Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Conceptual Paper Volume 2 Issue 2

Standard quantum algorithms and the property of a certain function

Koji Nagata,1 Tadao Nakamura2

1Department of Physics, Korea Advanced Institute of Science and Technology, Korea
2Department of Information and Computer Science, Keio University, Japan

Correspondence: Koji Nagata, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

Received: March 12, 2017 | Published: April 18, 2018

Citation: Nagata K, Nakamura T. Standard quantum algorithms and the property of a certain function. Phys Astron Int J. 2018;2(2):146-147. DOI: 10.15406/paij.2018.02.00076

Download PDF

Abstract

We discuss a new mathematical structure for standard quantum algorithms. It says a certain property in case of a special function f that the relation f(x)=f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG4bGaaGykaiaai2dacaWGMbGaaGikaiabgkHiTiaadIha caaIPaaaaa@3EC8@ holds. That is, the particular mathematical structure of the special function is that f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG4bGaaGykaaaa@39C7@ should be even if we assume |x=|x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai abgkHiTiaadIhacqGHQms8caaI9aGaeyOeI0IaaGiFaiaadIhacqGH Qms8aaa@40B5@ .

Keywords: quantum algorithms, quantum computation

Introduction

In 1985, the Deutsch–Jozsa algorithm was discussed.1–3 In 1993, the Bernstein–Vazirani algorithm was published.4,5 This work can be considered an extension of the Deutsch–Jozsa algorithm. In 1994, Simon’s algorithm6 and Shor’s algorithm7 were discussed. In 1996, Grover et al.8 provided the highest motivation for exploring the computational possibilities offered by quantum mechanics.

In this short contribution, we discuss a new mathematical structure for standard quantum algorithms. They say a certain property in case of a special function f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaa aa@3765@ that the relation f(x)=f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG4bGaaGykaiaai2dacaWGMbGaaGikaiabgkHiTiaadIha caaIPaaaaa@3EC8@ holds.

Mathematical structure for standard quantum algorithms

We discuss a new mathematical structure for standard quantum algorithms in case of a special function f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaa aa@3765@ . Let us suppose that we are given the following function

f:{ (2 N 1), (2 N 2), ,2 N 2,2 N 1}{0,1, ,2 N 2,2 N 1}. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiQdacaaI7bGaeyOeI0IaaGikaiaaikdajuaGdaahaaWcbeqcbasa aKqzadGaamOtaaaajugibiabgkHiTiaaigdacaaIPaGaaGilaiabgk HiTiaaiIcacaaIYaqcfa4aaWbaaSqabKqaGeaajugWaiaad6eaaaqc LbsacqGHsislcaaIYaGaaGykaiaaiYcacqWIMaYscaaISaGaaGOmaS WaaWbaaKqaGeqabaqcLbmacaWGobaaaKqzGeGaeyOeI0IaaGOmaiaa iYcacaaIYaWcdaahaaqcbasabeaajugWaiaad6eaaaqcLbsacqGHsi slcaaIXaGaaGyFaiabgkziUkaaiUhacaaIWaGaaGilaiaaigdacaaI SaGaeSOjGSKaaGilaiaaikdalmaaCaaajeaibeqaaKqzadGaamOtaa aajugibiabgkHiTiaaikdacaaISaGaaGOmaSWaaWbaaKqaGeqabaqc LbmacaWGobaaaKqzGeGaeyOeI0IaaGymaiaai2hacaaIUaaaaa@6DD4@ (1)

We shall assume that f(y)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG5bGaaGykaiabgwMiZkaaicdaaaa@3C48@ . Let us introduce a function g(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zai aaiIcacaWG4bGaaGykaaaa@39C8@ that transforms binary strings into positive integers. We also define g 1 (f(g(x)))=F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zaS WaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaKqzGeGaaGikaiaa dAgacaaIOaGaam4zaiaaiIcacaWG4bGaaGykaiaaiMcacaaIPaGaaG ypaiaadAeacaaIOaGaamiEaiaaiMcaaaa@4619@ . We shall assume, for the time being, that the given function is even. Thus, we have
F(x) =F(x) {0,1} N x {0,1} N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeqbaeaabi GaaaGcbaqcLbsacaWGgbGaaGikaiaadIhacaaIPaaakeaajugibiaa i2dacaWGgbGaaGikaiabgkHiTiaadIhacaaIPaGaeyicI4SaaG4Eai aaicdacaaISaGaaGymaiaai2halmaaCaaajeaibeqaaKqzadGaamOt aaaaaOqaaKqzGeGaamiEaaGcbaqcLbsacqGHiiIZcaaI7bGaaGimai aaiYcacaaIXaGaaGyFaSWaaWbaaKqaGeqabaqcLbmacaWGobaaaKqz GeGaaiOlaaaaaaa@535F@    (2)

We see that the condition (2) holds in standard quantum algorithms.

What the function f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG4bGaaGykaaaa@39C7@ does in (1) is to map a set of discrete values onto another one. In (2), we assume that x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaa aa@3777@ is the binary representation of one element. x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaa aa@3777@ will be given by a binary string belonging to the Cartesian product {0,1}×{0,1}××{0,1} N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaayeaake aajugibiaaiUhacaaIWaGaaGilaiaaigdacaaI9bGaey41aqRaaG4E aiaaicdacaaISaGaaGymaiaai2hacqGHxdaTcqWIMaYscqGHxdaTca aI7bGaaGimaiaaiYcacaaIXaGaaGyFaaWcbaqcLbsacaWGobaaliaa wEJ=aaaa@4E81@ , for instance, x=(0,1,1,0,0,1,,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEai aai2dacaaIOaGaaGimaiaaiYcacaaIXaGaaGilaiaaigdacaaISaGa aGimaiaaiYcacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSKaaGilai aaigdacaaIPaaaaa@44D9@ . We then define x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IaamiEaaaa@3864@  as (0,1,1,0,0,1,,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IaaGikaiaaicdacaaISaGaaGymaiaaiYcacaaIXaGaaGilaiaaicda caaISaGaaGimaiaaiYcacaaIXaGaaGilaiablAciljaaiYcacaaIXa GaaGykaaaa@4402@ .

Throughout the discussion, we omit any normalization factor. Let us suppose |x=|x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai abgkHiTiaadIhacqGHQms8caaI9aGaeyOeI0IaaGiFaiaadIhacqGH Qms8aaa@40B5@ . The input state is

| ψ 1 =| 0,0,,0,1 N | 1,1,,1 N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai abeI8a5TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyOk JeVaaGypaiaaiYhajuaGdaagbaGcbaqcLbsacaaIWaGaaGilaiaaic dacaaISaGaeSOjGSKaaGilaiaaicdacaaISaGaaGymaaWcbaqcLbsa caWGobaaliaawEJ=aKqzGeGaeyOkJeVaaGiFaKqbaoaayeaakeaaju gibiaaigdacaaISaGaaGymaiaaiYcacqWIMaYscaaISaGaaGymaaWc baqcLbsacaWGobaaliaawEJ=aKqzGeGaeyOkJeVaaGOlaaaa@5BB9@            (3)

The function F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraa aa@3745@ is evaluated by using the following unitary 2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGOmai aad6eaaaa@3809@ qubits gate

U F :|x,z|x,z+F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaS WaaSbaaKqaGeaajugWaiaadAeaaKqaGeqaaKqzGeGaaGOoaiaaiYha caWG4bGaaGilaiaadQhacqGHQms8cqGHsgIRcaaI8bGaamiEaiaaiY cacaWG6bGaey4kaSIaamOraiaaiIcacaWG4bGaaGykaiabgQYiXdaa @4C20@    (4)

with

U F :|x,z|x,z+F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaS WaaSbaaKqaGeaajugWaiaadAeaaKqaGeqaaKqzGeGaaGOoaiaaiYha caWG4bGaaGilaiaadQhacqGHQms8cqGHsgIRcaaI8bGaamiEaiaaiY cacaWG6bGaey4kaSIaamOraiaaiIcacaWG4bGaaGykaiabgQYiXdaa @4C20@

|x,z|x,z+F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyi1HS TaeyOeI0IaaGiFaiaadIhacaaISaGaamOEaiabgQYiXlabgkziUkab gkHiTiaaiYhacaWG4bGaaGilaiaadQhacqGHRaWkcaWGgbGaaGikai aadIhacaaIPaGaeyOkJepaaa@4BB0@

|x,z|x,z+F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyi1HS TaaGiFaiabgkHiTiaadIhacaaISaGaamOEaiabgQYiXlabgkziUkaa iYhacqGHsislcaWG4bGaaGilaiaadQhacqGHRaWkcaWGgbGaaGikai aadIhacaaIPaGaeyOkJepaaa@4BB0@

|x,z|x,z+F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyi1HS TaaGiFaiabgkHiTiaadIhacaaISaGaamOEaiabgQYiXlabgkziUkaa iYhacqGHsislcaWG4bGaaGilaiaadQhacqGHRaWkcaWGgbGaaGikai abgkHiTiaadIhacaaIPaGaeyOkJepaaa@4C9D@                (5)

And employing the fact that F(x)=F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOrai aaiIcacaWG4bGaaGykaiaai2dacaWGgbGaaGikaiabgkHiTiaadIha caaIPaaaaa@3E88@ . Here, z+F(x)=( z 1 F 1 (x), z 2 F 2 (x),, z N F N (x)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEai abgUcaRiaadAeacaaIOaGaamiEaiaaiMcacaaI9aGaaGikaiaadQha lmaaBaaajqwaG9FaaKqzadGaaGymaaqcbasabaqcLbsacqGHvksXca WGgbWcdaWgaaqcKfay=haajugWaiaaigdaaKazba2=beaajugibiaa iIcacaWG4bGaaGykaiaaiYcacaWG6bqcfa4aaSbaaKqaGeaajugWai aaikdaaSqabaqcLbsacqGHvksXcaWGgbqcfa4aaSbaaSqaaKqzGeGa aGOmaaWcbeaajugibiaaiIcacaWG4bGaaGykaiaaiYcacqWIMaYsca aISaGaamOEaKqbaoaaBaaajeaibaqcLbmacaWGobaaleqaaKqzGeGa eyyLIuSaamOraKqbaoaaBaaaleaajugibiaad6eaaSqabaqcLbsaca aIOaGaamiEaiaaiMcacaaIPaaaaa@6A93@ (the symbol MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyyLIu maaa@3882@ indicates addition modulo 2).

We have the following fact

U F | 0,0,...,0,1 N | 1,1,...,1 N =  | 0,0,...,0,1 N | F(0,0,...,0,1) ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaS WaaSbaaKqaGeaajugWaiaadAeaaKqaGeqaaKqzGeGaaGiFaKqbaoaa yeaakeaajugibiaaicdacaaISaGaaGimaiaaiYcacaaIUaGaaGOlai aai6cacaaISaGaaGimaiaaiYcacaaIXaaaleaajugibiaad6eaaSGa ay5n+dqcLbsacqGHQms8caaI8bqcfa4aaGraaOqaaKqzGeGaaGymai aaiYcacaaIXaGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaaIXaaa leaajugibiaad6eaaSGaay5n+dqcLbsacqGHQms8caaI9aGcqaaaaa aaaaWdbiaacckacaGGGcqcLbsapaGaaGiFaKqbaoaayeaakeaajugi biaaicdacaaISaGaaGimaiaaiYcacaaIUaGaaGOlaiaai6cacaaISa GaaGimaiaaiYcacaaIXaaaleaajugibiaad6eaaSGaay5n+dqcLbsa cqGHQms8caaI8bqcfa4aa0aaaOqaaKqzGeGaamOraiaaiIcacaaIWa GaaGilaiaaicdacaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaaicda caaISaGaaGymaiaaiMcaaaGaeyOkJeVaaGOlaaaa@7B14@ (6)

Here, for example, if we have F(0,0,...,0,1)=(0,1,1,0,0,1,,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOrai aaiIcacaaIWaGaaGilaiaaicdacaaISaGaaGOlaiaai6cacaaIUaGa aGilaiaaicdacaaISaGaaGymaiaaiMcacaaI9aGaaGikaiaaicdaca aISaGaaGymaiaaiYcacaaIXaGaaGilaiaaicdacaaISaGaaGimaiaa iYcacaaIXaGaaGilaiablAciljaaiYcacaaIXaGaaGykaaaa@4DF5@ , then F(0,0,...,0,1) ¯ =(1,0,0,1,1,0,,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaanaaake aajugibiaadAeacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiaai6ca caaIUaGaaGOlaiaaiYcacaaIWaGaaGilaiaaigdacaaIPaaaaiaai2 dacaaIOaGaaGymaiaaiYcacaaIWaGaaGilaiaaicdacaaISaGaaGym aiaaiYcacaaIXaGaaGilaiaaicdacaaISaGaeSOjGSKaaGilaiaaic dacaaIPaaaaa@4E9D@ . Surprisingly the relation F(x)=F(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOrai aaiIcacaWG4bGaaGykaiaai2dacaWGgbGaaGikaiabgkHiTiaadIha caaIPaaaaa@3E88@  is necessary for the fundamental relation (6) as shown below. From the definition in (5), we have

U F |x| 1,1,...,1 N =|x| F(x) ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaK qbaoaaBaaajqwaG9FaaKqzadGaamOraaqcbasabaqcLbsacaaI8bGa amiEaiabgQYiXlaaiYhajuaGdaagbaGcbaqcLbsacaaIXaGaaGilai aaigdacaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaaigdaaSqaaKqz GeGaamOtaaWccaGL34pajugibiabgQYiXlaai2dacaaI8bGaamiEai abgQYiXlaaiYhajuaGdaqdaaGcbaqcLbsacaWGgbGaaGikaiaadIha caaIPaaaaiabgQYiXlaai6caaaa@5B34@            (7)

 This implies for xx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEai abgkziUkabgkHiTiaadIhaaaa@3B4E@ , wit x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEai abgcMi5kaaicdaaaa@39F8@

U F |x| 1,1,...,1 N =|x| F(x) ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaS WaaSbaaKqaGeaajugWaiaadAeaaKqaGeqaaKqzGeGaaGiFaiabgkHi TiaadIhacqGHQms8caaI8bqcfa4aaGraaOqaaKqzGeGaaGymaiaaiY cacaaIXaGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaaIXaaaleaa jugibiaad6eaaSGaay5n+dqcLbsacqGHQms8caaI9aGaaGiFaiabgk HiTiaadIhacqGHQms8caaI8bqcfa4aa0aaaOqaaKqzGeGaamOraiaa iIcacqGHsislcaWG4bGaaGykaaaacqGHQms8caaIUaaaaa@5BD5@    (8)

We state that |x=|x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai abgkHiTiaadIhacqGHQms8caaI9aGaeyOeI0IaaGiFaiaadIhacqGH Qms8aaa@40B5@ . Then it follows that the minus sign on left and right hand side of (8) drop off. This implies

U F |x| 1,1,...,1 N =|x| F(x) ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaK qbaoaaBaaajeaibaqcLbmacaWGgbaaleqaaKqzGeGaaGiFaiaadIha cqGHQms8caaI8bqcfa4aaGraaOqaaKqzGeGaaGymaiaaiYcacaaIXa GaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaaIXaaaleaajugibiaa d6eaaSGaay5n+dqcLbsacqGHQms8caaI9aGaaGiFaiaadIhacqGHQm s8caaI8bqcfa4aa0aaaOqaaKqzGeGaamOraiaaiIcacqGHsislcaWG 4bGaaGykaaaacqGHQms8caaIUaaaaa@5A5F@          (9)

We furthermore assume such that

|P=|QP=Q. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai aadcfacqGHQms8caaI9aGaaGiFaiaadgfacqGHQms8cqGHuhY2caWG qbGaaGypaiaadgfacaaIUaaaaa@4412@             (10)

Comparing (7) with (9) we see | F(x) ¯ =| F(x) ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFaK qbaoaanaaakeaajugibiaadAeacaaIOaGaamiEaiaaiMcaaaGaeyOk JeVaaGypaiaaiYhajuaGdaqdaaGcbaqcLbsacaWGgbGaaGikaiabgk HiTiaadIhacaaIPaaaaiabgQYiXdaa@4698@ . Hence, we cannot avoid the following property of the function in order to maintain consistency for the fundamental relation (6)

F(x) ¯ = F(x) ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaanaaake aajugibiaadAeacaaIOaGaamiEaiaaiMcaaaGaaGypaKqbaoaanaaa keaajugibiaadAeacaaIOaGaeyOeI0IaamiEaiaaiMcaaaGaaGOlaa aa@4121@      (11)

That is, the function under study is even

F(x)=F(x). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOrai aaiIcacaWG4bGaaGykaiaai2dacaWGgbGaaGikaiabgkHiTiaadIha caaIPaGaaGOlaaaa@3F40@      (12)

Conclusion

In conclusion, we have discussed a new mathematical structure for standard quantum algorithms. They have said a certain property in case of a special function f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaa aa@3765@ that the relation f(x)=f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacaWG4bGaaGykaiaai2dacaWGMbGaaGikaiabgkHiTiaadIha caaIPaaaaa@3EC8@ holds.

Acknowledgements

We thank Professor Han Geurdes for valuable discussions.

Conflict of interest

Authors declare there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Nagata, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.