaleqabaWaaSaaaeaacaaI1a aabaGaaG4maaaaaaGccaWGTbWdamaaDaaaleaapeGaamiCaaWdaeaa peGaaGOmaaaaaOqaaiaadsgaaaGaaiilaaaa@51F6@ so we find

kT =  N 2 3 ( G m p 2 d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacaGGGcGaeyypa0JaaiiOaiaad6eapaWaaWbaaSqa beaapeWaaSaaa8aabaWdbiaaikdaa8aabaWdbiaaiodaaaaaaOWaae Waa8aabaWdbmaalaaapaqaa8qacaWGhbGaamyBa8aadaqhaaWcbaWd biaadchaa8aabaWdbiaaikdaaaaak8aabaWdbiaadsgaaaaacaGLOa Gaayzkaaaaaa@45F8@ .  (5)

Therefore, again it appears that the temperature increases unboundedly as inter-nuclear separation (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaadsgapaGaaiykaaaa@397F@ decreases. But this is not quite correct, since as d decreases, electrons in atoms are confined progressively to smaller and smaller region of space. As a result, electron degeneracy pressure generates, which starts contributing. For such electrons being confined within 'd' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4jaiaadsgacaGGNaaaaa@396D@ region, p 2 m e 2 m e d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeGaeS 4qISZaaSaaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaWGTbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbi aadsgapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@43CE@ . In view of which we can write, kT + 2 m e d 2   N 2 3   G m p 2 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacaGGGcGaey4kaSYaaSaaa8aabaWdbiabl+qiO9aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbWdamaaBaaale aapeGaamyzaaWdaeqaaOWdbiaadsgapaWaaWbaaSqabeaapeGaaGOm aaaaaaGccqWIdjYocaGGGcGaamOta8aadaahaaWcbeqaa8qadaWcaa WdaeaapeGaaGOmaaWdaeaapeGaaG4maaaaaaGccaGGGcWaaSaaa8aa baWdbiaadEeacaWGTbWdamaaDaaaleaapeGaamiCaaWdaeaapeGaaG OmaaaaaOWdaeaapeGaamizaaaaaaa@4D55@ and so we arrive at,

kT (d)=  N 2 3 ( G m p 2 d ) 2 m e d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacaGGGcWdaiaacIcapeGaamiza8aacaGGPaWdbiab g2da9iaacckacaWGobWdamaaCaaaleqabaWdbmaalaaapaqaa8qaca aIYaaapaqaa8qacaaIZaaaaaaakmaabmaapaqaa8qadaWcaaWdaeaa peGaam4raiaad2gapaWaa0baaSqaa8qacaWGWbaapaqaa8qacaaIYa aaaaGcpaqaa8qacaWGKbaaaaGaayjkaiaawMcaaiabgkHiTmaalaaa paqaa8qacqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaape GaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacaWGKbWdamaa CaaaleqabaWdbiaaikdaaaaaaaaa@502F@ .  (6)

Clearly, the temperature T( d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivamaabmaapaqaa8qacaWGKbaacaGLOaGaayzkaaaaaa@3A98@ reaches its maximum value T= T (max) = (2k) 1 N 4 3 m e α G 2 c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaGGOaGaamyBaiaa dggacaWG4bGaaiykaaWdaeqaaOWdbiabg2da9iaacIcacaaIYaGaam 4AaiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGobWaaWba aSqabeaadaWcaaqaaiaaisdaaeaacaaIZaaaaaaakiaad2gapaWaaS baaSqaa8qacaWGLbaapaqabaGcpeGaeqySde2damaaDaaaleaapeGa am4raaWdaeaapeGaaGOmaaaakiaadogapaWaaWbaaSqabeaapeGaaG OmaaaakiaacYcaaaa@4F9D@ at a minimum value of the inter-nuclear separation, d min =2 N 3 2 ( m e α G ) 1 ( c ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiGac2gacaGGPbGaaiOBaaWdaeqaaOWd biabg2da9iaaikdacaWGobWaaWbaaSqabeaacqGHsisldaWcaaqaai aaiodaaeaacaaIYaaaaaaakiaacIcacaWGTbWdamaaBaaaleaapeGa amyzaaWdaeqaaOWdbiabeg7aH9aadaWgaaWcbaWdbiaadEeaa8aabe aak8qacaGGPaWdamaaCaaaleqabaGaeyOeI0IaaGymaaaak8qadaqa daWdaeaapeWaaSaaa8aabaWdbiabl+qiObWdaeaapeGaam4yaaaaai aawIcacaGLPaaacaGGUaaaaa@4DDE@ In the process, degeneracy pressure forbids an unbounded increase of the temperature. It is important to mention that the degeneracy term dominates at higher density. If T max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3B36@ is high enough to trigger nuclear reaction at the centre of the spherical cloud, then contraction halts. If not, the body cools in a very short time-scale and forms a planet-like object. Note that the temperature required to ignite nuclear reaction is T N η  k 1 α 2   m p   c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad6eaa8aabeaak8qacqWIdjYocqaH 3oaAcaGGGcGaam4Aa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaO GaeqySde2damaaCaaaleqabaWdbiaaikdaaaGccaGGGcGaamyBa8aa daWgaaWcbaWdbiaadchaa8aabeaak8qacaGGGcGaam4ya8aadaahaa Wcbeqaa8qacaaIYaaaaaaa@4981@ , where, η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGgaaa@38DA@ is a parameter which depends on the details of nuclear reaction. The condition T max  >  T N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaOWd biaacckacqGH+aGpcaGGGcGaamiva8aadaWgaaWcbaWdbiaad6eaa8 aabeaaaaa@40A6@ simplifies to

N >  ( 2η ) 3 4   ( m p m e ) 3 4 ( α α G ) 3 2    10 57 × ( 0.2 ) 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaacckacqGH+aGpcaGGGcWaaeWaa8aabaWdbiaaikdacqaH 3oaAaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbi aaiodaa8aabaWdbiaaisdaaaaaaOGaaiiOamaabmaapaqaa8qadaWc aaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadchaa8aabeaaaOqaa8 qacaWGTbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaaaOWdbiaawIca caGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aaba WdbiaaisdaaaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qacqaHXoqy a8aabaWdbiabeg7aH9aadaWgaaWcbaWdbiaadEeaa8aabeaaaaaak8 qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaI Zaaapaqaa8qacaaIYaaaaaaakiaacckacqWIdjYocaGGGcGaaGymai aaicdapaWaaWbaaSqabeaapeGaaGynaiaaiEdaaaGccqGHxdaTdaqa daWdaeaapeGaaGimaiaac6cacaaIYaaacaGLOaGaayzkaaWdamaaCa aaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaI0aaaaaaa aaa@6296@ .  (7)

This means N m p  = M >  M * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaad2gapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaaiiO aiabg2da9iaacckacaWGnbGaaiiOaiabg6da+iaacckacaWGnbWdam aaBaaaleaapeGaaiOkaaWdaeqaaaaa@43A6@ , and hence,

M *  =  ( 2η ) 3 4 ( m p m e ) 3 4 ( α α G ) 3 2 m p   10 29  kg, taking  η = 0.1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaacQcaa8aabeaak8qacaGGGcGaeyyp a0JaaiiOamaabmaapaqaa8qacaaIYaGaeq4TdGgacaGLOaGaayzkaa WdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaI 0aaaaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaamyBa8aadaWgaa WcbaWdbiaadchaa8aabeaaaOqaa8qacaWGTbWdamaaBaaaleaapeGa amyzaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaape WaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaisdaaaaaaOWaaeWaa8aa baWdbmaalaaapaqaa8qacqaHXoqya8aabaWdbiabeg7aH9aadaWgaa WcbaWdbiaadEeaa8aabeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaaaaaaaki aad2gapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeS4qISJaaiiO aiaaigdacaaIWaWdamaaCaaaleqabaWdbiaaikdacaaI5aaaaOGaai iOaiaadUgacaWGNbGaaiilaiaabckacaqG0bGaaeyyaiaabUgacaqG PbGaaeOBaiaabEgacaGGGcGaaiiOaiabeE7aOjaacckacqGH9aqpca GGGcGaaGimaiaac6cacaaIXaGaaiOlaaaa@7049@   (8)

Once nuclear reaction starts, gravitational collapse halts, and the body becomes luminous, since energy generated through nuclear reaction is radiated away by the body. Such objects are identified as stars. Investigating the largest known Arches cluster by Hubble space telescope, the upper limit of the mass of a star has been reported to be M 150  M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiabgsMiJkaacckacaaIXaGaaGynaiaaicdacaGGGcGaamyt a8aadaWgaaWcbaWdbiablMPiLbWdaeqaaaaa@410E@ .1 In fact, above this limit, stars run out into instabilities, due to pair production and also by crossing the Eddington limit (the upper limit of a mass of a star at which the radiation pressure balances the inward gravitational force of the star), to be precise. Stability of such a body therefore requires M 150  M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiabgsMiJkaacckacaaIXaGaaGynaiaaicdacaGGGcGaamyt a8aadaWgaaWcbaWdbiablMPiLbWdaeqaaaaa@410E@ . Note that M =1.989× 10 30 kg, M =6.96× 10 8 m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiablMPiLbWdaeqaaOWdbiabg2da9iaa igdacaGGUaGaaGyoaiaaiIdacaaI5aGaey41aqRaaGymaiaaicdada ahaaWcbeqaaiaaiodacaaIWaaaaOGaam4AaiaadEgacaGGSaGaamyt a8aadaWgaaWcbaWdbiablMPiLbWdaeqaaOGaeyypa0ZdbiaaiAdaca GGUaGaaGyoaiaaiAdapaGaey41aq7dbiaaigdacaaIWaWdamaaCaaa leqabaWdbiaaiIdaaaGccaWGTbGaaiilaaaa@53FD@ stand for the solar mass and radius respectively. On the contrary, European Southern Observatory press release reported,2 AB Doradus C, a faint companion to AB Doradus A, is the smallest known star (0.09  M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaaicdacaGGUaGaaGimaiaaiMdacaGGGcGaamyta8aadaWg aaWcbaWdbiablMPiLbWdaeqaaOGaaiykaaaa@3F7C@ currently undergoing nuclear fusion in its core,3,4 which is supposedly the critical mass required to ignite nuclear fuel. Gas clouds which are less massive end up as brown dwarfs which occupy a poorly defined grey area between stars and gas giants.4,5 

  1. Formation of galaxies:

Finally, let us consider gas clouds having M  M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiablUMi=iaacckacaWGnbWdamaaBaaaleaapeGaeSyMIuga paqabaaaaa@3D5E@ , for which a region of size λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@ has thermal energy, E th ρ λ 3 m p  kT, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshacaWGObaapaqabaGcpeGaeS4q ISZaaSaaa8aabaWdbiabeg8aYjabeU7aS9aadaahaaWcbeqaa8qaca aIZaaaaaGcpaqaa8qacaWGTbWdamaaBaaaleaapeGaamiCaaWdaeqa aaaak8qacaGGGcGaam4AaiaadsfacaGGSaaaaa@4650@ while the gravitational potential energy is E G  G ( ρ λ 3 ) 2   λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqWIdjYocaGG GcGaam4ramaabmaapaqaa8qacqaHbpGCcqaH7oaBpaWaaWbaaSqabe aapeGaaG4maaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaaiiOaiabeU7aS9aadaahaaWcbeqaa8qacqGHsislcaaIXa aaaaaa@4866@ . Since stability configuration of such an object requires E th  >  E G ,  so,  kT Gρ  λ 2   m p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshacaWGObaapaqabaGcpeGaaiiO aiabg6da+iaacckacaWGfbWdamaaBaaaleaapeGaam4raaWdaeqaaO WdbiaacYcacaGGGcGaaiiOaiaabohacaqGVbGaaiilaiaacckacaGG GcGaam4AaiaadsfacqGHLjYScaGGGcGaam4raiabeg8aYjaacckacq aH7oaBpaWaaWbaaSqabeaapeGaaGOmaaaakiaacckacaWGTbWdamaa BaaaleaapeGaamiCaaWdaeqaaaaa@5612@ . However, this condition may be violated if the object cools rapidly. In that case it will have a tendency to fragment into smaller bodies (λ R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabeU7aSjablQMi9iaacckacaWGsbWdaiaacMcaaaa@3D9F@ , each of which would satisfy the above condition E th  >  E G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadshacaWGObaapaqabaGcpeGaaiiO aiabg6da+iaacckacaWGfbWdamaaBaaaleaapeGaam4raaWdaeqaaa aa@3F92@ , and evolve separately. To be precise, as the cloud collapses, its density increases, and since the collapse is isothermal, an increment of density implies that the Jeans mass of the cloud also falls. So small pieces of the cloud start to collapse of their own. A rising density also implies a declining free fall time. So these small dense clumps collapse further than the overall cloud. Thus instead of one gigantic cloud undergoing monolithic collapse, the cloud fragments into small collapsing pieces. Such collapse halts when mass of each fragment reaches the mass of an average star. Hence we are required to explore the dominant cooling processes.

For systems having temperature kT GM m p R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacqWIdjYodaWcaaWdaeaapeGaam4raiaad2eacaWG TbWdamaaBaaaleaapeGaamiCaaWdaeqaaaGcbaWdbiaadkfaaaaaaa@3F27@ , which is much greater than ionization potential α 2   m e   c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaaikdaaaGccaGGGcGaamyBa8aa daWgaaWcbaWdbiaadwgaa8aabeaak8qacaGGGcGaam4ya8aadaahaa Wcbeqaa8qacaaIYaaaaaaa@4067@ , the dominant cooing process is Bremsstrahlung. It is important to mention that the cooling time due to Bremsstrahlung process is given by,

t cooling   ( nα  σ T ) 1 ( kT m e c 2 ) 1 2  = 3 8π  [ m e 2   α 3 2 n ( kT m e ) 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadogacaWGVbGaam4BaiaadYgacaWG PbGaamOBaiaadEgaa8aabeaak8qacqWIdjYocaGGGcWaaeWaa8aaba Wdbiaad6gacqaHXoqycaGGGcGaeq4Wdm3damaaBaaaleaapeGaamiv aaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqGHsi slcaaIXaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGRbGaamiv aaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qaca WGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLOaGaayzkaaWd amaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaaaaakiaacckacqGH9aqpdaWcaaWdaeaapeGaaG4maaWdaeaapeGa aGioaiabec8aWbaacaGGGcWaamWaa8aabaWdbmaalaaapaqaa8qaca WGTbWdamaaDaaaleaapeGaamyzaaWdaeaapeGaaGOmaaaaaOWdaeaa peGaaiiOaiabeg7aH9aadaahaaWcbeqaa8qacaaIZaaaaOGaeS4dHG 2damaaCaaaleqabaWdbiaaikdaaaGccaWGUbaaamaabmaapaqaa8qa daWcaaWdaeaapeGaam4Aaiaadsfaa8aabaWdbiaad2gapaWaaSbaaS qaa8qacaWGLbaapaqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWc beqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaaaki aawUfacaGLDbaaaaa@7180@ ,  (9)

where, σ T  = 8π 3 ( q 2 4π ϵ 0 m e c 2 ) 2  = 8π 3 ( α m e c   ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamivaaWdaeqaaOWdbiaacckacqGH 9aqpdaWcaaWdaeaapeGaaGioaiabec8aWbWdaeaapeGaaG4maaaada qadaWdaeaapeWaaSaaa8aabaWdbiaadghapaWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaaGinaiabec8aWnrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbacfiGae8x9di=damaaBaaaleaapeGaaGim aaWdaeqaaOWdbiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpe Gaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiabg2da9maalaaapa qaa8qacaaI4aGaeqiWdahapaqaa8qacaaIZaaaamaabmaapaqaa8qa daWcaaWdaeaapeGaeqySdeMaeS4dHGgapaqaa8qacaWGTbWdamaaBa aaleaapeGaamyzaaWdaeqaaOWdbiaadogaaaGaaiiOaaGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaa@68C6@ is the Thomson scattering cross-section for electron, andis the number density of charged particles. On the contrary, the time scale for gravitational collapse is,

t gravcollapse  =  2 R G 3 GM , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadEgacaWGYbGaamyyaiaadAhacaWG JbGaam4BaiaadYgacaWGSbGaamyyaiaadchacaWGZbGaamyzaaWdae qaaOWdbiaacckacqGH9aqpcaGGGcWaaOaaa8aabaWdbmaalaaapaqa a8qacaaIYaGaamOua8aadaqhaaWcbaWdbiaadEeaa8aabaWdbiaaio daaaaak8aabaWdbiaadEeacaWGnbaaaaWcbeaakiaacYcaaaa@4D99@   (10)

Now the condition required for efficient cooling of the object is, t cooling  <  t gravcollapse MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadogacaWGVbGaam4BaiaadYgacaWG PbGaamOBaiaadEgaa8aabeaak8qacaGGGcGaeyipaWJaaiiOaiaads hapaWaaSbaaSqaa8qacaWGNbGaamOCaiaadggacaWG2bGaam4yaiaa d+gacaWGSbGaamiBaiaadggacaWGWbGaam4Caiaadwgaa8aabeaaaa a@4F08@ , which leads to the condition, R <  R G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacckacqGH8aapcaGGGcGaamOua8aadaWgaaWcbaWdbiaa dEeaa8aabeaaaaa@3D4F@ where,

R G  2 2   α 3   α G 1   m e 1 ( m p m e ) 1 2  ( c )  2.54×  10 23  cm 80 Kpc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqWIdjYocaGG GcGaaGOmamaakaaapaqaa8qacaaIYaaaleqaaOGaaiiOaiabeg7aH9 aadaahaaWcbeqaa8qacaaIZaaaaOGaaiiOaiabeg7aH9aadaqhaaWc baWdbiaadEeaa8aabaWdbiabgkHiTiaaigdaaaGccaGGGcGaamyBa8 aadaqhaaWcbaWdbiaadwgaa8aabaWdbiabgkHiTiaaigdaaaGcdaqa daWdaeaapeWaaSaaa8aabaWdbiaad2gapaWaaSbaaSqaa8qacaWGWb aapaqabaaakeaapeGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaa aaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8 qacaaIXaaapaqaa8qacaaIYaaaaaaakiaacckadaqadaWdaeaapeWa aSaaa8aabaWdbiabl+qiObWdaeaapeGaam4yaaaaaiaawIcacaGLPa aacqWIdjYocaGGGcGaaiiOaiaaikdacaGGUaGaaGynaiaaisdacqGH xdaTcaGGGcGaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGOmaiaaio daaaGccaGGGcGaam4yaiaad2gacqGHfjcqcaGGGcGaaGioaiaaicda caGGGcGaam4saiaadchacaWGJbaaaa@7143@   (11)

in the limit. To derive the above relation, we have used the expression, n = N 4 3π   R G 3 , with N m p  = M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaacckacqGH9aqpdaWcaaWdaeaapeGaamOtaaWdaeaapeWa aSaaa8aabaWdbiaaisdaa8aabaWdbiaaiodacqaHapaCaaGaaiiOai aadkfapaWaa0baaSqaa8qacaWGhbaapaqaa8qacaaIZaaaaaaakiaa cYcacaGGGcGaae4DaiaabMgacaqG0bGaaeiAaiaacckacaWGobGaam yBa8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacaGGGcGaeyypa0Ja aiiOaiaad2eaaaa@50FA@ and introduced the unit Kpc (Kiloparsec), where, 1 Kpc 3.08567758× 10 21  cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaacckacaWGlbGaamiCaiaadogacqWIdjYocaGGGcGaaG4m aiaac6cacaaIWaGaaGioaiaaiwdacaaI2aGaaG4naiaaiEdacaaI1a GaaGioaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaikda caaIXaaaaOGaaiiOaiaadogacaWGTbaaaa@4DD4@ . The condition that kT > α 2   m e   c 2  at R =  R G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaadsfacaGGGcGaeyOpa4JaeqySde2damaaCaaaleqabaWd biaaikdaaaGccaGGGcGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabe aak8qacaGGGcGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiO aiaabggacaqG0bGaaiiOaiaadkfacaGGGcGaeyypa0JaaiiOaiaadk fapaWaaSbaaSqaa8qacaWGhbaapaqabaaaaa@4EAC@ implies:

R G   G  M G m p α 2 m e c 2  = 2 π α 3   α G 1   m e 1 ( m p m e ) 1 2 ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqWIdjYocaGG GcWaaSaaa8aabaWdbiaadEeacaGGGcGaamyta8aadaWgaaWcbaWdbi aadEeaa8aabeaak8qacaWGTbWdamaaBaaaleaapeGaamiCaaWdaeqa aaGcbaWdbiabeg7aH9aadaahaaWcbeqaa8qacaaIYaaaaOGaamyBa8 aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacaWGJbWdamaaCaaaleqa baWdbiaaikdaaaaaaOGaaiiOaiabg2da9maakaaapaqaa8qacaaIYa aaleqaaOGaeqiWdaNaeqySde2damaaCaaaleqabaWdbiaaiodaaaGc caGGGcGaeqySde2damaaDaaaleaapeGaam4raaWdaeaapeGaeyOeI0 IaaGymaaaakiaacckacaWGTbWdamaaDaaaleaapeGaamyzaaWdaeaa peGaeyOeI0IaaGymaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaam yBa8aadaWgaaWcbaWdbiaadchaa8aabeaaaOqaa8qacaWGTbWdamaa BaaaleaapeGaamyzaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaa aOWaaeWaa8aabaWdbmaalaaapaqaa8qacqWIpecAa8aabaWdbiaado gaaaaacaGLOaGaayzkaaaaaa@6828@   (12)

Hence, one ends up with

M G  = 2  π α 5 α G 1  ( c G m p 2 ) ( m p m e ) 1 2   m p  = 2 π α 5 α G 2   ( m p m e ) 1 2   m p    10 11   M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaGGGcGaeyyp a0ZaaOaaa8aabaWdbiaaikdaaSqabaGccaGGGcGaeqiWdaNaeqySde 2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaa0baaSqaa8qa caWGhbaapaqaa8qacqGHsislcaaIXaaaaOGaaiiOamaabmaapaqaa8 qadaWcaaWdaeaapeGaeS4dHGMaam4yaaWdaeaapeGaam4raiaad2ga paWaa0baaSqaa8qacaWGWbaapaqaa8qacaaIYaaaaaaaaOGaayjkai aawMcaamaabmaapaqaa8qadaWcaaWdaeaapeGaamyBa8aadaWgaaWc baWdbiaadchaa8aabeaaaOqaa8qacaWGTbWdamaaBaaaleaapeGaam yzaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeWa aSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaaiiOaiaad2 gapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaaiiOaiabg2da9maa kaaapaqaa8qacaaIYaaaleqaaOGaeqiWdaNaeqySde2damaaCaaale qabaWdbiaaiwdaaaGccqaHXoqypaWaa0baaSqaa8qacaWGhbaapaqa a8qacqGHsislcaaIYaaaaOGaaiiOamaabmaapaqaa8qadaWcaaWdae aapeGaamyBa8aadaWgaaWcbaWdbiaadchaa8aabeaaaOqaa8qacaWG TbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdaaaaaaOGaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGWbaapaqaba GcpeGaeS4qISJaaiiOaiaacckacaaIXaGaaGima8aadaahaaWcbeqa a8qacaaIXaGaaGymaaaakiaacckacaWGnbWdamaaBaaaleaapeGaeS yMIugapaqabaaaaa@7FD2@ ,  (13)

which is the average mass of a galaxy. Thus, gaseous clouds with M  M G  and R R_G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiabgwMiZkaacckacaWGnbWdamaaBaaaleaapeGaam4raiaa cckaa8aabeaak8qacaqGHbGaaeOBaiaabsgacaGGGcGaamOuaiabgs MiJkaacckacaWGsbGaai4xaiaadEeaaaa@4837@ cools due to Bremsstrahlung process and fragments into smaller objects. These smaller fragments evolve independently and end up forming luminous stars or non-luminous planets. Systems with R >  R G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacckacqGH+aGpcaGGGcGaamOua8aadaWgaaWcbaWdbiaa dEeaa8aabeaaaaa@3D53@ evolves quasi-statically with T  R 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2Hi1kaacckacaWGsbWdamaaCaaaleqabaWdbiabgkHi Tiaaigdaaaaaaa@3D77@ , untill the condition R <  R G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacckacqGH8aapcaGGGcGaamOua8aadaWgaaWcbaWdbiaa dEeaa8aabeaaaaa@3D4F@ , is reached. In a nutshell, in view of the above analysis, we expect that gravitationally bound objects may contain 10 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacaaIXaGaaGymaaaaaaa@3A27@ or even more stars. These objects are identified as galaxies.

Conclusion

Inflation, which was initiated in the very early universe ( 10 32±6 s) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaIXa GaaGimamaaCaaaleqabaGaeyOeI0IaaG4maiaaikdacqGHXcqScaaI 2aaaaOaeaaaaaaaaa8qacaWGZbWdaiaacMcaaaa@404F@ is a very short phase of rapid expansion (faster than the speed of light) of the universe. At the end of inflation, particles are created which coalesce and heats up the universe. Thus hot Big-Bang starts. Inflation left behind the seeds of perturbation, which grew to form the structures - the stars, the galaxies, the cluster of galaxies, that we observe in the sky. Present article does not deal with the origin of structure formation. However, why the structures having different sizes and masses exist in the sky, is a natural question. The answer may be found in a host of text books of Astrophysics. However, the technique adopted in the standard text books is much involved. In this manuscript, we show that in view of Newtonian dynamics, it is possible to explain the formation of structures.

The requirement of the stability of atoms laid the foundation of quantum mechanics. Likewise, we know that a covalent bond formed by two hydrogen atoms is stable. Thus stability criterion is the first fundamental principle for which we exist. In this short note, we have tried to discuss why planets with large sizes and masses of the order of a mediocre star cannot exist in nature, and what causes stars and galaxies to encounter catastrophic gravitational collapse.

In a nutshell, during inflation the seeds of perturbations went outside the horizon and freeze. As inflation halts, these seeds enter the horizon, and over-dense regions accumulate masses from nearby under-dense regions and contract. At some stage, the temperature becomes high enough to trigger nuclear reaction, which halts further collapse due to radiation energy, and in the process stars are formed. A larger dense region of space of gaseous cloud fragments. These fragments collapse faster than the large region, to form hundreds of billions of such stars, which altogether take the shape of galaxies. It is important to mention that there was a dark age in the early cosmos, and the first star twinkled some 100 million years after inflationary phase, commonly said to be after hot Big-Bang. First galaxy, almost took a billon year to form after the Big-Bang.

I would finally like to specifically mention that this article should not to be treated as a fundamental or original research, since it does not explore any new result. Rather it is essentially meant for the graduate students and else, for quick understanding of the issue.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Figer DF. An upper limit to the masses of stars. Nature. 2005;434(7030):192–194.
  2. Hartung M.  Weighing the smallest stars. 2006.
  3. Boss A. Are they planets or what? Carnegie Institution of Washington, archived from the original. 2006.
  4.  Richer HB. Probing the faintest stars in globular star cluster. Science. 2006;313(5789):936–940.
  5. Leadbeater E. Hubble glimpses faintest stars, physics today. 2006.
Creative Commons Attribution License

©2022 Sanyal. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.