Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

Some comments on electromagnetic oscillations in anisotropic cavities-wave equations and boundary conditions

Luiz CL Botelho

Department of Applied Mathematics, Mathematics Institute, Fluminense Federal University, Brazil

Correspondence: Luiz CL Botelho, Department of Applied Mathematics, Mathematics Institute, Fluminense Federal University, Rua Mario Santos Braga, CEP 24220-140 Niterói, Rio de Janeiro, Brazil

Received: October 23, 2018 | Published: November 29, 2018

Citation: Botelho LCL. Some comments on electromagnetic oscillations in anisotropic cavities-wave equations and boundary conditions. Phys Astron Int J. 2018;2(6):562-565. DOI: 10.15406/paij.2018.02.00142

Download PDF

Abstract

We present several new studies on the mathematical methods formulation of the important problem of electromagnetic oscillations in cavities on anisotropic and axial- anisotropic media, especially on the writing of the relevant dynamical wave equations and their correct boundary conditions. This study is the physical model for applications of a path integral method presented earlier.1

Keywords: anisotropic cavities, electromagnetic oscillations, Maxwell equations, Hodge-Helmotz theorem

Electromagnetic oscillations dynamical wave equations

We start this not by writing the initial value problem for Maxwell equations in the presence of sources and in a compact domain Ω with boundary Ω with spatially variable constitutive parameter (ε(r),μ(r),σ(r)) 14

×E+μtH=0  (1)

×HμεEt=μj+σμE  (2)

B=0  (3)

(εE)=ρ  (4)

E(r,0)=E0(r)  (5)

H(r,0)=H0(r)  (6)

Let us firstly search appropriated boundary conditions to be imposed on the electric and magnetic fields E(r,t) and H(r,t) respectively in order to lead to the problem unicity of the above written set of PDE’s, eq(l)-eq(6).

On basis of eq(l) and eq(2), we have the obvious energy balance equation for the PDE’s system above written

H×E+μtH×HEμεEtEjμEσμEE=0  (7)

 In other words, we have the following electromagnetic energy balance equation in Ω 

12Ωt(εμE2+μH2d3r)=+ΩμE.J)~d3r+Ωμσd3x+Ω(E×H).ndAFlux Poynting vector  (8)

It one supposes that has two different set of solutions for Maxwell equations eq(l) and eq(2), namely (E1,H1) and (E2,H2) , then theirs difference satisfy the obvious inequality

+12tΩμ(ΔE)2+μ(ΔH)2d3rε(t)ΩΔE×ΔHndA  (9)

since the loss of ohmic energy is positive-definite

ΩμσΔE2d3x0  (10)

 Now if one chooses boundary conditions that lead to the vanishing of the Poyinting flux on eq(8), one gets the problem unicity since

12tEt0EtE  (11)

 Let us analyze examples of boundary conditions that lead to vanishing of the Poynting flux on eq(9)

((E2E1)×(H2H1)Ω=0  (12)

Namely:

  1. E|Ω=0   (13)
  2. H|Ω=0  (14)
  3. ET1,2|Ω=0×HT1,2|Ω           (15)
  4. HT1,2|Ω=0         (16 a)
  5. E×H|Ω=0              (16 b)

where T~1,2 denote the tangent vectors on the domain boundary Ω.

Let us consider now a medium with constant electromagnetic parameters

ε=ε0μ=μ0σ=σ0.

In this simply case we have the decoupled dynamical equations for Electric and Magnetic fields with the non-absorbing boundary conditions

ΔE=εμ2Et2+σμEt+μjt+ρ  (17)

E(r,0)=Ε0(r)  (18)

Et(r,0)=J(r,0)+σE0(r)(×H0(r))  (19)

ET1,2|Ω=0  (20)

ΔH=εμ2Ht2+μσHt×J)  (21)

H(r,0)=H0(r)  (22)

Ht(r,0)=1μ(×E0(r))  (23)

(×H)T1,2|Ω=(JT1,2)|Ω=0  (24)

 Note that the divergence-less of the magnetic field eq (3) in this case can be insured straightforwardly by the equation below:

HTr(r,t)=H(r,t)14πrΩdiv(Hr',t)|rr'|)d3r')  (25)

 Let us re-write the problem in terms of vector and scalar potentials with the condition of <t<Ε(,t)  and  Η(,t)Λ2(Ρ3) ).

Since in this case one has gauge invariance so redundancy on the Maxwell equations solutions one should choose the generalized radiation gauge as a natural gauge fixing to find a unique solution:

1μAεϕtσϕ=0  (26)

 In this case the Maxwell dynamical equations eq(17)-eq(24) take the more invariant form below through the use of the electromagnetic potentials (A,ϕ).

ΔAεμ2t2A=μj+σμtAΔϕμε2t2ϕμσϕt=ρET1,2|Ω=(tA+ϕ).T1,2|Ω=0×H).T1,2|Ω(×(×A)).T1,2|Ω=μ(JT1,2|Ω)(27)

At this point we address our readers to implement numerical approximate procedures to solve the above written set of linear boundary value problems in a computer by finite- differences or finite-elements.

Finally we write the associated wave equations associative to the full Maxwell equations in the context of an electromagnetic spatially variable medium namely:

ΔH(εε)(r)2Ht2=×j+σμHt(σ)×E(Hμr)(εε)(r)×(×HσE  (28)

ΔE(εμ)(r)2Et2=μjt+σμEt(ρEEε)(μμ××E)  (29)

plus boundary and initial conditions

At this point we call the reader attention that solving electromagnetic problem in cavities with a non-trivial topological/homological class with potentials, one encounter the severe difficulty of the Helmholtz-Hodge non trivial decomposition of the electromagnetic fields in term of the above mentioned potentials. For instance, B=0 in Ω means that B=×A+Btop where Btop is an harmonic vector field configuration associated to the topological-homological characterization of Ω (with Ω being a domain with holes inside for instance, and of difficult determination from the local Maxwell PDE’systems! In this Helmholtz-Hodge context the Maxwell equations written in terms of potential (A,φ) are of form with constant medium electric parameters for instance)

ΔAεμ2t2A=(×HtopεμtEtophomological current+j+σE  (30-a)

Δϕεμ2t2ϕ=ρεμt(×Htop)homological charge density  (30-b)

Aμϕt=0radiation gauge fixing  (30-c)

+Boundary conditions

Here the homological-topological electromagnetic field configurations are defined by the Hodge theorem.

H=1μ(×A)+HtopHodgeHelmholtz theorem  (31-a)

0=×EtopμHtopdt  (31-b)

We note that non trivial topology on the manifold structure of Ω appear dynamically in Maxwell equations as sources of to electric charge and electric currents.

It appears thus, that considering from the beginning the dynamical equations written directly for the strength field(Ε,Η), all subtle and very difficulty topological-homological constraints imposed by the Hodge-Helmotz theorem are solved and already built on the boundary conditions imposed directly for the dynamical electromagnetic field equations.

Note that the set of second-order PDE’s eq(17)-eq(18) may enlarge the original set of solutions of the first order eqs(l)-eq(2), opposite to the potential method (A,φ). So, further direct verifications of using unique solutions eq(17)-eq(18) for solving eq(l) and eq(2) should be done at the end of the problem solving.

Let us now consider the anisotropic electromagnetic irradiation case in R3. In this situation we have the tensorial-matricial constituve relationships on the medium electro-magnetic properties between the electric displacement vector D(r,t) and the associated electric field E(r,t) respectively between the magnetic flux vector B(r,t) and the mag- netic vector field H(r,t).

D ( r ,t)= ε( r ). E ( r ,t) anisotropic medium permitivity ( D i ( r ,t)= ε ij ( r ) E j ( r ,t)( r )) ε C 0 ( R 3 ) B ( r ,t)= [μ( r )] H ( r ,t) μ ij ( r ) ε ij C 0 ( R 3 ) H j ( r ,t)= B i ( r ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiGaaaqaai qadseagaWcaiabgIcaOiqadkhagaWcaiaaiYcacaaMe8UaamiDaiab gMcaPiabg2da9aqaamaayeaabaWaamWaaeaacqaH1oqzcaGGOaGabm OCayaalaGaaiykaiaac6caaiaawUfacaGLDbaaceGGfbGbaSaacaaI OaGabmOCayaalaGaaGilaiaaysW7caWG0bGaaGykaaWcbaaeaaaaaa aaa8qacaWGHbGaamOBaiaadMgacaWGZbGaam4BaiaadshacaWGYbGa am4BaiaadchacaWGPbGaam4yaiaabccacaWGTbGaamyzaiaadsgaca WGPbGaamyDaiaad2gacaqGGaGaamiCaiaadwgacaWGYbGaamyBaiaa dMgacaWG0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhaaOWdaiaawE J=aiabgsDiBlabgIcaOiaadseadaWgaaWcbaGaamyAaaqabaGccqGH OaakceWGYbGbaSaacaaISaGaaGjbVlaadshacqGHPaqkcqGH9aqpda agbaqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHOaak ceWGYbGbaSaacqGHPaqkcaWGfbWaaSbaaSqaaiaadQgaaeqaaOGaey ikaGIabmOCayaalaGaaGilaiaaysW7caWG0bGaeyykaKIaeyikaGIa bmOCayaalaGaeyykaKIaeyykaKcaleaacqaH1oqzcaWGdbWaaSbaaW qaaiaaicdaaeqaaSGaaiikaiaackfadaahaaadbeqaaiaaiodaaaWc caGGPaaakiaawEJ=aaqaaiqadkeagaWcaiabgIcaOiqadkhagaWcai aaiYcacaaMe8UaamiDaiabgMcaPiabg2da9aqaaiabgUfaBjabeY7a TjabgIcaOiqadkhagaWcaiabgMcaPiabg2faDjqadIeagaWcaiabgI caOiqadkhagaWcaiaaiYcacaWG0bGaeyykaKIaeyi1HS9aaGraaeaa cqaH8oqBdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyikaGIabmOCay aalaGaeyykaKcaleaacqaH1oqzdaahaaadbeqaaiaadMgacaWGQbaa aSGaam4qamaaBaaameaacaaIWaaabeaaliabgIcaOiaackfadaahaa adbeqaaiaaiodaaaWccqGHPaqkaOGaay5n+dGaamisamaaBaaaleaa caWGQbaabeaakiabgIcaOiqadkhagaWcaiaaiYcacaaMe8UaamiDai abgMcaPiabg2da9iaadkeadaWgaaWcbaGaamyAaaqabaGccqGHOaak ceWGYbGbaSaacaaISaGaaGjbVlaadshacqGHPaqkaaaaaa@CA1C@   (31)

 Since B=0, we have that exists a potential A, such that

Bi(r,t)=εijkjAk(r,t)  (32)

 As a consequence of the Maxwell equations we also have that

Ei(r,t)=tAi(r,t)+xiϕ(r,t)

 One has thus the following anisotropic wave equation as outcome:

εirsxr(μ1]sq(r)Bq(r,t))t([εijr)Ejr,t))=Ji(r,t)  (34-a)

 which can be re-written as of as

εirsxr[μ1]sgεgjkxjAkBgt[ε]ij(tAj+ϕj)=Ji  (34-b)

 or equivalently

εirsεgjk([μ1]sg2xrxjAk)+(xr[μ1]sg)xjAk+[ε]ij2Ajt2=Ji+[ε]ij2txjφ  (34-c)

In other words

N(θA,θB)=A|cos(θA)cos(θB)cos(θ)+eiϕsin(θA)sin(θB)sin(θ)|2+C (35)

 After considering the radiation anisotropic gauge

[ε]ij2txjφεirsεgjkxj[μ1]sgxjAk0  (36)

one has the anisotropic second order Maxwell wave equation for the vector potential A(r,t), decoupled from the scalar potential.

[ε] mi 1 ε irs ε gjk [ μ 1 ] sg : C ¯ mrkg C mrjk ( r ) 2 x r x j A k + 2 A m t 2 = [ε] mi 1 j i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaGraaeaadaagaa qaaiabgUfaBjabew7aLjabg2faDnaaDaaaleaacaWGTbGaamyAaaqa aiabgkHiTiaaigdaaaGcdaqadaqaaiabew7aLnaaBaaaleaacaWGPb GaamOCaiaadohaaeqaaOGaeqyTdu2aaWbaaSqabeaacaWGNbGaamOA aiaadUgaaaGccaGGBbGaeqiVd02aaWbaaSqabeaacqGHsislcaaIXa aaaOGaaiyxamaaBaaaleaacaWGZbGaam4zaaqabaaakiaawIcacaGL PaaaaSqaaiaaiQdacqGHHjIUdaqdaaqaaiaaboeaaaWaaSbaaWqaai aad2gacaWGYbGaam4AaiaadEgaaeqaaaGccaGL44paaSqaaiaadoea qaaaaaaaaaWdbmaaBaaameaacaWGTbGaamOCaiaadQgacaWGRbaabe aaliaacIcapaGabmOCayaalaWdbiaacMcapaGaeyyyIOlakiaawEJ= amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIy RaamiEamaaCaaaleqabaGaamOCaaaakiabgkGi2kaadIhadaahaaWc beqaaiaadQgaaaaaaOGaamyqamaaBaaaleaacaWGRbaabeaakiabgU caRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyqamaa BaaaleaacaWGTbaabeaaaOqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOGaeyypa0Jaey4waSLaeqyTduMaeyyxa01aa0baaSqa aiaad2gacaWGPbaabaGaeyOeI0IaaGymaaaakiaadQgadaWgaaWcba GaamyAaaqabaaaaa@852C@   (37)

where the anisotropic fourth-order electromagnetic medium tensor is explicitly given by

Cmrjk(r)=[εr1]mi(εirsεgjk[μ1]sg(r))  (38)

The equation for the ϕ-electric potential in the choice radiation gauge eq (36) is devoid of dynamical content and given by a sort of Poisson equation through Maxwell equations once known the solution of the vector potential dynamics as given by eq (36)

xi([ε]irxrϕ)=(ρ+(xi[ε]ir)tAr)  (39)

We now show that it is possible to choose the anisotropic radiation gauge eq (36). Let (A¯,ϕ¯) be a given fixed electromagnetic potential configuration and (A¯+Λ,φ+Λt) it is gauge transformed.

We now show that it is possible to determine the gauge transformation parameter Λ(r,t) with the gauge field transformed electromagnetic potential configuration satisfying the gauge fixing analytical definition eq 34.

So let us suppose that

εgjkεirs(xr([μ1]sq(r))xjA¯k)t[ε]ij(r)xjϕ¯0  (40)

So we need to determine Λ such that

εgjkεirs([μ1]sq)xj(A+Λ)kt[ε]ij(ϕxj+Λt)  (41)

We have thus, that the gauge parameter function Λ(r,t) satisfies the second order PDE equation below

εgjkεirsxr([μ1]sgxjxkΛ2t2Λj==eq(40)source as function of(A¯,φ¯)  (42)

Finally, the reader should realize perturbative analytical calculations by considering weakly anisotropy around the isotropic case (g1,21) 

[μr]ij=δij+g1μijr[εr]ij=δij+g2εijr  (43)

Maxwell equations in an axial anisotropic conductive medium

Let us start this section 2 by considering the set of Maxwell equations in a medium with constitutive parameters depending solely on the spatial variable z, i.e. our anisotropic medium has a permittivity E=Ez and a media permeability μ=μ(z). Note also the supposed z dependence of the medium conductivityσ(z).
The electric flux density B (see eq(31) and eq(30)) are also supposed to be time variant and solely depending on the spatial variable z

D = D (z,t)=( D x , D y , D z )(z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaalaGaaG ypaiqadseagaWcaiaaiIcacaWG6bGaaGilaiaaysW7caWG0bGaaGyk aiaai2dacaaIOaGaamiramaaBaaaleaacaWG4baabeaakiaaiYcaca aMe8UaamiramaaBaaaleaacaWG5baabeaakiaaiYcacaaMe8Uaamir amaaBaaaleaacaWG6baabeaakiaaiMcacaaIOaGaamOEaiaaiYcaca aMe8UaamiDaiaaiMcaaaa@51BB@   (44-a)

B = B (z,t)=( B x , B y , B z )(z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaalaGaaG ypaiqadkeagaWcaiaaiIcacaWG6bGaaGilaiaaysW7caWG0bGaaGyk aiaai2dacaaIOaGaamOqamaaBaaaleaacaWG4baabeaakiaaiYcaca aMe8UaamOqamaaBaaaleaacaWG5baabeaakiaaiYcacaaMe8UaamOq amaaBaaaleaacaWG6baabeaakiaaiMcacaaIOaGaamOEaiaaiYcaca aMe8UaamiDaiaaiMcaaaa@51B1@   (44-b)

D =ε(z) E (z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaalaGaaG ypaiabew7aLjaaiIcacaWG6bGaaGykaiqadweagaWcaiaaiIcacaWG 6bGaaGilaiaaysW7caWG0bGaaGykaaaa@437E@   (44-c)

B =μ(z) H (z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaalaGaaG ypaiabeY7aTjaaiIcacaWG6bGaaGykaiqadIeagaWcaiaaiIcacaWG 6bGaaGilaiaaysW7caWG0bGaaGykaaaa@438E@   (44-d)

We have thus the following set of partial differential equations describing the electro- magnetic pulse in a such electromagnetic axial anisotropic dependent medium ( ε ( z ) , μ ( z ) ) with a source also still depending on the time and the z-variable solely

1ε(z)rt(D(z,t))+(1εz)×D(z,t)=Bt(z,t)  (45-a)

1μ(z)rt(D(z,t))+(1μz)×B(z,t)tD(z,t)=j(z,t)+σzεzD(z,t)  (45-b)

z B z (z,t)=(div B )(z,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHci ITaeaacqGHciITcaWG6baaaiaadkeadaWgaaWcbaGaamOEaaqabaGc caaIOaGaamOEaiaaiYcacaaMe8UaamiDaiaaiMcacaaI9aGaaGikai aabsgacaqGPbGaaeODaiqadkeagaWcaiaaiMcacaaIOaGaamOEaiaa iYcacaaMe8UaamiDaiabgMcaPiabg2da9iaaicdaaaa@5028@   (45-c)

z D z (z,t)=(div D )(z,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHci ITaeaacqGHciITcaWG6baaaiaadseadaWgaaWcbaGaamOEaaqabaGc caaIOaGaamOEaiaaiYcacaaMe8UaamiDaiaaiMcacaaI9aGaaGikai aabsgacaqGPbGaaeODaiqadseagaWcaiaaiMcacaaIOaGaamOEaiaa iYcacaaMe8UaamiDaiaaiMcacaaI9aGaaGimaaaa@4FC2@   (45-d)

After re-writing the set of axial anisotropic Maxwell equations eq(45-a)−eq(45-d) in components, it yields

z(1εzDyz)+z(ε'(z)ε(z)Dy)=Bxtz  (46-a)

1μ(z)Bxtz(μ'(z)μ2(z))Bxt2t2Dy=tjy+σzεztDy  (46-b)

In a decoupled form after some elementary algebra, one gets the fully decoupled component wave equation

1 ε ( z 2 z 2 D y + ( ε ' ( z ) ε 2 ( z D y z + ε ' ( z ) ε 2 z D y z + ( ε ' ε 2 ) ( z D y ( z ( μ ' ( z ) μ ( z ) ε z ) ) D y z + ( μ ' ε ' μ ε 2 ( z ) D y μ ( z ) 2 t 2 D y μ ( z ) t j y ( μ σ ε ( z ) t D y )   (47)

Similar algebraic procedures give decoupled equations for Dx(z,t) and the magnetic flux density B , after determining the candidate solutions for the electric flux density D=(Dx,Dy).

z ( 1 μ(z) B x z ) z ( μ (z) μ 2 (z) B x )= =ε(z) 2 B x t 2 + ε ε (z) D y t (z,t) z j y (z,t)+ z σ(z) ε(z) D y (z,t) Effective source term MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaaqaai abgkGi2cqaaiabgkGi2kaadQhaaaGaaGikamaalaaabaGaaGymaaqa aiabeY7aTjaaiIcacaWG6bGaaGykaaaadaWcaaqaaiabgkGi2kaadk eadaWgaaWcbaGaamiEaaqabaaakeaacqGHciITcaWG6baaaiaaiMca cqGHsisldaWcaaqaaiabgkGi2cqaaiabgkGi2kaadQhaaaGaaGikam aalaaabaGafqiVd0MbauaacaaIOaGaamOEaiaaiMcaaeaacqaH8oqB daahaaWcbeqaaiaaikdaaaGccaaIOaGaamOEaiaaiMcaaaGaamOqam aaBaaaleaacaWG4baabeaakiaaiMcacaaI9aaabaGaaGypaiabew7a LjaaiIcacaWG6bGaaGykamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamOqamaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2kaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaGraaeaadaGada qaamaabmaabaWaaSaaaeaacuaH1oqzgaqbaaqaaiabew7aLbaaaiaa wIcacaGLPaaacaaIOaGaamOEaiaaiMcadaWcaaqaaiabgkGi2kaads eadaWgaaWcbaGaamyEaaqabaaakeaacqGHciITcaWG0baaaiaaiIca caWG6bGaaGilaiaaysW7caWG0bGaaGykaiabgkHiTmaalaaabaGaey OaIylabaGaeyOaIyRaamOEaaaacaWGQbWaaSbaaSqaaiaadMhaaeqa aOGaaGikaiaadQhacaaISaGaaGjbVlaadshacaaIPaGaey4kaSYaaS aaaeaacqGHciITaeaacqGHciITcaWG6baaamaabmaabaWaaSaaaeaa cqaHdpWCcaaIOaGaamOEaiaaiMcaaeaacqaH1oqzcaaIOaGaamOEai aaiMcaaaGaamiramaaBaaaleaacaWG5baabeaakiaaiIcacaWG6bGa aGilaiaaysW7caWG0bGaaGykaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaaWcbaaeaaaaaaaaa8qacaWGfbGaamOzaiaadAgacaWGLbGaam4y aiaadshacaWGPbGaamODaiaadwgacaqGGaGaam4Caiaad+gacaWG1b GaamOCaiaadogacaWGLbGaaeiiaiaadshacaWGLbGaamOCaiaad2ga aOWdaiaawEJ=aaaaaa@B3C8@   (48)

Formal harmonic solutions for the decoupled eq (47) are easily found for a harmonic source with a definite frequency (<t<) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgkHiTi abg6HiLkaaiYdacaWG0bGaaGipaiabg6HiLkaaiMcaaaa@3F0E@  

D y (z,t)= e iwt Φ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaale aacaWG5baabeaakiaaiIcacaWG6bGaaGilaiaaysW7caWG0bGaaGyk aiaai2dacaWGLbWaaWbaaSqabeaacaWGPbGaam4DaiaadshaaaGccq qHMoGrcaaIOaGaamOEaiaaiMcaaaa@479B@   (49-a)

j y (z,t)= e iwt j y (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBaaale aacaWG5baabeaakiaaiIcacaWG6bGaaGilaiaaysW7caWG0bGaaGyk aiaai2dacaWGLbWaaWbaaSqabeaacaWGPbGaam4DaiaadshaaaGcca WGQbWaaSbaaSqaaiaadMhaaeqaaOGaaGikaiaadQhacaaIPaaaaa@486A@   (49-b)

Here

Φ(z)=exp 1 2 z 0 z b( z ¯ )d z ¯ α(z) φ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaiikai aadQhacaGGPaGaeyypa0JaciyzaiaacIhacaGGWbWaaiWaaeaadaag baqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeaaca WGIbGaaiikaiqadQhagaqeaiaacMcacaWGKbGabmOEayaaraaaleaa caWG6bWaaSbaaWqaaiaaicdaaeqaaaWcbaGaamOEaaqdcqGHRiI8aa WcbaGaeqySdeMaaiikaiaadQhacaGGPaGaeyyyIOlakiaawEJ=aaGa ay5Eaiaaw2haaiabeA8aQjaacIcacaWG6bGaaiykaaaa@5A32@   (50-a)

b(z)[( 2 ε ε 2 + μ με ) 1 μ ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiIcaca WG6bGaaGykaiabggMi6kaaiUfacaaIOaWaaSaaaeaacaaIYaGafqyT duMbauaaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaaaaaOGaey4kaS YaaSaaaeaacuaH8oqBgaqbaaqaaiabeY7aTjabew7aLbaacaaIPaGa eyyXIC9aaSaaaeaacaaIXaaabaGaeqiVd0gaaiaai2faaaa@4F8F@   (50-b)

d 2 φ d z 2 +(iwd(z)V(z))φ(z)= w 2 φ j y (z) e α(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOXdOgabaGaamizaiaa dQhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGikaiaadMgaca WG3bGaamizaiaaiIcacaWG6bGaaGykaiabgkHiTiaadAfacaaIOaGa amOEaiaaiMcacaaIPaGaeqOXdOMaaGikaiaadQhacaaIPaGaaGypai aadEhadaahaaWcbeqaaiaaikdaaaGccqaHgpGAcqGHsislcaWGQbWa aSbaaSqaaiaadMhaaeqaaOGaaGikaiaadQhacaaIPaGaamyzamaaCa aaleqabaGaeyOeI0IaeqySdeMaaGikaiaadQhacaaIPaaaaaaa@5E7F@   (50-c)

d(z) σ(z) ε(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaaiIcaca WG6bGaaGykaiabggMi6oaalaaabaGaeq4WdmNaaGikaiaadQhacaaI PaaabaGaeqyTduMaaGikaiaadQhacaaIPaaaaaaa@44AD@   (50-d)

V(z)= α (z)+ ( α (z)) 2 +b(z) α (z)+c(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaaiIcaca WG6bGaaGykaiaai2dacuaHXoqygaqbgaqbaiaaiIcacaWG6bGaaGyk aiabgUcaRiaaiIcacuaHXoqygaqbaiaaiIcacaWG6bGaaGykaiaaiM cadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbGaaGikaiaadQha caaIPaGafqySdeMbauaacaaIOaGaamOEaiaaiMcacqGHRaWkcaWGJb GaaGikaiaadQhacaaIPaaaaa@5328@   (50-e)

a(z) 1 εμ (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiIcaca WG6bGaaGykaiabggMi6oaabmaabaWaaSaaaeaacaaIXaaabaGaeqyT duMaeqiVd0gaaaGaayjkaiaawMcaaiaaiIcacaWG6bGaaGykaaaa@447D@   (50-f)

c(z) [( ε ε 2 ) μ μ ε ε ] 1 μ (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiIcaca WG6bGaaGykaiabggMi6oaabmaabaGaaG4waiabgkHiTiaaiIcadaWc aaqaaiqbew7aLzaafaaabaGaeqyTdu2aaWbaaSqabeaacaaIYaaaaa aakiqaiMcagaqbaiabgkHiTmaalaaabaGafqiVd0MbauaaaeaacqaH 8oqBaaWaaSaaaeaacuaH1oqzgaqbaaqaaiabew7aLbaacaaIDbGaey yXIC9aaSaaaeaacaaIXaaabaGaeqiVd0gaaaGaayjkaiaawMcaaiaa iIcacaWG6bGaaGykaaaa@5588@   (50-g)

We have thus reduced the harmonic electromagnetic wave propagation described in a axial-anisotropic medium to the ordinary differential equation eq(50-c). Let us finally point out that at the limit of higher frequencies and jy(z,t)0, one may introduce the effective spatial variable Z.5

Z= ω γ z φ(z)=U(Z);d(z)= d ˜ (Z);etc. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGAbGaaG ypamaalaaabaGaeqyYdChabaGaeq4SdCgaaiaadQhaaeaacqaHgpGA caaIOaGaamOEaiaaiMcacaaI9aGaamyvaiaaiIcacaWGAbGaaGykai aaiUdacaWGKbGaaGikaiaadQhacaaIPaGaaGypaiqadsgagaacaiaa iIcacaWGAbGaaGykaiaacUdacaaMc8UaamyzaiaadshacaWGJbGaai Olaaaaaa@5367@   (51)

with γ being an expansion parameter and get the explicitly solutions at the asymptotic higher frequency limit

U(Z)=Ac~(Z¯)4exp{iZ0Z(-c~(Z¯))12dZ¯}           +Bc~(Z)4exp{iZ0Z(-c~(Z¯))12dZ¯}  (52)

Useful for scattering problem of an electromagnetic pulse into a slab (or layers) (work in progress). Work on applied settings are in progress.6

Acknowledgments

None

Conflict of interest

Authors declare there is no conflicts of interest.

References

Creative Commons Attribution License

©2018 Botelho. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.